dr. dobb’s journal of $i.50

COMPUTER
alisthenics & Orthodontia*

Running Light Without Owerbyte

February 1976 Box 310, Menlo Park CA 94025 Volume 1, Number 2

Table of Contents for Volume, 1, Number 1 (20 pages) page

Tiny BASIC Status Letter - Dennis Allison 1
16-Bit Binary-to-Decimal Conversion Routine - Dennis Allison 2
Build Your Own BASIC [reprinted from PCC, Vol. 3, No. 4] - Dennis Allison & others 3
Build Your Own BASIC, Revived [reprinted from PCC, Vol. 4, No. 1] - D. Allison & M. Christoffer 4
Design Notes for Tiny BASIC [reprinted from PCC, Vol. 4, No. 2] - D. Allison, Happy Lady, & friends 5
Tiny BASIC [reprinted from PCC, Vol. 4, No. 3] - D. Allison, B. Greening, H. Lady, & lots of friends 9

Extendable Tiny BASIC - John Rible 10
Corrected Tiny BASIC IL - Bernard Greening 12
Tiny BASIC, Extended Version (TBX), Part 1 - Dick Whipple & John Arnold

Example, Command Set, Loading Instructions, Octal Listing 14
Letter & Schematics - Dr Robert Suding

Using a _calculator chip to add mathematical functions to Tiny BASIC 18
IN THIS ISSUE . . . ' ‘ ' |

What? Another Computer Hobbyist Magazine? - Editorial

A Critical Look at BASIC - Dennis Allison

Music of a Sort - Steve Dompier

SCELBAL: a higher level language for 8008/8080 systems - Mark Arnold &
descriptive information Nat Wadsworth

Tiny BASIC, Extended (TBX), Part 2 - Dick Whipple & John Arnold

complete implementation documentation, source listing,

error corrections, notes on two relocated versions
Computers that Talk - Jim Day & Editor

unlimited English language voice synthesis equipment, available in kit form for $1000
Letters & Notes

TBX Mods for a SWTP TVT-2 - Adolph Stumpf

Tiny BASIC Available for the 6800 - Tom Pittman

Byte Swap (classified ads)
Database Questionnaire, and Subscription Blank

In Future Issues .

7 DOCUMENTED SOURCE CODE FOR THE DENVER VERSION OF TINY BASIC

+ A PUBLIC-DOMAIN FLOPPY DISC FILE SYSTEM

T SCHEMATICS & ARTICLES, REPRINTED FROM MANY COMPUTER CLUB NEWSLETTERS

T DIRECTORIES OF CLUBS & ORGANIZATIONS, COMPUTER HOBBYIST STORES &
DISTRIBUTORS, PUBLICATIONS, ETC.

1 LISTS OF COMPUTER HOBBYISTS & THEIR EQUIPMENT

T INDICES TO COMPUTER HOBBYIST ARTICLES IN OTHER PUBLICATIONS

...

*previously DR DOBB'S JOURNAL OF TINY BASIC CALISTHENICS & ORTHODONTIA

Page 2

DR DOBB'S JOURNAL OF

COMPUTER CALISTHENICS & ORTHODONTIA
Volume 1, Number 2; February 1976

Box 310, Menlo Park CA 94025

[1010 Doyle, Menlo Park; (415) 323-6117]

Copyright 1976 by People’s Computer Company

> Publisher
° People’s Computer Company

~ Editor
Jim C. Warren, Jr.
© Contributing Editors
John Arnold
Dick Whipple

> Watchdogs

Bob Albrecht
Dennis Allison

: Underdog
o Rosehips Malloy

> Circulation & Subscriptions
Mary Jo McPhee

> Bulk Sales
Dan Rosset

POSTMASTER: Please send Form 3579 to: Box 310, Menlo Park

mail at second-class postage rates is pending at Menlo Park CA.

U.S. subscriptions:
(Subscription blank is inside of back cover)
$1.50 for a single issue.
83 for the first three issues.
$10 per year.

Foreign subscriptions:
Add $4 per year to the above rates for surface mail.
Add $12 per year to the above rates for air mail.

Discounts available for bulk orders.

Disclaimer
We serve as a communication medium for the exchange of
information. We do not guarantee the validity of that information.

Reprint privileges

Articles herein that are copyrighted by individual authors or
otherwise explicitly marked as having restricted reproduction rights
may not be reprinted or copied without permission from People’s
Computer Company. All other articles may be reprinted for any
non-commercial purpose, provided a credit-line is included. The
credit-line should incidate that it was reprinted from DR DOBB'S
JOURNAL OF COMPUTER CALISTHENICS &
ORTHODONTIA, and include our address.

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

CA 94025. Return postage guaranteed. Application to

Published 10 times per year; monthly, excluding July and December.

Box 310, Menlo Park CA 94025

in the next issue...

t Documentation & complete source code for a
Denver version of Tiny BASIC

t Touchless sensing for under $100--proximity sensors
that can “see” liquids and solids

t Quik Bits—-short news articles concerning home
computing

t Keyboard Loader for Octal Code via the TVT-2

t Details of a Software Contest for the TV Dazzler

t A center for software reproduction and distribution

t More details on the Votrax speech synthesizer kits

1 Articles from the computer club newsletters

t Lots o’ Letters, & A pointer to a 16K BASIC for
the 8008

and much more . . .

This started out to be a one-shot, three-issue
quickie on Tiny BASIC. It was being put together on a
sorta spare-time basis by the PCC mob. Once we
became aware of the information gap that we are now
focusing on filling, it took a coupla weeks or more to
gather together a staff and organize a full-scale
magazine production effort. Thus:

The first issue, “January, 1976,” didn’t get out
until the end of February.

This second issue is being mailed April 12th, in
spite of it’s being dated “February.”

Number 3 will go out less than two weeks there-
after, however, and the “April” issue should go out in
the first week of May.

Finally . . . the May issue will go out about the
third week of May, and (whew!) we’ll be on schedule
from there on.

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 3

Whats DDjCcCc &0 all about?

My gawd! Not another computer hobbyist magazine! That was my first reaction when
People’s Computer Company approached me about becoming Editor of their one-issue-old
infant, DR DOBB'S JOURNAL OF TINY BASIC CALISTHENICS & ORTHODONTIA.
PCC had originally planned on publishing three issues of the JOURNAL. The response to
the first, patchquilt issue, however, convinced them (and me) that an area of badly-needed
information is not being covered by the presently existing publications. Furthermore, it
seems unlikely that the other publishers will choose to cover that area; they have their
hands (and pages) full just covering hardware and small bits of software.

What is this area; this information vacuum? It’s free and very inexpensive software.
One of the primary thrusts of DR DOBB'S JOURNAL will be to present detailed informa-
tion concerning low-cost systems software; interpreters, compilers, structured assemblers,
graphics languages, floppy disc file systems, etc. This will include user documentation and
examples, documentation on implementation including complete source code listings, up-
dates giving errors and their fixes, explicit and detailed notes on the design and imple-
mentation of such systems software, and so on. This JOURNAL is explicitly available to
serve as a communication medium concerning the design, development, and distribution of
free and low-cost software for the home computer.

We encourage you to send in documented software, as you develop it. We hope that
you will use the software that we publish in this JOURNAL,; that you will study it and
modify it to expand its capabilities, and that you will report any bugs you may note to
us and to the authors.

We are also quite interested in publishing evaluations of any software and hardware
that is being sold to the home computer user. We are supported by readers’ subscriptions
rather than advertising. We will not hesitate to publish positive and negative evaluations.
We adamantly hold the position that, if a manufacturer of some hardware or software is
going to peddle it to unsuspecting consumers for a healthy profit, their product damn
well ought to perform as well as their advertisements and profit imply it will!

There are some other areas of information that we expect to cover, not seen in most
of the other major computer hobbyist publications. These include complete indices to all
of those publications, directories of computer stores and distributors, listings of computer
clubs and organizations, listings of users and their equipment, etc. Another tidbit: as long
as we can afford to, we will carry classified ads.

We also plan to begin reprinting articles and schematics from the club newsletters.
We have heard the comment, over and over, “I wish I could see the stuff that’s being -
printed by all the homebrew groups, but I just can’t afford to subscribe to all of them.”
We expect to help with this desire. :

Finally, we will be doing some fairly detailed “blue skying.” Everyone is wondering
where home computers are going, and what the potentials are. We have a number of ideas
(with more rolling in, every day) about what can be done in the immediately foreseeable
future. We will be presenting them and encouraging their realization. The Votrax articles
on page 32 of this issue are one small example of this.

Thank you for reading. We want your suggestions. We want your contributions of
software, hardware designs, evaluations, and anything else you’re willing to share with
other home computer enthusiasts. And, of course, we want your subscriptions. The more
subscriptions we have; the more pages we can print; the more information we can pass
along to you and your friends. If you like what you see here, we hope you will spread
the word.

Nuf sed, for now. More in a coupla weeks. --Jim C. Warren, Jr., Editor

Page 4 February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

A CRITICAL LOOK AT BASIC

Dennis Allison, 169 Spruce Ave, Menlo Park CA 94025
Consultant (415) 325-2962

[This article appeared in Timesharing: Past, Present,
Future. Proceedings of the Second Annual Computer
Communications Conference, San Jose, January 1973.]

0. INTRODUCTION

BASIC is the dominate interactive programming
language. It has been widely implemented since
its introduction in 1965 as a component of the
Dartmouth timesharing system. BASIC is presently
widely used as an instructional language at

both the high school and college level. Standard-
ization efforts are now in progress, but are
hampered by the proliferation of dialects and
incompatible extensions.

The purpose of this paper is to evaluate the

BASIC language as a problem solving tool. BASIC
is not the language of choice for problem solving
given our present understanding of the programming
process. That is not to say that programs, even
good programs, cannot be written in BASIC. There
is overwhelming evidence which indicates they can
be. Rather, it says that the language structure
makes it difficult to write a clear, concise, well
structured program.

The emerging discipline of software engineering has
provided us with a pair of complementary methodol-
ogies which, when properly applied, help minimize
the difficulty of developing error-free software
systems both large and small.

One might say that BASIC is too simple, too easy
to use. It is possible for a novice user to learn
to program in a single day. It is also almost
axiomatic that large programs written by BASIC
programmers will be ridden with bugs. The language
lacks the mechanisms to structure the problem's
algorithm and data well. It breeds bad habits,
habits which are difficult to unlearn.

1. MAKING A PROGRAM

The program development cycle can be summarized as
repetative application of the following:

o Problem definition

Algorithm development

Program entry (error prone, mechanical)
Testing to discover errors

Debugging (localizing errors)

Lditing (mcchanical)

cC ©0 0 0O

Contemporary timesharing systems support the
mechanical portion of program development and
neglect the conceptual and definitional part.
BASIC systems provide for program entry, syntax
checking, editing, and the like, but don't really
provide much help when it comes to deciding how
to solve the problem at hand. The program is
expected to blossom forth in full bloom from the
gestalt mind of the user. A corollary to the
above observation: BASIC programs written at the

console usually look it.

While little support is given to testing and
proofs of correctness, debugging is well supported
within BASIC. BASIC is usually interpreted, so
the state of the BASIC machine is available to
construct diagnostics. Simple errors, array-bounds
violations are checked and diagnostics reported

at run-time. Many BASIC systems defer reporting
structual errors (for example, a missing NEXT) to
run-time as well, a practice not to be commended.
The ease of finding errors in BASIC programs allows
one to build programs on a pragmatic, experimental
basis. That leads to a false sense of security.
One had best remember Dijkstra's dictum: 'Program
testing can be used to show the presence of bugs,
never to show their absence."

2. MODULAR PROGRAMMING

If any rule of the thumb as to how to construct good
programs exists, it is: Divided and Conquer. Problems
are best solved by decomposing them into smaller and
smaller problems until the resultant problem can be
solved in a simple, direct manner.

Dijkstra has pointed out that the process of dividing
a problem into its natural fragments results in the
introduction of levels of abstraction. At each level
of abstraction primative functions are defined which
manipulate primative data aggregates; the operations
and the data structures mirror an abstract model of
the problem being solved. At lower levels of abstraction
these primative operations and data structures are
themselves decomposed into still more primative units.
For example, a sort-merge program may deal on one
level with manipulations of files, and on another
level with records and keys.

BASIC provides few mechanisms for modularity. There
is a one-line arithmetic function capability and an
unparametered subroutine (GOSUB/RETURN) facility.
The first has limited usefulness; it provides a
convenient shorthand for computation, nothing more.
The subroutine facility is very primative. It
requires the user to develop conventions for passing
parameters and for the naming of local data. All
variables are global in BASIC and are shared between
all modules of the program. Subroutines are not
distinct from the corpus of the main program (and
other subroutines); transfers into and out of
subroutines is unrestricted and often unmanageable.
Subroutine reference is by line number rather than

a mnemonic name, a convention which tends to obscure
the functional purpose of the subroutine.

3. STRUCTURED PROGRAMMING

Structured programming is a technique which limits
the control structures which interconnect the modules
of a program to a few well-defined forms. Modules
include procedures and collections of statements,
cither of which may be nested. The flow of control
utilizes conditional and plex selection to select
paths and provide for repetition unconditionally,
under control of a boolean expression, or under
control of an indexing variable. Recent systems
provide escape statements which allow control to
exit several nested modules. All systems forbid the
use of unconditional branching.

The rationale behind structured programmin is the
minimization of the connectivity within a program.
Programs which have a well defined, nested structure

February 1976 Dr Dobb’s Journal of Computer Calisthenics

tend to be clear. The logical flow is usually
sufficiently clear that a flowchart is not necessary
to tour all paths in the program. In addition,

the conditions under which any given path is to

be executed are clearly spelled out.

BASIC is the antithesis of a language for writing
structured programs. The GOTO and the IF...THEN
both result in unstructured transfers of control.
No means is provided for collecting statements
into a group to be executed as a module. And
instead of eliminating labels, BASIC requires all
statements to have one.

True structured programming is difficult in BASIC.
It requires unmitigated attention and discipline
to maintain a structured programming style. And
the clarity which onc normully acquires is lost
because module boundaries are not distinct.

4. SUMMARY

BASIC does not provide those features which appear
desireable in an interactive programming language
to be used for real-world problem solving. The
flaws are not superficial; they are buried deeply
in the structure of the language. In particular,
BASIC is not a vehicle for the best techniques
known for the construction of programs: modular
programming and structured programming.

Making programs is not an easy task. A problem of
even moderate complexity often cannot be comprehended
in the whole. We must abstract and localize the
processing to make it tractable. Our contention

is that BASIC does not help this process and,

because of its structure, often hinders it. The

time is ripe to find a better language, one more
closely related to our needs.

5. REFERENCES
BASIC

Anon. (1970) BASIC, Fifth Edition, Dartmouth College,
Hanover, New Hampshire.

Lee, J.A.N., The Formal Definition of the BASIC
Language, The Computer Journal, Volume 15
Number 1 (February 1972), pages 37-41.

Ogdin, J., The Case Against BASIC, Datamation
(September 1, 1971), pages 34-41.

Sammet, Jean E., Programming Languages, Prentice-
-Hall (1969).

Modular and Structured Programming

Baker, F. T.; System Quality Through Structured
Programming, Proc. FJCC (1972), pages 339-343.

Buxton, J. N. and B. Randell (eds.), Software
Engineering Techniques, Report on a Conference
Sponsored by NATO Science Committee, Rome
Italy (1969).

Dijkstra, E. W., Notes on Structured Programming,

Report 241, Technische Hogeschool Eindhoven (1969).

& Orthodontia Box 310, Menlo Park CA 94025 Page 5

Levenworth, B. M., Programming With(out) the GOTO,
Proc. ACM Nat. Conf. (1972), pages 782-786.

Liskov, B. H., A Design Methodology for Reliable
Software Systems, Proc. FJCC (1972), pages 191-199.

Mills, H. D., Mathematical Foundations for Structured
Programming, IBM FSD Report FSC72-6012,
Gaithersburg Maryland (February 1972).

Naur, P. and B. Randell (eds.), Software Engineering,
Report on a Conference Sponsored by the NATO
Science Committee, Garmisch Germany (1968).

Wirth, N., Program Development by Stepwise Refinement,
CACM 14 (April 1971).

Wulf, W. A., A Case Against the GOTO, Proc. ACM Nat.
Conf. (1972), pages 791-797.

COMMERCIAL GOODIES OF INTEREST

PC BOARDS

For those inclined to design their own microcomputer sys-
tem, Schweber Electronics (Westbury NY 11590, 516-334-7474),
is marketing several PC boards that appear interesting. Their Micro-
computer Panel No. 9045-3BD-60 purports to accommodate
nearly all currently available microprocessor kits. Their Memory
Panel No. 9042-3BD-60 accepts any 16-, 18-, 22-, or 28-pin LSI
RAM, ROM, or PROM in 4K increments. These 6°x10” boards
mate to standard 44-pin edge connectors for ease of system expan-
sion. By standardizing pinouts for address and data buses, control
and power lines, it becomes simple to interchange processor boards,
memory boards, I/O boards, etc., all within the same card cage,
regardless of whose LSI devices are on any board.

Schweber has 18 outlets in the U.S. If none of them are
handy for you, contact the manufacturer, Excel Products, 401
Joyce Kilmer Ave, New Brunswick NJ 08903; 201-249-6600.

