i1, ! '
] a1 .
i i
- P
1 1 H
| S
| 1
. . 1
'- P
E i I
it I .' .':
= I n
A
| 1
|
i
- ‘ !
1o
i I
.
1

. WHILE Boolean expression DO SECTION 6
REPEAT

L ~d O

;}; . M* . UNTIL Boolean expression DIAGCNOSTIC MESSAGES

55§%" | o fﬂﬁ 9, FOR identifier:=expression TO expression DO

;féjiif# _ﬁf;i;_ i%ﬁi 10. FOR identifier:=expression DOWNTO expression DO

%;EET?i§ﬁ:;§§iE§; ?Jﬁ 11. CASE expression OF is chapter describes diagnostic messages which can occur
iggfiﬁﬂ% h%;figé uﬁ: 12. case constantl,case constantl]...: Juring translation, binding, execution, and listing.
T s 13. OTHERWISE:

(IR i : ol

'H 14, WITH record variablel ,record variablel., ..DO 6.1 SOURCE INPUT DIACGNOSTICS

1
ol 15. labels:

~H llach correct source input line is a sequence of one or more
il

“fgf ﬁ;&ii .V Detalls: syntactically correct text units. There 1s syntax checking

during translation, but only within each text unit. With the

a. Case constants are not strongly type checked against the rxception noted in 5.1, there is no concern at translation time

Hwh expression in the CASE fragment. A case constant will be ahout the order i1n which text units are entered or about the

| selected at run-time if i1ts ORDinal value matches the overall structure of the program.

1 ORDinal value of the expression.
o

huring source input (I, R, or X command), an entire line 1s

Jijﬁ:ﬂﬁ¥§;|7ﬂ h. OTHERWISE: is the default case "constant’. mput before any of the line 1s translated. This permits free

L e L] nse of the DEL key to correct Keylng errors. Once translation
oE o S i
- B T w - - , - * ;
B . e AE hegins (immediately after keyilng RETURN) each text unit 1s
s ERETERT L Wl |
- #'_"'-:'._ R : !l'l i
2 T T 1

-l | ranslated without regard for any text units elther preceding

or following it on the same line. If an error 1s discovered

luring the translation of any text unit 1n an 1nput line, no

t oxt unit in that line 1s incorporated into the program. If no

: d 1 ’
'-ﬁ crror 1s discovered, all text unlits 1n the line are
'i
|

imcorporated 1nto the program.

R I'ree diagnostic messages can occur during source 1nput.

o The syntax error message

#..,.%

I See 3.1 for a discussion of this message.

i 5-10 6-1

o The message

"NO SPACE LEFT™

This 1ndicates that the current number of free memory
3.3.1)

which this line has been translated 1s negative.

bytes {see +<M>, minus the number of bytes into

o The message

"TOO MUCH CODE"

This message, which 1s expected never to occur, says that
the 256-byte buffer which receives the output of the
translator 1s not large enough to hold the internal form
of the entire 1input line. If the message occurs and 1f the
input line contains multiple text units, break the input

into more than one line.

NDetalls:

a. In the case of the syntax error message, the right-most

"#" usually gives a strong clue about the error, since the
character i1mmediately to 1ts right 1s the one which led
the syntax analyzer 1nto the impasse. If the right-hand
"#" 1s the last character of the diagnostic message,
something 1s missing at the end of the input, for example,

a final semicolon in a declaration or definition.

b. The usual response to the "NO SPACE LEFT" message is to
save the program on tape and then to figure out how to do
what needs to be done 1in less space. If a larger memory

size could have been declared because RAM is available

which wasn't used, 1t 1s still necessary to write the

program out and then read 1t back 1in.

H.2 BINDER DIAGNOSTICS

hiagnostic messages which occur during binding have the

following distinctive form: an indicator line describing the

nrror, followed by one or more program text lines describing

where the error occurred. The following indicator lines can

ST AT B -

SEQUENCE
UNDEF 1dentifierx

DUP 1dentifier

UNDECL label

DUP label

PYPE 1dentifier

h.2.1 *SEQUENCE* Diagnostic

'he *SEQUENCE* diagnostic indicates a syntax error. This 1s

wsually an inter-text-unit syntax error, for example, a missing

semicolon, but intra-expression syntax errors which escape the

hecking in the translator are possible, as the example 1n

1.4.8 11lustrates.

'"he indicator line 1s followed by four text units to display

the context of the error. The actual error was discovered,

rhat 1s,
| 1stead.

the impasse occurred, at or in the first text unit

A *SEQUENCE* diagnostic immediately aborts binding with the

lext unit pointer at the first of the four listed text units.

NDetails:

n. If the only thing following the *SEQUENCE* line 1is .,
Listing the

this indicates a missing END 1n the program.

whole program will show this in the form of a nonzero

indentation on the last source line.

