| TIco
' D@KS
Assembly Language *
for the
| Applesoft Programmer
= ‘ 'C. W. Finley, Jr., and RoyE Myers 7 A ;
f
|
|
| ‘
*
4’

ASSEMBLY
LANGUAGE
FOR THE
APPLESOFT
PROGRAMMER

C W FINLEY JR,

Chemistry Department
and
ROY EE MYERS

Mathematics Department

The Pennsylvania State University
New Kensington Campus

A
vy

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts « Menlo Park, California
Don Milis, Ontario ¢ Wokingham, England '+ Amsterdam
Sydney » Singapore « Tokyo * Mexico City * Bogota
Santiago « San Juan

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where these designations appear in the book and the authors are aware
of a trademark claim, the designations have been printed with initial capital letters—for
example, Applesoft or Mini assembler.

Appendix E reprinted from the Apple 11 Reference Manual with permission from Apple Computer
Inc.

Library of Congress Cataloging in Publication Data

Finley, Clarence W.
Assembly language for the Applesoft programmer.

Includes index.

1. Assembler language (Computer program language)
1. Myers, Roy E. 1L Title.
QA76.73.A8F56 1984 001.64'24 84-16816
ISBN 0-201-05209-1

Copyright © 1984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the Publisher. Printed in the United States of
America. Published simultaneously in Canada.

Third Printing, May 1985

CDEFGHIJ-HA-898765

PREFACE

Applesoft BASIC is a good programming language. It is versatile and easy to
learn. Its power and simplicity have made it (and the Apple II) extremely pop-
ular with both amateur and professional computer users.

While some might argue that BASIC is not a “state of the art” language,
most Applesoft programmers find it quite satisfactory. The primary limitation
is speed: when manipulating large collections of data or when working with
high resolution graphics, Applesoft may be too slow for comfort. Tone routines
and music generating programs require rapid access of the Apple speaker; some-
thing that is not really possible with Applesaft. Similarly, communication with
external devices (printers, disk drives, etc.) cannot be handled by BASIC programs.

In those instances in which Applesoft falls short, users can turn to machine
language subroutines. Many are already in the Apple, accessible through a CALL.
Many others have been published in computer magazines. The programmer who
is familiar with assembly language can access these routines, modify them to
suit individual preferences, or develop new machine language routines.

It is the purpose of this book to introduce the Applesoft programmer to
assembly language programming. We assume familiarity with Applesoft and
focus on the means of developing machine language routines that can be accessed
from Applesoft, although such routines can certainly be linked and used inde-
pendently. Each topic is introduced in a sufficiently elementary fashion to meet
the needs of the novice. The pace is necessarily rapid, as techniques are pre-
sented that should be of value to the more sophisticated reader. ‘

In the process of learning assembly language programming, it is necessary
to become familiar with the inner workings of the computer. As.a consequence,
assembly language programmers typically become much better Applesoft pro-
grammers because a deeper understanding of the computer is developed and
an appreciation for the limits of Applesoft is acquired.

We prefer to introduce topics through example programs, and do so when
we can. Often, however, a meaningful demonstration of a new command or
concept cannot be given in a brief program. In most of these cases, reference is
made to program examples that appear elsewhere in the book. Each of the later
chapters develops a sequence of example programs that leads to a significant
application program.

As you increase in proficiency you may see ways of improving the example
programs. We hope that this will be the case. We have tried to make the examples
readable and reasonably clear. As a consequence, some may not be quite as
efficient or versatile as possible. Qur guiding principles in developing examples
have been:

1. Make it work.
2. Make it clear.
3. Make it run as fast as possible.

When 2 and 3 were in conflict, we chose to have 2. dominate.

As you read through this book, remember that assembly language program-
ming is not a spectator sport. You must participate if you are to learn. Try the
examples. Modify them. Develop similar programs. Experiment!

CONTENTS

Preface ifi
Section L

QUICK AND EASY i |

1. Introduction 3

2. Elementary Programming 13
Section II.

FUNDAMENTALS OF 6502 PROGRAMMING - 35

3. The Architecture and the Instruction Set 37

4. Addressing: Learning Your Way Around Memory 61

5. Branches, Loops, and Nesting 81

6. Logical Operations and Bit Manipulation 97
Section III.

LINKAGE 115

7. Subroutine Linkage 117

8. Using Applesoft Floating-Point Subroutines 133
9. Program Interaction: An Extended Example 173 "
Section IV.

GRAPHICS ‘ 183

10. Introduction to the Screen: Organization

and Addressing 185

11. High Resolution Graphics 219

12. Game Development 257
Section V.

SEARCHING AND SORTING 293

13. Searching and Sorting 295
Appendices

A. The Miniassembler 319

B. Representations of Numbers and Arithmetic 321

C. Floating-Point Notation 333

D. Applesoft Entry Points and Notes
E. Summary of Assembly Language Mnemonics
F. Text and Graphic Notes

INDEX

337
345
353

361

SECTION

QUICK AND EASY

CHAPTER

4)

INTRODUCTION

Before starting to write machine language programs, we will look at one of the
many machine language programs that already reside in the computer. To do
so, from Applesoft BASIC, type CALL -151 and press RETURN. The familiar
prompt symbol] will be replaced with the symbol *. You have entered the
“Monitor.” ‘

The Monitor is itself a machine language program that is present in every
Apple II. There are three Monitors corresponding to different versions of the
Apple, but for the purposes of this book the differences are transparent. That is
to say, you should not notice any difference between the Monitor in your machine
and what we mean by the “Monitor.” Apple Computer Inc. has been very careful
to make the Apple Ile Monitor perfectly compatible with the Apple II PLUS
Monitor. The differences between these Monitors and the older version are well

1

Assembly Language for the Applesoft Programmer

documented in your Apple Reference Manual. In each case the Monitor is a
supervisory program, which oversees the operation of all programs.

We are able to access the Monitor subroutines from programs written in
other languages. You may have done this in an Applesoft program (have you
ever used CALL -936 7). The CALL -151 used above was accessing a Monitor
subroutine.

LOOKING AT A MACHINE LANGUAGE PROGRAM

We can also use Monitor commands directly, without the intervention of Apple-
soft commands. That is what we will do now. Type FBE2.FBEF and press RETURN.
The following is what you should see on your screen.

*FBE2. FBEF
FBE2- A0 CO A9 0C 20 A8
FBE8- FC AD 30 CO 88 DO F5 60%

The screen display is a “memory dump” of a portion of the Apple memory.
It shows the numbers, in hexadecimal ($) notation, that are stored in memory
locations $FBE2 through $FBEE The $ sign preceding FBE2 (or FBEF) means
that this is the hexadecimal (base sixteen) representation of a number. All num-
bers in this book that have a $ preceding them are hexadecimal ($) numbers. If
you are not familiar with base sixteen representations, help is available in
Appendix B. '

In this case the numbers (A0 CO A9, etc.) are the machine language instruc-
tions (machine codes) that provide the “bell” for the Apple. It is a part of the
Monitor. If you use the command PRINT CHR$(7) you are accessing this machine
language program. You are also using it if you press CONTROL-G. Apple syntax
and error messages are accompanied by a “beep.” Again, this program is used.

To run this program directly, type FBE2G and press RETURN. The “bell”
should sound. To use the program from Applesoft, first return to Applesoft.
Press CONTROL-C then RETURN; or press CONTROL-RESET; or type 3D0G
and press return. (The process you use depends on which Monitor you have.
Try one, then another, until one of them returns you to Applesoft.))

From Applesoft BASIC, type CALL 64482 ($FBE2 — 15%4096 + 11%256
+ 14%16 + 2x1 — 64482). After the CALL 64482 you will be running the
machine language program that sounds the “beep.”

Return to the Monitor (type CALL -151 and press RETURN). (CALL -151
runs another machine language Monitor program, located at 65536 — 151 =
65385 [decimal], or $FF69 [$FF69 — 15%4096 + 15%256 + 6%16 + 9%1 —>
65385]. This program turns off Applesoft and puts you in direct control of the

Chapter 1

Monitor.) Again type FBE2.FBEF (note that these are hexadecimal numbers, but
the Apple Monitor does not need the $) and press RETURN to get the memory
dump shown above.

While the numbers contained in memory locations $FBE2 through $FBEF
are the machine language instructions for the “bell,” and are easily recognized
as such by the 6502 computer, the codes are not very meaningful to us. To be
able to read the program it is necessary to translate the code into a form that is
easier to understand. Fortunately, the Apple Monitor will do a lot of the work
for us. Type FBE2L (no $, because you are using the Monitor) and press RETURN.

The screen display shows the same information as our earlier memory
dump, along with some additional information. The first seven lines of this
listing are shown in Program 1.1.

PROGRAM 1.1 The Apple bell

Loc. M. C. A. L
FBE2- A0 CO LDY #3C0
FBE4- A9 0C LDA #$0C

FBE6- 20 A8 FC JSR $FCAB
FBE9- AD 30 CO LDA $C030

FBEC- 88 DEY
FBED- DO F5 BNE $FBE4
FBEF- 60 RTS#

The left column (underneath the heading Loc.) contains memory addresses
(Locations) in the range from $FBE2 to $FBEE The middle part of the display
(underneath the heading M. C.) contains the hexadecimal numbers we obtained
in the earlier memory dump, and is the Machine Code “bell” program. At the
right (underneath the heading A. L.) is an interpretation of the hexadecimal
code as “Assembly Language” instructions. (The term “assembly language” will
be more fully defined in Chapter 2.) While the hexadecimal memory dump may
not be very intelligible to us, our goal is to understand the assembly language
instructions, and to develop skill in writing programs in assembly language.

The assembly language instructions are not actually executed by the com-
puter. The hexadecimal codes in the column labeled M. C. in Program 1.1 rep-
resent the machine language instructions that are an intelligible program (to the
6502 microprocessor) and can be executed. The assembly language instructions
(mnemonics) are an attempt to represent the machine language instructions in
a form that is more readable by programmers.

We will postpone further discussion of the “bell” program until Chapter 2.
It uses more instructions than we want to consider at this time.

introduction

Assembly Language for the Applesoft Programmer

A Graphic Example

We will now use the Monitor to enter a machine language program. First enter
the Monitor (CALL -151), then type

300: A9 20 85 E6 A9 TF 85 1C 20 F6 F3 8D 57
CO 8D 50 CO 20 1B FD 8D 51 CO 60

and press RETURN.

We have just entered a machine language program beginning at memory
location $300. To be certain you were successful, type 300.317 (no $) and press
RETURN. You should get the memory dump shown below.

300- A9 20 85 E6 A9 TF 85 1C
308- 20 F6 F3 8D 57 CO 8D 50
310- CO 20 1B FD 8D 51 CO 60

To see what the program does, execute it. Type 300G and press RETURN.

The program should clear high-resolution graphics page 1 to white, then
display it. But that’s not all. As you look at the white graphics screen, consid-
ering that it would be convenient to return to the text screen, the program is
waiting for you to press a key. When you do, the text page will be displayed,
and the program will end.

Now let’s look more carefully at this program. Type 300L and press RETURN.
The screen will fill with a listing. The first ten lines are the program we entered,
and are shown in Program 1.2.

PROGRAM 1.2

Loc. M. C. A. L.
300- A9 20 LDA #%$20
302- 85 E6 STA $E6
304- A9 TF LDA #$7F
306- 85 1C STA $1C
308- 20 F6 F3 JSR $F3F6
30B- 8D 57 CO STA $C057
30E- 8D 50 CO - STA $C050
311- 20 1B FD JSR $FD1B
314- 8D 51 CO STA $C051
317- 60 RTS

OO a ;LA WM R

—
=]

A g e e

‘Chapter 1 Introduction

The numbers along the left side of Program 1.2 do not appear on your screen..
We will use them as references as we discuss the program. In our discussion
we will be studying the right column, which contains the assembly language
instructions.

Line 1: LDA #$20 . :

This can be read as “LoaD the Accumulator with the hexadecimal number 20.”
The accumulator (or A-register) is a register in the 6502 computer. It is a data
storage location, similar to a memory location. We will be using the accumulator
for many purposes. At present it is being used for temporary data storage. The
symbol means that we are going to load the accumulator with the NUMBER
that follows. The $ has its usual meaning: The number that follows is in hexa-
decimal notation. After this command is executed the accumulator will contain
the number $20 (216 + 0%1 — 32). The previous contents of the accumulator
are LOST.

Line 2: STA $E6

This is read as “STore the Accumulator in location $E6.” Since we know the
accumulator had the number $20 in it, we can now be sure that location
$E6 (14%16 + 6%1 — 230) contains the number $20. The contents of the accu-
mulator are not changed. It still contains $20. Lines 1 and 2 in combination
have the effect of the Applesoft statement POKE 230,32 (230 — $E6; 32 — $20). o

Line 3: LDA #$7F

We now change the contents of the accumulator to $7F (7516 + 15%1 — 127).
Again the accumulator is being used for temporary storage.

Line 4: STA $1C

The contents of the accumulator are placed in memory location $1C (1*16 +
12%1 — 28). Lines 3 and 4 have the éffect of POKE 28, 127.

Line 5: JSR $F3F6

Read this as “Jump to the SubRoutine that begins at memory location $F3F6.”
This program line transfers control to another machine language program, a
subroutine that begins at $F3F6. The command is very much like the GOSUB

Assembly Language for the Applesoft Programmer

available in Applesoft. When the subroutine has done its deed it will return
control to Program 1.2, which will continue with the command of line 6.

The subroutine at $F3F6 is available as CALL 62454 (154096 + 3%256 +
15%16 + 6*1 — 62454). It determines which high-resolution graphics screen
should be used for plotting, and which HCOLOR has been most recently used
for plotting. It then clears the graphics screen, using the identified HCOLOR to
paint the entire screen.

Applesoft uses memory location $E6 (decimal 230) to remember which Hi-
Res screen is being used. When location $E6 contains a $20 the plotting screen
is page 1; when location $E6 contains a $40 the plotting screen is page 2. Since
we have arranged for location $E6 to contain $20, the subroutine at $F3F6 will
clear page 1 of graphics.

Applesoft uses memory location $1C to remember which HCOLOR should
be used for plotting. The code for HCOLOR = 3 is $7F (decimial 127); so lines
4 and 5 assure us that the graphics screen will be cleared to HCOLOR =
(white) by the subroutine of $F3F6.

For more information on graphics commands and locations, see Chapters
10, 11, 12. .

Line 6: STA $C057

While this appears to store the contents of the accumulator in location $C057,
the effect is very different. Location $C057 is a “soft switch.” Any attempt to
save information at this location will result in “toggling” the switch. There are
eight soft switches in the Apple (discussed in Chapters 10 and 11; summarized
in Table 11.1). The effect of this one is to set the graphics display to hi-res
graphics, rather than lo-res graphics. The soft switch does not cause a graphics
page to be displayed; that is done by the command of line 7.