FAIRCHILD F-8 KITS

If you don’t want to do hardware diddling, Fairchild is
peddling a F-8 Microprocessor Kit for $185 (plus tax where applic-
able). The “’kit” contains a fully assembled and tested unit includ-
ing an F8 CPU, a pre-programmed PSU (Program Storage Unit), an
F8 Memory Interface Circuit, and 1K bytes of static RAM. It in-
cludes a wired edge connector, one end for the board, another for
your TTY, and three wires for power. The board includes 32 TTL-
compatible I/O bits, two interrupt levels, two programmable timers,
and all the necessary control circuits. Internal signals have been
brought out to the edge connector for possible system expansion.
Just add power; there is no additional soldering or wiring to do.
The price includes a F8 Programming Manual, F8 Databook, and
the “Fairbug” program in the PSU. Fairbug includes such capabili-
ties as a loader, memory dumper, debugger, and TTY and paper tape
1/O drivers. They say its immediately available from Fairchild
Distributers or from Fairchild Microsystems Division, 1725 Tech-
nology Dr., San Jose CA 95110.

Page 6 February 1976 Dr Dobb’s Journal of Computer Csalisthenics & Orthodontia Box 310, Menlo Park CA 94025

MUSIC OF A SORT Data For THE FOOL ON THE HILL Data for “DAISY”
atles
Steve Dompier, jll 532 L{Elssle>, Berkeley CA 94705; Address Data Address Data Address Data Address Datal
[Reprinted from May 1975 PCC, Vol. 3, No. §5.] 040 105 120 055 170 034 250 040
041 105 121 053 {71 034 251 042
IT WORKS! 042 125 122 071 172 034 252 046
I received my ALTAIR 8800 in the mail at 10 a.m., and 042 100 123 066 173 042 253 034
30 hours later it was up and running with only one bug in the & s ggi 3‘; 32(1) 174 042 %gg gz;
memory! That turned out to be a scratch in a printed circuit 046 063 126 071 }‘772 g‘;g 556 046
thatktc()i(ﬂ(6 more houss to find. After that was fixed, everything ¢47 063 127 100 177 053 257 053
worked!! : '
Now, what do you do with a machine that so far has no 050 071 130 071 200 053 260 053
1/0 boardsor peripherals? Well, there’s always the front panel gg 82:’; }31 066 201 o071 %2; ggg
switches and machine language, so I was soon busy making up 053 053 1% gg? %g% 071 %3 046
programs to test all of the 8080’s functions; and getting a good g4 053 134 100 204 gz; 2%4 042
set of calluses on my ten input devices. There’s a lot of 8080 055 055 135 100 205 055 265 042
instructions! 056 071 136 100 206 053 266 053
057 063 137 071 207 063 267 063
ZZZIIIPPP ' .
I had just finished setting in a ‘sort’ program, and at the gg‘l) 822 ‘ %Z? %(6) %i(l) ggg %;(1) ggg
same time I was listening to a weather broadcast on a little 2 046 142 060 212 071 272 063
tran§ist0r,’10w-frequency‘ radio, which was sitting next to the 063 071 143 066 213 071 273 071
Altair. T hit the ‘run’ switch on the computer and it took off 064 063 144 071 214 071 274 071
sorting the same list of numbers over and over again. gg g:g ﬁg gg 2}5 071 %;2 g;i
At the same time my radio also took off! . 216 071
The computer was sorting numbers and the radio was going 067 053 147 060 217 071 277 071
Z7Z7IIPP! ZZZINPP! ZZZIIPP! 070 042 150 053 220 046 300 053
Well, what do va know! My first peripheral device!!! 8,77; %2 :g; 8:2 g; gg gg; gi;
The radio was picking up the switching noise of the 8300. 073 063 153 046 223 034 303 046
I tried some other programs to see what they sounded like, and 074 071 154 046 224 034. 304 046
after about 8 hours of messing around I had myseif a program 3.7/2 8‘;; igg giz 225 034 305 o7
that could produce musical tones and actually make music; of a gy 053' ‘157 053 %%g ' &% ggg gg
sort. (Or any other program you have!) :)
100 063 160 053 230 042 310 042
MUSIC 101 053 161 053 231 053 311 046
The closest sheet of music that 1 could find was The Fool ~ 102 071 162 053 232 053 312 042
on the Hill by the Beatles, so I translated it into OCTAL code, {gi %g :gi 33‘; 22,332 053 313 040
picked up the Altair, and headed down to Menlo Park for the 105 071 165 002 235 ggg g:g gi;
3rd meeting of the Bay Area Amateur Computer Users Group- 106 063 166 002 236 053 316 053
Home Brew Computer Club. I thought everyone there should 107 046 167 377 237 046 317 046
see just what a computer can do! 110 046 0
' 24 046 320 046
111 046 241 042 321 071
RECITAL e) 1z 053 142 o6 322 083
This being the Altair’s first recital, it was a bit shy at first, 113 042 243 046 323 053/
and refu:sed to power up--even though Fred’.s tape refsorder was 114 053 244 046 324 053
plugged into the same wall outlet and working just fine. One 115 046 25 046 32§ 053
forty-foot extension cord and half an hour later we were ready. 116 046 246 046 326 002
(Fred’s tape machine turned out to be running on its own C117 053 247 042 327 377

battery power, and all of the wall plugs were dead!)

The recital then proceeded with nary a glitch, much to every-
one’s delight. (Although during the demanded encore, the
machine did break into its own rendition of Daisy, apparently
genetically inherited.)

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 7

OCTAL CODES FOR NQOTES PROGRAM TO MAKE AN ALTAIR 8800 PLAY MUSIC
C 252 OQO LXI H 041
C# 240 LOW ¢ 001 b2 XXX - ADDRESS OF FIRST
D 230 OCTAVE 002 b3 PYeTe'e DATA ENTRY
D# 220 003 MOV AM 176
E 211 004 CPI 376
F 200 005 b2 377 - START OVER DATA
F# 172 006 Jz 312
G 162 007 b2 000
G# 154 010 b3 Coo
A 146
A# 140 011 MVi D 026
B 132 012 b2 XXX _
013 DCR B 005 VT DATA
(o} 125 014 JNZ 302
C# 120 MIDDLE OCTAVE 015 b2 020
D 114 016 b3 000
D# 110 017 MOV BM 106 TO RUN. THE PROGRAM:
E 105 . To run the program, push the ‘RESET' switch,
F. 100 020 DCR C 015 then push the ‘RUN’ switch.
F# 075 021 JNZ 302 To stop the program, push the ‘STOP’ switch.
G 071 022 b2 013
G# 066 023 b3 000
A 063 024 DCR D 025 ‘ ;
TOMAKE Y :
A# 060 025 JNZ 302 9 QUR. JWN MUSIC:
B 055 026 b2 013 B;gm Iogg:‘ng g/our music data anyplace after
: address e sure to load the starting address
027 b3 000 into H&L at address 002, 003,
C 053 030 INR L 054 . .
C# 050 HIGH OCTAVE 031 JMP 303 Each data entry will be one beat of music.
D 046 032 b2 003
D# 044 033 b3 000
E 042
F 040 sk sk s s s ek oo o
F# 036
G 034 NOTES
G# 033 T Tempo-- The tempo is controlled by the value placed in
A 031 address 012. Start out by trying 040. '
A# 03C t To Play Backwards-- Put 377 in front of all music data
B 026 (to cause looping). Change address 001 to read the END of the
C 025 music data. Change address 030 to DCR L (055).

Q 002 WNote;

T To Play all of the Memory-- Change address 001 data to

This is the quietest of the data notes. a NOP (000). Change address 004, 005, 006 to NOP (000). This
It can be used for spaces and rests. will cause program to read all of the memory, mcludlng the pro-
You may also like to put a number of gram instructions themselves.

these quiet ‘notes’ at the end of the 1 Radio Information-- A low-frequency radio around 330
music data, to give a space between’ KC works best, but any AM radio will pick up the music at
playings. quiet places on the dial.

Set the radio on or very close to the computer, start the
program, and turn the dial on the radio until you get good
sound. Some places will be much better than others, and some

With a little experimentation, you can make all kinds of will pick up different sounds from the computer. Also, try mov-
interesting sounds. ie; sirens, ray-guns, etc. ing the radio to different positions on or around the computer.

Just rotating the radio 90 degrees can make a lot of difference
in the sound you will get.

Page 8

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

SCELBAL--A HIGHER LEVEL LANGUAGE
FOR 8008/8080 SYSTEMS

Mark Arnold & Nat Wadsworth

Scelbi Computer Consulting, Inc.,

1322 Rear, Boston Post Rd, Milford CT 06460
Copyright 1976 by Scelbi. Reprinted with permission.

[The publication described in the following article will
be sold for around $50, and will contain over 300
pages of information. --JCW, Jr]

The goal of about ninety percent of small
systems owners appears to be to get their
systems up and running with some kind of
I/O and then procure enough memory to
support a higher level language.

Unfortunately in the past when a system
owner reached the stage of having enough
memory a major problem arose. Unless the
individual had purchased an entire system
from one or two select suppliers, the cost of
a copy of a higher level language was likely
to be out of reach!

Even if one was financially able to pur-
chase a higher level language from an equip-
ment manufacturer one was likely to find
that such programs were designed to
operate with specific I/O devices which
the prospective language user might not
have access to or desire to obtain. If one
did not have those specific devices for
which the program was designed, one was
usually in a tough spot. Despite adver-
tisements that such programs came “fully
documented,” the “full documentation”

was not likely to include a source listing of -

the program. Hence, attempting to modify
such a complex program was a risky,
frustrating, and often downright impossible
task. And, without doing so, one was hard
put to make the language work with
unique types of 1/O devices. Furthermore,
such programs could not practically be modi-
fied to serve the particular wishes of in-
dividual users. If you were not satisfied
with the program and what the program
author’s had decided to emphasize or leave.
out, that was simply too bad!

Few “canned’ programs can be tailored
to have all the features desired by all the

possible potential users. To attempt to do
so would result in programs requiring more
memory than users could afford. The answer
to this problem is, of course, to supply the
programs in such a manner that they can be
readily modified and altered by the users.

This means, simply, that the detailed source
listing for the program must be made available
to the purchaser. Assisting the program owner
by also providing “detailed comments with
the listing, a general overview of the pro-
gram’s organization and operation, and
general flow charts can further enhance the
value of the program to the owner. With
this information available, the program
user can safely proceed to tailor the capa-
bilities of the program to serve the user’s
particular interests and requirements.

This is the approach SCELBI COM-
PUTER CONSULTING, INC., has taken
in presenting its new higher level language
for 8008/8080 machines. The language
has been given the name SCELBAL for
SCientific ELementary BAsic Language.
As the reader can easily surmise from the
title it is similar in capabilities to the high-
ly popular language referred to as BASIC,
This language was specifically developed
to be able to run on 8008 based micro-
computers. It is believed to be the first
such higher level language to be made
generally available that is capable of
running in a system equipped with the
ubiquitous 8008 CPU. The program can
of course also be run on systems using
the more powerful 8080 CPU though it
is not as memory efficient as it could have
been if the program had forsaken 8008
capabnhty ' - .

The language was developed to operate
in an INTERPRETIVE mode. This means
that the entire program resides in memory
at one time along with the program written
in the higher level language that is to be
executed. When the INTERPRETER is given
the RUN command it immediately proceeds
to INTERPRET each line of the higher level
language program and perform the necessary
calculations and functions. This differs from a
COMPILER which would first convert the
higher level language source listing to machine
code, then later execute the machine code.

Box 310, Menlo Park CA 94025

February 1976 Dr

A COMPILER oriented system generally is
cumbersome to run on a small system that
lacks reliable, high speed bulk memory
storage facilities. For instance, if the program
had been designed as a complier, the follow-
ing steps would have been necessary in order
to execute a higher level language program.

First one would have to load an Editor
program into the computer and create the
desired higher level language version of a
program as a source listing. A copy of the
source listing would then have to be saved on
an external memory medium. Next, a portion
of the compiler program - the actual
compiler, would have to be loaded into
memory. When it was resident, one would
produce the desired machine code version of
the higher level language statements by having
the compiler process the source listing several
times. (Much as an Assembler program would
process the mnemonic listing when program-
ming in machine language.) The machine code
produced would have to be stored on an ex-
ternal memory device at this stage. Finally,
the RUN TIME portion of the compiler
would have to be loaded into the computer
along with the machine code produced by the
COMPILE portion of the program. The
higher level language program would then
finally be ready to run. Too bad if you made
an error in the original source coding for the
program that was not detected until run time.
You would have to go all the way back to the
Editor program to correct the higher level lan-
guage source listing and start the process over
again!

Developing the program as an INTER-
PRETER eliminates the requirement for the
constant use of an external bulk memory
‘device in order to get a program from the con-
cept to execution stage. An INTERPRETER
is definitely a much more convenient program
for the small systems user. The entire INTER-
PRETER program resides in memory at one
time. An area is set aside in memory to hold
the higher level program. An executive por-
tion of the program allows the user to enter
the higher level language listing directly into
the area where it will be operated on when

Dobb’s Journal of Computer Calisthenics & Orthodontia

Box 310, Menlo Park CA 94025

the program is executed. The executive in
SCELBAL will provide for the user entering a
program from a manual input device such as &
keyboard. Or, if the user desires to run a
program that has been developed previously, a
LOAD command will direct the program to
read in a program from an external bulk
memory device such as a magnetic tape peri-
pheral.

SCELBAL has been designed so that it can
operate in a “calculator” mode or operate in a
stored program mode. In the calculator mode,
each statement is executed immediately after
it is entered by the input device. In this mode,
the program is ideal for solving simple for-
mulas when the user only needs to obtain a
few values.

When operating in the stored program
mode, the INTERPRETER will follow an
entire series of instructions as directed by
the higher level program. To enter a pro-
gram that will be operated on as a stored
program, the operator simply assigns a
line number at the beginning of each
statement.

The executive portion of the package
allows the user to “edit” a program at any
time. Lines may be deleted and new lines
entered anywhere in the program. If the
operator makes a clerical error while
entering a line, a special erase code may be
used to effectively backspace within a line
and then re-enter the correct characters.
Furthermore, the executive checks for
various types of syntax errors as statements
are entered, and will display a two character
error code to the programmer when such
errors are detected.

The executive portion of SCELBAL has
five major commands available to the
operator which are defined and explained
below.

SCR for SCRatch effectively clears out any
previous program stored in the
program buffer along with any variable
values. :

Page 9

Page 10

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Ovrthodontia

LIST causes the present contents of the
program buffer to be displayed for review
or to make a copy for record keeping if a
printing device is in use.

RUN causes the higher level language
program stored in the program buffer to
be executed by the INTERPRETER.

SAVE. This command directs the program
to save a copy of the program stored in the
program buffer on the user’s external bulk
storage device. A program saved in this man-
ner can later be restored for execution by
using the following command.

LOAD. This command causes the program
to read in a copy of a program from an ex-
ternal device that was previously written
using the above SAVE command.

A higher level language program is made up
of STATEMENTS that direct the machine to
perform selected types of operations. The
SCELBAL language can execute 12 different
types of STATEMENTS which are explained
below plus the END statement which is used
to signify the end of a program.

The REM for REMarks statement indicates
a comments line which is ignored as far as
program execution is concerned. Information
on a REMarks line is intended only for the
use of programmers and is used to document
a program.

The LET statement is used to set a variable
equal to a numerical value, another variable,
or an expression. For instance the statement:

LET X = (Y*Y + 2*Y - 5)¥*(Z + 3)

would mean that the variable X w;ls to be
given the value of the expression on the right
hand side of the equal sign.

The IF combined with the THEN state-
ment allows the prograrmnmer to have the pro-
gram make decisions. SCELBAL will allow
more than one condition to be expressed in

the statement. Thus:

IF X €= Y THEN LL

states that IF X is less than OR equal to ¥
that the program is to go directly to line
number LL. Otherwise, the program is to
continue on to the_next statement in the
program.

GOTO directs the program to jump
immediately to a specified line number.
The GOTO statement is used to skip
over a block of instructions in a mul-
tiple segment or subroutined program.

The FOR, NEXT and STEP statements
allow the programmer to form program
loops. For example, the series of statements:

FOR X = 1 TO 10
LET Z = X*X +2*X +56
NEXT X

would result in Z being calculated for all
the integer values of X from 1 to 10. While
SCELBAL does not require the insertion
of a STEP statement in a FOR - NEXT
loop, a STEP value may be defined. The
implied STEP value is always 1. However,
it may he altered to be an integer value
other than 1 by following the FOR range
statement by the STEP statement and a
parenthesis containing the STEP size. Thus:

FOR X = 1 TO 10 STEP (2)

would result in X assuming values of 1, 3,
5, 7 and 9 as the FOR - NEXT loop was
traversed.

GOSUB is used to direct the program
to execute a statement or group of state-
ments as a subroutine. The statement is
used by designating the line number in
the program where subroutine execution
is to begin.

The RETURN statement is used to in-
dicate the end of a subroutine. When &
RETURN statement is encountered the
program will return to the next statement
immediately following the GOSUB state-

Box 310, Menlo Park CA 94025

February 1976 Dr

ment which directed the program to the
subroutine.

SCELBAL permits multiple nesting of
subroutines in a program.

DIM for DIMension is used to specify
the formation of a one dimensional array
in a program. Up to four such arrays having
a total of up to 64 entries are permitted in
a program when running SCELBAL. The
statement:

DIM K(20)

sets up space for an array containing 20
entries. (Array size must be designated by
a numerical value, not a variable.)

The DIM is an optional statement that
may be left out of the program to provide
additional program storage space in systems
having limited memory.

INPUT is used to cause the program to
wait for an operator to INPUT information
to the program. After the information has
been received, operation of the program
automatically continues.

PRINT is used to output information
from the program. Using the PRINT state-
ment the user may direct the program to
display the value of variables, expressions,
or any information such as messages. The
PRINT statement allows for multiple mixed
output on a single line, and the option of
providing a carriage-return and line-feed after
outputting information or suppressing that
function. For instance, the statement:

PRINT ‘X IS EQUAL TO: "X

would result in the program first printing
the message “X IS EQUAL TO:” and then
the value of the variable X on the same line.
After the value of the variable had been
displayed, a carriagereturn and line-feed
combination would be issued. To suppress
the issueing of the CR & LF the program-
mer would merely include another semi-

Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

colon at the end of the statement! A commasa
sign in a PRINT statement will direct the out-
put to start at the next TAB point in a line.
A special function may also be called upon
to direct the output to begin at a specified
position in 8 line to allow for neat formatting,

The power of the language is further
enhanced by the inclusion of seven functions
that may be used in statements. The seven
functions available in SCELBAL are discussed
below.