6-3

S 1
‘fff ﬁ'gﬂ_f_-?f |;% b. If examination of the program shows that the syntax error 'Me case in which a label is declared and occurs 1in a GOTQO but
| ;#f #_F ;;‘.. _ !ﬁﬁ 1s due to somethling missing immediately before the first loes not occur preceding a statement 1s caught at run—-time when
;i%{fﬁ;fiiQ%E T; #E listed text unit (a missing semicolon is a common (and 1f) the GOTO is executed.
i) | i%ﬂ example), it can be immediately entered with the +<I>
¥ N”Hﬁ command without moving the text unit pointer. Neither of these diagnostics stops the Binder. Note that
s) :%i labels are stored and searched as character strings, eXcept
'jﬂ 6.2.2 1ldentifier Lookup Diagnostics i hat insignificant zeros are suppressed. Instant Pascal does
. Hf not impose the conventional limit of four digits to the length
The 1indicator lines *DUP* identifier and *UNDEF* identifier ar: af a label.
each followed by one text unit which contains the cited ident i
k Firer occurrence. 6G.2.4 Type Consistency Diagnostics
. fﬁ The *DUP* diagnostic 1s generated at a defining occurrence of e indicator line *TYPE* identifier can indicate an 1nconsis-
f ¥ an 1identifier if the 1dentifier has a prior defining occurrenc: | ency between the types of the upper and lower bounds of a sub-
E'Hi at the same block level. range type; 1t can also be generated by a STRING type with a
i'mﬁ noninteger length. The identifier in the indicator line 1s a
- .Tﬁﬁ The *UNDEF* diagnostic 1s generated at a referring occurrence t ype i1dentifier appearing in either the subrange oOr string
r.ﬁ% of an identifier if the identifier has no prior defining type; this identifer refers to a type which is inconsistent
:: occurrence at the same or at any higher block level which woul:l with the definition in which it occurs. This definition occurs
!@ﬂ be visible to this referring occurrence. in the text unit following the indicator line.
Neither of these diagnostics stops the Binder. 'his diagnostic does not stop the Binder.
I
é%g 6.2.3 Label Lookup Diagnostics hetalls:
L
}fﬁ The 1ndicator lines *DUP* label and *UNDECL* label are each 1. If no Binder diagnostic occurs, the Binder will output the
1ﬁﬂ followed by one text unit which contains the cited label message "OK" and the text unit pointer will be at the TOp
_%ﬁ occurrence, of the program.
ﬁf%ﬁ The *DUP* diagnostic is generated at a label: preceding a h. If a Binder diagnostic occurs but no *SEQUENCE* diagnostic
"“E statement 1f there was a prior occurrence of the same label: in occurs, the text unit pointer will be at the hottom of the
B wﬁ the statement part of the same block. progtad.
Q'élﬁﬂ,_ - i#ﬂ The *UNDECL?* diagnostic is generated at a GOTO label if there c. It is not possible to execute a program without an error-
P ﬁﬂ 15 no label declaration in this block which names the label. free binding.

S D 53 _ R ;
&SIk S & 'ﬁh |
g | ‘ 'li |
| . |||| : i
. 1 : : |
| Lﬁi 6.3 EXECUTION-TIME DIAGNOSTICS however, the lister may encounter a value which does not trans- |
- !H% late meaningfully; this will lead to the output of a single "
. ; “;i The are 53 possible execution-time diagnostics enumerated in s part of the output text. N
N | 'ﬁﬁ% Appendix E. This section deals with what is common to all of f
- :Ei them. ("ortain corrupted memory configurations can cause the lister to ;{
B . ._ B _ |
) - ; !ﬁ? loop continously:; 1t may be necessary to RESET the AIM 65 under |
| Gf. All execution-time diagnostics are fatal to execution. The | hese conditions.
S ? ﬁﬂ% error reported by the diagnostic message 1is discovered in the
| Ff; process of interpreting a text unit. This text unit is printed Netall:
iﬁm: as part of the diagnostic message: then execution terminates
. L |!i r . , | , , | _
iﬁﬁ (with Break-in-progress false) and control returns to the Under certain conditions the lister will only praint a
B . , , | | | . - - S
'@d_ command 1lnterpreter with the text unit pointer at the offending partial text unit as part of a diagnostic message. Thils
1HEE ; :
. Hﬂg text unit. can occur where lists are involved and an error was caught
i M in the middle of a list: 1in LABEL and VAR declarations,
EEWEE The form of the diagnostic message 1is. parameter lists, and case constant lists. In one case,
i %ﬂ namely parameter lists, the backward translation algorithm
. ! fl;!; i' | | _
) s%M$§ ERROR #nn may hecome confused if the translation starts 1in the
;!Eﬂg text unit middle of the list, and an extra semicolon might come out.
B L ,
| Also, the text unilt polnter may actually be positioned 1in
i S | _ . | - -
. N The definitions of error codes nn are listed in Appendix E. the middle of a list. This will not lead to difficulty,
ﬁﬁ however, and the text unit pointer can be repositioned as
]| L
Ll . :
4 ;ﬁg After control returns to the command interpreter, a series of usual. Care should be taken not to delete anything until
Lk . , . -
H%L WRITELNs may be executed with the +<X> command to examine the the text unit vointer 1s back to the beginning of a text
“%“ state of the data. The position of the text unit pointer unit.
fﬁ“ Lnsures that visibility of identifiers is the same as that
e . , .
5@¥ which prevailed at the time of the error. The data structures
:ﬁj built during execution are not initialized until the next +<G>
alf | |
;-ﬁﬁ or +<,> 1is executed, so data are available for examination.
;ﬁ? (This 1s true after an error-free termination also, but first
HH? do a + before the +<X> command to position the text unit
-fﬁy pointer to the bottom of the program).
i 6.4 SOURCE OUTPUT DIAGNOSTICS
ﬁij Under normal conditions, the lister will never encounter some-
s Ll

KRG thing which it cannot translate. If memory becomes corrupted,

o 6—6 67