Line 7: STA $C050 A

This command does not actually store the contents of the accumulator in mem-
ory location $C050. $C050 is another soft switch. Toggling this switch causes
the screen display to change from text to graphics (again, refer to Chapters 10
and 11 for more information on soft switches).

Line 8: JSR $FD1B

This command transfers control to a machine language subroutine that begins
at memory location $FD1B. This subroutine is part of the Monitor. The subrou-
tine behaves somewhat like the GET command of Applesoft. Its function is to

Chapter 1 Introduction

wait until a key is pressed, load the keycode into the accumulator, then return
from the subroutine. In this case, we are not interested in knowing which key
has been pressed. We use the keypress simply as a signal to continue with the
execution of the next line of the program.

Line 9: STA $C051

As in lines 6 and 7, we are toggling another soft switch. It causes the screen
display to be taken from text rather than graphics.

Line 10: RTS

Read this as ReTurn from Subroutine. Remember, the Monitor is a machine
language program that controls the execution of all other programs. When we
run the program listed above by typing 300G, we have essentially caused the
Monitor to execute a JSR $300. The Monitor passes control to our program {in
effect a subroutine). When our program executes RTS, control is returned to the
Monitor. If we execute our program from Applesoft, using CALL 768, then the
RTS will cause a return to Applesoft. In general, RTS causes a return of control
to the program (or language) that called the subroutine.

NOTES AND SUGGESTIONS

1. Try some modifications of the program given above. Instead of clearing the
high-res screen to white, clear it to HCOLOR = 2. In order to do this, we must
store the proper color code in memory location $1C. Since the code for HCOLOR
= 2 is $55 (5%16 + 5%1 — 85), we will change line 3 of the program to read

LDA #$55

If the program has been entered as above, we can make this change by typing
(from the Monitor)

305:55

Then type 300L to list the program. It should look like the listing shown in
Program 1.3 (below), except that line 3 should now read

304- A9 55 LDA #$55

Assembly Language for the Applesoft Programmer

Type 300G to run the program.
Other color codes can be used. The color codes used for the standard
HCOLORs are given in Table 1.1.

TABLE 1.1 COLOR Codes

COLOR CODE
HCOLOR HEX DEG
0 ‘ $00 0
1 $2A 42
2 © $55 85
3 $7F, 127
4 $80 .- - 128
5 $AA 170
6 $D5 213
7 $FF 255

'

You might also try color codes that are not associated with the standard
HCOLORs. They give interesting results. '

2. The program given above can be used from within an Applesoft program
(use the command CALL 768). However, it is at present rather useless since-it
performs no valuable function. We could turn it intp an alternate to the HGR
command by modifying it to read as follows:

PROGRAM 1.3

Memory Machine Assembler

Locations Codes Instructions Remarks
300— A9 20 LDA #$20 IDENTIFY PAGE 1
302— 85 E6 STA $E6 OF GRAPHICS
304- A9 TF LDA #$7F CHOOSE COLOR

10 g

Chapter 1 Introduction i

306— 85 1C STA $1C FOR BACKGROUND

308— 20 F6 F3 JSR $F3F6 CLEAR SCREEN TO COLOR CHOSEN
30B— 8D 54.C0 STA $C054 DISPLAY PAGE 1

30E— 8D 57 CO STA $C057 SET HIGH RES MODE

311- 8d 53 CO STA $CO053 SET MIXED TEXT-GRAPHICS MODE
314— 8D 50 CO STA $C050 DISPLAY GRAPHICS

317— 60 RTS. RETURN FROM SUBROUTINE

Enter this program from the Monitor by typing

300:A9 20 85 E6 A9 7F 85 1C 20 F6 F3 8D 54 CO 8D 57 Co. 8D 53
CO 8D 50 CO 60

Then press RETURN. To check your typing, list the program by typing 300L.
Compare with the listing shown above. ' '

Now try the program. Return to Applesoft and call the subroutine (CALL
768). If you would prefer to clear the screen to a color other than white, change
line 3 of the program to provide a different color code.

3. If you want to save the above program to disk, use the BSAVE command.
The program begins at $300 and is $18 bytes long. We can save it with

BSAVE PROGRAM, A$300,L.$18

The program can then be used within an Applesoft program by providing the ' N
line

1 PRINT CHR$ (4) ; "BLOAD PROGRAM"

Any later program line can access this subroutine by using CALL 768.

4. Try another modification. Change the program of Program 1.3 so that the
“bell” will sound just before the program waits for a keypress (line 8). The
assembly language instruction JSR $FBE2 will call the bell subroutine. Add the !
code 20 E2 FB before the code for line 8 of the program.

Some Advice

So far we have entered machine language programs by typing (from the Monitor) i
the hexadecimal codes of the program operations. This procedure is satisfactory
only for very short and simple programs. It is not a method we can endorse for
anyone wishing to learn how to write machine language programs.

11

Assembly Language for the Applesoft Programmer

THE MINIASSEMBLER

3

If you do not wish to purchase an assembler, an alternative is available in most
Apples. If you have an Apple that has Integer Applesoft available, or if you have
a DOS 3.3 System Master diskette, you already have an assembler: the Apple
Miniassembler. Appendix A explains how you can gain access to this assembler.
The Miniassembler is better than no assembler at all, but it is very limited. The
Miniassembler requires that you do most of the bookkeeping related to your
program. It does not permit you to define variables, provide labels, edit, or insert
remarks. In fact, the Miniassembler does not produce a source file, but provides
line-by-line assembly of the source program as you type it. While these limi-
tations make it a very poor substitute for a fully implemented assembler, there
are times when it can be acceptable (if you are broke!). . '

The Miniassembler is useful for entering short programs, or for editing,
testing, and debugging programs. In general, it is useful in those cases in which
a small amount of program code is to be entered, tested, and modified again on
an interactive basis. o

CHAPTER
g)
ELEMENTARY
PROGRAMMING

The purpose of this chapter is to begin the description of: 1) “assembly lan-
guage,” (2) “machine language,” and (3) the function of an “assembler.” These
descriptions will not be nearly complete until after Chapter 6. We also intend
to provide a bit of entertainment by investigating the solution to a word game.

A palindrome is a word, sentence, or verse that reads the same backward
as it does forward. One of the more well known palindromes is the one attrib-
uted to Napoleon regarding his imprisonment on the island of Elba.

“ABLE WAS I ERE I SAW ELBA”

If you are not as careful with punctuation marks nor embedded blanks as was
Napoleon, you will accept another well known palindrome, concerning Ferdi-
nand de Lesseps.

2.

13

Assembly Language for the Applesoft Programmer

“A MAN, A PLAN, A CANAL, PANAMA”

Some other possibilities you may wish to consider while doing this part of the
chapter are:

1. PULL UP IF I PULL UP

2. NAME NO ONE MAN

3. MADAM, I'M ADAM

4. WASIT ELIOT’S TOILET I SAW

§. NO EVIL RED RUM MURDER LIVES ON

6. SUMS ARE NOT SET AS A TEST ON ERASMUS

It should be clear that a computer program is not needed to solve the word
game proposed above. However, by developing a solution we shall be able to
illustrate the development of an assembly language program. The solution is
simple enough that we need not spend much time on it, and can focus full
attention on the program. S :

We will use the program for another purpose: to illustrate the use of an
assembler. You will see that an assembler is a valuable tool in the development
of the program, and that it will also provide a documented version of the pro-
gram that is relatively easy to read and understand. This can be valuable to
another person who tries to use your program, and to you as you develop later
modifications.

v

A SOLUTION

14

Our problem is this: we want to print a string, then print it backwards to see
whether the two agree. The following BASIC program will do the job.

PROGRAM 2.1

10 REM PROGRAM 2.1

20 TEXT : HOME

30 INPUT "ENTER STRING "; ST$

40 HOME

50 PRINT ST$

60 FOR I = LEN (ST$) TO 1 STEP - 1
70 PRINT MID$ (ST$,I,1);

80 NEXT I

Chapter 2 Elementary Programming

The program prints the string, then its reversed form directly below. As long as
the string will fit on a single screen line, it is easy to compare the two in order
to see whether the string is a palindrome.

The above program prints the reversed form of a string by reading back-
wards through the characters of the string. Our objective is to develop a machine
language program that will do this. At this time we do not want to be concerned
with the way strings are stored and accessed, so we will not model our assembly
language program after the Applesoft program above.

Instead of reversing the characters of the stored string, we shall print the
string on the text screen, then copy and reverse the contents of the entire screen
line. This process requires that we be familiar with the way the Apple II text
screen is arranged. What follows is a short description of text screen addressing.
See Chapter 10 for a more complete explanation.

The Apple II text screen display is a reflection of the contents of memory
locations 1024 through 2047. We can control the text screen display by con-
trolling the contents of these memory locations. For example, the sequence of
commands

HOME : POKE 1030,193

will display a letter “A” in the seventh position of the first text screen line. This
is because that screen’s position is controlled by memory location 1030, and the
ASCII screen code for the letter “A” is 193. An asterisk will be displayed in the
same screen position by the command ’

HOME : POKE 1030,170
and an underline by
HOME : POKE 1030,223

(For a complete list of ASCII screen codes, see Table 7 of the Apple II Reference
Manual, or Tables 2-4 and 2-6 of the Apple Ile Reference Manual.)

Although memory locations 1024 through 2047 are used to control the text
display, the mapping of these locations is not done in the manner that you might
expect. Figure 2.1 gives a memory map for the text screen.

From this figure you can see that the uppermost screen line is controlled
by memory locations 1152 through 1191. Note that any screen location can be
identified by its corresponding memory location. For example, the tenth posi-

15

Assembly Language for the Applesoft Programmer

16

FIGURE 2.1 Text addressing

$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
$450
$4D0
$550
$5D0
$650
$6D0
$750
$7D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

01 2 3 45 6 7 8 9 ABGC DO E F 1011 1213 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27
0 1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

v

tion of the 7th screen line is associated with memory location 1801, and a “P”
will be displayed there by

HOME

POKE 1801, 208

since the ASCII screen code for “P” is 208.

All PRINT statements function by storing appropriate ASCII codes in mem-

ory locations that control the screen display. The ASCII screen code for a space
is 160. The HOME command clears the screen by storing this value in each
TEXT SCREEN memory location.

Chapter 2 Elementary Programming

AN ALTERNATE SOLUTION

The following Applesoft program prints a string on the top line of the text
screen; it is then copied in reverse form on the second screen line.

PROGRAM 2.2

10 REM PROGRAM 2.2
20 TEXT : HOME
30 INPUT "ENTER STRING ";ST$

40 HOME

50 PRINT ST$

60 VTAB 20

70 GOSUB 100

80 END

90 REM = SUBROUTINE *
100 Y = 39

110 X =0

120 A = PEEK (1024 t Y)
130 POKE 1152 + X,A

140 X. =X + 1
Y

150 =Y -1
160 IF Y = > 0 THEN 120
170 RETURN » o

The above program does not serve as well as we might like, since it reverses
an entire screen line. As a result, if only five characters are printed at the left
of the first screen line, those five characters will appear in reverse order at the
right of the second screen line. That is easily cured (do you see how?), and we
will provide a solution later. For now, we shall consider an assembly language
program that performs the same function as the subroutine (lines 100 through
170) of Program 2.2.

AN ASSEMBLY LANGUAGE SOLUTION

You may see that Program 2.2 is not as efficient as possible. This is intentional.
The subroutine (lines 100 through 170) was written so that it could be translated,
line-by-line, to a corresponding assembly language program. Table 2.1 shows
the two programs. We shall discuss each line in detail.

17

Assembly Language for the Applesoft Programmer

18

TABLE 2.1 Program comparison

Applesoft Program ‘ Assembly Language Program
110 Y = 39 300- AO 27 LDY #$27
120X =0 302- A2 00 LDX #$%00
130 A = PEEK (1024 +Y) 304- B9 00 04 LDA $0400,Y
140 POKE 1152 + X,A 307- 9D 80 04 STA $0480,Y
150 X =X+ 1 ' 30A- E8 INX
160 Y =Y - 1 ~ 30B- 88 DEY
170 IF Y => 0 THEN 130 30C- 10 F6 BPL $0304
180 RETURN . 30E- 60 RTS

Consider the first line in Table 2.1.

110 Y = 39 | 300- A0 27 LDY #$27

The 6502 microprocessor has three registers, called the X-register, the Y-register,
and the A-register (Accumulator). (A more nearly complete description of what
these registers do is given in Chapter 3.) Each of these registers can hold a single
eight-bit number (one byte), and thus can accept numbers between 0 and 255.
In the Applesoft program, Y is a real variable, but in this program it takes on
only integer values between 0 and 39 so, the Y-register can be used for the same
purpose. The assembly language statement LDY #$27 means “LoaD the Y-reg-
ister with the number whose hexadecimal ($) form is 27.” Note that the hexa-
decimal form $27 represents the number whose decimal form is 39 (2x16 + 7
— 39). (For a review of hexadecimal representation of numbers consult Appen-
dix B.) ,

The notation to the immediate left of the assembly language statement
(300- A0 27) displays the location (300) and the machine language translation
(A0 27) of the assembly language statement (LDY #$27). The computer will
execute the machine language instruction; the assembly language form is for us
to use.

In summary, an “assembler” translates mnemonics (LDY #$27), which are’
easy for people to read, into “machine language” (A0 27), which is executable
by the machine (the 6502). On the other hand, a “disassembler” translates machine
language (A0 27) into the mnemonics (LDA #$27) that are easy for us to under-
stand. More about this later, especially in Chapters 3 and 4.

You are not expected to know the codes for the mnemonics. A complete
list of the assembler mnemonics and their machine language translations for

Chapter 2 Elementary Programming

the 6502 microprocessor is given in Appendix E. More importantly, your assem-
bler will provide the codes when it assembles your program—that is part of its
function!

The selection of $300 as the location for the beginning of the machine
language instructions is somewhat arbitrary. It was necessary to choose a loca-
tion that would not be disturbed by the Applesoft program. Other locations
could have been used. Chapter 7 discusses the overall memory usage of the
Apple IL '

Consider the next line of Table 2.1.

120 X = 0 | 302- A2 00 LDX #$00

The assembly language program uses the X-register in the manner that the
real variable X is used by the Applesoft program. Again, this is possible since
X will only take on the integer values between 0 and 39. Since the machine
language instructions A0 27 (mnemonics LDY #%$27) occupied memory loca-
tions $300 and $301, the next machine language instructions (A2 00) are stored
in the next available locations ($302 and $303). A2 is the machine tode for LDX
#, which translates to “LoaD the X-register with the hexadecimal ($) number
that immediately follows (00).” ‘

The next line to consider is:

130 A = PEEK (1024 + Y) | 304- B9 00 04 LDA $0400,Y

Here we load the A-register (Accumulator) with the contents of the memory
location whose address is given as the sum of $0400 (which translates from
hex as 04096 + 4%256 + 0*16 + 0+1 — 1024) and the contents of the Y-reg-
ister. As a result, the Accumulator receives the ASCII screen code of the char-
acter stored at the end of the text line 1 (when the Y-register contains $27).
Notice that the instruction LDA $0400,Y requires a three-byte machine code
(B9 00 04). The address part, 00 04, represents $0400, and is in the standard
Low Byte—High Byte (LBHB) form required by the 6502.