INT returns the INTeger value of the ex-
pression, variable, or number requested as the
argument. This is the greatest integer number
less than or equal to the argument.

SGN returns the SiGN of the variable, num-
ber, or expression. If the value is greater than
zero, the value +1.0 is returned. If the value {8
less than zero, the value -1.0 is returned. The
value 0 is returned when the expression or
variable is zero.

ABS returns the ABSolute value (magni-
tude without regard to sign) of the variable
or expression identified as the argument of
the function.

SQR returns the SQuare Root of the ex-
pression, variable, or number.

RND produces a semi-psuedo-RaNDom
number in the range of 0 to 0.99. This func-
tion is particularly useful to have available
for games programs.

CHR is the CHaRacter function. It may be
used in a PRINT statement and will cause the
ASCII character corresponding to the decimal
value of the argument to be displayed. (A
reverse function is available for the INPUT
statement which will return the decimal
velue of a character when it is inputted.)

TAB may also be used in a PRINT state-
ment to direct the display device to space
over to the column number specified in the
argumnent. This function allows the program-
mer to format the output into neat columns.

Page 12

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

GENERAL INFORMATION

‘User defined variables are limited to one or
two characters. A variable must hegin with a
letter of the alphabet. Limiting variables to a
maximum of two characters helps conserve
memory space. Up to twenty different vari-
aghles may be def'ned in a single program.

SCELBAL allows the use of fixed and
floating point notation. A minimum of
twenty-three binary bits are used in the man-
tissa portion of all calculations allowing for
six to seven significant decimal digits to be
entered or outputted. The exponent range is
from plus to minus the 38th power. Numbers
may be inputted in either fixed or floating
point notation. Output from the program is
automatically selected to be either fixed or
floating point, depending on the size of the
number that is to be displayed.

The package, without the optional DIM
statement, is designed to run in an 8K 8008
or 8080 system leaving approximately 1250
bytes for program storage. With this amount
of storage available, surprisingly complex pro-
grams can be executed. The program authors
have successfully loaded and run such games
as Lunar Landing in this configuration by re-
ducing the number of messages issued to the
player.

The DIM statement requires approximately
three pages of memory. It is recommended
that users desiring to include the DIM capa-
bility have more than the minimum 8K of
memory available in their system. A parti-
cularly attractive feature of SCELBAL is
that users with more than 8K of memory can
use the additional space for program storage.
Thus, for example, a 12K system will enable
a user to execute SCELBAL programs having
as many as 150 to 200 statements!

A major concern of the developers of
SCELBAL was that the 8008 CPU might
make the language so slow that it was im-
practical for the user. Our tests indicate

that the time to perform typical calcula-
tions, while they are slow compared with
more powerful machines, are certainly
tolerable. For instance, the typical response
time between the displaying of a new set of
parameters when running the Lunar Land-
ing game is in the order of six to scven
seconds. A program that calculates the
mortgage payments on a house on a monthly
basis, and displays such values as the pay-
ment number and balance after each pay-
ment, requires a few seconds between the
displaying of each new line of information.
A dice playing game responds with new
throws of the dice in the order of a second
or so when using a formula that includes
the use of the random number generator.
These times are by no mecans fast, but
they are certainly adequate for the intended
uses of this language on an 8008 system.
The developers were pleasantly surprised
with the overall speed performance of the
package. Of course, these response times
can be cut almost in half by using an 8008-1
CPU. Naturally, if the program is installed
in an 8080 system, the response time is im-
proved an order of magnitude.

Since the program will be supplied in
the form of a publication that includes
a complete highly commented source
listing (as well as assembled object code
for both the 8008 and 8080), the user
who desires to modify or expand the
capabilities of the basic package will be
in a position to do so. It is felt that the
availibility of such a powerful program
in this form will greatly enhance the general
usefulness of small systems and open new
vistas to users. The program in this form
should also be of considerable value to
educationalists who desire a good reference
framework from which to introduce students
to the development of similar packages.

The publication will be made available
in June, 1976, by the developer, Scelbi
Computer Consulting, Inc.,, 1322 Rear -
Boston Post Road, Milford, CT 06460.

Box 310, Menlo Park CA 94025

February 1976 Dr

TINY BASIC, EXTENDED (Part Two)

Dick Whipple, 305 Clemson Dr., Tyler TX 75701
John Arnold, Route 4, Box 52-A, Tyler TX 75701

In the preceeding article on TINY BASIC, EXTENDED
(TBX), notes concerning the loading and use of TBX were pre-
sented, along with an octal listing of the entire interpreter
[Dr Dobb’s Journal of Tiny BASIC Calisthenics & Orthodontia
Vol. 1, No. 1]. This article presents source code matching that
octal code, documentation of the implementation, some modifi-
cations and error corrections, notes on the addition of the DTA
statement, and an announcement of two relocated versions of
TBX requested by some of our readers.

TBX is not meant to be the last word in Tiny BASIC
interpreters. Almost certaitily, its users will find ways to improve
it. Please keep its creators, and our readers, informed of those
improvements.

NOTES ON NOTES

Before continuing, a few remarks are necessary concern-
ing assumptions and working used in the source listing and the
text that follows it.

1. All addresses will be given in split octal with no sep-
aration character, i.e., 012504 (true octal); 025104 (split octal).

2. Registers will be referred to by letter: A, B, etc.
Register pairs will be referred to as BC, DE, and HL. If a register
pair holds an address, the most significant bits will fall in the
first letter.

3. The source listing is NOT the result of computer
assembly. It was hand-typed in a format similar to assembly
language. One caution--labels are unique only within a given
routine. Therefore, in the whole of TBX, labels may be dupli-
cated.

4. The terms “label” and “line number” will be used
interchangeably when referring to BASIC lines.

5. On the source listing, double lines are used to
separate major routines.

A NEW FEATURE: The DTA Statement
The DTA statement allows the programmer to initialize
several variables at one time and is thus more convenient to use
than LET statements. DTA is more like DATA statements of
FORTRAN than the READ-DATA statements of BASIC. DTA
statements may be used anywhere in a program and as many
times as required.
EX 1. 12 DTA A(1)=1,2,3,4;B(4)=5,6;X=10
RESULTING VALUES: A(1)=1
A(2)=2
A(3)=3
A(4)=4
B(4)=5
B(5)=6
X=10
EX 2. 20 DTA A=10,20,30
RESULTING VALUES: A=10
B=20
C=30 '
Changes required in TBX to add DTA statements (octal
dump form):
031200 315 147 024 043 315 044 023 247

031210 311
031230 000 000 000 232 150 104 124 301

Dobb’s Journal of ‘Computer Calisthenics & Orthodontia

Box 310, Menlo ‘Park CA 94025 Page 13
031240 133 310 232 330 275 132 343 231

031250 256 254 331 200 031 245 324 147

031260 231 265 273 031 240 322 304 322

031270 375

033326 231 233

'RELOCATED VERSIONS OF TBX

At the requests of readers, we have made two relocations
of TBX. As you are no doubt aware, the original TBX began at

020000 split octal. The two new versions begin at 000000 and
011000. The octal listing of the 000000 version will appear in
a later issue of this Journal. The 011000 version seems to es-
pecially interest people with Suding operating systems (Suding
CRT, etc.). At the present, either version--or both--can be
obtained from us on Suding cassette. If you have already
ordered one and received the original version on cassette, we
will provide the relocated version free of charge if you will
return the cassette with your order. The charge for new orders
will be the same as indicated in the préceeding issue: $5, for the
Suding cassette. Be sure to request the version desired, namely
020000, or 011000, or 000000. Send orders to:

TBX Tape

c/o John Arnold
Rt 4, Box 52A
Tyler TX 75701

HOW IT DOES WHAT IT DOES

IL Executor, ILXQT and IL Program (021254-022037, &
031300-033376):

The fundamental IL instruction consists of two bytes. The
two most significant bits of the first byte are used to encode the
type of IL instruction while the remaining bits in the first and
second byte represent an address. The four IL instruction types
are specified in octal as follows:

IL JUMP Oxx Transfers IL Program to IL Instruction at

yyy Oxxyyy.
IL CALL 1xx Calls IL Subroutine at Oxxyyy.
yyy
TST 2xx Compares Character Strings. Test Failure

yyy Transfers IL Program to Oxxyyy.

ML CALL 3xx Calls Machine Language Program at
yyy Oxxyyy.

The IL Executor program, ILXQT, merely sorts out the IL
instructions according to the above list and carries out the
appropriate action. DE is used as the cursor in scanning the
BASIC text. HL serves as the IL program counter. When a pro-
gram other than ILXQT has system control, care must be exer-
cised not to use DE for a purpose other than scanning unless its
value is saved and returned before returning to ILXQT. BC, HL,
and A may be used by system routines as required. (Note: HL is
pushed and popped by ILXQT to maintain the status of the IL
program counter.)

SPECIAL REMARKS

1. IL JUMP: Note that an IL JUMP and a machine language
jump (JMP) are not the same. After an IL JUMP is executed,
ILXQT expects to find another IL insstruction not a machine

language instruction. Therefore, an IL JUMP cannot be used to

Page 14 February 1976 Dr

transfer to . a machine language program.

2. IL CALL: The same applies to IL CALLs. They cannot
be used to call machine language subroutines. That requires the
ML CALL type IL instruction (see 4., following). The IL return
address for the IL CALL is placed on the 8080 stack for later
use. ML routines must not leave trash on the stack or proper
return within the IL program will not be made.

3. TST: The TST IL instruction is actually more than two
bytes in length. Following the instruction byte pair are the
ASCII string characters to be compared against BASIC text.
There is one byte for each character in the string with the
parity bit (No. 7) set only on the last character. The parity bit
is used by ILXQT to detect the end of the string. As an example,

consider the test for “LET” (see DIR, 032022):
232

041} TST
114 “L”
105 “E”
324 “T” +200

If the comparison to BASIC text fails, the IL program
transfers to the fail address 032041 for the next IL instruction.
In this case the cursor (DE) is set back to rescan the BASIC
text. If a match is found, the IL program continues at the IL
instruction just after the “ ‘T” + 200.”

4. ML CALL: The greater number of routines used in TBX
are machine language calls made by ILXQT. Return to ILXQT
from such a routine occurs when a machine langauge RET is
executed. A return option is available to the programmer. If the
carry is set upon return to ILXQT, the next IL instruction is
skipped and the second one is executed. If the carry is reset, the
next IL instruction is executed. This feature allows various tests
to be handled as ML CALLs. TSTL--Test Label-is an example.

5. THE IL PROGRAM can be studied to get an idea of the
manner in which BASIC lines are interpreted. Often used, run
time commands are tested first to achieve greater speed in execu-
tion. System commands such as RUN, LST, etc. are placed last
in the test sequence. You will notice that the IL Program is
somewhat disordered. This “house that Jack built” appearance is
the result of adding features to the original TB.

EVOLUTIONARY NOTE
A modification was made to TBX after the octal listing
was published in the previous issue, but before this source listing
was produced. Therefore the source contains the modifications
but the octal listing does not. The change involves the INNUM
and NLINE routines. The net effect of these changes will be that
IN statements will be terminated by a CR--not a SPACE as in the
original TBX. To make the modifications, follow the steps below:
1. Re-enter the INNUM routine using the source listing.
2. Re-enter the NLINE routine using the source listing.
3. Add a test in your INPUT routine that will inhibit echo
of a CR.
4. Make changes in the IL program at locations given
below. Use the source listing to obtain the corrected

values.
031325 031326
031334 031335
032002 032003
032006 032007
032202 032203
032271 032272

Dobb’s Journal of Computer Calisthenics & Orthodontia

Box 310,

@ 2

72
f ' 7"1 -

Menlo Park CA 94025

ERRORS & CORRECTIONS

These errors were noted after the listing that follows was
produced. Thus, the corrections given here should be made in
the octal code given in the preceeding issue and in the listing
given in this issue.

ERROR FIX CHANGE
ADDRS FROM TO
1. “FOR” statement syntax 032127 226 232
error not functioning properly* 032130 363 121
2. “IN” statement does not 032245 322 032
issue a crlf. After fix, a semi- 032246 304 143
colon “;” at the end of an 032143 232
“IN” line inhibits crlf.* 032144 202
032145 273
032146 032
032147 216
3. Array syntax error not 033211 226 233
functioning properly.* 033212 355 077
033223 226 233
033224 355 077
033241 226 233
033242 355 077
033254 226 233
033255 355 077
033266 226 233
033267 355 077
033275 226 233
033276 355 077
4. System destroys itself after 033354 001
first line entry following turn- 033355 034
on. Issuing a “new” command 034000 377
first will initialize the system 034001 377
properly. The fix given is
satisfactory as well.*
5. “SZE” command giving 031007 376 115
erroneous values. 031010 033 026
6. “TB” function incorrectly 031312 124 123
named. It should be called 031313 302 332

“SP” for space.

* These problems were reported by Linchen Wang with
suggested corrections. Dick Whipple modified the
modifications, and submitted these fixes.

February 1976

TAG ADDRESS

BUFIN 020000
020003
020005
020006
020010
020013
020015
020020
020022
020025
020026
020027
020030
020033
020036
020037
020040
02004}
020042
020044
020045
020050

OVER

END
RUBOUT

FIXINSR

020053
020055
020056
020061
020064
020067
020070
020072
020073
020076

NEWLINE
GETLINE

L
LOC 020100-020110 IS UNUSED., THE BUYFER RESIDES BETWEEN 020111-020220,

[SR
ASCIN 020221

020222
020224
020225
020227
020230
020232

Dr Dobb's Journal of Computer Calisthenics & Orthodontia

I1 12 13 MNEMONIC COMHENTS

041 111 020 LXI W BUFSTRT SUBROUTINE TO LOAD BUFFER

006 110 MVI B 72D SET LINE LENGTH

337 RST INPUT

376 015 CPLI 8"

312 03§ 020 JZ END

316 177 CPL *DEL’

312 040 020 JZ RUBOUT

376 014 CPI 'CNTRL L°

312 067 020 JZ WEWLINE

167 MOV M¢A

043 INX H

005 DCR B

312 306 026 JZ ERRI LINE TOO LONG

303 005 020 JMP OVER

167 MOV M, A

311 RET

053 DCX H

004 INR B

076 077 MVI A

357 RST OUTPUT

303 005 020 JMP OVER

332 000 021 JPC CONT HODIFICATION OF INSERT
SUBROUTINE REQUIRED FOR
ASCII VERSION OF TBX

076 057 MVI A °/°

276 CMP M

322 000 021 JNC CONT

303 371 020 JMP LOOP1:2

000 000 00C NOP‘S

327 RST CRLF

076 072 N OUTPUT PROMPT

357 RST OUTPUT

303 000 020 JMP BUFIN

000 000

032 LDAX D ASCII INPUT SUBROUTINE
FROM CURSOR LOCATION.
NUWBER DATA MASKED.

376 060 CPL °g°

330 RC

376 072 cri °s?

320 RNC

346 017 ANI 000011118

311 RET

4
LOC 020233-020264 IS UNUSED.

[S

TSTL 020265
020270
020271
020272
020274
020275
020300

020303
020304
020306
020311
020314
020315
020316
020317
020320
020323
020326
020327
020330
020331
020334
020336
020337
020340
020341
020342
020343
020344
020345
020346
020351
020352

CHND

LBL

BIN

021 113 020 LXI D BUFSTRT TEST FOR LABEL SUBROUTIRE

325 PUSH D

032 LDAX D

376 040 CPI °3P°
023 INX D

312 271 020 JZ SKIP
033 DCX D

041 000 000 LXI H gD
376 100 CPI 'A’-1
332 320 020 JPC LBL
042 350 033 SHL CURLBL
000 NOP

321 POP D

311 RET

000 NOP

315 331 020 CALL BIN
042 350 033 SHL CURLBL
067 STC

321 POP D

31 RET

315 221 020 CALL ASCIN ASCII-BINARY SUBROUTINE
376 012 CPI 16D
320 RNC

023 IND D

104 MOV B,H
115 MOV C,L
051 DAD H

051 DAD H

011 DAD B

051 DAD H

332 311 026 JPC ERR2 NUMBER TOO LARGE
117 MOV C,A
006 000 MVI B #D

Box 310, Menlo Park CA 94025 Page 15

BUFIN: A software buffer is used to hold line data from the
input device. BUFIN is an ML routine used to load and edit
the buffer. Character deletion and whole line erasure are pro-
vided for in this routine. B is used to count characters. If B
exceeds 72, an error is reported. If entry to BUFIN is made at
GETLINE (020070), a colon is output at the beginning of the
line. HL is used as cursor in the bujfer.

ASCIN: This routine moves a byte from the BASIC text to A

‘using the cursor DE. If the byte represents an ASCII number

(060-071), the upper four bits are masked off.

TSTL: This ML routine is used to determine whether the line
in the buffer has a label or not. If so, the label is converted to
binary by BIN and stored in CURLBL (Current Label). The
carry is set and return is made to ILXQT. Otherwise, a zero is
placed in CURLBL and return is made with the carry reset.

BIN: As the text cursor DE scans an ASCI number, BIN con-
verts it to binary in HL. The first non-number encountered
signals the end of conversion and return is made to the calling
program.

Page 16

TAG

INSRT

LOOP}

LooP2

CONT}

LooPs

LOOP3

CONT2

HERE

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

ADDRESS I

020354
020355
020360

020361
020364
020365
020366
020371
020373
020374
020375
021000
021001
021003
021005
021006
0210114
021012
021013
021016
021017
021022
021023
021026
021027
021030
021033
021036
021037
021040
021041
021042
021043
021046
021047
021052
021053
021054
021055
021060
021063
021064
021065
021066
021067
021072
021073
021076
021100

102110)

CONT3

LOOPS

LoOPE

021104
021105
021106
021111
021112
021113
021114
021115
021116
021117
021120
0211321
021122
021125
021126
021127
021132
021133
021136
021137
021140
021141
021142
021143
021146
0211347
021150
021151
021152
021153
021154
021156
021161

o1l
303
325

052
104
115

o4y

076

043
276
303
345
026

076

276
312
024

043
303
172

062
321
052
176
270
312
322
o43
043
175
206
157
322

044
303

043
176

21

312
332

053

053
325

353

052

345

072
306

205
322

ouy

157

315
104
115

341
176

002

053

013
174

272

302
175

273

302

023

052

353
162

043
163

043

072

074
167

043
321

032
167
316
312

043

12

331

350

i1
071
050

001
015

Q16

005
356
352

052
Q64

026
026

170
037

354

356
003
105

340

114

114
350

356

015
166

13

020

033

020

020

021

021
033
033

021
0214

021
021

021
021

033
033

021

030

023

021
033

033

021

MNEMONIC

DAD B
JMP BIN
PUSH D

LHL CURLBL
MOV ByH
MOV C,L
LXI H BUFSTRT
MVI A °9°
INX K

CMP M

JHP FIXINSR
PUSH H
MVI D iD
MVI A *CR®
CHP

JZ CONT1
INR D

INX K

JMP LOOP2
MOV A,D
sTA COUNT
POP D

LAL PRGSTRT
HOV A, M
CHP B

JZ CONT2
INC HERE
INX H

INX K

MOV A,L
ADDR M
MOV L,A
JNC LOOP4
INR K

JMP LOOP4
INX H

HOV A, M
CHP C

JZ OVRDEL
JPC LOOP3
DCX K

DCX H
PUSH D
XCHG

LHL PRGEND
PUSH H

LDA COUNT
ADI 3D
ADDR L

JNC CONT3
INR H

MOV L,A
CALL MEMTEST
MOV B, H
MOV C,L
POP H

MOV A, M
STAX B

DCX

DCX B

MOV A, H
CHP D

JNZ LOOPS
MOV A,L
CHP E

JNZ LOOPS
INX D

LKL CURLBL
XCHe

MOV M.D
INX K

MOV M,E
INK H

LDA COUNT
INR A

MOV H,A
INX K

POP D

LDAX D
HOV MyA
CP1 *¢R*
J2 END

INX H

COMMENTS

LINE INSERTION SUBROUTINE INSRT: This ML routine is perhaps the most powerful and

ALSO DELETES AND OVERWRITES intricate program in TBX. It handles virtually all line editing.

AS REQUIRED Lines are inserted by label (line number), deleted, and over-
written as required. Ignoring the label, INSRT gets the length of
the line in the buffer, adds 1, and places the result in COUNT
for later use. Beginning at PRGSTRT (Starting location for
BASIC programs), INSRT compares the lire numbers of lines
already stored to the line number in CURLBL. If a direct

REFER TO PAGE 1 match is found, then either a deletion or overwrite is needed. In
either case a branch is made to point OVRDEL. If a match is
not found, comparison continues until the stored line number
exceeds CURLBL. At this point, the program branches to
HERE (021064).

SAVE LENGTH OF TEXT

INSERT LINE HERE

The HERE routine inserts the new line at the point designated
in B above. Before insertion begins, a check is made to be sure
that enough memory space is available for the new line. If not,
an error is called, If all is well, insertion continues. Beginning at
the first stored line number above CURLBL, all BASIC lines
are moved up in memory an amount equal to COUNT plus 3
decimal. Space is thus made available for the new line. The line
number, the length of text (as stored in COUNT), and the text
of the new line are then moved into this space. At this point
CHECK FOR MEMORY DEPLETION normal return is made to ILXQT.

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 17

TAG ADDRESS I1 12 13 NMNEMONIC COMMENTS
021162 023 INX D
021163 303 152 021 JMP LOOPS
END 0231366 321 POP D
021167 311 RET
OVRDEL 021170 053 DCX H OVERWRITES OR DELETES A LIMN OVRDEL first deletes the line with the same number as
021171 343 PUSH H CURLBL. The length of this line is determined by scanning and
g%: :;g g:i §:§ ﬁ then all lines above it in memroy are moved down by this
021174 043 INX H amount. PRGEND (Endling location of BASIC program) is
LOOP? 021175 176 MOV A,M adjusted to always reflect the end of BASIC line storage. At
021176 376 015 CPI 'éﬂ' this point COUNT is checked. If it is one, a deletion is all that
82 ggg 3 :g 207 021 -IlgxcgNTG is required and return to ILXQT z:s made. Otherwise, the pro-
021204 303 175 021 JMP LOOP? gram branches to near the beginning of INSRT so that the
CONTS 021207 043 INX H buffered line can be inserted, This time no match will be found
021210 353 XCHG : (the deletion step took care of that). L
021211 85§ 354 033 L:k ERGEND Wf‘Len the BASIC program storage area is initialized
gg:g:: 18“ REIOV LI after typing NEW, the hzghesr,t line nurr.zber (3773 77) is stored at
021216 115 MOV C,L the beginning of the area. This is required to establish a base
021217 341 POP W’ ‘ for INSRT to begin its function.
LooP8 021220 032 LDAX D
021221 167 MOV MyA
021222 043 INX H
021223 023 INX D
021224 172 MOV A,D
021225 270 CMP B
021226 302 220 023 JNZ LOOPB
021231 173 MOV A,E
021232 271 CMP C
021233 302 220 021 JNZ LOOP8
021236 053 DCX H

021237 042 354 033 SHL PRGEND
021242 072 356 033 LDA COUNT

021245 376 001 CPI 1D
021247 302 361 020 JNZ INSRT+1
021252 321 POP D
/= 021253 311 RET
ILKQT _ 021254 Okl 002 032 LXI H ILSTRT INTERPRETIVE LANGUAGE EXE-
NXTIL 021257 176 MOV A,M CUTION ROUTINE
021260 376 200 cp1 200
021262 322 314 021 JNC ML
IL 021265 376 100 CPI 100
021267 322 300 021 JNC ILCALL
ILJWP 021272 043 INK H
021273 156 MOV L, M
021274 147 MOV H,A
021275 303 257 021 JMP NKTIL
ILCALL 021300 346 077 ANI 001111118
: 021302 107 MOV B, A
021303 043 INX K
021304 116 MOV C,M
021305 043 INX H
021306 345 PUSH K
021307 140 MOV H,B
021310 151 MOV L,C
021311 303 257 021 JMP NXTIL
ML 021314 376 300 CPI 300
021316 322 000 022 JNC MLCALL
ST 021321 346 077 ANI 001113118 STRING COMPARASION ROUTINE
021323 107 MoV B,A
021324 043 INX K
021325 116 MOV C,M
021326 043 INX H
LOOP3 021327 032 LDAX D
021330 023 INX D
021331 376 040 CPI 'SP*
021333 312 327 021 JZ LOOP1
021336 033 DCX D
021337 325 PUSH D
021340 353 XCHG
L00P2 021341 032 LDAX D
021342 376 200 CPI 200
021344 322 363 021 JNC END1
021347 276 CMP M
021350 043 INX H
021351 023 INX D
021352 312 341 021 JZ LOOP2
END2 021355 321 POP D
021356 140 MOV H,B
021357 151 MOV L,C
021360 303 257 021 JMP NXTIL
END) 021363 346 177 ANI 011111118
021365 276 CHMP
021366 302 355 021 JNZ END2
021371 353 XCHG
021372 301 POP B
021373 023 INX D.

021374 043 INX H

TAG

MLCALL

RETRN

o

CNVRT
Lo0P

BCDOUT

NLINE

Page 18

ASCOUT

ADDRESS I3

021375
022000

022002
022003
022004
022005
022006
022011
022012
022013
022014
022015
022016
022021
022022
022023
022026
022031

022032
022033
022034
022035
022037

022101
022102
022103
022104
022105
022107
022112
022115
022120
022123
022126
022131
022134
022137
022140
022143
022144
022145
022146
022147
022151
022152
022133
022154
022153
022156
022157
022160
022163
022164
022165
022166
022167
022170
022171
022172
022173
022174
022175
022200
022201
022204
022205
022207
022212
022213

022214
022217
022220
022221
022222
022225
022226
022227
022230
022231
022232
022233
022236
022237
022240

303
346

043
116
043
345
041
345
147
151
351
341
322
043
043
303
041
357

043
065
300
066
311

345
325
305
353
016
041
315
041
315
041
315
o41
315
173
315
301
321
341
31
006
004
173
225
137
172
234
127
322
173
205
137
172
214
127
170
271
310
015
315
311
000
000
306
315
311
325

052
053
104
115
052
353
033
023
327
170
272
302
171
273
312

12

257 021

077

015 032

257

257
357

017

000
020
147
350
147
144
147
012
147

201

151

2014
000

060
026

306

304

243

275

February 1976 Dr

13

021

021
033

#
LOC 022040-022100 IS UNUSED
—— .

047
022
003
022
000
022
000
022

022

022

022
000

022

033

033

022

022

MNEMONIC

JMP NXTIL
ANI 00111314B

INX H

MOV C,M

INX H

PUSH H

LXI H RETRN
PUSH H

MOV H,A

MOV L,C
PCHL

POP H

JNC NXTIL
INX H

INX H

JMP NXTIL
LXI H ZONE-1
RST OUTPUT

INX H
DCR M
RNZ
MVI
RET

M 13D

PUSH H
PUSK D
PUSH B
XCHG
MVI C O
LXI H 10,000D
CALL CNVRT
LXI H 1,000D
CALL CNVRT
LXI H 100D
CALL CNVRT
LXI H 10D
CALL CNVRT
MOV A,C
CALL ASCOUT
POP B
POP D
POP H
RET
MVI B
INR B
MOV A
SUB L
MOV E
A
H
D
L
A

CR C

CALL BCDOUT
RET

NOP’S

NOP

ADI 060
CALL ASCOUT
RET

PUSH D

LHL LSTEND

DCX H
MOV ByH
MOV C,L
LHL LSTSTRT
XCHG

DCX H
INX D
RST CRLF
MOV A,B
CHMP D
JNZ CONT
MOV A,C
CMP E

JZ END

Dobb’s Journal

COMMENTS

MACHINE LANGUAGE CALLING
PROGRAM

NORMAL RETURN

ALTERNATE RETURN

ASCII OUTPUT ROUTINE

ZONE DECREMENTED AND RESET
AS .REQUIRED

INTEGER OUTPUT ROUTINE

H&L 15 OUTPUTTED IN DECIMAL
PROVISION MADE FOR ZERO
SUPPRESSION.

BCD TO ASCII CONVERSION

SUBROUTINE TO LIST BASIC
PROGRAMS

of Computer Calisthenics & Orthodontia

Box 310, Menlo Park CA 94025

ASCOUT: This routine outputs an ASCII character via the
external OUTPUT routine and decrements the location called
ZONE. ZONE is used to keep track of print positioning on the
output device. If ZONE should reach zero on a given call of
ASCOUT, it is reset to 15 decimal,

IOUT: IOUT fis used to convert the binary number in HL to
ASCII for outputting. The routine works by subtracting binary
equivalents of decreasing powers of 10 from the binary value in
HL. The number of times each power of 10 can be subtracted
without producing a negative result represents the digit for the
respective decimal place. If C is zero, leading zeroes are not
outputted. CNVRT is a subroutine of IOUT that actually does
the conversion and outputting of each digit. BCDOUT is a sub-
routine that adds 060 to the BCD valye of the digit to produce
the ASCII value., ASCOUT is called so that ZONE will be dec-
remented.

LST: An ML routine used to list BASCI program lines beginning
at the location stored in LSTSTRT and ending at the location
stored in LSTEND. LBLOUT is used to output the line number
for each line. The text length byte is skipped and the text is
outputted until a CR is detected. The CR produces a new line
and so long as the address in LSTEND is not exceeded, listing
continues.

February 1976 Dr

TAG

LooP

| DONE

PRS

|NLINE

NXT

H

CONT

NXTK

ADDRESS Ij

022243

022244
022245
022246
022247
022250
022253
022254
022255
022256
022260
022263
022264
022265
022270
022271
022272
022275
022276
022277
022300
022301
022302
022303
022304

022305
022306
022310
022313
022314
022316
022317

022322
022323
022324
022326
022327
022331
022334
022337
022342

022345
022347
022350
022351
022354
022356
022357
022360

022361
022364
022366
022367
022379
022373
022375

023000
023001
023002
023005
023006
023011

023014
023015
023016
023017
023020
023021
023022
023023
023024
023025
023026
023027
023032
023033
023034
023035
023040
023041
023042

032
147
023
032

157
315
023
023
032
376
312
305
345
315
341
301
303
321
311
000
341
301
345
311
032

023
376
312
033
376
310
303

032
023
376
310
376
312
315
303
041

076
357
065
302
066
247
311
327

041
066
227
311
000
000
052

227
274
302
215
302
041

501
343
305
247
311
023
032
147
023
032
157
042
023
023
301
041
343
305
247

Dobb’s Journal of

12

205

015
227

026

254

040
304

013
022

042
015
3137
026
322
360

040

345

017

360

017

000
000
350

021

021
004

350

022

I3

026

022

022

022

022

030

026

022

022
033

022

033

000

033

023

023
032

033

032

MNEMONIC

LDAX D
MOV H,A
INX D
LDAX D
MOV L,A
CALL LBLOUT
INX D
INX D
LDAX D
CPI °CR’
JZ NLINE
PUSH B
PUSH H
CALL ASCOUT
POP H
POP B
JMP LOOP
POP D
RET

NOP

POP H
POP B
PUSH H
RET

LDAX D

INX D
CP1 °SpP°
JZ DONE
DCX D
CPI OC‘BC

RZ
JMP FIXDONE
LDAX D

CALL AsScCoOuT
JMP PRS
LXI H ZONE

MVI
RST
DCR
JNZ
MVI
ANA
RET
RST

A ° S__P L]
QUTPUT

M
LoOP
M 15D
A

CRLF

LXI H ZONE
MVI o 15D
SUB A

RET

NOP'’S
NOP’S

LHL CURLBL

SUB A

CHMP H

JNZ CONT

cMP L

JNZ CONT

LXT H ILBGN+}

POP B

XTHL

PUSH B

ANA A

RET

INX D

LDAX D

MOV H,A
INK D

LDAX D

MOV L,A
SHL CURLBL
INX D

INX D

POP B

LXI H STHT
XTHL

PUSH B
ANA A

Computer Calisthenics & Orthodontia

Box 310, Menlo Park CA 94025 Page 19

COMMENTS

RTN: This ML routine terminates an IL CALL. Just prior to
calling RTN, the 8080 stack looks Like this:
Top ~ Return address to ILXQT
— Present IL program address
— Return IL program address

RIN simply deletes the “present IL program address™ from the
stack producing:

Top —~ Return address to ILXQT
~ Return IL program address
ML SUBROUTINE USED TO RETURNILXQT will then start execution at the IL instruction following
AN IL CALL the last IL CALL.

DONE: DONE is an ML routine that checks for proper line
termination. After scanning over spaces (ASCII 040), DONE
checks for the presence of a CR or dollar sign. If neither is
encountered an error is signalled. If a CR is detected, a
normal return to ILXQT is made. If a dollar sign is found,
another BASIC command exists on the same line. In this case
a branch is made to the NXT routine (see below) where
interpretation is permitted to continue.

ML SUBROUTINE USED TO FOR
TERMINATION OF A BASIC LINE

MODIFICATION TO PERMIT
MULTI-STATEMENT LINES
ML SUBROUTINE USED TO
PRINT LITERAL

PRS: PRS is an ML routine used to output literals in PRint
statements. A quotation mark is used by PRS to signal the end
of a character string. A CR encountered before an ending
quotation mark signals an error.

CR ENCOUNTERED IN LITERAL

SPC: An ML routine used to space the output device to the
next zone. The memroy location ZONE is decremented and a
space is output until ZONE reaches zero, ZONE is then reset to
15 decimal and control.returned to ILXQT.

ML SUBROUTINE USED TO SPACE
TO NEXT ZONE

NLINE: This ML routine issues a CR and LF to produce a new
line on the output device. ZONE is also reset to 15 decimal.

ML SUBROUTINE USED TO ISSUE
CR AND LF. ALSO RESETS ZONE

NXT: The NXT routine handles the transition between one

BASIC line and the next during the execution phase. As inter-

pretation of a line finishes, the NXT routinfe checlzsh to see if the

BASIC lne number stored in CURLBL is a zero. If so, a direct inter-

E:sfxiﬁgglg:sggs"%g Dlgiﬂ pretation of a line is indicated. In this case, NXT sets up

EXECUTIONC(NO LABEL). GETLINE as the next IL instruction. If not, interpretation is
set to begin at the next BASIC line in the program area.
CURLBL is updated to the new line number. In this way the
error routine can report at which line an error occurred.

ML SUBROUTINE USED TO TRANS-

ML SUBROUTINE USED TO RE= FIN: Actually, this routine is part of NXT. When an END

TURN TO LINE COLLECT ROUTINE giiement is encountered, FIN is called and IL execution is
directed to GET LINE. This essentially terminates BASIC
execution.