140 POKE 1152 + X,A I 307- 9D 80 04 STA $0480,Y

Here is another three-byte instruction, which is quite similar to the previous
one. This time the contents of the Accumulator are stored in the memory loca-
tion whose address is the sum of $0480 (0+x4096 + 4%256 + 8%16 + 0x1 —
152) and the contents of the X-register. When the X-register contains a zero the

19

Assembly Language for the Applesoft Programmer

memory location identifies the leftmost position of the second line of the text
screen. This entire text screen line is accessible as the X-register contents vary
from O to $27.

150 X =X+ 1 I 30A- E8 INX

Having copied one character from the first to the second line of the text
screen, we now increment the contents of the the X-register so that the next
character that is copied will be further to the right. Note that the code for the
instruction INX requires a single byte.

160 Y =Y - 1 | * 30B-88 PEY

This one-byte code decrements the contents of the Y-register so that the
character to be copied will be to the left of the previaus one. (Note that we are
reading the first screen line in a right-to-left manner) We will read the entire
line of text by having the contents of the Y-register vary between $27 and $00.

170 IF Y => 0 THEN 130 I 30C- 10 F6 BPL $0304

We would like to interpret BPL $0304 as “If the most recent result [of dec-
rementing the Y-register] is positive or zero, tHen branch to the instruction at
memory location $0304.” Actually, BPL is often read as “Branch if PLus,” or
“Branch if Positive.” That is all right, but only if you are willing to admit that
zero is a positive number. Notice that BPL $0304 has a two-byte representation.
Further note that the destination address ($0304) does not appear as part of the
code. This instruction is discussed in detail in Chapter 3—for now we shall
note that $10 is the code for BPL. The number $F6 (15%16 + 6+1 — 246) can
also be interpreted as — 10 (see Appendix B). With this interpretation, the machine
code 10 F6 directs a branch backward ten bytes. If you imagine a pointer aimed
at the byte beyond the $F6 (thus pointing at location $030E), and then move the
pointer back ten bytes, you will be pointing at location $0304. There is such a
pointer, called the Program Counter. It is discussed further in Chapter 3. Thus
the BPL functions as a relative branch, identifying the number (positive or
negative) of bytes from the current instruction to the next instruction.

Finally we have a ReTurn-from-Subroutine instruction.

180 RETURN ‘ 30E- 60 RTS

Chapter 2 Elementary Programming

If we call this machine language program from an Applesoft program, we might
do so with CALL 768. The program begins at location $300 (3%256 + 016 +
0%1—> 768). When the RTS instruction is executed, program control is returned
to the calling program.

TESTING

Enter the machine language program and test it. For the présent, the simplest
way to do that may be from the Monitor as follows: '

CALL -151
#300: AD 27 A2 00 B9 00 04 9D 80 04 E8 88 10 F6 60

When the machine code is entered, list it (actually this is a disassembly) to
confirm that it looks like this:

*300L
300- A0 27 LDY #$27 !
302- A2 00 LDX #$00 g

304- B9 00 04 LDA $0400,Y . , |
307- 9D 80 04 STA $0480,Y

30A- E8 INX §
30B- 88 DEY . ;i
30C- 10 F6 BPL $0304 o

30E- 60 » i

Correct any errors, then return to Applesoft. You can test the program by enter-
ing some characters on the uppermost line of the text screen, then calling the
machine language program with CALL 768. The line of text should be copied,
in reverse order, onto the second line of text.

To use the machine language program for the palindrome example, try the
following.

10 TEXT : HOME

20 INPUT "ENTER STRING ";ST$
30 HOME

40 PRINT ST$

50 VTAB 20

60 CALL 768

70 END

21

0

Assembly Language for the Applesoft Programmer

As mentioned earlier the program has a fault: It does not position the reversed
message directly under the original (unless the original was a full forty char-
acters long). We shall correct this situation later. First, we shall consider the
merits of using an assembler for writing assembly language programs.

ASSEMBLERS

An assembler is a program that translates assembly language mnemonics, such
as

LDY #$27
LDX #$00
LDA $0400,Y

into machine language (code), such as

A0 27
A2 00 f
B9 00 04

Several assemblers are commercially available for/{lse with the Apple II. We
have used several, including the S-C Assembler (S-C Software Corp., Box 280300,
Dallas, TX 75228), BIG MAC (available from A.PPL.E., 21246 68th Ave. S., Kent,
WA 98032), and LISA (available from your local software house). We endorse
them all. We used the S-C Assembler to write the programs in this book, and.
the program listings shown in the book are S-C Assembler listings. The programs
in the book are written so as to be easily modified for use by any of these
assemblers. The modifications are usually no more than changing the S-C direc-
tives to the appropriate directives for your assembler. The assembler thus relieves
the programmer of the onerous tasks of looking up the codes for assembly
language mnemonics, of keeping track of the length of each instruction, and of
organizing the machine code in memory.

. 22

I |

Chapter 2 Elementary Programming

Most assemblers do not stop at this point. They also permit the programmer
to define constants, variables, and labels, and to add comments that make the
assembly language program more readable. If we first define the constants WIDTH,
7ERO, LINE1, and LINE2 to be $27, $00, $0480 respectively, the program can
be rewritten as follows: : N

1000 * EXAMPLE PAL1
1010 WIDTH .EQ $27
1020 ZERO .EQ $00
1030 LINE1 .EQ $0400
1040 LINE2 .EQ $0480

1050 .OR $0300

1060 BEGIN LDY #WIDTH WIDTH OF SCREEN

1070 LDX #ZERO INITIALIZE X

1080 LOOP LDA LINE1l,Y GET CHAR FROM LINE

1009 STA LINE2,X STORE IT IN LINE 2

1100 INX INC. LINE2 INDEX

1110 DEY DEC. LINE1l INDEX

1120 BPL LOOP CONTINUE ACROSS SCREEN
1130 RTS DONE; RETURN TO MAIN PGM.

A program in a form like that shown above is called source code. Assem-

blers use varying formats for their source code. We have adopted the form used

by the S-C Assembler, but you should find it similar to others.

The first column on the left contains the line numbers. They are used for
editing (inserting lines, deleting lines, etc.), but have NOTHING to do with
program control or flow. That is, there is no GOTO (line number), nor is there a
GOSUB (line number) as there is in Applesoft. Some assemblers do not use line
numbers, but provide other means of identifying and editing lines of source
code.

The second column contains the labels. They are used to control program
flow in a fashion somewhat similar to line numbers in Applesoft.

The third column contains the assembly language instruction mnemonics.
The mnemonics were assigned (invented) by the manufacturer of the 6502 and
are intended to jog your memory as to the function the 6502 is performing.

The fourth column contains the operand(s) for the instruction. The instruc-
tion (when assembled into machine code by the assembler) tells the 6502 what
to do with the operand.

The fifth column contains the comments. The S-C Assembler does not require
a special character to denote the beginning of a comment. Some assemblers do
require that a comment begin with a special character (usually the * or the ;).

23

|
“ Assembly Language for the Applesoft Programmer

The notation used by assemblers also varies. In lines 1010 through 1040,
we have defined several constants by using the .EQ directive. A common alter-
nate to .EQ is EQU; your assembler may use this.

Line 1050 of our source code identifies the ORigin of the program. That is

a the memory location at that the assembler begins to store the machine code for
the program. (This code is called the object code.) ORG is often used instead of
.OR, and some assemblers have a default destination for the object code if no
origin is specified. The S-C Assembler’s default origin is $0800. This default
causes a CRASH when an Applesoft program is used to CALL machine code
that was assembled at $0800. When the Applesoft program is subsequently
loaded it is also loaded at $0800, which destroys the machine code. (CRASH
AND BURN—probably an on/off cycle will be required. If this happens to you,
check the origin of the machine code. Move it to safety.)

Note that the label LOOP was not explicitly defined along with the variables
WIDTH, ZERO, LINE1, and LINE2, but was implicitly defined within the pro-
gram. Other labels can be defined in a similar way, and are convenient ways of
identifying locations of subroutines, branch destlnatlons tables of numbers, exit
points, etc.

Your assembler may allow you to keep the use of hexadecimal notation to
a minimum, but you will find it difficult to program in assembly language with-
out it. You may be able to specify numbers in decimal form. For example, line
1010 might have been written as

1010 WIDTH .EQ 39
p
The presence or absence of the $ is a signal to the assembler that the number
that follows is in hexadecimal or decimal form.

Assemblers provide other features as well. We shall point out some of these
as we proceed. However, since the features vary with the assembler, we shall
not attempt a thorough discussion of such features. Consult the manual for your
assembler. 4

1% ASSEMBLING THE CODE

The assembly language source code can be stored in a disk file for later use,
and the assembler can be directed to assemble the code. The results of assem-
bling the above program should be something like this:

1000 * EXAMPLE PAL1
0027~ 1010 WIDTH .EQ $27
0000- 1020 ZERO .EQ $00

0400-
0480-

0300- A0 27
0302- A2 00
0304- B9 00 04
0307- 9D 80 04
030A- E8

030B- 88

030C- 10 F6
030E- 60

SYMBOL TABLE

0300~ BEGIN
0400- LINE1
0480- LINE2
0304- LOOP
0027~ WIDTH
0000- ZERO

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130

LINE1l
LINE2

.EQ $0400
.EQ $0480
.OR $0300

BEGIN LDY #WIDTH

LOOP

LDX #ZERO
LDA LINEl,Y

. STA LINEZ,X

INX
DEY
BPL LOOP
RTS

Chapter 2 Elementary Programming

WIDTH OF SCREEN
INITIALIZE X

GET CHAR FROM LINE 1
STORE IT IN LINE 2

INC. LINE2 INDEX

DEC. LINE1l INDEX
CONTINUE ACROSS SCREEN
DONE; RETURN TO MAIN PGM.

Note that the hexadecimal machine code is listed alongside the assembly lan-
guage code. It has also been entered into the designated memory locations. The
symbol table provided at the end of the source listing shows the identity and

location of all labels.

AN IMPROVEMENT

It was pointed out earlier that the palindrome program would be more useful
if the reversed string were displayed on the screen directly below the original.
We can easily arrange for this: As the characters are copied from the first line
of text, they are read from right-to-left. If we avoid copying the blank (space)
characters at the right of the line of characters, we can achieve the goal. That is
possible by modifying the beginning of the program.

0028-
0000-
0400-
0480~

1000
1010
1020
1030
1040
1050

* EXAMPLE PAL2

WIDTH
ZERO

LINE1l
LINE2

.EQ %28
.EQ $00
.EQ $0400
.EQ $0480
.OR $0300

25

Assembly Language for the Applesoft Programmer

0300- A0 28 1060 BEGIN LDY #WIDTH WIDTH OF SCREEN

o

0302- 88 1070 LOOP1 DEY ' DEC. LINE1l INDEX

0303- B9 00 04 1080 LDA LINE1l,Y GET CHAR FROM LINE 1

0306- C9 AO 1090 CMP #$A0 IS IT A SPACE?

0308- FO F8 1100 BEQ LOOP1 IF SO, SKIP IT

030A- A2 00 1110 LDX #ZERO INIT. X

030C- B9 00 04 1120 LOOP LDA LINE1l,Y GET CHAR FROM LINE 1

030F- 9D 80 04 1130 STA LINE2,X STORE IN LINE 2

0312- E8 1140 - INX INC. LINEZ INDEX

0313- 10 F7 1150 BPL LOOP CONTINUE ACROSS
SCREEN

0315- 60 1160 RTS DONE; RETURN TO MAIN PGM.

SYMBOL TABLE

0300- BEGIN

0400~ LINE1

0480- LINE2

030C- LOOP

0302- LOOP1

0028- WIDTH

0000- ZERO

The example presented in this chapter illustrates some similarities between
Applesoft programs and assembly language programs. Both use branches, loops,
and subroutines, along with simple arithmetic.

You should not expect that assembly language programs can be developed
by translating a corresponding Applesoft program. There are occasions when
that can be done, but such a process generally leads to inefficient programs. In
this example we first wrote the assembly language program, then translated it
into Applesoft. The resulting Applesoft program does work, but it is not as
efficient as it might have been. Generally, an equivalent assembly language pro-
gram will have more lines of coding than the Applesoft program, but the assem-
bly language program will run much faster. In fact, in Chapter 13 where search-
ing and sorting are discussed, we are able to show a speed increasing by a factor
of 45 over an equivalent Applesoft program. An Applesoft sort requires more
than sixteen minutes to run; the equivalent program in assembly language requires
less than twenty-two seconds to run! On the other side of the ledger, the Apple-
soft program is 44 lines long and the equivalent assembly language program is
103 lines long. A trade-off of slightly more than twice as many lines of code for
a forty-five times faster execution speed is not bad!

Chapter 2 Elementary Programming

NOTES AND SUGGESTIONS

1. Modify PAL2 so that the reversed string is printed on the third line of the
text screen.

2. Modify PAL2 so that the reversed string is compared with the original (it
will not be necessary to print the reversed string). Have the program “beep” (see
the programs that control the Apple’s speaker later in this chapter) if the reversed
string differs from the original. Have it end silently if the two agree.

"THE SPEAKER

The speaker is one of the nice features built into the Apple Il/Ile. If you have
encountered it as a “beep” associated with ?SYNTAX ERROR, you may not
associate the speaker with fond memories. If so, perhaps the music we develop
here will improve its image. The music, however, is incidental to our main
purpose, which is to introduce the assembler commands BEQ, BNE, DEC, DEX,
INY, JMP, NOP.

" The speaker can be accessed through the Applesoft command PEEK(-16336).
Each time Applesoft encounters this command, it will make an attempt to read
the contents of memory location -16336. This memory location is wired to the
speaker, and an attempt to read the contents will result in “tweaking” the speaker.
The cardboard cone of the speaker can occupy one of two positions (in or out).
Each time the speaker is tweaked, the cone changes position. If the position
changes rapidly, the vibration generates sound with a tone controlled by the
frequency of the vibration. ' ‘ '

We can vibrate the speaker with Applesoft programs like

10 X = PEEK(-16336)
20 GOTO 10

or with assembly language programs like Program 2.3.

PROGRAM 2.3 Speaker tweaker

1000 * PROGRAM 2.3 SPEAKER TWEAKER
1010 * TOO FAST TO HEAR

C030- 1020 SPKR .EQ $C030
1030 .OR $300

0300- AD 30 CO 1040 TWEAK LDA SPKR

27

Assembly Language for the Applesoft Programmer

28

0303- 4C 00 03 1050 JMP TWEAK
SYMBOL TABLE

C030- SPKR
0300- TWEAK

Program line 1020 identifies the variable SPKR with memory location $C030;
line 1030 locates the program at memory location $300. The attempt to read the
contents of SPKR, in line 1040, will tweak the speaker, causing it to change
positions. The JMP (JuMP) in line 1050 has the effect of a GOTO 1040, tweaking
the speaker again. Lines 1040 and 1050 make up a two line infinite loop. To
interrupt the loop, press CONTROL-RESET. _

You will probably be disappointed if-you enter Program 2.3 and run it. This
is because of a problem that is rarely, if ever, encountered in Applesoft programs:
Program 2.3 runs too fast. Not enough time elapses between successive tweaks.
Program 2.4 wastes a little time between successive tweaks, through the use of
the NOP (No OPeration) command. While the NOP statements cause no action,
they do take a small amount of time. Try some adaptations of Program 2.4 by
adding more NOP statements between successive tweaks. ‘

PROGRAM 2.4 Audible tweaker

1000 * PROGRAM 2.4 AUDIBLE TWEAKER

C030- 1010 SPKR .EQ $C030

1020 .OR $300
0300- AD 30 CO 1030 TWEAK LDA SPKR
0303- EA 1040 NOP DELAY
0304- EA 1050 NOP BETWEEN
0305- EA 1060 NOP "SUCCESSIVE
0306- EA 1070 NOP TWEAKS
0307- 4C 00 03 1080 JMP TWEAK
SYMBOL TABLE .
C030- SPKR
0300- TWEAK

We can generate a wide range of tones by varying the number of NOP
statements placed between successive tweaks. This leads to very lengthy and
cumbersome programs, however. Since the present intent of the NOP is to waste

R |

cliapter 2 Elementary Programming

time, it will be worthwhile seeking a more convenient way of wasting a con-
trolled amount of time. We will return to the Apple’s BELL subroutine to find
out how to do this. The program was listed in Chapter 1 as Program 1.1. Program
2.5 repeats the subroutine, in commented form, set to run at $300.

PROGRAM 2.5 Apple bell subroutine

1000 * PROGRAM 2.5 APPLE BELL SUBROUTINE

C030- 1010 SPKR .EQ $C030
FCA8- 1020 WAIT .EQ $FCA8
1030 .OR $300

0300- A0 CO 1040 BELL .LDY #$CO NUMBER OF TWEAKS
0302- A9 0OC- 1050 BELL2 = LDA #$0C DURATION OF DELAY

0304-.20 A8 FC 1060 . JSR WAIT BETWEEN SUCCESSIVE TWEAKS
0307- AD 30 CO 1070 LDA SPKR ’

030A- 88 1080 DEY COUNT NUMBER OF TWEAKS
030B- DO F5 11090 BNE BELL2Z DONE YET?

030D- 60 1100 RTS DONE
SYMBOL TABLE

0300- BELL
0302~ BELLZ2
C030- SPKR
FCA8- WAIT

In Program 2.5, the Y-register is used to control the number of times the
speaker is tweaked. In line 1040 it is loaded with the number $C0 (C+16 + 0x1
—> 192). Then each time the speaker is tweaked (line 1070) the number contained
in the Y-register is decreased by one. This is done by the DEY (DEcrement Y-
register) in line 1080.

Program 2.5 uses an assembly language command we have not encountered
earlier, BNE. BNE (Branch if most recent result is Not Equal to zero) is a com-
mand we have not used previously. In this case it causes the program to cycle
back to line 1050 repeatedly until the Y-register is decremented all the way to
zero. Then the BNE does not cause a branch, but allows program execution to
fall through to line 1100, which ends the subroutine.

Lines 1050 and 1060 provide our sought-for controllable pause between
successive tweaks. WAIT is another subroutine built into the Apple II/Ile. It
causes a pause for a perlod of time that is a function of the contents of the A-
register.

Assembly Language for the Applesoft Programmer

30

Suggestion: Modify line 1050 of the above program to control the WAIT
subroutine. Run the modified program with the A-register receiving values such
as $10, $20, $30, etc. Note the resulting variation in tone.

Notice that while the Y-register controls the number of tweaks, and thus
influences the length of time the bell is sounded, the length of the delay in WAIT
also affects the duration of the tone. As a result, high pitched notes (enter WAIT
with small numbers in the A-register) will not last as long as low tones (enter
WAIT with large numbers in the A-register).

To correct this situation, we will develop a TONE subroutine (Program 2.6)
with a controllable tone and a controllable tone length. As a first attempt, con-
sider Program 2.6.

PROGRAM 2.6 Variable tone

1000 * PROGRAM 2.6 VARIABLE TONE

C030- 1010 SPKR .EQ $C030
1020 .OR $300 .
0300- AD 30 CO 1030 TWEAK LDA SPKR TWEAK SPEAKER |,
0303- A2 FF 1040 LDX #$FF DELAY BETWEEN TWEAKS
0305- CA 1050 PAUSE DEX COUNT DOWN
0306- DO FD 1060 BNE PAUSE DONE?
0308- FO F6 1070 BEQ TWEAK START OVER
030A- 60 - 1080 RTS DONE

¢

SYMBOL TABLE

0305- PAUSE
'C030- SPKR
0300- TWEAK p;
By now you should be able to decipher parts of this program by yourself.
We will point out the new commands DEX (line 1050) and BEQ (line 1070).
DEX (DEcrement X-register) behaves like DEY. The X-register is used here
to control the frequency of tweaks. When the X-register is decremented all the
way to zero, line 1060 does not cause a branch back to PAUSE, but allows
program control to fall through to line 1070. The BEQ (Branch if most recent
result [of decrementing the X-register] is EQual to zero) returns to TWEAK to
begin a new cycle.
Program 2.6 establishes an infinite loop. The program (and tone) can be
terminated by pressing CONTROL-RESET.
Suggestion: Modify line 1040 in order to obtain different tones.

Chapter 2 Elementary Programming

Controlling Note Length

PROGRAM 2.7

0006-
C030-

0300- A9
0302- 85
0304- AD
0307- A2
0309- C6
030B- FO
030D- CA
030E- DO
0310- FO
0312- 60

SYMBOL TABLE

FF
06
30
20
06
05

F9
F2

0309- COUNT
0006- COUNTR
0312- DONE
C030~- SPKR
0304- TWEAK

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

* PROGRAM 2.7 INTERMEDIATE
* NOT AUDIBLE
COUNTR .EQ $06

SPKR

TWEAK

COUNT

DONE

.EQ $C030

.OR $300 o
LDA #$FF INIT COUNTR FOR -
STA COUNTR DURATION OF TONE
LDA SPKR

LDX #$%$20 SET PITCH

DEC COUNTR

BEQ DONE

DEX

BNE COUNT

BEQ TWEAK

RTS

This is an intermediate program, leading to Program 2.8. The main feature
we wish to point out here is COUNTR, identified as memory location $06. When
COUNTR is initialized to $FF (lines 1050, 1060) the duration of the tone is
established. Each time the X-register is decremented, COUNTR is also decre-
mented. If the X-register is decremented to zero, the speaker is tweaked and the
X-register is restored to its initial value. When COUNTR is decremented to zero,
line 1080 causes a branch to the end of the program.

Program 2.7 is ineffective because the tone is too short. $FF (decimal 255
or binary 11111111) is the largest number we can put into COUNTR (or any
eight-bit register or memory location—more on this in Chapters 3 and 4). Only
255 decrements bring us to zero and the end of the tone. That is far too short.
Program 2.8 uses COUNTR as the second stage in a two-stage counter.

31

Assembly Language for the Applesoft Programmer

PROGRAM 2.8

b

1000 * PROGRAM 2.8 TONE SUBROUTINE

0006- 1010 COUNTR .EQ $06
0007- 1020 PITCH .EQ $07
C030- 1030 SPKR .EQ $C030
1040 .OR $300
0300- AD 30 CO 1050 TWEAK LDA SPKR
0303- A6 07 1060 " LDX PITCH :
0305- 88 1070 COUNT DEY ANOTHER COUNTER
0306- DO 04 1080 BNE FREQ 256 DEY'S?
0308- C6 06 1090 _ DEC COUNTR -
030A- FO 05 1100 BEQ DONE
030C- CA 1110 FREQ DEX
030D- DO F6 1120 BNE COUNT
030F- FO EF 1130 BEQ TWEAK
0311- 60 1140 DONE RTS
SYMBOL TABLE
0305- COUNT
0006- COUNTR
0311- DONE
030C- FREQ ,
0007- PITCH f
C030- SPKR
0300- TWEAK

Now the Y-register protects COUNTR from being decremented as frequently as

it had been before (lines 1070, 1080). Only when the Y-register reads zero (every

256 DEYs) will COUNTR be decremented by 1. Otherwise Program 2.8 functions
very much like Program 2.7. - ' '

Controlling Tone

Program 2.8 provides a very usable TONE subroutine. With it loaded at $300
we can access it from Applesoft to play simple tones.

Neither of the authors is musically inclined. Piano lessons in the early years
did not have long lasting effects. Thus it was with great effort that the following
Applesoft program was developed. Undoubtedly any musically inclined pro-
grammer can do better.

PROGRAM 2.9

w N =

REM PROGRAM 2.9
REM MELODY
REM ASSUMES THAT PROGRAM 2.8

4 REM IS LOADED AT $300
1 TO 6
20 READ DUR: POKE 6,DUR: REM DURATION OF NOTE
30 READ PITCH: POKE 7,PITCH
40 CALL 768

10 FOR I

50 NEXT I
60 DATA 64,203,64,171,64,128,128,102, 64,128,255,102

Program 2.10 uses the Apple game paddle to identify notes to be played.
Line 1040 of the program identifies the variable PDL with memory location
$FB1E. This is the location of the beginning of a Monitor subroutine that reads
the game paddles. If the subroutine is entered with the X-register containing 0,
the subroutine will read game paddle 0 {lines 1090, 1100}. On return from the
subroutine, the A-register will contain a number between 0 and 255 {the number
that would be returned by the Applesoft command PDL(0)}. If the subroutine
is entered with the X-register containing a 1, 2, or 3, the subroutine will read

game paddle 1, 2, or 3, respectively.

PROGRAM 2.10

0006-
0007-
C030-
FB1E-

0300- A9
0302- 85
0304- A2
0306- 20
0309- 85
030B- 20
030E- 4C

0311- AD

20
06
00
1E
07
11
00

30

FB

03
03

co

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130

1140 #*%% TONE SUBROUTINE
TWEAK LDA SPKR

1150

Chapter 2 Elementary Programming

* PROGRAM 2.10 PADDLE TONE

COUNTIR .EQ $06

PITCH .EQ $07

SPKR .EQ $C030

PDL .EQ $FB1E
.OR $300

*x% MAIN PROGRAM

START LDA #$20
STA COUNTR
LDX #$00
JSR PDL
STA PITCH
JSR TWEAK
JMP START

READ
PADDLE 0

34

Assembly Language for the Applesoft Programmer

0314- A6 07 1160 LDX PITCH
0316- 88 1170 COUNT DEY,
0317- DO 04 1180 BNE FREQ
0319- C6 06 1190 DEC COUNTR
031B- FO 05 1200 BEQ DONE
031D- CA 1210 FREQ DEX

031E- DO F6 1220 BNE COUNT
0320- FO EF 1230 BEQ TWEAK
0322- 60 1240 DONE ° RTS

SYMBOL TABLE

0316- COUNT

0006~ COUNTR

0322- DONE

031D- FREQ ,
FB1E- PDL

0007- PITCH

C030- SPKR

0300- START

0311- TWEAK

In Program 2.10, as soon as the game paddle reading has been stored as
PITCH, control is transferred to the subroutine TONE, which is the same (except
for a change of label: TWEAK — TONE) as Program 2.8. Upon return from the
TONE subroutine, JMP START (line 1130) starts the program over again.

This program is an infinite loop. Press CONTROL-RESET to stop it.

Suggestion: Rewrite the MAIN part of Program 2.10 so that game paddle 1
identifies the number stored in COUNTR, and thus controls the duration of the
note that is played.

In this-and the previous chapter, we have prov1ded examples of some of
the most frequently used assembly language instructions. There are variations
of several of these instructions, and there 'aré many other instructions to con-
sider. In the next chapter we shall introduce additional assembly language
instructions as we look at the architecture of the 6502 processor and the memory
organization of the Apple Il/Ile.

SECTION

FUNDAMENTALS OF
6502 PROGRAMMING

CHAPTER

THE
ARCHITECTURE
‘ AND THE
INSTRUCTION SET

We are leaving the area of program design to discuss the instruction set of the
6502 processor. The programs in this chapter are short and easy to read. You
may find yourself reading and agreeing that you understand them, but this is
not sufficient. Be sure to execute each of the sample programs. They are written
to show you what the processor does when the program is executed. The exam-
ples are geared toward this end; they are not necessarily of practical value. In
later chapters, examples that may have practical value demand that you have
an understanding of the instruction set and of the processor architecture.

Assembly Language for the Applesoft Programmer

38

The purpose of this chapter is to briefly describe the 6502 architecture and
some of the fifty-six operations the microprocessor performs. The busiest piece
of hardware in the 6502 is the Arithmetic—Logic Unit, or ALU. This unit is the
collection of circuits that performs the arithmetic operations of addition and
subtraction, as the A in ALU implies. In the most general sense the function of
the ALU is to receive a pair of operands, to combine them according to a well
defined set of rules, and then to deliver the result to a memory location.

There are three multipurpose registers available on the 6502. These are the
X-register, the Y-register, and the A-register. The A-register is called the accu-
mulator. These registers are eight bits wide. The A-register functions most closely
with the ALU. One of the input operands to the ALU is found in A. The other
operand is found using one of the thirteen addressing modes available on the
6502. (There is much more to be said about addressing and the 6502 in Chapter
4.) The ALU accepts the operands, performs the requested operation, and places
the result in the A-register. ' '

Another register that must be discussed before giving a short example using
the ALU and the three multipurpose registers is the P-register. This is the Pro-
cessor status register. It too is an eight-bit register, but each.of the P-register’s
bits is used to report the status-of the 6502. Imagine that the eight bits of the P-
register are arranged and named like this:

Bit number — 7 6 5 4 3 2 1 0
Bit name — N V — B D I Z C

‘

If you are wondering why they are numbered from right to left, it is because that
is the way they are displayed on the screen, as you will see in the first example.
Each of these bits can either be on (1) or off (0). Bit number 0 is the Carry flag.
The C-flag is set to 1 whenever the sum of two eight-bit numbers cannot be
represented in eight bits (and on certain other ocgasions). Bit number 1 is the
Zero flag. The Z-flag is set to 1 whenever the result is 0. Bit number 2 is the
Interrupt flag. The I-flag will be pointed out in the first example. Bit number 3
is the Decimal mode flag. Whenever this bit is set to 1 the ALU performs base-
ten additions and subtractions. Whenever it is set to 0 the ALU performs hex-
adecimal arithmetic. Bit number 4 is the Break flag. It will be pointed out in the
first example. Bit number 5 is not used, but is always set to 1. Bit number 6 is
the oVerflow flag. The status of this bit, the V-flag, is important when signed
arithmetic is performed in the 2’s-complement notation. For a quick review of
2’s-complement notation see Appendix B. Bit number 7 is the Negative flag. The
N-flag is a copy of bit 7 of the A-register. The interpretation of this bit very
closely depends on the intent of the programmer. Use of the N-flag will be
pointed out as the need arises.