Page 20

TAG

PSHAE

POPAE

THOCHP

CONT

FNDLBL

OVER

MXTL

NEWE

END2

-

XFER

February

ADDRESS I}

023043 311
023044 305

023045 104
023046 113
023047 052
023052 160
023053 043
023054 161
023055 043
023056 042
023061 301
023062 175
023063 376
023065 330
023066 303
023071 305
023072 052
023075 053
023076 106
023077 053
023100 042
023103 146
023104 175
023105 376
023107 150
0233110 301
023111 320
023112 303
023115 174

023316 057
0231317 147
023120 175
023121 057
023122 157
023123 043
023124 311
023125 315

023130 174
023131 267
023132 362
023135 315
023140 076
023142 345
023143 315
023146 34}
023147 315
023152 247
023153 311
023154 345

023155 052
023160 104
023161 115
023162 341
023163 012
023164 274
023165 312
023170 320
023173 303
023174 003
023175 012
023176 2175
023377 312
023202 320
023203 013
023204 003
023205 003
023206 012
023207 201
023210 117
023211 322
023214 004
023215 303
023220 013
023221 140
023222 131
023223 311
023224 315

023227 315
023232 353

1976 Dr

12

361

361

177
322
361

361

100

325

071

147
115
055

026
101

352

174

204

220

163

163

071

154

13

033

033

026
033

033

026

023

023

023

022
022

033

023

023

023

023

023

023

023

MNEMONIC

RET
PUSH B

MOV By H
MOV C,L
LHL AELVL
MOV M,B
INX H

MOV M,C
INX H

SHL AELVL
POP B

MOV A,L
CP1 177
RC

JMP ERRS
PUSH B
LHL AELVL
DCX H

MOV B,M
DCX H

SHL AELVL
MOV H,M
MOV A,L
CPI 100
MOV L,B
POP B

RNC

JMP ERR6
MOV A,H

CMA
MOV H,A
MOV A,L
CMA

MOV L,A
INX H

RET

CALL POPAE

MOV Ay H

ORA A

JP CONT
CALL TWOCMP
MVI A °='
PUSH H
CALL ASCOUT
POP H

CALL I10UT
ANA A

RET

PUSH H

LHL PRGSTRT
MOV ByH

MOV C,L
POP H

LDAX B

CHMP H

JZ NXT3

RNC

JMP NEW1
INX B
LDAX B
cHP L

Jz END
RNC

DCX B
INX B
INX B
LDAX B
ADDR C
MOV C,A
JNC OVER
INR B
JMP QVER
DCX B
MOV H,B
MOV L,C
RET

CALL POPAE

CALL FNDLBL
XCHG

Dobb’s Journal

COMMENTS

SUBROUTINE USED TO PUSH
H&L ONTO AE STACK.

-~ --AE_TOO COMPLEX
SUBROUTINE USED TO POP TOP
OF AE STACK INTO H&L

SUBROUTINE USED TO TAKE
2°S COMPLEMENT OF H&L

SUBROUTINE USED TO OUTPUT
THE TOP OF THE AE STACK

SUBROUTINE USED TO GET
ADDRESS OF LABEL IN H&L

SUBROUTINE USED TO TRANSFER
EXECUTION TO LABEL ON TOP

OF AE STACK..

of Computer Calisthenics & Orthodontia

Box 310, Menlo Park CA 94025

PSHAE: A subroutine that pushes a binary value in HL onto |
the arithmetic stack (separate from 8080 stack). The AE stack
pointer is stored at AELVL. Each time PSHAE is called, the
pointer is incremented twice. The space reserved for the AE
stack will allow 32 pushes without pops. Exceeding 32 causes
an error condition.

POPAE: This subroutine pops a binary value off the AE stack
into HL. AELVL is decremented twice. If AELVL is decrement
ed below the space reserved for the AE stack, an error is
indicated.

TWOCMP: The value in HL is two’s complemented and placed
back in HL.

PRN: An ML routine that outputs the numeric value on the
top of the AE stack. If a negative number is detected (most
significant bit of H equal to 1), a minus sign is printed and
TWOCMP called before IOUT prints HL. If the number is
positive, IOUT is called directly.

FNDLBL: The FNDLBL routine is used to search the BASIC
program area for the label stored in HL. A linear search is begun
at PRGSTRT. In order to speed the search, the stored line
length is used to skip over line text. If the label is not found,
return to the calling program is with the zero status bit reset. If
the label is found, the location is placed in HL and the zero bit
is set before return.

XFER: This ML routine transfers execution to the label stored
on the top of the AE stack. The line number is popped off the
AE stack into HL and FNDLBL is called. If upon return the
zero bit is set, HL contains the location of the next line to be
executed. A branch to the NXT routine completes the transfer
process.

February 1976

ADDRESS

023233
023236
023241

TAG

INNUM

023242
023244
023247
023251
023254
023255
023260
023263
023264
023266
0232713
023274
023277
023302
023304
023305
023306
023307
023310
023312
023313
023316
023321
023324

END}

NEGS

STV

023323
023327
023330
023333
023334
023336
023337
023340
023341
023343
023346
023347
023350
023351

TSTN

023352
023354
023355
023360
023361
023363
023366
023370
023373
023374

#
LOC 023377 IS

‘nouzi:: 024100

024101
024102
024104
024107
024110
024112
024113
024115
024116
024121
024124
024127
024132
024133

|

024136
024137
024140
024141
024142
024145
024146
024147

STORE

Dr

312
303
325

076
313
076
315
000
315
021
032
376
041
312
315
315
076
357
321
247
311

Dobb’s

12

022
330

077
026
040
026

000
111

055
000
312
331
o4y
040

247 311

023
335
315
303
032

376
023
312
033
306
320
007
157
046
315
067
023
311
032

376
023
312
033
376
322
376
310
041
303

331
115
277

040
324
300

024
044

040
351
100
310
050

000
124

13

023
026

022
022
020
020

000
023
020
023

020
023
023

023

023

023

023

000
024

Journal

MNEMONIC

JZ CONT+1
JMP ERR7
PUSH D

MVL A °T°
CALL ASCOUT
MVI A °SP*
CALL ASCOUT
NOP

CALL BUFIN
LXI D BUFSTRT

CALL BIN
CALL PSHAE
MVI A 'SP’
RST OUTPUT
POP D

ANA A

RET

NOP'S

INX D

CALL BIN
CALL TWOCHP
JMP END1
LDAX D

CPI *SP*
INK D

JZ TSTV
DCX D

ADI 300
RNC

RLC

MOV L,A
MVI H 024
CALL PSHAE
STC

INX D

RET

LDAX D

CPI °SP’
INX D

Jz TSTN
DCX D

CPI *A’~1
JNC END1
CPI °(*

RZ
H g

LXI
JMP CONT

of Computer

COMMENTS

®CONT® IN NXT SUBROUTINE
LABEL NOT FOUND

ML SUBROUTINE USED TO INPUT
A NUMBER FROM TTY AND PLACE
ON AE STACKe

ML SUBROUTINE USED TO TEST
FOR VARIABLE AND PLACE
ADDRESS ON AE STACK.

ML SUBROUTINE USED TO TEST
FOR A NUMBER AND PLACE IT
ON TOP OF AE STACK.

A NOP. LOC 024000-024077 RESERVED FOR VARIABLES.

032

023
376
J12
033
376
310
376
310
303
000
315
315
311
315

106
043
146
150
315
247
311
315

040
100

015
044
314
000
331
044

071

044

073

024

026
000
020
023

023

023

023

LDAX D

INX D
CPI °sP*
JZ DONEX
DCX D
CPL °CR’
RZ

CPI '$*

RZ

JMP ERRJ
NCP’S
CALL BIN
CALL PSHAE
RET

CALL POPAE

MOV ByM
INX H

MOV MyM
MOV L,B
CALL PSHAE
ANA A

RET

CALL POPAE

ML SUBROUTINE SIMILAR TO
DONE BUT NO PROVISION FOR
TRANSFER.

DONE FAIL

ML SUBROUTINE USED TO
REPLACE TOP OF AE STACK
BY VARIABLE IT INDEXES.

ML SUBROUTINE USED TO
PLACE TOP OF STACK INTO
VARIABLE INDEXED.

Calisthenics & Orthodontia

Box 310, Menlo Park CA 94025 Page 21

INNUM: INNUM is an ML routine used to input a number from
the input device, convert it to binary, and place it on the AE
stack. The routine first outputs a question mark and a space.
BUFIN is then called permitting the number to be inputted to
the buffer. When a CR is detected, INNUM examines the buffer
to see if a minus sign is present. If so, the program branches to
NEGI1. Otherwise, BIN is called to convert the number to binary
and HL is pushed onto the AE stack. For a negative number,
NEG1 makes the binary conversion, calls TWOCMP, and then
pushes HL onto the AE stack.

TSTV: TSTV is an ML routine that determines whether the
cursor points to a variable. First, TSTV scans over spaces. 300
is then added to the first non-space value. A no-carry condition
will result if a shifted character or number is present. Return
will be made to ILXQT and the next IL instruction executed.
An ASCII letter (A-Z) will produce a carry and at the same
time zero the two most significant bits. In this case, the
address of the variable is computed by doubling A to form the
lower half. The upper half is a constant, 024. With A moved to
L and 024 in H, PSHAE is called to place the variable address on
the AE stack. The carry is set before return to ILXQT causing
the next IL to be skipped.

TSTN: This routine tests for the presence of a number in the
BASIC text. Spaces are scanned over and the first non-space is
checked to find if it is a letter variable. If so, return to ILXQT
is made with the carry reset. If not, a check is made to see if
the byte is an open parenthesis. If it is, return is made with no
‘carry. If the character is not a letter or open parenthests, it is
assumed to be the first digit of a number. In this case, BIN is
called, HL pushed on the AE stack, and return is made with
the carry set.

DONEX: DONEX is identical to DONE except that detection
of a dollar sign does not lead to transfer in the NXT routine.
Instead, it produces a simple return to ILXQT exactly as a CR
would do.

IND: This ML routine pops the AE stack to bring the address
of a variable into HL. The value of the variable is then obtained
‘and pushed onto the AE stack.

STORE: An ML routine that first pops a variable address off
the AE stack and places it in BC. A numeric value is then
popped off the AE stack and placed at the variable address in
BC.

Page 22

TAC ADDRESS Iy I2 13

024152
024153
024154
024157
024160
024161
024162
024163

114
105
315 071 023
160
043
161
247
311

@
LOC 024164-024177 RESERVED
@

ADD 024200 313 071 023

024203
024204
024205
024210
024211
024214
024213
024216

104
115
315
011
313
247
311
313

071 023

044 023

SuB 071 023

024221 023
024224
024225
024226
024231
024232
024235
024236
024237
024240

315
104
115
315
011
315
247
311
000
325

113

071 023

044 023

HMUL

000
071

024241
024243
024246
024247
024250
024253
024254
024257
024260
024261
024264
024267
024270
024273
024276
0242717
024300
024301
024302
024305
024306

006
315
174
2617
374
353
315
174
267
374
313
005
314
315
321
247
311
004
315
311
305

023

301 024

071 023

301 024
306 024

023
023

113
044

NINOX

115 023

g

I

024307
024310
024311
024314
024316
024321
024322
024323
024324
024325
024326
024327
024332
024333
024334
024335
024336
024337
024340
024341
024344
024345
024350
024353
024356
024357
024360

104
115
041
076
062
170
037
107
171
037
117
322
031
174
037
147
175
037
157
072
075
312
062
303
140
151
301

000
021
363

000

033
Loop

333 024

363 033
024
033
024

356
363
321
ENDS

February 1976 Dr

MNEMONIC

MOV C,H
MOV B,L
CALL POPAE
MOV M,B
INX H

MOV M,C
ANA A

RET

Dobb‘s Journal

of Computer Calisthenics

COMMENTS

FOR BASIC SUBROUTINE STACK

CALL POPAE

MOV B,H
MOV C,L
CALL POPAE
DAD B

CALL PSHAE
ANA A

RET
CALL POPAE

CALL TWOCMP
MOV B, H

MOV C L
boPAE

DAD B

CALL PSHAE

ANA A

RET

NOP
PUSH D

MVI B &
CALL POPAE
MOV A,H
ORA A

CcM NINOX
XCHG

CALL POPAE
MOV A,M
ORA A

CM NINOX
CALL MULT
DCR B

CZ TWOCMP
CALL PSHAE
POP D

ANA A

RET

INR B

CALL TWOCHP
RET
PUSH B

oV
MOV
LXI
MVI
STA
MOV
RAR
MoV
MoV
RAR
MOV
JINC
DAD
MoV
RAR
MOV
MoV
RAR
MoV
LDA
DCR
JZ END1

STA INDX
JMP LOOP
MOV HyB

MOV L,C

POP B

- - =z -
o
o

e -
x =>» O WU-=Wrx

- - -
o

o> >

>

>b-z#l" >PX POUZO0 W >=D>XO®
-

ML SUBROUTINE USED TO ADD
TWO TOPHOST ELEMENTS ON
STACK.

ML SUBROUTINE USED TO FIND
THE DIFFERENCE OF THE TWO
TOPMOST ELEMENTS OF THE AE
STACK.

ML SUBROUTINE USED TO MULTI-
PLY THE TWO TOPMOST ELEMENTS
OF AE STACK

SUBROUTINE MULTIPLIES H&L
AY DAE ANSWER IN H&L

& Orthodontia Box 310, Menlo Park CA 94025

ADD: An ML routine used to perform signed addition on the
two top elements of the AE stack, this sun being placed back on
the AE stack.

SUBTRACT: An ML routine used to perform signed subtrac-
tion on the two top elements of the stack. After the first value
is popped off the stack, the two’s complement is taken to
produce the subtrahend. From that point on, the routine is

- similar to the ADD routine.

MUL: This routine performs signed multiplication of the two
top elements of the AE stack. MUL essentially takes care of
sign determination while another routine, MULT, actually per-
forms the multiplication. Register B is used to logically deter-
mine if either or both of the factors are negative. B is originally
set to zero and then incremented in NINOX once for each nega-}
tive factor. In addition, each negative factor is two’s comple-
mented to produce the corresponding positive value. At the

end of MUL if B = 1, then the product should be negative. In
this case two’s complement routine is called. All other values of
B indicate a positive product.

NINOX: A routine used with MUL and DIV is sign determina-
tion (see MUL).

MULT: This routine multiplies the two 16-bit numbers in HL
and DE. The product is shifted into BC as multiplication takes
place. This routine is a little unconventional and may require
some close study to understand.

TAG

D1V

e
pram——Y

CONT

E

Loop

ouT

OVER

CONT

END
DIVE

1

CMPR

|

CONT2

February 1976

ADDRESS

024361
024362

024363
024365
024370
024371
024372
024375
024376
025001
025002
025003
025006
025007
025010
025011
025014
025015
025020
025023
025026
025027
025031
025032
025034
025037
025040
025041
025044
025045
025050
025051
025052
025055
025056
025057
025060
025061
025062
025063
025066
025067
025070
025071
025072
025073
025074
025075
025100
025101
025104
025107
025110
025111
025112
025115
025116
025117
025120
025121
025124
025125
025130
025133

025136
025141
025144
025145
025146
025151

025152
025155
025156
025161
025162
025165
025166
025170
025173
025174
025176
025201
025202
025203

Dr Dobb’s

Iy 12 I3

331
325

006 000

315 071 023
174

267

374 303 024
353

315 071 023
174

267

374 301 024
353

227

274

302 020 025
275

312 333 026
315 026 025
303 267 024
305

006 001

174

346 100
302 044 025
051

004

303 031 025
170

062 363 033
104

115
041 000 000
173
221
137
172
230

127
322 117 025
173
201
137
172
210
127

051
072 363 033
075
312 115 025
062 363 033
353
051
353
303 055 023
301
311
051

043
072 363 033
075
312 115 025
303 104 025

315 071 023

315 115 023
315 O44 023
247
311
000 000 000
325

315 071 023
353
315 071 023

343

315 071 023
174

346 200

302 262 025
172

346 200

302 227 025
174

272

312 214 025

Journal

MNEMONIC

RET
PUSH D

MvVI B &
CALL POPAE
MOV A,H

XCHG

CALL POPAE
MOV A,H
ORA A

CM NINOX
XCHG

SUB A

CHMP H

JNZ CONT
CMP L

JZ ERRS
CALL DIVD
JUP NINOX=10
PUSH B

MVI B 1
MOV A,

ANI 010000008
JNZ OUT

DAD
INR
JMP
MOV
STA
MoV
MOV
xI
MoV
SuB
MoV
Mov
SBB
MOV
JINC
Mov
ADDR
MoV
MoV
ADC
MoV
DAD
LDA INDX
DCR A

JZ END
STA INDX
XCHG

DAD H
XCHG
JMP OVER
POP B

RET

DAD H

INK H

LDA INDX
DCR A

JZ END

JMP CONT
CALL POPAE

CALL TWOCHP
CALL PSHAE
ANA A

RET

NOP°S

PUSH D

o
o
)

M

- w Z
cxCcw
>

-

POUDPMOPTOD~> WX
-
w

- ® Q9 rw
> o> MS> o> M.

XTow>m
-

CALL POPAE

XCHG

CALL POPAE
PUSH H
CALL POPAE

HOV A, H
ANI 10000000B
JINZ CONT1

MOV A,D

ANI 100000008
JINZ B:4

MOV A, M

CMP D

JZ OVR

of Computer Calisthenics & Orthodontia

COMMENTS

Box 310, Menlo Park CA 94025 Page 23

ML SUBROUTINE USED T0 Di= DIV: This ML routine is basically similar to the MUL routine in
VIDE TWO TOPMOST ELEMENTS that it handles sign determination for division. The quotient of

OF AE STACK.

DIVIDE BY ZERO

the two top elements of the stack is taken with the first popped
off the stack treated as the divisor. Integer division actually
takes place in a called routine, DIVD.

DIVD: The contents of DE is divided by the contents of HL in
this routine. The divisor (HL) is left justified before division
actually begins. The number of left shifts required for this
determines the number of shifted subtractions used in the
binary division process. A check is made for division by zero
and an error is reported if this is the case. The quotient is
developed in HL.