Chapter 3 The Architecture and the Instruction Set

USE OF THE PROCESSOR STATUS FLAGS

Decimal Addition
Consider the following sequence:

1. Place a base ten number into the A-register.

2. Add the contents of the A-register to another base ten number.
3. Place the result in the A-register. '
4. Display the result and await further instruction.

Addition is accomplished through the use of the ADC (ADd with Carry) instruc-
tion. To obtain accurate additions, we must first CLeéar the Carry. This insures
that the contents of the C-flag will not be left to chance from the result of a
previous operation. You must CLear the Carry before doing addition because
~ the ADC instruction includes the contents of the C-flag in the calculation. Sym-
bolically we write this as:

A) < A + M + (€

The notation () means “the contents of”.

The addition is to be decimal arithmetic so SEt the Decimal status flag
to 1. LoaD the Accumulator with a decimal number; ADd with Carry from
memory, and place the result in the accumulator. Here is the assembly language
program to accomplish the task:

1000 * PROGRAM 3.1 ADD
1005 .OR $800

1010 SUM CLC

1020 SED

1030 LDA #$86

1040 ADC #8313

1050 BRK

When the program is assembled the listing is:

PROGRAM 3.1
1000 * PROGRAM 3.1 ADD
1005 _OR $800
0800- 18 1010 SUM CLC

Assembly Language for the Applesoft Programmer

0801- F8 1020 SED
0802- A9 86 1030 LDA #$86
0804- 69 13 1040 ADC #$13
0806- 00 1050 BRK
SYMBOL TABLE

0800- SUM

Note: If your assembler does not permit convenient access to the Monitor, you may
wish to forego use of your assembler altogether, and simply enter the op codes
directly from the Monitor.

When the program is executed you will see:
0808- A=99 X=00 Y=00 P=BC S=F9

When the processor executes the BRK instruction at memory location $0806,
this causes the contents of the registers to be displayed. Ordinarily we would
not want this to be done, but right now the register contents are our primary
concern. Therefore, ending this program with a BRK is convenient. A =99 means
the contents of the accumulator are $99; the appropriate result. X =00 means
the contents of the X-register are $00. P = BC means the contents of the P-register
are, in hexadecimal, $BC (remember, $ denotes a hex number). We can determine
the contents of the status flags by converting $BC to its binary form. (If you do
not recall how to do this, see the discussion in Appendix B.) Figure 3.2 shows
the association between the hexadecimal number $BC its binary representation
1011 1100, and the status flags. 5

HEX — B C
BINARY — 1011 1100
FLAGS — NV-B DIZC

For this example, note that we are in the decimal mode, D= 1; there was no
carry, C=1; and the result is not zero, Z=0. Also the B-flag and the I-flag were
set to 1 by the BRK instruction.

One of the skills an assembly language programmer must develop is that
of reading the assembled listing. To begin, look at the assembled listing above.
Focus your attention on the three left-hand columns. The leftmost column,

Chapter 3 The Architecture and the Instruction Set

$0800, $0801, $0802, $0804, $0808, is the list of the address locations where
the program is stored in memory. The second column is the list of the operation
codes, op codes for short, $18, $F8, $A9, $69, $00, of each of the instructions
in the program. The third column is a list of the operands, $86, $13, for the
corresponding op codes, $A9 and $69. In the other columns to the right is a
copy of the program.

Note that line 1000 of the program was not assembled. It is merely a com-
ment. The next line, 1010 SUM CLC, was assembled into address location $0800.
It contains $18, which is the op code for the CLC instruction. Note that the
name of the program, SUM, does not appear in the assembled listing, columns
1, 2, and 3 however it does appear in the symbol table listing provided by most
assemblers. The function of a symbol table is to identify the name, SUM, with
memory location $0800, whose contents are $18.

The next line shows that memory location $0801 contains F8, the op code
for the SED instruction. The next line shows that memory location $0802 con-
tains $A9 (the op code for the LDA instruction) and that memory location $0803
contains $86 (the assembled operand for the LDA instruction).

Note: The $86 is assembled into the location immediately following the op code.
This is the meaning of the # symbol in the listing. This “immediate mode-#" of
addressing is only one of the thirteen modes available and is explained more fully
in the next chapter. '

The next line indicates that memory location $0804 contains $69 (the op
code for the ADC instruction) and memory location $0805 contains $13. Once
again the # has the same effect as noted above. The last line shows that memory
location $0806 contains $00, the op code for the BRK instruction.

The next program is a slight modification of the last one. Change the oper-
and of the ADC to #$14, so that you now have:

1040 ADC #$14

Assemble that program and execute it. Note the changes that occur in the listing.
Memory location $0803 now contains $14, the new immediate operand of the
ADC instruction. Other changes that occur upon execution of the program are
in the registers; namely, A =00 and P =BD. A =00 because a three-digit number
(in this case 100) will not fit into a two-digit register. The 1 is now in the Carry
bit of the P-register, as indicated by P=BD. Convert the contents of the P-register
to its binary form and fill in the blanks in the table below.

41

Assembly Language for the Applesoft Programmer

42

HEX — B D
BINARY > ——— ——
FLAGS —» NV-B DIZC

The C=1 indicates that the Carry bit is on. In summary, 86 + 14 = 100. That
is true, but the 1 is in the C-flag and the $00 is in the accumulator. As you can
see, the Carry flag is important both before and after an addition. We clear the
Carry before addition to be sure that it does not contribute to the sum. After the
addition is performed, we can check the contents of the carry to determine the
result of the addition.

For the next example, return to the 86 + 13 example, and modify the SED
instruction to the CLD instruction. CLD is the mnemonic for CLear Decimal.
Assemble the program and execute it. Note the changes that oceur. Memory
location $0801 now contains $D8, the op code for the CLD instruction. The
change that occurs after execution is in the contents of the P-register, which is
P=B4. Convert the contents of the P-register:to binary and fill in the blanks in
Figure 3.4. .-

HEX — B 4
BINARY — - -
FLAGS —» NV-B DIZC

The D=0 indicated that the decimal 4mode was off, therefore the ALU did hex-

adecimal arithmetic. ,

Subtraction (Positive Result)

The ALU also does subtraction. The instruction for subtraction is SBC, SuBtract
with Carry from the accumulator. The SBC instruction works like this:

(A < (A - M -1+ (C

Notice that for subtractions to be done with the expected result the C-flag must
be set. The instruction for this is SEC, SEt the Carry. In the notation above,
which symbolically shows how the Carry flag affects subtractlon the 1 is often
grouped with the Carry flag like this:

(A) <« (A) - (1-C)
When t_he grouping is done in this fashion, the (1-C) is referred to as the com-

plement of the Carry. Notation aside, the point is that the C-flag must be set
before subtraction.

e €

Chapter 3 The Architecture and the Instruction Set

The following program illustrates the SBC and the SEC instructions in the
decimal mode.

PROGRAM 3.2

1000 * PROGRAM 3.2 SUB

1005 .OR $800
0800- 38 1010 SUB SEC
0801- F8 1020 SED
0802- A9 86 1030 LDA #$86
0804- E9 13 1040 SBC #$13
0806- 00 -1050- BRK

SYMBOL TABLE

0800- SUB
When the program is executed you will see:

0808- A=73 X=00 Y=00 P=7D S=F9
The results are as expected. The accumulator centains $73 ($86 — $13 = $73).
Construct a diagram similar to Figures 3.3 and 3.4 and see that C=1, the C-flag
is set; N=0, the result is positive.

Program 3.3 performs a subtraction with the Carry flag turned off (CLQ).

This simulates doing a subtraction without first setting the C-flag and having a
spurious zero in the C-flag from a previous operation.

PROGRAM 3.3

1000 * PROGRAM 3.3 SUB

1005 .OR $800
0800- 18 1010 SUB CLC
0801- F8 1020 SED
0802- A9 86 1030 LDA #$86
0804- E9 13 1040 SBC #$13
0806- 00 1050 BRK .

SYMBOL TABLE

0800- SUB

Assembly Language for the Applesoft Programmer

44

When the program is executed you should see:

0808~ A=72 X=00 Y=00 P=7D S=F9

The contents of the registers show that the accumulator now contains A =72;
not the expected result for 86 — 13 = 73. Remember that the arithmetic done
by the ALU was:

@a - ™ -1+ ™
86 — 13 -1 + 0 =172

The point of these two examples is: Never forget to set the C-flag before

subtraction! Also note that as a result of the execution of Program 3.3, the C-
flag is now set C=1. :

Subtraction (Negative Resu'lt)’

Program 3.4 attempts to subtract 87 from 86. Note that we have put the SEC
instruction back in place, and the decimal mode is set (SED).

PROGRAM 3.4 !

1000 * PROGRAM 3.4 SUB

1005 .OR $800
0800- 38 1010 SUB SEC
0801- F8 1020 SED y
0802- A9 86 1030 LDA #$86
0804- E9 87 1040 SBC #$87
0806- 00 1050 BRK

SYMBOL TABLE
0800- SUB
When the program is executed you should see:

0808- A=99 X=00 Y=00 S=F9

Chapter 3 The Architecture and the Instruction Set

Assemble and execute the program. Checking the result in the accumulator, we
see A=99. A surprising (puzzling) result. Note that the N-flag is set N=1, indi-
cating a negative result. This is consistent with the intent of the subtraction 86
— 87. Also note that the C-flag is now off, C=0. The explanation for the result
requires an understanding of the representation of signed decimal numbers. A
full explanation concerning this is in Appendix B.

Change the SED instruction to CLD to set the ALU to do hexadecimal arith-
metic. Also change the operand of the SBC instruction to $0A.

PROGRAM 3.5

1000 * PROGRAM 3.5 SUB

1005 .OR $800
0800- 38 1010 SUB SEC
0801- D8 1020 CLD
0802- A9 86 1030 LDA #$86
0804~ E9 0A 1040 SBC #$0A
0806- 00 1050 BRK

SYMBOL TABLE

0800- SUB
When the program is executed you will see:

0808- A=7C X=00 Y=00 P=175 S=F9
The accumulator contains the expected result for hexadecimal subtraction
$86 — $A = $7C. (If you are uneasy with this result see Appendix B.) The
status register also reflects the appropriate results.

~ As a last example of subtraction, Program 3.6 changes the operand of the

SBC instruction to $87.

PROGRAM 3.6

1000 * PROGRAM 3.6 SUB

. 1005 .OR $800
0800- 38 1010 SUB SEC
0801- D8 1020 CLD

45

Assembly Language for the Applesoft Programmer

0802- A9 86 1030 LDA #$86
0804- E9 87 1040 SBC #$87
0806- 00 1050 BRK
SYMBOL TABLE

0800- SUB

When the program is executed the results are:

0808- A=FF X=00 Y=00 P=B4 S=F9

The result in the A-register is appropriate, since $86 — $87 = —1 in 2’s-com-
plement notation. The P-register contains a $B4. Since the binary form of $B is

‘: 1-

2.

3.

Te Te o oe o

o 1011, we know that the N-flag is on. Similarly, since $4 is even, the C-flag is off.

The examples thus far in this chapter have focused on the A-register, the

} multipurpose register most closely associated with the functioning of the ALU,

and the P-register, the processor status register.’ Undoubtedly you, have noticed
| that there are displayed on the screen three other registers. Two of these, the X-
register and the Y-register, are the multipurpose registers whose function is most
closely associated with addressing. Specifically, they are most often used as
index registers in address calculations. Our purpose in this part of the chapter
is to describe their relationship to the architecture of the 6502 and to introduce,
in an elementary way, some of the instructiohs that bear on their use.

The instructions considered here are:

LDX, LoaD X-register

. LDY, LoaD Y-register

TAX, Transfer from A-register to X-register
. TAY, Transfer from A-register to Y-register
TXA, Transfer from X-register to A-register
. TYA, Transfer from Y-register to A-register
INX, INcrement X-register by 1

. INY, INcrement Y-register by 1

DEX, DEcrement X-register by 1

DEY, DEcrement Y-register by 1

A quick scan of the above instructions falsely creates the impression that

the X and Y registers are completely interchangeable. X and Y are NOT inter-
changeable when used for stack manipulation, as we shall see below, nor are

Chapter 3 The Architecture and the Instructioh Set

they interchangeable when used for addressing, as we shall see in Chapter 4.
The purpose of the short example shown below is to demonstrate each of the
four kinds of instructions: load, transfer, increment, and decrement.

PROGRAM 3.7
1000 * PROGRAM 3.7 DEMO
1005 .OR $800
0800- 18 1010 X CLC
0801- A2 05 1020 Y LDX #$05
0803- A0 15 1030 LDY #$15
0805- A9 00 1040 LDA #$00
0807- 8A 1050 TXA
0808- E8 1060 INX
0809- 88 1070 DEY
080A- 00 1080 BRK

SYMBOL TABLE

0800- X
0801- Y

Key-in the example, assemble, and execute it starting at label X. From the
assembled listing you can see that $05 was loaded into X, $15 was loaded into
Y, and that the accumulator was initialized to $00. The contents of the registers
after execution are:

080C- A=05 X=06 Y=14 P=34 S=F9

The accumulator contains $05, which was transferred in from X. X contains
$06, the tesult of incrementing X. Y contains $14, the results of decrementing
Y. These are the expected results. Analysis of the contents of the P-register show
that B=1, I=1. C=0 because of the execution of the CLC instruction.

Now execute the program starting at label Y. The registers are:

080C- A=05 X=06 Y=14 P=35 S=F9
Note that the contents of the A, X, and Y registers are the same as before.

Analysis of the P-register shows that C=1. The Carry flag was set by some
operation of the 6502, and NOT by the program. The program was executed

47

/

7.

|

Assembly Language for the Applesoft Programmer

from line 1020, the line after the CLC instruction. The point is, this second
execution of the program from label Y demonstrates that the programmer does
not know the status of the C-flag unless it is explicitly set or cleared by the
program.

POINTERS

A register that contains an address is called a “pointer register.” Such a register
is said to “point to” the memory location whose address it contains. The fourth
register you have seen displayed on the screen in the examples thus far in this
chapter is the S-register, or Stack pointer register. The S-register contains the
address of the next available stack location. The idea of a stack has been designed
into the architecture of the 6502. Without going too deeply into addressing and
memory organization, the stack is a reserved block of memory (256 bytes) that
functions as a quick storage and recall area with special rules regarding its use.
There are only 256 memory locations available for use with addresses numbered
consecutively from 256 to 511. These memory locations are pointed to by the -
S-register from high (location 511) to low (location 256) consecutively. The S-
register serves as a pointer to a location in the stack. The location “pointed to”
will vary as a program is executed.

Note: The Stack works opposite the direcfion most people expect.

The operation of the stack has another, somewhat peculiar, rule to remem-
ber. This is the wraparound rule. The S-register counts down from 255 to 0 as
memory locations 511 to 256 are pointed to by the S-register. When the stack
is used again the S-register contents are decremented from 0 to 255 and once
again the S-register points to memory location 511. That is to say the S-register
wraps around. The S-register decrements 255, 254, ... 2, 1, 0, 255, 254, ... etc.
The wraparound from 0 to 255 occurs without warning; no flags are set. This
may seem like a strange way to run a pointer register, but most do operate this
way. In fact, the stack is rarely ever half-full in the busiest of programs. People
have been known to use the lower half of the stack, $100 up to, say, $180. This

~ is potentially dangerous and you should never be that pressed for space!

Generally the programmer does not need to be concerned with the details
of the way the stack (and the stack pointer) handle the bookkeeping. This is
done automatically. However, there are ways in which we can affect the stack
pointer and stack contents.

48

Chapter 3 The Architecture and the Instruction Set

STACK

Putting information into a memory location in the stack is referred to as a push.
Conversely, retrieving information from a memory location in the stack is referred
to as a pull (often called a pop, as in “popping” the stack). Because of the way
in which the S-register counts (down after a push and up before a pull) the
operation of the stack is said to be Last In First Out, or LIFO. The instructions
that bear on the use of the stack are:

1. a. PHA, PusH contents of Accumulator onto the stack
b. PHP, PusH contents of P-register onto the stack

2. a. PLA, PulL contents of Accumulator from the stack
b. PLP, PullL contents of P-register from the stack

3. a. TSX, Transfer contents of S-register to X-register
b. TXS, Transfer contents of X-register to S-register

Note that information can only be transferred in a single instruction between
the S and X registers. This is the first case in which the X and Y registers are
not interchangeable; there is no TSY nor a TYS instruction. For an illustration
of the flow of information through the stack and the reglsters consider the
following elementary examples.

PROGRAM 3.8

1000 * PROGRAM 3.8 STACK

1005 .OR $800
0800- 18 1010 STACK CLC
0801- BA 1020 TSX
0802- 8A 1030 TXA
0803- A8 © 1040 TAY
0804- A9 86 1050 LDA #$86
0806- 48 1060 PHA
0807- 08 1070 PHP
0808- 38 1080 SEC
0809- A9 87 1090 LDA #$87
080B- 48 1100 PHA
080C- 08 1110 PHP
080D- A9 88 1120 LDA #$88
080F- 48 1130 PHA

Assembly Language for the Applesoft Programmer

50

0810- 08 1140 PHP
0811- BA 1150 TSX »
0812- 00 1160 BRK
SYMBOL TABLE
0800~ STACK

Before keying-in this program, the purpose of lines 1020, 1030, 1040 must
be explained. Their purpose is to capture the first stack location available to the
program and transfer it to the Y-register. Note that to do this the contents of S
are first transferred to X, line 1020, then to A, line 1030, and finally they are
transferred to Y. Why not do this directly? Because there is'no TSY instruction,
nor is there a TXY instruction. So the S to X to A to Y transfer is the obvious

- way to get the first available stack address saved in Y. Saving it will make the

search of the stack contents below easier.
Now key-in, assemble, and execute the program. The contents of the reg-
isters after execution of the program are shown below.

0814- A=88 X=F7 Y=FD P=B5 S=F3

Note: You may observe some differences in the contents of the registers or memory
locations NOT discussed in the example. These locations are noncritical, and to
some extent depend on what you have been doing with your Apple before executing
the examples that discuss the stack. However, if you have any doubt about the
contents of any of the noncritical registers or memory locations, cycle your Apple
on/off before doing these examples and you should not have any trouble getting
the results shown. We have run these examples through many different Apples
after having done many different programming tasks, many times without cycling
them on/off. We have had no lack of agreement with what is printed in the book
and the contents of the noncritical registers and memory locations. Needless to
say, the contents of the critical registers and memory locations are assured regard-
less of what prior task your Apple has been performing!

From the contents of Y we know that stack location $FD contains $86. The
PHA instruction in line 1060 pushed the contents of A, $86, into the next
available stack location, $FD. Line 1070 pushed the contents of the P-register
into the next stack location, $FC. The purpose of lines 1080 and 1090 is to
change the contents of A and P, which are then pushed onto the stack, lines

Chapter 3 The Architecture and the Instruction Set

1100 and 1110. Finally, the contents of A are changed again and then the con-
tents of both A and P are pushed onto the stack.

Now let us examine the contents of the stack. Do this by returning to the
Monitor. Presumably your assembler allows shifts between it and the Monitor
quickly and without disturbing the stack locations filled by the program. We
wish to display the contents of stack locations $F8 through $FE

|

4

|

|

|

|

Note: Remember that stack addresses must be prefixed with a $01 to convert them ‘
to memory addresses. ' ‘ :

|

|

|

\

|

i

f

|

Use the Monitor to display the contents of these memory (stack) locations.
The line below shows the contents of the locations.

Contents of location — 01F8- B5 88 B5 87 B4 86 67 10

|

|

I

|

i

Monitor command — *1F8.1FF . i
|

|

Stack locations — F8 F9 FA FB FC FD FE FF ‘

From the contents of Y shown above we see that the first available stack location
for the program was $FD. Checking the contents of stack location $FD (memory
location $01FD) we see the $86 that was loaded into the accumulator (line 1050)
and pushed onto the stack (line 1060). Stack location $FC (memory location 1
$01FC) contains $B4, the contents of the P-register at the time line 1070 was y
executed. Note that the Carry flag is zero. The contents of stack locations $FB
and $FA (memory locations $01FB and $01FA) are $87 and $B5 respectively;
note that the Carry flag is now set as a result of line 1080. The last stack locations,
$F9 and $F8, (memory locations $01F9 and $01F8) contain $88, from lines 1120
and 1130, and the contents of the P-register, $B5, at the time line 1040 was
executed. Finally, check the contents of the X-register to see that the next avail-
able location in the stack is $F7, as expected at line 1050.

To illustrate the PLA instruction modify Program 3.8 so that it becomes the
following example.

PROGRAM 3.9

1000 * PROGRAM 3.9 STACK

1005 .OR $800
0800- 18 1010 PULL CLC
0801- BA 1020 TSX

51

Assembly Language for the Applesoft Programmer

0802- 8A 1030 TXA
0803- A9 86 1040 LDA #3$86
0805- 48 1050 PHA
0806- 08 1060 PHP
0807- 68 1070 PLA
0808- 00 2000 BRK
SYMBOL TABLE

0800- PULL

Line 1070 is the PLA instruction, which pulls the contents of the last push
instruction executed (line 1060) into the accumulator. Assemble and execute
the program. The contents of the registers are shown below.

080B- A=B4 X=FD Y=00 P=B4 S=F8,

Note that the contents of stack location $FC, which were $B4 after the eXecution
of program 3.8, have been pulled into the accumulator. Use the Monitor to
display memory locations $01F8 through $01FF (stack locatlons $F8 through
$FF).

01F8- FD F8 FE 84 FF 86 67 10

Notice that after execution of program 3.9 memory location $FC no longer con-
tains $B4. The BRK instruction pushed new information onto the stack and the
next available stack location was $FC. More will be said about the BRK instruc-
tion in the next part of the chapter.

Add these lines to program 3.9.

1080 TAY
1090 PLA

Line 1090 transfers the contents of the accumulator (which after execution of
the modification of Program 3.9 can be seen to be $B4) into the Y-register, and
line 1090 pulls the contents of the next location into the accumulator. Assemble
and execute the modified program. The register contents are:

080D- A=86 X=FD Y=B4 P=B4 S=F9

Note that the $B4 is now in Y and that the $86 is now in A. Use the Monitor to
display memory locations $01F8 through $01FF again.

Chapter 3 The Architecture and the Instruction Set

01F8- BA FD F8 FE 84 FF 67 10

Now you see that the contents from the original example have been moved up
one memory location, because this time line 2000 is executed the next available
stack location is $FD.

THE PROGRAM COUNTER

There is one other register to discuss under the topic of architecture and the
instruction set. It is called the Program Counter register, or PC-register. You
rarely, if ever, need to think about the PC-register. The most important fact to
remember about it is that it always contains the address of the next instruction
to be executed. It is very different from the other registers discussed so far. First,
you have not seen its contents displayed on the screen. Second, it is a sixteen-
bit (two-byte) register. Bits 0 through 7 are referred to as PC Low (PCL); bits 8
through 15 are referred to as PC High (PCH). The purpose of this register is to
keep track of the sequence of executable instructions in a program. The sequence
only requires your personal management when branches, jumps, returns, or
breaks are used in some unusual fashion. Otherwise its operation is automatic.

You have noticed that your programs, when assembled, have been placed
sequentially (contiguously) in memory locations from some starting location.
The starting location for all programs in this chapter is memory location $0800.
When you instruct the 6502 to execute your assembled program, the PC-register
is loaded with $0800, and the contents of $0800 are fetched and executed. Then
the PC-register is incremented by an amount that depends on the length of the
instruction. The contents of this address are then fetched and executed, and the
process continues over and over until a break or a branch is executed. It is
imperative that when a branch or a jump is executed the contents of the PC-
register be properly saved and then restored for a return or a break. The stack
is used for saving and retrieving the contents of the PC-register. ’

Perhaps the easiest way to display the contents of the PC-register is to write
a program that uses the JSR instruction, because this instruction pushes the
contents of the PC-register onto the stack. Once this is done we can display the
stack contents to see what the PC-register contained at the time of the jump.
The JSR, Jump to SubRoutine, instruction is three bytes long. Therefore when
it is executed the contents of the PC-register are the address of the JSR instruc-
tion itself. To get the proper return address stored on the stack, the PC-register
must be incremented by two and then pushed onto the stack. Why only two for
a three-byte instruction? Remember, it contains the address of the next execut-
able instruction, therefore it already has had one byte added to it and only
needs to be incremented by two more. Since the PC-register is two bytes long,
two stack locations are required for its storage. The contents of PCH are pushed

53

’

Assembly Language for the Applesoft Programmer

onto the stack first, the stack pointer register is decremented, and then the
contents of PCL are pushed onto the stack. Once the return address is stored in
the stack, the second and third bytes of the JSR instruction are loaded into the
PC-register and the jump is made.

Shown below is a program using the JSR instruction to display the contents
of the PC-register via the stack.

PROGRAM 3.10

1000 * PROGRAM 3.10 PCR

1005 .OR $800
0800- BA 1010 PCR TSX
0801- 8A 1020 TXA
‘ 0802- A8 1030 TAY
| _ 0803- 20 09 08 1040 JSR STK.
' 0806- A9 AA 1050 LDA #$AA
0808~ 00 1060 BRK
¥ 0809- A9 BB 1070 STK- LDA #$BB
| 080B- A9 CC 1080 LDA #$CC
; 080D- 00 1090 - BRK
|
% SYMBOL TABLE
d 0800~ PCR f
! . 0809- STK

Lines 1010 through 1030 are the familiar technique for catching the first avail-
able stack location in the Y-register. Notice how the JSR instruction is assembled.
Memory location $0803 contains the op code for the JSR instruction, $20. Loca-
tions $0804 and $0805 contain the address of the label STK. Note that the low-
order byte of the address, $09, is stored in location $0804, and the high-order
byte of the address, $08, is stored in location $0805. So the jump address is
$0809. Checking the address of STK we see that it is in fact $0809 (line 1070 of
the program), and the op code of the LDA instruction, $A9, is stored here. To
summarize: The JSR instruction is three bytes long. The first byte contains the
op code, $20. The second byte contains the low-order byte of the jump address,
%09. The third byte contains the high-order byte of the jump address, $08.

080F- A=CC X=FD Y=FD P=B5 S=F7

01F8- F8 FE 84 FF 05 08 67 10

54

Chapter 3 The Architecture and the Instruction Set

When Program 3.10 is executed analysis of the registers pictured above
shows that the Y-register contains $FD, the first available stack location at the i
time of execution of the JSR instruction. Analysis of stack locations $F8 through |
$FF also given above shows that stack location $¥D (memory location $01FD) h
contains $08, which is the high-order byte of the PC-register (PCH) pushed onto !
the stack by the JSR instruction when it was executed. Stack location $FC con-
tains $05, which is the low-order byte of the PC-register, PCL, that was pushed
onto the stack by the JSR instruction immediately after PCH. Together they form

|
r

the return address, $0805, which will be loaded into the PC-register when the
example is modified below. A bird’s-eye view of this example catches (in the '
stack) the operation of the JSR instruction midflight (on its way to the “subrou-
tine” STK). Before the jump to STK (memory location $0809) occurred, the next
available stack location, $FD, was captured first in the X, then transferrred
through the A to the Y-register.

Now modify the program to capture the return address in registers X and
Y, and to do a proper return from “subroutine” STK. The modified program is
shown below. :

|

\\

1

PROGRAM 3.1M1 ,
|

|

|

|

1000 * PROGRAM 3.10M1 PCR

1005 .OR $800
0800- BA 1010 PCR TSX -
0801- 8A 1020 TXA y
0802- A8 1030 TAY ’ | |
0803- 20 07 08 1040 JSR STK i |
0806- 00 1050 BRK I
0807- 68 1060 STK PLA I
0808- A8 1070 TAY : i
0809- 68 1080 PLA , |
080A- AA 1090 TAX o
080B- 48 1100 PHA i
080C- 98 1110 TYA g
080D- 48 1120 PHA i

080E- 60 1130 RTS i

SYMBOL TABLE

[
[
{t
0800- PCR , i
0807- STK , § if
i
\
\
\

55

Assembly Language for the Applesoft Programmer

Lines 1060 and 1070 capture PCL in the Y-register; lines 1080 and 1090 capture
PCH in the X-register. Line 1100 pushes PCH back onto the stack; lines 1110
and 1120 push PCL back onto the stack. Note that if PCH and PCL were not
returned to the stack the RTS would not find the proper return address available
on the stack. Line 1130 is the RTS instruction, ReTurn from Subroutine. This

instruction pulls PCL and PCH from the stack, $0805; increments it by 1, $0806;

loads this address into the PC-register. Then the next instruction is fetched (the
‘ contents of memory location $0806, $00) and executed (the BRK instruction).
| Thus the return from “subroutine” STK is accomplished. When Program 3.10M1
is executed, the register contents and the stack contents at the time of the break
4 at line 1050 are: ' :

0808- A=05 X=08 Y=05 P=35 S=F9

01F8- BA FD F8 FE 84 FF 62 10

| Note that at the time of the jump to STK, the X-register contains the high-
! order byte of the return address, $08, and the Y-register contains the low-order
byte of the return address, $05. Stack locations $F8 through $FF now contain
information different from that in Program 3.10. This is to be expected, because
JSR pushed two bytes onto the stack, but RTS pulled them back to accomplish
the return, thus the stack is in the same condition as it was before the JSR
| instruction was executed. Save Program 3.10M1 on disk. You will use it again
; in Chapter 4. f

| A more detailed discussion of the BRK instruction, BReaK, can now be
given. When the break instruction is executed the following sequence of events
| occurs:

1. The current contents of the PC-register (the 9ddress of the BRK) are incre-
mented by two.

1 2. The Break flag is set to 1.