ML SUBROUTINE USED TO NE= NEG: An ML routine used to negate the top element of the AE

GATE TOP OF AE STACK.

ML SUBROUTINE USED TO COM-
PARE TWO TOPMOST ELEMENTS

OF AE STACK.

stack. The two’s complement routine is used and the result is
placed back on the stack.

CMPR: At the time CMPR is called, the AE stack has at leust
three elements consisting of the first expression value, the
logical operator address code (labeled 0:, 1:, 2:, etc. on listing),
and a second expression value. Testing is performed on the two
expression values and A is made a 0, 1, or 4 depending on the
numerical comparison:

Expression values equal A=0
First expression greater than second A=1
Second expression greater than first A=4

The logical operator address code then sends the program to
one of 6 testing subroutines (labelled 0:, 1:, 2:, etc.) where a
check is made on A to see if the condition is true or false. If
the zero bit is set upon return then a true condition exists; oth-
erwise, the condition is false. For a true condition, execution is
set to continue at the next statement following the IF. A false
cause execution of the next numbered line.

A6

OVR

Bs1
B3 &
Bs g

ALPHA
FALSE
LoopP

TRUE
CONTY

&

]

wn

H

LITg

ZI5 15 BN

|

-
]
=
o

I

POPSBR

Page 24

PSHSBR

ADDRESS I

025206
025211
025214
025215
025216
025221
025224
025226
025227
025231
025232
025234
025235
025240
025241
025242
025245
025246
025247
025251
025254
025255
025260
025261
025262
025263
025265
025270
025273
025275
025276
025300
025301
025303
025304
025306
025307
025311
025312
025314
025315
025317
025320
025322
025323
025325
025326
025330
025331
025333

025334 5

025336
025337
025341
025342
025344
025345
025347
025351
025354
025355
025356

025357
025360
025361
025364
025365
025366
025367
025370
025373
025374
025375
025377
026000
026003

026004
026007
026030
026011
026012
026015
026016
026017
026021
026022

322
303
173
273
312
322
076
041
07¢
o4y
076
341
021
325
351
312
321
032
376
312
023
303
321
311
172
346
302
303
376
311
376
31
3176
310
376
31l
316
310
378
31
376
311
376
310
3168
311
056
001
056
001
056
001
056
001
056
001
056
046
315
247
311
305

104
115
052
160
043
161
043
042
301
175
376
330
303
305

052
053
106
053
042
146
175
376
150
301

12
227
224

232
2217
001
004
000

242
260
015

375
246

200
201
224
000
001
000
001
001
004
004
000
004
273
276
301
307
315
320

025
044

364

NI

177
336

364

364

164

13

025
025

025
025

025

025

022
025

023
025

023

033

033

026

033

033

MNEMONIC

JNC B:
JMP B:
MOV A,yL
CMP E

JZ B: @
JNC B:4
MVI A 1D
SPECIAL
MVI A 4D
SPECIAL
MVLI A @D
POP H A

4
1

LXI D ALPHA

PUSH D
PCHL

JZ TRUE
POP D
LDAX D
CPI 'CR’
JZ NXT
INX D
JMP LOOP
POP D
RET

MOV A

D
AT 100000008

JHZCONT2
JMp Bl
CPI 8D
RET

CPI 1D
RET

CPI #D

RZ

CPI 1D
RET

CPI 1D

RZ

CPI 4D
RET

CPI 4D
RET

CPI $D-

RZ

CPI 4D
RET

MVI L 273
SPECIAL
MVI L 276
SPECIAL
MVI L 301
SPECIAL
MVI L 307
SPECIAL
MVI L 315
SPECIAL
MVI L 320
MVI H 024
CALL PSHAE
ANA A

RET

PUSH B

MOV B
MOV C
LHL S
MOV M
INX H
MOV M
INX H
SHL SBRLVL
POP B

MOV A,L
CPI 477

RC

JMP ERRS
PUSH B

LHL SBRLVL
DCX H

MOV B,M
DCX H

SHL SBRLVL
MOV H,yM
MOV AL
CPI 164
MOV L,B
POP B

COMMENTS

. _®NXT® SUBROUTINE

SUBROUTINE USED TO SAVE
BASIC SUBROUTINE RETURN
ADDRESS»

NESTING TOO DEEP

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025

LITO through LIT5: These ML routines are used to put the
logical operator address on the AE stack during execution of an
F statement. See CMPR.

PSHSBR: A routine used to place the return address of GOSUB
on the subroutine stack. The subroutine stack is separate from
the AE stack. SBRLVL is a pair of locations used to keep track
of the level of subroutining.

SUBROUTINE USED TOO RETRIEVE POPSBR: A routine used to pop the GOSUB return address off

BASIC SUBROUTINE ADDRESSe

the subroutine stack.

TAG

w
>
<
(o]

0
w
e
20

|

SPCONE

£
—
=
(el
-

I

[4
LBLOUT

ERRMAIN

“

February 1976

ADDRESS

026023
026024
026027

026030
026031
026034
026035
026036

026041
026042
026043
026044

026046
026051
026052
026053

026056
026061
026064
026065
026066
026067
026071
026072
026073
026074
026077
026100
026103
026106
026111
026114
026117
026122
026125
026130
026131

026134
026137
0261342
026145
026150
026153
026154
026155
026156
026157
026160
026163
026164
026165
026166

026205

026206
026207.
026210
026211
026213
026216
026217
026220
026221
026224
026226
026227
026231
026232
026233
026235
026236
026240
026243
026246
026251
026253
026254
026257

Dr

320
303
142

153
315
247
311
315

353
247
311
076

315
247
31
000

041
001
176
002
175
376
310
003
043
303
000
000
001
040
030;
024
000
241
317
31
041

042
041
042
315
052
126
043
136
353
000
042
023
023
247
311

345

325
305
353
016
303
000
000
3217
000
076
357
076
357
357
076
357
046
000
315
052
076
357
315
016

Dobb’s

12

341

356

003

040
026

000

077
350

130

064

000
034
017
000
317
000
051
057

100

361
164
364
020
352

330

377
107

000
105

122

040

000
000
101
350
040

205
010

026

025

026

022

000

026
033

026

034
000
100
164
057
056
321
377
030
033
024
033

027
033

033

022

000

000
022
033

026

Journal

MNEMONIC

RNC
JMP ERR10
MOV HyD

MOV L,E
CALL &SHSBR
ANA A

RET

CALL POPSBR.

XCHG
ANA A
RET

MVI A °SP°
CALL ASCOUT
ANA A

RET
NOP’S

LXI H STRT
LXI B CURLBL
MOV A,M
STAX B
MOV A,L
CPI 130
R2

INX B
INX H
JMP LOOP
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LXI H

SHL AELVL
LXI H

SHL SBRLVL
CALL INIARY
LHL PRGSTRT
MOV DyM

INX H

MOV E,M
XCHG

NOP

SHL CURLBL
INX D

INX D

ANA A

RET

L4
LOC 026167-026204 IS UNUSED.

PUSH H

PUSH D
PUSH B
XCHG

MVl C 377
JMP I0UT+6
NOP

NOP

RST CRLF
NOP'S

MVI A °E°
RST OUTPUT
MVI AR’
RST OUTPUT
RST OUTPUT
MVI A °SP’
RST OUTPUT
MVI K @
NOP'S

CALL I0UT
LKL CURLBL
MVI A 'SP°
RST QUTPUT
CALL LBLOUT
MVI C 8D

of Computer Calisthenics & Orthodontia

COMMENTS

TOO MANY RETURN STATEMENTS
ML SUBROUTINE USED TO PLACE
RETURN ADDRESS ON SBR STACK

ML SUBROUTINE USED TO RE-
TRIEVE RETURN ADDRESS FROM

SBR STACK.

ML SUBROUTINE USED TO OUT-
PUT ONE SPACE TO TTY.

ML SUBROUTINE USED TO
INITIALIZE BASIC SYSTEH.

ML SUBROUTINE USED TO

Box 310, Menlo Park CA 94025 Page 25

SAVE: This ML routine places the GOSUB return address on
the subroutine stack using PSHSBR.

RSTR: Upon execution of a RET statement, this ML routine
uses POPSBR to fetch the return address off the subroutine
stack,

SPCONE: ML routine that issues one space on the output
device. This is the execution routine for a semicolon in the
PR statement.

INIT: This ML routine initializes the TBX system when a NEW

statement is executed. The program area is preset to that a new
program can be entered.

XINIT: When RUN is typed, certain locations in TBX must be

PREPARE SYSTEM FOR EXECUTIN jnitislized, The XINIT routine performs the following tasks:

SUBROUTINE USED TO OUTPUT
LABEL(NO ZERO SUPPRESSION)

1. AE and subroutine stacks are emptied;

2. The array storage area is preset at zero length; and

3. The label number .of the first statement to be executed
is placed in CURLBL.

LBLOUT: This routine is called by LIST to output a label
number of a TBX statement, IOUT is used with C preset to
377 octal preventing zero suppression.

ERRMAIN: This routine is used to process an error condition.
“ERR” is outputted followed by the error number and the
CURLBL. Entry to ERRMAIN is made through ERR1, ERR2, |
etc., where L is set to the error number desired.

Page

TAG

LooP

ERRLIS
ERR}

ERR2
ERR3
ERR4
ERRS
ERR6
ERR7
ERR8
ERRS
ERR10
ERR1}
ERR12
ERR13
ERR14
ERR1S
ERRIG:
.
LOC
&
INIARY

DIM2

|cont

CONTS

26 February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

ADDRESS Ii I2 13 MNEMONIC
026261 041 357 033 LXI H
026264 021 106 026 LXI D
026267 032 LDAX D
026270 167 MOV M,A
026271 015 DCR C
026272 302 267 026 JNZ LOOP
026275 O41 002 032 LXL H
026300 061 077 002 LXI SP
026303 303 257 021 JMP ILXQT
T, 026306 056 001 MVI L 1D
026310 001 SPECIAL
026311 056 002 MVI L 2D
026313 001 SPECIAL
026314 056 003 MVI L 3D
026316 001 SPECIAL
026317 056 004 MVI L 4D
026321 001 SPECIAL
026322 056 005 MVI L 5D
026324 001 SPECIAL
026325 056 006 MVI L 6D
026327 001 SPECIAL
026330 056 007 MVI L 7D
026332 001 SPECIAL
026333 056 010 MVI L 8D
026335 001 SPECIAL
026336 056 011 MVI L 9D
026340 001 SPECIAL
026341 056 012 MVI L 10D
026343 001 SPECIAL
026344 056 013 MVI L 11D
026346 001 SPECIAL
026347 056 014 MVI L 12D
026351 001 SPECIAL
026352 056 015 MVI L 13D
026354 001 SPECIAL
026355 056 016 MVI L 14D
026357 001 : SPECIAL
026360 056 017 MVI L 35D
026362 001 SPECIAL
1026363 056 020 MVI L 16D
026365 303 216 026 JMP ERRMAIN

026370-027017 IS UNUSED.
027020

076 012 MVI A °LF’
027022 357 RST OUTPUT
027023 052 1185 026 LHL
027026 042 366 033 SHL ARYSTRT
027033 311 RET
027032 325 PUSH D
027033 315 071 023 CALL POPAE
027036 353 XCHG
027037 315 071 023 CALL POPAE
027042 104 MOV ByH
027043 115 MOV C,L
027044 315 Ou4 023 CALL PSHAE
027047 353 XCHG
027050 315 044 023 CALL PSHAE
027053 321 POP D
027054 305 PUSH B
027055 315 240 024 CALL MULT
027060 315 071 023 CALL POPAE
027063 303 072 027 JMP CONT
027066 315 071 023 CALL POPAE
027071 345 PUSH H
027072 051 DAD K
027073 104 MOV B,H
027074 115 MOV C,L
027075 052 366 033 LHL ARYSTRT
027300 175 MOV A,L
027101 221 SUR C
027102 117 MOV C,A
027103 174 MOV A,H
027104 230 SEB B
027105 107 MOV B,A
027106 013 DCX B
027107 052 354 033 LML PRGEND
027112 274 CHP H
027113 302 120 027 JNZ CONT1
027116 171 MOV A,C
027317 275 CHP L
027120 332 360 026 JC ERR1S
027123 140 MOV HyB
027124 151 MOV L,C
027125 301 POP B
027126 160 MOV M,B

COMMENTS

PARTIAL REINITIALIZATION
SEQUENCE

ARRAY INITIALIZATION SUB-
ROUTINE

ML SUBROUTINE USED TO
SET UP TWO DIMENSIONAL
ARRAYS,

ML SUBROUTINE USED TO SET WP
ONE DIMENSIONAL ARRAYS.

Box 310, Menlo Park CA 94025

INIARY: A subroutine called by XINIT to preset the array
area of memory.

DIM1 and DIM2: These ML routines are used to set up array
storage as a result of execution of a DIMension statement.
DIM?2 handles two dimensional arrays while DIM1 handles the
one-dimensional arrays. At the time these routines are called,
the array dimensions are on top of the AE stack. MULT and
double register addition are used to calculate memory needed
for a given array dimension. The variable associated with the
array name is used to hold the location of the beginning of
that array.

February 1976

TAG ADDRESS Iy I2 I3
0271217
027130
027131
027132
027133
027136
027141
027142
027143
027 144
027145
027146

053
161
104
115
042 366 033
315 071 023
161
043
160
247
311
ARRAY1 315

071 023

|

027151
027152
027153
027154
027155
027160
027161
027164
027165
027166

053
051
104
115
315
011
315
247
311
315

071 023

O44 023

ARRAY2 071 023

H

027171
0271372
027175
027200
027203
027206
027211
027214

027215
027216
027220
027223
027224
027226
027227
027230
027231
027232
027233
027235
027240
027241
027242
027243
027244
027246

0272417
027250
027231
027252
027233
027254
027255
027256
027261
027262
027263
027266
027267
0272170

‘ .
LOC 027273-027304 IS UNUSED.
¢

totp

053
315
052
315
315
315
303
032

044
370
044
240
200
146

023
033
023
024
024
027
TSTA

023
376
312
033
306
320
007
117
023
032
376 050
312 243 027
033
247
31
151
046
116

043
146
151
116
043
106
043
315
140
151
o042
067
311
000

040
214 027

300

CONT
024

ou4 023
370 033

000 000

027305

027306

027307

027310

027312

027315
027316
027321
027322
027323
027324
027325
027330
027331
027332
027333
027334
027337
027340

325
023
032
376
302
353
315
321
247
311
325
315
345
116
043
106
315
353
315

013
064 030

CONT
O44 023

=
™
>
-

071 023

|

071 023
071 023

——

Dr Dobb’s Journal of Computer Calisthenics & Ortlrliodontia

MNEMONIC COMMENTS
DCX H

MOV M,C

MOV ByM

MOV C,L

SHL ARYSTRT
CALL POPAE
MOV M,C

INX H

MOV M,B

ANA A

RET

CALL POPAE ML SUBROUTINE USED TO GET
THE ADDRESS OY A ONE DIMEN=
SIONAL ARRAY VARIABLE.

DCX H

DAD H

MOV B,H
MOV C,L
CALL POPAE
DAD B

CALL PSHAE
ANA A

RET

CALL POPAE ML SUBROUTINE USED TO GET
THE ADDRESS OF A TWO DIMEN-
SIONAL ARRAY VARIABLE.

DCX H

CALL PSHAE
LHL ATEMP
CALL PSHAE
CALL MULT
CALL ADD
JMP ARRAY1
LDAX D ML SUBROUTINE USED TO TEST
FOR AN ARRAY.

INX D

CPI 'SP’

Jz TsTA

DCX D

ADI 300

RNC

RLC

MOV C,A

INX D

LDAX D

CPI '(*

JZ CONT

DCX
ANA
RET
MoV
MVI
Mov
INX
MOV
MOV
MoV
INX
MoV
INX H

CALL PSHAE
MOV H,B
MOV L,C
SHL ATEMP
STC

RET

NOP'S

-
[
&

-
X Xaox X o0

oEOrrTxOOr »0
- v -

’

PUSH D
INX D

LDAX D

CPI °CR’
JNZ FIXFOR

FOR LOOP,

XCHG
CALL PSHAE
POP D

ANA A

RET

PUSH D
CALL POPAE
PUSH H

MOV C,M
INX H

MOV B,M
CALL POPAE

ML SUBROUTINE USED TO CHECK
END OF FOR LOOP.

XCHG
CALL POPAE

"ARRAY1 and ARRAY?2: These ML routines are used to calcu-

ML ‘SUBROUTINE USED TO SET WP FOR: When a FOR statement is executed, this ML routine

Box 310, Menlo Park CA 94025 Page 27

late the address of an arrcy variable. The array position values
are on the AE stack at the time these routines are called. MULT]
and double register addition are used in the calculation.

TSTA: An ML routine used to test TBX text for the presence
of an array variable. If a letter is immediately followed by an
open parenthesis, then an array is indicated. Otherwise, an
ordinary variable is present. '

places the address of the next statement following the FOR
on the AE stack.