3. The contents of the PC-register are pushed onto the stack; PCH first, then
PCL.

4. The current contents of the P-register are pushed onto the stack.
5. The Interrupt flag is set to 1.

6. The contents of memory location $FFFF are loaded into PCH and the con-
tents of memory location $FFFE are loaded into PCL. The contents of these
two locations make up the interrupt pointer.

7. Execution continues from this address.

Chapter 3 The Architecture and the Instruction Set

You have seen the BRK instruction used many times in the examples in
this chapter. The effect of all these steps is to save for future reference the
contents of the registers (at the location consistent with number one above) at
the time of the break, and and then to display them. This action makes the BRK
instruction a convenient debugging aid.

The JMP instruction, JuMP is similar to the JSR instruction, but]MP is even
simpler. The JMP instruction is a three-byte instruction. The first byte contains
the op code, $4C. The second and third bytes make up the jump address. This
address is loaded into the PC-register, just as it is in the JSR instruction, and off
you jump! No saving of return information on the stack. That is to say, there can
be no companion return instruction. You must keep track of your journey your-
self. (JSR is like GOSUB; JMP is like GOTO.) '

The last instructions to be dlscussed in this chapter are the various branch
instructions.

1. a. BCC, Branch if Carry Clear
If C=0, the branch is taken.
b. BCS, Branch if Carry Set
If C=1, the branch is taken.

2. a. BNE, Branch if Not Equal to zero
If Z=0, the branch is taken.
b. BEQ, Branch if EQual to zero
If Z=1, the branch is taken.

3. a. BPL, Branch if PLus
If N=0, the branch is taken.
b. BMI, Branch if MInus
If N=1, the branch is taken.

4. a. BVC, Branch if oVerflow Clear
If V=0, the branch is taken.

b. BVS, Branch if oVerflow Set .
If V=1, the branch is taken.

Notice that there are four kinds of branch instructions, and each tests a
different flag, either C, Z, N, or V. If the value of the flag, a 0 or a 1, matches the
condition of the instruction, the branch is taken. Branches are conditional jumps,
but the branch address is specified differently. The branch address, which is
the address of the next executable instruction, is calculated from a displace-
ment. Branches are two-byte instructions. The first byte contains the op code
of the instruction; the second byte contains the displacement of the branch. The
displacement is the “distance,” the number of bytes, from the end of the branch
instruction to the branch address. More will be said about displacement when

Assembly Language for the Applesoft Programmer

58

the relative mode of addressing is explained in Chapter 4. When the flag matches
the condition in the branch, the branch is taken. Then the contents of the PC-
register are incremented by two (the length of the branch instruction) and by
the displacement. A few examples will help make the branch instructions clear.

Consider the example shown below.

PROGRAM 3.11

1000 * PROGRAM 3.11 BRCH

1005
0800~ 18 1010 BRCH
0801- 90 07 1020
0803- A9 11 1030
0805- A2 22 1040
0807- A0 33 1050
0809- 00 1060 :
080A- 38 1070 HERE
080B- A9 AA 1080
080D- A2 BB 1090
080F- A0 CC 1100
0811- 00 1110

SYMBOL TABLE

0800~ BRCH
080A- HERE

The branch instruction illustrated here is the BCC instruction. When the
example is assembled you can see that the op code for the BCC instruction is
stored in location $0801, and it is $90. Location $0802 contains the displace-
ment and it is $07. The branch address then is $0801 + $2 + $07 = $080A,
which is the address labeled HERE, and whose contents are $A9 (the op code

for the LDA instruction).

When the program is executed, the results are as below.

.OR
CLC

‘BCC

LDA
LDX
LDY
BRK
SEC
LDA
LDX
LDY
BRK

$800

HERE
#$11
#$22
#$33

#$AA

#$BB
#$CC

0813- A=AA X=BB Y=CC P=B5 S=F9

First the C-flag is cleared, so the condition of the branch is satisfied and the
branch to HERE is taken. You can see that the branch was taken because of the
contents of the A, X, and Y registers. Use the editor to set the carry; that is,

change line 1010 to

B

Chapter 3 The Architecture and the Instruction Set

1010 SEC
When the modified program is assembled and executed the results are:
080B- A=11 X=22 Y=33 P=35 S=F9

Note that since the C-flag is set, condition of the branch is not satisfied, so
the branch is not taken. The contents of the A, X, and Y registers show

that the branch was not taken. Save Program 3.11 on disk. You will use it again |,

in Chapter 4.

SUMMARY

The instructions presented in this chapter were chosen because they illustrate
the major architectural features of the 6502 and the operation of the ALU. The
instructions not presented in this chapter are illustrated in the other chapters,
and a concise summary of all the instructions can be found in Appendix E.

In summary, there are three multipurpose registers: A, X, and Y. There are
two special-purpose registers: P and S. P is the program status register: its con-
tents are the status of the seven flags N, V, B, D, 1, Z, and C. The S-register
contains the address of the next available location in the stack. The stack is the
locations in memory from $01FF to $0100. The S-register starts at $FF and
decrements; it wraps around. This means that $00 — $01 = $FF in the stack
register. The ALU performs only the arithmetic operations addition and sub-
traction, in two modes, hexadecimal and decimal. The ALU performs more than
the simple true/false (branch/no branch) tests illustrated in this chapter by the
branch instructions. These other logical operations will be illustrated further
in Chapter 6. , ‘

Several times in this chapter reference was made to address locations in
memory and two modes of addressing were used, but a systematic description
of memory and a detailed study of the addressing modes available was pur-
posefully avoided. These are the topics of the next chapter.

99

CHAPTER 4 |

\

ADDRESSING:

LEARNING YOUR
WAY -
AROUND MEMORY

The purpose of this chapter is to discuss the various addressing modes available
on the 6502 microprocessor. When the 6502 is chosen as the microprocessor
many memory organizations are possible. The memory organization we discuss,
and the one our examples are drawn from, is that of the Apple II/Ile. Undoubt-
edly you know that your Apple II/Ile is able to address 64K of memory (using
the sixteen bits of the PC-register) and NO more. Let us begin this chapter by
seeing why this is a direct result of the eight-bit architecture of the A, X, and Y
registers of the 6502. But first you must be able to visualize how any eight-bit
memory is organized.

You know that computers are binary machines. This means that the SMALL-
EST piece of information is stored (is contained in memory) in an electrical
circuit that, like the common light switch, is either on or off. On is represented

61

Assembly Language for the Applesoft Programmer

as a one (1) and off is represented as a zero (0). This smallest piece of information
(a 0 or a 1) is called a bit. When eight bits are grouped together they are called
a byte. The byte is the SMALLEST ADDRESSABLE piece of information. That
is to say, the smallest unit of information that has a number (its address) asso-
ciated with it is called a byte. You can visualize a byte like this:

A byte - 110 0 1 1 01
Bit number - 7 6 5 4 3 2 1 O
Value of the bit — 27 .28 25 2% 23 22 21 29

Remember the powers of 2!

20=1, 2' =2, 22 =4, 29 =8, 2* =186, 2> =32, 2° =64,
27 =128)

Each of the underscores () represents the electrical circuits that can be on (1)
or off (0). Information in this byte is represented by placing a 1 or a 0 on each
of the blanks. In this example the pattern 11001101 is only one of the possible
bit patterns in an eight-bit byte. This pattern means that bit 0 is on, bit 1 is off,
bit 2 is on, etc. The total number of possible bit patterns is

2+ 2"+ 22 + 23 +2* + 25+ 2% + 27) + 1 = 2% = 256
f

Now if addresses in the Apple II/Ile were only one byte in length we could
address only 256 memory locations, because there are only 256 possible com-
- binations of ones and zeros in an eight-bit byte. The Apple II/Ile uses two bytes
(the PC-register) to assign addresses to (to keep track of) memory locations.

Visualize a two-byte address like this: y
An Address
Location on page Page
Byte # one Byte # zero
Contents— 0 0 0 1 1000 11001101
Bit# — 7 6 5 4 3 2 10 7 6 54 3 2 10

In the Apple II/lle, byte number 0 is referred to as the page number, and byte
number 1 is the memory location on that page. That is, there are 256 addressable
pages, and each page contains 256 addressable memory locations. So that in all
there are 256 * 256 = 65,536 addressable memory locations. You can address

62

Chapter 4 Addressing: Learning Your Way Around Memory

fewer. Now you can see that because the 6502 is designed with only two address
bytes (PCH, PCL) only 64K of memory is addressable.

All of the 64K of memory of the Apple II/Ile is addressable, and you can
examine (display, read) the contents of all memory locations, but you cannot
change the contents of all 64K memory locations. The memory locations whose
contents you cannot change are contained in ROM (Read-Only Memory). The
contents of ROM locations do NOT change, even when the power is turned off.
That is to say, their contents are NOT volatile. This is often convenient. Consider
the Monitor program. It begins on page $F8 and location $00 (address $F800)
and extends through page $FF and location $FF (address $FFFF). A listing of
this program can be found in the Apple Ile Reference Manual Adderidum: Mon-
itor ROM Listing for IIe only. If you are using an Apple II this listing is in the
Reference Manual, Appendix C.

Our main concern in this chapter is addressing memory locations whose
content can be changed. These memory locations are contained in RAM (Ran-
dom-Access Memory). The contents of RAM can be changed; the contents DO
vanish when the power is turned off. That is to say, RAM contents are volatile.

ADDRESSING MODES

One powerful advantage of the 6502 over other microprocessors is the large
number of addressing modes available. There are thirteen forms (modes) avail-
able for specifying the address that instructions use as their operands. All thir-
teen modes are not available to all fifty-six instructions, but many modes may
be available for an instruction. Here is a list of the thirteen available addressing
modes:

1. Accumulator

2. Implied

3. (Indirect)

4. Relative

5. Immediate

6. Zero-Page

7. Absolute

8. Zero-Page, X

9. Zero-Page, Y
10. Absolute, X
11. Absolute, Y

63

;7

Assembly Language for the Applesoft Programmer

12. (Zero-Page), Y
13. (Zero-Page, X) o0

A compilation of which modes are available to which instructions is given in
Appendix E, or in the Reference Manual for the ITe Appendix A, or in the Apple
IT Reference Manual, Appendix A.

Accumulator Mode

Perhaps the easiest addressing modes to understand are the ones for which NO
address operand is required. The first mode in the list, accumulator, is such a
mode. The instructions that use this mode form a unique set (ASL, LSR, ROL,
ROR), and they are discussed in Chaptet 6. Their primary uses are for bit manip-
ulations and logical operations. They operate only on the contents of the
accumulator. '

Implied addressing, the second mode in the list, is another mode for which NO
address operand is required. The operand location is implied in the instruction
itself. There are eighteen instructions that do not access memory and operate
only on the contents of the registers. These instructions are CLC, CLD, CLI, CLV,
DEX, DEY, INX, INY, NOP, SED, SED, SEI, TAX, TAY, TSX, TXA, TXS, TYA.
There are seven instructions that do access memory but no address operand
can be specified. These instructions are BRK, PHA, PHP, PLA, RTI, RTS. Many
examples of the use of these instructions have been given in Chapter 3.

(Indirect) Mode 7

The only instruction that uses the indirect mode of addressing (the third mode
in the list) without designating a companion index register is the JMP instruc-
tion. There are many instructions that use indirect addressing, but the JMP
instruction is the only one that uses indirect addressing without indexing. Indi-
rect addressing is denoted by parentheses. The address in parentheses is the
address whose contents are the JMP address. In other words, the address in
parentheses is NOT the JMP address; it is only the address from which the JMP
address is taken. The following will illustrate the meaning of this.

To save on typing, load Program 3.10M1 from disk. We shall modify it (even
though the transfer, pull, and push instructions are not needed here) to illustrate

e ¢

Chapter 4 Addressing: Learning Your Way Around Memory

the indirect mode of addressing. The idea in this example is to illustrate the
indirect mode of addressing with the JMP instruction. The purpose of this
example is not to display the contents of the PC-register (which was the purpose
of the transfer, pull, and push instructions in Program 3.10M1). Edit it to look
like the program shown below

PROGRAM 4.1

1000 * PROGRAM 4.1 JUMPS

1005 .OR $800
0800- A9 08 1010 JMPS LDA #$08
0802- 8D FF 3F 1020 STA $3FFF
0805- A9 11 1030 LDA #$11
0807- 8D FE 3F 1040 STA $3FFE
080A- BA 1050 TSX
080B- 8A 1060 TXA
080C- A8 1070 TAY
080D- 6C FE 3F 1080 JMP ($3FFE)
0810- 00 1090 BRK
0811- 68 1100 STK PLA
0812- A8 1110 TAY
0813- 68 1120 PLA
0814- AA 1130 TAX
0815- 48 1140 PHA
0816- 98 1150 TYA
0817- 48 1160 PHA
0818- A9 00 1170 LDA #$00
081A- 00 1180 BRK

SYMBOL TABLE

0800- JMPS
0811- STK

When the changes are made, assemble the program, but do not execute it yet.
Notice that the op code of the JMP in the indirect addressing mode is $6C. Also
see how the operand, ($3FFE), was assembled into addresses $080E and $080F.
Remember, $3FFE is not the address of the next executable instruction. When
lines 1010 through 1040 are executed, location $3FFE contains $11, and location
$3FFF contains $08. The next executable instruction after the JMP is the PLA
at line 1100 (address $0811). That is to say, the action taken at line 1080 is: the

65

Y

Assembly Language for the Applesoft Programmer

6502 recognizes an indirect JMP, the contents of $3FFE and $3FFF are loaded
into the PC-register, the jump to $0811 is taken, and execution continues from
there. Now execute this example. The results are shown below.

081C- A=00 X=10 Y=67 P=3T7 S=F9

The notable result is the contents of the accumulator, 00, which were placed
there by the execution of line 1170.

Do not let any indirect jump operands end in FF!

Caution: The indirect address canrot lie across a page boundary. In the
above example in line 1080, ($3FFF) could not have been chosen as the address.
Had it been chosen, the $11 would be located at $3FFF and the $08 would be
located at $4000. The $11 would be on page $3F and the $08 would be on page
$40. If the indirect address does lie across a page boundary the JMP will not
jump properly. This situation is easy to control: Obey the instructionin the note
above!