NEXT: This ML routine is used to process a NXT instruction.
During its execution the following tasks are performed:

1. The index variable is incremented;

2. A check is made to see if the variable limit has been
exceeded;

) 3. If so, the next TBX instruction is executed; and

) 4. If not, execution is returned to the statement follow-
ing the appropriate FOR statement.

of Computer Calisthenics & Orthodontia

Page 28 February 1976 Dr Dobb’s Journal
TAG ADDRESS I1 12 I3 MNEMONIC COMMENTS
027343 003 INX B
027344 372 MOV A,D
027345 270 CMP 8
027346 302 361 027 JNZ CONT
027351 173 MOV A,E
027352 271 CMP C
027353 322 361 027 JNZ CONT
027356 303 006 030 JMP CONT1
CONT 027361 345 PUSH H :
027362 315 Ouk 023 CALL PSHAE
027365 341 POP H
027366 353 XCHG
027367 315 O44 023 CALL PSHAE
027372 341 POP K
027373 315 O4h 023 CALL PSHAE
027376 140 MOV H,B
027377 151 MOV L,C
030000 315 Ou4 023 CALL PSHAE
030003 341 POP K
030004 247 ANA A
030005 311 RET
CONT1 030006 341 POP H
030007 315 O44 023 CALL PSHAE
030012 140 MOV H, B
030013 151 MOV L,C
030014 315 O44 023 CALL PSHAE
030017 321 POP D
030020 247 ANA A ,
030021 311 RET
FIXDONE 030022 376 044 CPI s’
030024 302 314 026 JNZ
030027. 303 033 023 JMP
1STF 030032 032 LDAX D ML SUBROUTINE USED TO TEST
=) FOR FUNCTION.
030033 376 040 CPI *SPY
030035 023 INX D
030036 312 032 030 JZ TSTF
030041 033 DCX D
030042 306 300 ADI 300
030044 320 RNC
030045 325 PUSH D
030046 023 INX D
030047 032 LDAX D
030050 306 300 ADI 300
030052 321 POP D
030053 320 RNC
030054 376 015 CPI °CR*
030056 310 R2
030057 376 040 CPI °SP*
030061 310 RZ
030062 067 STC
030063 311 RET
FIXFOR 030064 376 044 CPI 's*
030066 312 315 027 JZ CONT IN °FOR® ROUTINE
030071 303 306 027 JMP LOOP IN 'FOR’ ROUTINE
¢
@ LOC 030074-030077 IS UNUSED. LOC 0303100-030177 RESERVED FOR AE STACK.
LOC 030200-030203 IS UNUSED.
¢
RNDM 030204 041 375 033 LXI H SEED& ML SUBROUTINE USED TO GEN=
— ERATE RANDOM NUMBERS
030207 006 010 MVI B 8D
LOOP 030211 176 MOV ApM
030212 007 RLC
030213 007 RLC
030214 007 RLC
030215 256 XOR M
030216 027 RAL
030217 027 RAL
030220 055 DCR L
030221 055 DCR L
030222 055 DCR L
030223 176 MOV AyM
030224 027 RAL
030225 167 MOV M,A
030226 054 INR L
030227 176 MOV AgM
030230 027 RAL
030231 167 MOV A M
030232 054 INR L
030233 176 MOV A M
030234 027 RAL
030235 167 MOV M,A
030236 0S4 INR L
030237. 176 MOV A,H
030240 027 RAL
030241 167 MOV M,A
030242 005 DCR B
030243 302 211 030 JNZ LOOP
030246 052 374 033 LWL SEED3

Box 310, Menlo Park CA 94025

TSTF: A test is performed by this ML routine to check for the
presence of a function in the TBX text. The function is
recognized by the occurrence of two letters in sequence, i.e.,
RN for the random number function.

RNDM: A random number generator based on a technique by
Jim Parker appearing in “The Computer Hobbyist” (Vol. 1,
No. 5). The routine returns only when a value between 0 and
10,000 decimal is sensed.

TAG

CONT2

CONT?

o)
»
=]

|

Loop

MEMTEST

CONT

ﬁ\\\
]

\

DIFF

=]
%]
&

=3
1]
=)
19y

I

February 1976 Dr

ADDRESS I}

030251
030252
030254
030255
030257
030262
030265
030270
030271
030272
030273
0302735
030300

030303
030304
030306
030311
030312
030315
030320
030323
030324
030325
030326
030327
030330
030331
030334
030337
030340

030343
030344
030347
030352
030355
030356
030360
030363
030365
030366

‘030371

031000
031003
031004
031005
031006
031011
031012
031013
031016
031017
031020
031023
031024
031025
031030
031033
031035
031036
031041
031042
031043
031046
031047
031052
031055
031056
031057
031060
031061
031062
031063
031064
031065
031066
031067

031072
031075
031100
031103
031104
031105

031110

174
346
147
376
312
322
315
077
311
175
376
303
313

105
076
315
005
302
063
063
301
341
043
043
345
305
073
073
311
072

274
312
332
042
311
000
072
326
275
322
303

Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 29

12

077

o047
272
204
O44

020
262
071

040
026

304
063
063

073
073

367

360
360
354

000
366
000

352
360

I3

030
030
023

030
023

022
030

063
063

073
073

033

030
026
033

033

030
026

052 354 033

053
104
115
052
011
345
052
104
115
052
011
301
315
315
076
3517
052
104
113
052
053
315
315
327
247
311
171
225
157
170
234
147
311
052

042
052
042
247
311
315

042

376

366

352

080
101
040

366

354

060
101

352
304
3354
306
165

304

033

033

033

031
022

033

033

031
022

033
033
033
033
031

033

MNEMONIC COMMENTS

MOV A, H

ANI 00111111B

MOV H,A

CPI 047

JZ CONTI

JNC RNDM

CALL PSHAE

cHe

RET

MOV A,L

CPI 020

JUP CONT2

CALL POPAE ML SUBROUTINE USED TO. PRO-
DUCE TAB FUNCTION.

MOV B,A

MVI A °SPY

CALL ASCOUT

DCR B

JNZ LOOP

SXINK SP

3XINX SP

POP B

POP H

INX H

INX H

PUSH H

PUSH B

3XDCX SP

3XDCX SP

RET

LDA ASTRT(H) SUBROUTINE USED TO TFST FOR MEMTEST: A routine used to test for memory depletion. If

MEMORY DEPLETIONe
CMP H
JZ CONT
JPC ERR15
SHL PRGEND
RET
NOP?S
LDA ASTRT(L)
SurL @
CMP L
JNC END
JMP ERR13

LOC 030374=030377 IS NOT USED.
LHL PRGEND ML SUBROUTIME USED TO DETER= SIZE: This ML routine computes the amount of memory being

DCX H MINE SIZE OF PROGRAM AND

MOV ByH AMOUNT OF MEMORY REMAINING.

MOV C,H

LHL MEMEND

DAD B

PUSH H

LHL ASTRT

MOV B, H

MOV C,L

LKL PRGSTRT

DAD B

POP B

CALL DIFF

CALL IOUT

MVI A °*SP°

RST OUTPUT

LHL ASTRT

MOV B,H

MOV C,L

LML PRGEND

DCX K ‘

CALL DIFF

CALL TOUT

RST CRLF

ANA

RET

MOV A

SUB L

MOV L
A
H
H

>

MoV

SBB

Mov

KET

LHL PRGSTRT ML SUBROUTINE USED TO LIST
ENTIRE BASIC PROGRAM.

SHL LSTSTRT

LHL PRGEND

SHL LSTEND

ANA A

RET

CALL FIND ML SUBROUTINE USED TO LIST

ONE LINE.
SHL LSTSTRT

TAB: This ML routine spaces over an amount equal to the
value stored on the top of the AE stack.

array storage area overlaps the program area, an error is
reported,

used and the amount left.

LSTO, LST1, and LST2: These three routines set up LSTSTRT
and LSTEND so that when LIST is called, only the required
lines will be listed., LSTO is called if the entire program is to be
listed. LST1 is called to list only one line. LST2 sets up a lsting
between two given lines.

Page 30

TAG

LooP

LST2

Loorp

FIND

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

ADDRESS I

043
043
076
043
276
302
043
043
042
247
311
000
315

031113
031114
031115
031117
031120
031121
031124
031125
031126
031131
031132
031133
031134

031137
031140
03114}
031143
031144
031145
031150
0311351
031152
031155
031160
031163
031164
031165
031170
031173
031174

043
043
076
043
276
302
043
043
042
315
042
247
313
315
3135
310
303

12

015

117

306

165

015

143

306
165
304

071
154

330

13

031

033

031

031

033
031
033

023
023

026

MNEMONIC

INX K
INX H

MVI A °CB°
INX H

CMP M
JNZ LooP
INX H
INX H
SHL LSTEND
ANA A

RET

NOP

CALL FIND

INX
INX
MVI
INX
CMP
JNZ
INX
INX
SHL LSTEND
CALL FIND
SHL LSTEND
ANA A

-RET

CALL POPAE
CALL FINDLBL
RZ

JMP ERR7

°CR*

00P

XTXCXxX>PIxX

4
: LOC 033177-031277 IS UNUSED.

FN

FNO

S&c

S8B

Si4

S14A

S4B

031300
031302
031304
031306
031310
031312
031314
031316
031320
031322
031324
033325
031327
031331}
031333
031334
031336
031340
031342
033343
031345
031347
031351
031333
031355
031356
031360
031362
031364
031366
031370
031372

231
122
330
322
232
124
132
330
322
231
215
322
322
232
244
322
323
231
215
331
322
322
132
233
254
132
331
322
032
331
J22
032

TAG

LNECLT

310
316
204
300
330
302
343
300
300
331

360
375
210

360
034
351

067
213
375
343
366

343
134
213
216
105
213
216

ADDRESS 1f 12 I3

032000
032002
032004
032006

TST FNO °RN*

RANDOM
RTN
TST S17 °TB*

CALL EXPR
TAB
RTN
TST 588 "R’

NLINE
NXT
TST S8 ‘$°

NLINE
NXTX
TST S14A °CR’

LISTO
LST

NXT

CALL EXPR
TST SI4B *,°

CALL EXPR
LIST2

LST

JUP S8A
LIST}

LST

JHP SBA

COMMEMTS

ML SUBROUTINE USED TO LIST
BETYEEN TWO LINE NUMBERS.

1L PROGRAM

326 053
322 360
320 070
322 360

MNEMONIC

INIT
NLINE
GETLINE
NLINE

Box 310, Menlo Park CA 94025

TAG ADDRESS Ii I2 I3 MNEMONIC
932010 320 265 TSTL
032012 032 022 JMP DIR
032014 320 360 INSRT
032016 032 004 JMP LNECLT

XEQ 032020 326 131 XINIT

DIR 032022 232 041 TST S1 °LET’
032024 114 105 324
032027 133 310 CALL AVTEST
032033 132 340 CALL EXPRS
032033 324 147 STORE
032035 322 304 DONE
032037 322 375 NXT

Si 032041 232 074 TST S3 ‘GO*
032043 107 317
032045 232 057 75T S2 °*TO’
032047 124 337
032051 132 343 CALL EXPR
032053 322 304 DONE
032055 323 224 XFER

s2 032057 232 275 TST S14 °SuB’
032061 123 125 302
032064 132 343 CALL EXPR
032066 324 100 DONEX
032070 326 027 SAVE
032072 323 224 XFER

S3 032074 232 112 TST S3A °IF’
032076 111 306
032100 132 343 CALL EXPR
032102 133 114 CALL RELOP
032104 132 343 CALL EXPR
032106 325 151 CMPR
032110 032 022 JMP DIR

S3A 032112 233 326 TST S4A °‘FOR’®
032114 106 117 322
032117 323 324 TSTV
032121 326 363 ERR16
032123 132 340 CALL EXPR
032125 324 147 STORE
032127 226 363 TST ERR
032131 124 317
032133 327 305 FOR
032135 132 343 CALL EXPR
032137 322 304 DONE
032143 322 375 NXT

[

LOC 032143-032147 IS UNUSED.

¢

Sa 032150 232 226 TST S9 °'PR®
032152, 120 322

§5 032154 231 322 TST S8C ¢
032156 242
032157 322 322 PRS

Sé 032161 232 173 TST STA %,°
032163 254
032164 322 342 SPCZONE

S7B 032166 232 332 TST S5A °CR’
032170 215
032171 322 375 NXT

S7A 032173 232 202 ST S7 *;3°
032175 273
032176 326 04y SPCONE
032200 032 166 JMP S7B

s7 032202 322 360 NLINE
032204 322 304 DONE
032206 322 375 NXT

S8 032210 132 343 CALL EXPR
032212 323 125 PRN
032214 032 161 JMP S6

S8A 032216 322 304 DONE
032220 322 375 NXT

#

LOC 032222-032225 IS UNUSED.

[4

$9 032226 232 251 TST S12 °IN®
032230 111 316

S10 032232 133 310 CALL AVTEST
032234 323 241 INNUM
032236 324 147 STORE
032240 232 245 TST S11 *,°
032242 254
032243 032 232 JMP S10

Si1 032245 322 304 DONE
032247 322 3175 NXT

si2 032251 232 264 TST S83 °RET’
032253 122 105 324
032256 326 036 DONE
032260 322 304 RSTR
032262 322 375 NXT

S13 032264 233 200 TST Si4 ‘END*
032266 105 116 304

February 1976 Dr

TAG

S18
S15

Si6

S17
S5A

EXPRY
EXPR

i

Et
E2

TERM
>

T1

FACT

F4

P

T23E4Q
Fi

F3
S17A

RELOP

Ry

Dobb’s Journal

ADDRESS I}

032271
032273
032275
032277
032302
032304
032306
032310
032313
032315
032317
032321
032324

032326

032330
032332
032334
032335
032337
032340
032342
032343
032345
032346
032350
032352
032354
032356
032357
032361
032363
032364
032366
032370
032372
032374
032375
032377
033001
033003
033005
033007
033010
033012
033014
033016
033020
033021
033023
033025
033027
033031
033033
033035
033037
033041
033043
033045
033047
033051
033053
033055
033057
033061
033063
033065
033067
033070
033072
033074
033075
033077
033101
033103
033106
033110
033112
033114
033116
033117
033121
033123
033125
033126
033130
033131
035133
033135
033137

322
323
232
114
031
322
232
122
322
032
233
116
322
032

326
232
244
323
000
232
275
232
255
133
325
032
232
253
133
232
253
133
324
032
233
255
133
324
032
133
233
252
133
324
033
233
257
133
324
033
330
033
031
327
033
133
324
Je22
323
033
324
322
323
033
322
233
250
132
233
251
322
326
232
123
331
032
000
233
275
325
322
233
274
233
273
329
322
233
276

12

360
011
306

of Computer

13

123 324

340
375
317
125
304
020
101

316

105 327

304
000

347
154

034
343
354

003
133
361
357

003
312

003
200
361
055

003
216
361
027
016

027
240
005
055

027
362
005
032
035
300
214
047
254
133
300
324
057
133
300
351
065
300
077

343
077

300
352
330
132
000
216
000
123

326
300
150

135
334

JLo
144

305

MNEMONIC

NLINE
FIN
TST S15 °'LST’

LST
JMP S8A
TST S16 'RUN’

DONE
JMP XEQ

TST S17A °NEW*

DONE
JMP STRT

ERR12
TST S5A '$°

NXTX
NOP
TST EXPR '+°

T5T EF *=°

CALL TERM
NEG

JMP E1
TSTE3 * °

CALL TERM
TST E2 "4°

CALL TERM
ADD

JMP EL

TST E4 *=°

CALL TERM
SuB

JMP E1
CALL FACT
TST T1 *#'

CALL FACT
MULT

JMP T8

IST T2 */°

CALL FACT
DIV

JMP T#
TSTF

JMP F4

JMP FN
TSTA

JMP Fg
CALL ARRAY
IND

RTN

5TV

JMP F1

IND

RTN

TSTN

JMP F2

RN

TST F3 °(’

CALL EXPR
TST F3 9)°

RTN
ERR13

TS S17 °SZE°

SIZE
JMP SBA
NOP’S

TST RE *=*

LITO
RTN
TST R4 '<°

ST RY °=°
L1713

RN
787 R3 '»°

Calisthenics & Orthodontia

TAG

R3
R4

R>

Ré

Si4

21

ARRAY

xg

LSTSTRT
LSTEND
AVTEST

vg

S&A

CURLBL
PRGSTRT
PRGEND
COUNT
CASE
ZONE
AELVL
INDX
SBRLVL
ASTRT
ATEMP
SEED)
SEED2
SEEDJ
SEED4

MEND

Box

310, Menlo Park CA 94025 Page

ADDRESS I

033140
033142
033144
033146
033150
033152
033353
033155
033156
033160
033162
033164
033165
033167
033173
033173
033175
033200
033202
033205
033207
033211
033213
033214
033216
033220
033221
033223
033225
033226
033230
033232

033233
033235
033237

03324 1
033243
033244
033246
033250
033253
033254
033256
033257
033261
033263
033264
033266
033270
033271
033273
033275
033277
033300
033302
033304
033306
033310
033312
033314
033316
033320
033322
033324
033326
033330
033333
033335
033337
033341
033343
033345
033347
033350
033352
033354
033356
033357
033360

033361

033363
033364
033366
033370
033372
033373
033374
033375

033376 .

323
J22
325
322
232
276
233
275
325
322
233
274
325
322
325
322
000
232
104
323
326
233
250
132
233
254
132
233
251
327
233
254
033
322
J22

233
251
327
033
000
000
233
250
132
233
254
132
233
251
327
322
233
251
327
322
000
036
321
033
133
322
323
326
322
232
116
323
326
327
324
J22
322
0Co
000
000
036
001
040
004

12

337
300
33
300
330

162

343
300
171

337
300
342
300
000
275
111
324
352
077

343
241

343
077

032
235

205
304
375

077

066
230
0G0

o717

343
275

343
077

166
300
o717

146
300
034
037
214
320
254
300
324
Juy
300
150
130
324
352
324
147
304
375

000
034
037

100 030

001
164
317
000
150
205
343
336

377

024
057
000

037

13

000
315

000

J24

MNEMONIC

LIT3
RTN
LIT1
RTN
T3T S17 *>°

1ST RS '='

LITS
RTN
TST R6 ‘<’

LIT3

RTN

LIT4

RTN

NOP’S

TST S18 °DIM’

TSTV
ERR13
TST F3 "

CALL EXPR
TS1 21 °,!

CALL EXPR
ISTF3 ., *)°

DIM2
TST 22 ¢

JuP 2
DONE
NXT

TST 3 A

DIM1

JMP Z3

NOP‘S

NOP

TST F3 (e

CALL EXPR
TST X8 ',°

CALL EXPR
TST E3 + *)¢

ARRAY2
RTN
TST F3 £y’

ARRAY}
RTN

TSTA
JUP V@

CALL ARRAY
RTN

TSTV

ERR11

RTN :
TST S4 °NXT®

TSTV
ERR14
NEXT
STORE
DONE
NXT
NOP

31

Page 32

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia

[LAsy /NSTANT POSTSCARIAT 7o WHAT Forlows]) JUST GoT THE woRD THAT TWEY oL SECL
volcE SYNTHESIZER KITS rFok 31008 (F 7a€y Fe€L Y46y Chri MAARET AT ¢cAasT 5048

Derarns Me«r Issog,

Jim day’s
DAZE

[reprinted from PCC Vol. 4, No. 5]
COMPUTERS THAT TALK

Wouldn’t it be nice if your computer could speak to you in English, French, Ger-
man, or Esperanto like the compater on the starship Enterprise? Then it could say things
like, “Wake up, sir” or “Get with it, turkey” (depending on what kind of mood it was in)
or maybe, “The time is six o’clock, the temperature is 46 degrees, and tomorrow is your
wife’s birthday.” Most people have probably assumed that some day, perhaps by the year
2000, talking computers will be a reality instead of simply science fiction. Well, hang onto
your prognostications, people, because that day is today!

In recent ycars many -people have been working on voice output devices for com-
puters. Some of these devices have been clectro-mechanical analogs of the human vocal
tract, similar in principle to the Voder exhibited at the New York World’s Fair in" 1939,
Others have used clectronic waveform generators to synthesize human specch sounds. Of
these, the Votrax synthesizer can truly be said to represent a significant breakthrough with
respect to voice quality, case of programming, and cosl.

Smaller than a breadbox and priced at about 83500 for the basic unit, Votrax is
produced by the Vocal Interface Division of the Federal Screw. Works (500 Stephenson
Highway, Troy MI 48084; (313) 588-2050). Any computer capable of outputting a
string of ASCII code to a terminal can be used 1o control Votrax. As an output device,
Votrax can be used alone or in conjunction with' an ordinary I'TY, using embedded
ASCII control codes and simple logic to switch voice strings to Votrax, and print strings to
the TTY, TVT, or other conventional terminal.

Programming Votrax is a snap. Using BASIC, FORTRAN, APL, PL/1, or just about
any other programming language, it’s easy to convert ordinary English (or other natural
language) into voice strings for Votrax. The best quality of vocal output is obtained by
using a dictionary lookup technique to substitute a string of phoneme codes for each
English word. Votrax responds to ASCH codes for 63 different phonemes (basic speech
sounds) and each phoneme can have one of four levels of inflection.

If perfect voice quality is not essential and random-access file space is not available
for a large dictionary, an algorithm can be used to convert English words to phoneme
codes. Such an algorithm, developed by Bell Telephone Laboratories, is said to work
almost as well as dictionary lookup. An unpronounceable string such as “PDP-8” can be
spelled out phonetically as though written “pee dee pee dash ate,” and the number 10.6
can be rendered as “ten point six” by means of a simple subroutine. Pauses can be
inseried automatically in response to punctuation and paragraphing.

Maybe you are wondering whether anyone has actually used Votrax and, if so, how
did they like it? The answer to both questions is yes. People arc using Votrax and they
like it a lot. For example, the Coast Community College District in Costa Mesa, California,
is using Votrax for computer-aided instruction and also in an on-linc student information

system. Votrax was chosen in preference to other audio response units not only because it

is much less expensive but also because it is ideal for a wide range of applications, the
size of its vocabulary is unlimited, and it functions well in a real-time environment. In the
student information system application, Touch-Tone telephones are used as “terminals.”

Although this limits the user to numeric input, it would be hard to find a cheaper or more

readily available 1/O device. Several extensions to the district’s present use of Votrax are
being developed, such as a voice-output interface for their on-line budget svstem, allowing
administrators to inquire about specific accounts and receive immediate vocal replies.
David Clements, senior programmer/analyst for the district’s student information system,

reports that he is amazed at the results achicved with Votrax and bhelieves that synthesized

voice output will become a widely used medium in the near future.

Another application of Votrax is as an aid to blind programmers. In the Homer
system, written in FORTRAN for a CDC 6500 at Michigan State University, Votrax is
used to echo each line input from a conventional terminal. It is also used to deliver
FORTRAN diagnostics and as a tool in the editing of source program files.

Operating in conjunction with an optical page reader, Votrax can be used to convert
printed matter, such as books, magazines, and newspapers, into audible form. If desired,
the output from Votrax can be tape recorded for distribution to the blind.

These are but a few of the uses to which voice output can be put, and it appears
likely that voice output will soon become a familiar feature of many computer systems.
Maybe yours will be one of them.

(Also sec “Talking Calculator” in November 1975 PCC [Vol. 4, No. 3, p. 9].)

L{ET" é/" RBAVOW WHAT THEIR FOTENTIAL A1 ARNKRET /S !.ﬂ!

J<Cw, Tr,
COMPUTERS THAT TALK — UPDATE

Jim Day had an article in the most recent issue of PCC discussing
the use of a Votrax machine to allow a computer to synthesize
speech [article is reprinted, herein] . In the article, he indicated
that the machine, essentially a solid-state phoneme generator,
was priced at about $3500 for a basic system ... a bit high for
most hobbyists’ budget. [Phonemes are the basic components
that make up spoken words.]

Well, we just finished talking to the west coast rep for
Votrax for about an hour and a half, and have some exciting
possibilities to report! _

Votrax is currently selling relatively few of their systems.
It would be easy for the computer hobbyist community to
significantly increase their sales (and, presumably, thereby drive
the price per unit significantly downward). And, the rep didn’t
even know the hobbyist market existed; he does now.

First of all, the price that Jim quoted was for a turnkey
system; one that includes two 25-pin interconnect boards, an
80-byte buffer for the incoming phoneme codes, an amplifier,
and a power supply Such a configuration is usually expected
and demanded by the commerical and industrial users. How-
ever, it’s a different matter with computer hobbyists. Hobbyists
are accustomed to using breadboarding, can supply their own
buffering via their system’s memory, invariably have the ability
to input to a hi fi amp, and usually can find super-cheap power
supplies.

Assuming this, all that one really needs to purchase are
the four phoneme generator boards, and have access to the
interface engineering specifications and schematics. These are
available for under $2K in small quantities; $1800 @ in groups
of ten, and $1600 @ in groups of fifty.

Would you rather have a $1600 hardcopy device or
the ability to generate English speech, including inflection?
Since the Votrax equipment is based on phoneme generation,
the vocabulary is essentially unlimited. Further, since the
generators are entirely electronic, the equipment has much
greater reliability than electro-mechanical equipment. Also, the
Votrax equipment and circuitry has been in the field for about
half a decade, now, and is thoroughly debugged.

If you would like for Votrax equipment to become
available to the hobbyist community:

(1) Write to John McDaniel, Votrax, 4340 Campus Dr.,
No. 212 Newport Beach, Ca. 92660; tell him that you would
like for your computer to be able to zalk to you, and indicate
how much you would be willing to pay for that facility. Give
him correspondence to support him when he approaches Votrax
management. Make him and them aware of their untapped
potential market for stripped-down systems in the hobbyist
community.

(2) Tell the owners of your local computer store
about Votrax and encourage them to contact Mr. McDaniel.

Box 310, Menlo Park CA 94025

A BIT OF BLUE SKYING

Bob, February 19, 1976

By all means keep up the Calisthenics &
Orthodontia. But I suspect that as Tiny BASIC
matures it will acquire a full set of canines, bicuspids,
and molars. As the price of main memory continues
to drop, the need for a minimal BASIC will assume
less importance and the emphasis will shift to better
performance and convenience. Still, IL is a good tool
for those who may want to experiment with variants
of BASIC or some other language. As unlikely as it
may seem, I think that by 1980 most hobbyists will
be using a subset of PL/1. I also preduct that the
1980 hobbyist will own a computer system the size
of a breadbox and comprising a 16-bit CPU, 256K
bytes of main memory, 8M byte floppy disc, dual
tape cassettes, full ASCI keyboard, CRT display,
modem, and non-impact printer (all in one box). The
whole thing will sell (assembled) for $695 at Sears
and will have the computing power of an IBM 370.
Last, but not least, the CPU chip will be designed
expressly for the hobbyist, not for some pedestrian
application such as traffic signal control.

Jim Day 17042 Gunther St
Granada Hills CA 91344

February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page

Dear Bob, February 4, 1976

Thank you for your note and interest. Our
system is growing by small leaps and bounds. We
have an Altair 8800 with the Processor Tech. mother
board. We also have the following items:

Qty Description

1 VLCT (octal loader) Altair

1 PIO Altair

1 256 byte static RAM board Altair

2 4K RAM boards Godbout

3 4K RAM boards Proc. Tech.
1 3P+S Proc. Tech.
1 wire wrap prototype board TCH

1 cassette interface TCH

1 VDM Proc. Tech.
1 Real time clock and VI IMS

1 ASR-33 (10 cps) Teletype

1 Silent 700 (30 cps) TI

1 2K ROM board Proc. Tech.

We are building a version of the TCH graphics
interactive display with direct Altair plus in boards
(double-sided).

We are also ordering the Processor Tech. dual
cassette drive, controller and PTCOS.

We have several interactive editors, assemblers,
monitors, and cross assemblers. We are currently
experimenting with minimal editors and assemblers
and have a strong desire to put together a micro-
BASIC (Tiny BASIC). The editor package looks like
it will be around 510-512 bytes and the same for a
“mini-assembler.” We are also looking for 4K, 8K,
and 12K BASICs which are public.

We are hoping to eventually acquire a TV
Dazzler and a floppy disc to extend our system.
Future desires also include the IMS shared processor/
memory and an additional CPU board in addition to
12K-16K more low power status RAM memory.
Who knows what else the future has in store?

We are strongly interested in developing soft-
ware (for the Altair and other micro-processors)
which can be used for instruction and instructional
support in the school media center.

Our research interests vary considerably here
so we also will be running some basic human learn-
ing experiments under processor control. We have
been involved in research in CAI and computer-
managed instruction for about 9 years here. We have
PLANIT, COURSEWRITER, PICLS, PLATO
(TUTOR), and BASIC available and a wide range of
instructional programs for these languages.

Franz Frederick
Associate Professor

112 Education Blg
Purdue University
W. Lafayette IMN 47907

Franz, We would be very interested in publishing the
source code and documentation (user and implemen-
tation details) for the “tiny” editors and assemblers
you are implementing. Any chance of your forward-
ing copies, once they are up and running? -JCW, Jr

33

Page 34 February 1976 Dr Dobb’s Journal of Computer Calisthenics & Orthodontia Box 310. Menlo Park CA 94025

= P et P]

TINY BASIC AVAILABLE FOR THE 6800
TBX MODS FOR A SWTP TVT-2 '

A version of Tiny BASIC has been developed for the Motorola

Dear Dennis and all TB people, and AMI 6800. A tape and instruction manual for it are
First of all, thanks to Dick Whipple and John available for $5 from:

Arnold for a great job they have done on TB, and Tim Pittman

for making their program available. Many hobbyists, Box 23189

including myself, don’t have the skill or time to write San Jose CA 95153

anything as complex as an interpreter. (408) 578-4944

TBX is working and programming is now FUN.
It took about six hours to put TBX on a cassette.
Loading TB from TP (tiny print) is a severe strain
on the eyes.

A listing of ‘the 1/O routines for my Altair/TVT-2
system is enclosed. An instruction is encluded in the
Entry Routine to turn on the TVT cursor and initiate = — 7 7 v 0 bt]
a Home Up/Erase Frame. In the Input routine the
code for ESC should be 033; otherwise a rubout

We understand that the source code will not be made available,
however, we expect that Tom will back his “product” . .
and the price is right.

We would be interested in hearing of the joys and/or
woes incurred by those who purchase Tom’s Tiny BASIC.

(backspace in TBX) will give a system restart. The BYTE SWAP
basic Altair executes a RST 7 if the keyboard is tied '
directly to the interrupt bus. I had to change the in- We are experimenting with offering a “Want Ad” section. We
struction at 000070 to 311. No harmful effects so far. will continue to do it as long as we can afford it (in terms of
staff time and printing costs). Note: the charge for running an
000 000 076 004 MVI A Turn on cursor on ad will undoubtedly increase as our circulation (and printing
. costs) increases.
002 323 002 OUT TVT & initiate Please follow these instructions in submitting ads. Ads received in
08‘7‘ 081 377 000LXI SP Home Up/ Erase fr. other than this form cannot be accepted, and will be returned to the
007 303 254 021JMP TBX entry point sender.
vP 1. Type the ad, with a blank space between each line, in lines no
more than 50 character positions in length.
820 076 012 MVI A 2. Include at least your name and address as part of the ad.
22 357 RST Output LF “Blind” ads will not be accepted.
023 076 015 MVI A 3. Compute the charge on the basis of $1 per line or partial line,
025 357 RST Output CR per issue.
026 311 RET 4, Forward the typed copy and a check or money order payable
to “PCC,” to: DDJ Byte Swap, PCC, Box 310, Menlo Park CA 94025.
030 373 EI Do not send cash. Your cancelled check is your recelpt Payment
must accompany the ad.
031 166 HLT Wait for KBD entry 99999099009909900090099009000009000290020000008
032 333 001 IN Input KBD charctr SAVE MY MARRIAGE! Buy my new assembled IMSAI 8080, loaded
034 346 177 ANI Mask parity bit 2? slot rrfother board, 8k Ram, regular price, 31‘835._00. Will. sell to
036 376 033 CPI “ESC” highest bidder above $1700.00. Also, IMSAI 8080 kit, still in bt.ax,
40 31 large mother board, regular price $578.00. Will sell to highest bidder
040 312 000 000JZ) System entry above $547.00. Send bids to: Eric Stewart, 664 Via Alamo, San
043 357 RST Echo character Lorenzo CA 94580.
044 311 RET
050 365 PUSH PSW Save registers & flags
82; gg; 88; ?I\I]JT Output c‘I‘laracter toTVI I am looking forward to an annotated source
055 037 RAR Wait for” data ac- code listing for TBS; like to do some tinkering.
056 322 053 cepted” signal Floating point and math functions would also be nice
061 361 5 OOOIJ)NC from TVT to have. Dr Suding’s scientific calculator interface
062 31 OP PSW Restore register & looks good. However, it’s only available through
1 RET flags MiniMicroMart and doing business with them has
. been a frustrating experience.
070 311 RET Keyboard interrupt When deciding on the future of the newsletter

keep in mind that hardware is available and getting

cheaper. Software has been a big problem and prob-
ably will be for some time to come (unless you can
OUT 001 Character output to TVT afford to pay for it). The newsletter is a step in the

IN 002 “Data accepted” from TVT right direction to solve this problem. Please don’t
OUT 002 Cursor control to TVT stop after three issues.

PORT ASSIGNMENTS:
IN 001 ASCII keyboard input

Adolph Stumpf 5639-A Ute
Glendale AZ 85307

DR. DOBB'S JOURNAL OF COMPUTER CALISTHENTICS AND ORTHODONTIA is published ten time per year, monthly except in
July and December.

U.S. Subscriptions: For foreign subscriptions:
O $1.50 for a single copy O add $4.00 per year for surface mail, or
O $3.00 for the first three issues O add $12.00 per year for air mail

O $10.00 per year (10 issues/year)

Payment must accompany the subscription. We do not invoice for subscriptions or single orders.
Necessary Information:
Name (last name first)

Mailing Address

City State Zip Code

O yes O no: This information may be published in directories and lists of individuals interested in
computers in non-commercial environments.

Optional Information:

Equipment that you have or are planning on purchasing, immediately:

Make & model Manufacturer
CPU model CPU Manufacturer
I/0O Devices

Mass storage peripherals

Primary areas of interest concerning non-commercial and home computers:

Questions: What would you like to see published in DR. boBB's JOURNAL? It will help guide us if you will rate these, 1 to 10
(1 — minimally desire; 10 — super-eager to see) or 0 (would prefer we not waste space publishing it).

Schematics and acticles from all of the computer club newsletters
Short news articles directly related to home computers
Short news articles concerning computers in general, particularly their social implications
Indices to all articles in all other computer hobby publications
Indices to selected articles from other computer, electronic, and trade publications
Letters having technical, critical, or entertaining content
Classified ads (as opposed to display advertising)
Suggestions and “blue skying” about what can be done with home computers in the foreseeable future.

Directories of:

Users of home computers and their equipment Computer clubs

Computer stores and distributers Sources of used equipment

Manufacturers of computer kits Microprocessor and minicomputer manufacturers
Source code listings and documentation: ~ For which microprocessors? ~

Nearly full-sized (much less can be published)
Reduced as in recent issues (more difficult to read, but more info included in each issue)

What kind of software would you like to see developed and placed in the public domain?

Importance Rating Software Description

What else would you like to see us publish? Please use another page or ten, if you need them.

1 9.61 Aseniqeyd

jeandwo) jo jewsnop s,qqoQ

eljuopoylsQ g Ssajuayisijed

‘oLe xog

GZ0v6 VI died oOjusiy

Gg obed

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA
PCC

Box 310
Menlo Park CA 94025

Place

13-cent

stamp

here

DR DOBB'S JOURNAL OF
COMPUTER CALISTHENICS & ORTHODONTIA
PCC
BOX 310
MENLO PARK CA 94025

To use this as a “‘self-mailer”:

1. Fold it so this third covers the top third.

2. Place the proper postage, above.

3. If you are subscribing, insert your check so that it crosses a fold.

4. Staple this closed with a single staple, making sure that the staple pierces the check.

(Better still, stick all of this in your own envelope and mail it to us.)