If an indirect jump does lie across a page boundary, a jump is performed
and the results are predictable. See if you can figure it out. This is rumored to
! be a “technique” used by “master” game programmers to “disguise” their code.

Relative Mode

Only the branch instructions use relative addressing, the fourth mode in the
list. Relative addressing means the current contents,of the PC-register are added
to the operand of a branch instruction only when the condition of the branch
is met. The operand of a branch instruction is only one byte long. This is an -
advantage because a branch instruction can be assembled into two bytes: one
byte for the op code, and one byte for the displacement. The disadvantage is
that the displacement can only be 127 locations forward, or 127 locations back-
ward. Only seven bits are used to encode the value of the displacement. The
eighth bit is used to signify a forward, 0, or a backward, 1, displacement. More
information about the representation of negative numbers can be found in
Appendix B. A branch that branches backward is the essential structure of a
loop. Using branches to construct loops is the topic of Chapter 5. The 127
displacement range may seem very limited, but loops usually do not need to
be any longer.

Chapter 4 Addressing: Learning Your Way Around Memory

The next example illustrates relative addressing. The idea is to use Program
3.11 to demonstrate forward and backward branching with labels and without
labels. Load Program 3.11 and modify it to look like the example shown below.
This modification of Program 3.11 demonstrates relative addressing with labels.

PROGRAM 4.2

1000 * PROGRAM 4.2 REL ADR

1005 -.OR $800
0800- A9 DD 1010 TOP LDA #$DD
0802- 00 1020 BRK
0803~ 18 1030 BRCH CLC
0804- 90 07 1040 BCC HERE
0806- A9 11 1050 LDA #$11
0808- A2 22 1060 LDX #$22
080A- A0 33 1070 LDY #$33
080C- 00 1080 BRK
080D- 38 - 1090 HERE SEC
080E- A9 AA 1100 LDA #$AA
0810- A2 BB 1110 LDX #$BB
0812- A0 CC 1120 LDY #$CC

0814- BO EA 1130 BCS TOP

SYMBOL TABLE

0803- BRCH

080D- HERE

0800- TOP
Assemble the program and notice the insertion of line 1130. This is a backward
branch to line 1010 labeled TOP. Execute this program from the label BRCH,

not from the label TOP. The results are shown below.

0804- A=DD X=BB Y=CC P=B5 S=F9

Let us trace the execution of this program. Execution begins at line 1030 which
is labeled BRCH. Since the C-flag is cleared at this statement, the branch to
HERE is taken and the C-flag is now set; the A, X, and Y registers are loaded
with $AA, $BB, and $CC, respectively. The branch to TOP is taken where the
A-register is now loaded with $DD. Execution of the program is halted by the
BRK at line 1020.

Assembly Language for the Applesoft Programmer

Note how the two branch instructions are assembled. The BCC instruction
at line 1040 is assembled with the op code, $90, in location $0804, and the
displacement, $07, in location $0805. Since the condition of the branch is met,
the address of the next executable instruction is $0804 + $02 + $07 = $080D.
(The $02 is added in because the BCC is a two-byte instruction.) The BCS ;
instruction at line 1130 is assembled with the op code, $B0, in location $0814, I
and the displacement, $EA, in location $0815. To understand why the contents 5
of location $0815 are $EA, you must have a working knowledge of hexadecimal ‘
arithmetic. (If you do not, see Appendix B.) Note that $0814 + $02 = $08186,
and $0800 — $0816 = $—16. In 2’s-complement notation, $ — 16 is $EA. (This
notation is discussed in Appendix B.)

The only assembler known to the authors that does not. use labels is. the l
Apple II Miniassembler on the Integer BASIC ROM. For example, the Minias- 1
sembler requires that the branch address be specified as the operand of the
branch. A popular notation for indicating the current contents of the PC-register
is the asterisk, *. So a statement like)

BCS *+8$15

means take the current contents of the PC-register, *, and add $15. If your
assembler does not use this convention, read its instructions and find out how
it does do unlabeled relative addressing. We shall assume that your assembler
uses the popular * convention.

Modify Program 4.2 so that it looks like the one shown below.

PROGRAM 4.2M1

1000 * PROGRAM 4.2M1 REL ADR

1005 .OR $800
0800- A9 DD 1010 LDA #3$DD
0802- 00 1020 BRK
0803- 18 1030 BRCH CLC
0804- 90 07 1040 BCC *+$9
0806- A9 11 1050 LDA #$11
0808- A2 22 1060 LDX #$22
080A- A0 33 1070 LDY #$33
080C- 00 1080 BRK
080D- 38 1090 SEC
080E- A9 AA 1100 LDA #$AA
0810- A2 BB 1110 LDX #$BB

?

0812- A0 CC 1120 ~ LDY #$CC
0814- BO EA 1130 BCS *-$14

Chapter 4 Addressing: Learning Your Way Around Memory

7

SYMBOL TABLE
0803- BRCH

The branch labels have been stripped off and the operands have been altered
to reflect the lack of labels. Look at the assembled code and see that it is exactly,
the same as the assembled code in Program 4.2. The explanation of the contents ‘
of the second byte of each of the branch instructions is the same as in Program il
4.2. And the results are the same. (Of course! The machine code is the same, il [
regardless of what the assembler listing is!) i

0804- A=DD X=BB Y=CC P=B5 S=F9 : : I

conversions. Hence, all you need to do is count—in decimal—the distance in
bytes from where you are to where you wish to branch and use that as the
displacement for the branch instruction. Execute this program from the label
BRCH. The results are exactly the same as they are for Program 4.2. Some assem-
blers may not do the decimal to hexadecimal conversion for you, then you must
use hexadecimal representations for the displacement. Check the instructions
for your assembler or simply try modifying the branch instructions to read

|

\

The assembler used to assemble Program 4.2M1 does decimal to hexadecimal !
|

1040 BCC *+$9 i

1130 BCS *-$14

Try assembling the program, then check the assembled displacements to see if
they were assembled as $07 and $EA. If not, check the instructions and experiment!

immediate Mode

Next on the list is the immediate mode of addressing. Immediate addressing is i
indicated by prefixing the operand with a # sign. The # sign indicates that the :
~ operand itself is to be used in the execution of the instruction. An operand
preceded by a # sign is NOT an address whose contents are to be used in the
execution of the instruction. This mode of addressing was used in many exam-
ples in Chapters 1, 2, and 3 with the LDA instruction. There are eleven instruc-

Assembly Language for the Applesoft Programmer

tions that use the immediate mode of addressmg ADC, AND, CMP, CPX, CPY,
EOR, LDA, LDX, LDY, ORA, SBC. .

Most of the examples in the first three chapters have used this mode of
addressing, so no further examples of its use will appear here. However, if you
would like to see an example, review Figure 1.2 in Chapter 1. It contains exam-
ples of LDA and LDY in the immediate mode. Program 3.1 in Chapter 3 has ADC
in the immediate mode, and Program 3.2 has SBC in the immediate mode. The
instructions CMP, CPX, and CPY will be used in this mode in Chapter 5; AND,
EOR, and ORA will be used in the immediate mode in Chapter 6.

Zero-Page

Zero-page addressing is a short mode of addressing that can be used only when
the first byte of an address is $00, i.e., page zero. The page part of the address,
$00, is NOT written in the instruction. It is a short mode because only two bytes
are now required for storing the comiplete instruction in memory. The first byte
is the op code, and the second is the zero-page address.

The advantages of this mode are its compactness and, especially, its speed.
Zero-page addressing is faster than any other mode. It should be used by the
segments of your program that are executed most often. For example, segments
contained in long or often-used loops (subroutines) might have their variables
in page-zero. The key word. is “often.” If you can arrange thai often-used seg-
ments execute faster, your program will be more efficient.

As an example let’s rework Program 3.1 t6 use the ADC instruction in the
zero-page addressing mode. The plan is to store the $13 at location $ _ _ on page
zero, then, using ADC in the zero-page mode, to do the addition and store the
result at location $ _ _ on page zero.

The reason for the underscores, _ _, in the plan is that you must be careful
about using page zero, especially when you wish to interface, “hook,” or shake
hands with other programs. To point this out more"élearly, look on pages 66 and
67 of the Apple Ile Reference Manual, or on pages 74 and 75 of the Apple II
Reference Manual. Here you will see which page-zero locations are used by the
Monitor, Applesoft BASIC, DOS, and Integer BASIC. A black dot means this
memory location is used by this program. If you wish to run your program, or
any of these programs, you must NOT use these locations.

If you are linking your program to other software, check its documentation;
we can always hope that the authors have provided a zero-page memory map
for their program. Suppose you cannot find any documentation on zero-page
memory usage (which is the usual situation), what can you do? One method
that is quick, but NOT foolproof, is to run the program in some typical fashion.

Chapter 4 Addressing: Learning Your Way Around Memory

In doing this “typical” run, hope that it has used all of the memory locations
needed. Now use the Monitor to examine page zero. An indication of an unused
memory location is to see a 00 or an FF displayed. You may “reasonably” assume
that these locations are unused. No guarantees, just a quick best guess. You could
also check in What’s Where in the APPLE?, by William E Luebbert, MICRO
INK, Inc.

CAUTION: When using page-zero, be sure the locations you intend to use are free.

An efficiently written program makes maximum use of page zero. When you are
planning a program we advise you to build a zero-page memory map for your
program. This effort will pay off handsomely when you modlfy the program or
link it to another program.

Following the above advice for locating unused memory locations, use the
Monitor to display locations $0000 through $0007.

0000- 4C 3C D4 4C 3A DB FF FF
Locations $0006 and $0007 both contain $FF, so we guess that they are free for
our use. Location $0006 will be used to store the $13 and location $0007 will
be used to store the result. The modification of Program 3.1 is shown below.

PROGRAM 4.3

1000 * PROGRAM 4.3 ADD (ZERO-PAGE)

1005 .OR $800
0800- 18 1010 SUM CLC
0801- F8 1620 SED
0802- A9 13 1030 LDA #$13
0804- 85 06 1040 STA 306
0806~ A9 86 1050 LDA #3%86
0808~ 65 06 1060 ADC $06
080A- 85 07 1070 STA $07
080C- 00 1080 BRK

SYMBOL TABLE

0800- SUM

71

Assembly Language for the Applesoft Programmer

72

Assemble and execute this example. The register contents are the same as those
shown in Chapter 3. o

080E- A=99 X=00 Y=00 P=BC S=F9
Use the Monitor to display the locations $0000 through $0007 again.
0000- 4C 3C D4 4C 3A DB 13 99

Notice that location $0006 contains the $13, and that $0007 contains $99, the
result.

Absolute Mode

Absolute addressing is a longer mode of addressing than is zero-page addressing
because it requires three bytes of memory to store an instruction in this mode.
The op code requires one byte and the address now requires two bytes; a byte
to specify the page and another to specify the location on the page.

Program 4.3 will be reworked to use the ADC instruction in the absolute
addressing mode. The caution mentioned above for using page zero locations
applies in general to all memory locations. The procedure for finding available
memory locations is the same. Scanning for blocks of 00s or FFs, we find that
locations $4000 through $200F are usually available unless you are using graphics.

4000- 00 00 FF FF 00 00 FF FF

Editing Program 4.3 to use the the first two locatio/r}s we have:

PROGRAM 4.4

1000 * PROGRAM 4.4 ADD ABSOLUTE

1005 .OR $800

0800- 18 1010 SUM CLC

0801- F38 1020 SED

0802- A9 13 1030 LDA #$13

0804- 8D 00 40 1040 STA $4000
0807~ A9 86 10650 LDA #$86

0809- 6D 00 40 1060 ADC $4000

: f

Chapter 4 Addressing: Learning Your Way Around Memory

080C- 8D 01 40 1070 'STA $4001
080F- 00 1080 BRK

SYMBOL TABLE
0800- SUM

Assemble and execute Program 4.4. The register contents are the same as before
0811- A=99 X=00 Y=00 P=BC S=F9
Using the Monitor, again display the locations $4000 through $400F.

4000- 13 99 FF FF 00 00 FF FF
4008- 00 00 FF FF 00 00 FF FF

You can see that location $4000 contains the $13, and that $4001 contains $99,
the result.

Indexed Modes

The six remaining modes are indexed modes of addressing. An indexed mode
of addressing is one that requires two operands to determine the address used
in the execution of the instruction. The address used in the execution of the
instruction is called the target address; it is also called the effective address.
The method of calculating the target address differs from one index mode to
another.

There are two indexed addressing modes available for page zero. They are
{Zero Page,X) and (Zero Page,Y). (Zero Page,X) is the primary indexed mode
because it is used by sixteen of the fifty-six instructions. (Zero Page, Y) is used
only by LDX and STX. To understand how a target address is calculated for
(Zero Page, X) addressing, consider the ADC instruction used in this mode.

ADC operandl,X

The target address, TA, is the sum of operand1, a zero page address, plus the
contents of the X-register.

TA = operand1 + (X)

(Remember: the parentheses around the X mean “the contents of X.”)
To illustrate this indexed addressing mode, let’s again rework Program 4.4
using the ADC in this mode. We have determined that the page zero location

73

Assembly Language for the Applesoft Programmer

$6F is a safe location to use in this example for the storage of the $13. (If you
try this example and something “strange” happens, it means that $6F was not
“safe” for the assembler that you are using. Find a “safe” location on page zero
and use it instead of $6F) Edit Program 4.4, or enter the op codes via the Monitor.

PROGRAM 4.5

1000 * PROGRAM 4.5 ADD ZERO-PAGE,X

1005 .OR $800
0800~ 18 1010 SUM CLC
0801- F8 1020 SED
0802- A9 13 1030 LDA #$13
0804- 85 6F 1040 STA $6F
0806- A9 86 1050 LDA #$86

| _ 0808- A2 5A 1060 LDX #$5A
080A- 75 15 1070 ‘ADC $15,X
080C- 85 06 1080 STA $06
080E- 00 1090 . BRK

SYMBOL TABLE
0800- SUM

.
Assemble and execute Program 4.5. The register contents are shown below.

0810- A=99 X=5A Y=00 P=BC S=F9

Note that the contents of the X-register are now $5A. The target address of the
ADC instruction was calculated by the 6502 in the following manner.

TA
TA

operand1 + (X)
$15 + $5A = $6F

When the ADC instruction is executed, the contents of $006F, $13, ate fetched
and added to the contents of the accumulator, $86; then the result, $99, is stored
in location $0006. Use the Monitor to display the contents of these locations.

0000- 4C 3C D4 4C 3A DB 99 01

You can see that ($006F) = $13, and ($0006) = $99.

Chapter 4 Addressing: Learning Your Way Around Memory

Since only two instructions use (Zero Page,Y) and since it is very similar
to (Zero Page,X) no examples will be given for it. However, if you wish to work
through one, just change all the Xs to Ys and execute the program again.

The most often used modes of indexed addressing are the next two in the
list, 10 and 11. The Absolute,X mode is used by fifteen instructions, and the
Absolute,Y mode is used by nine instructions. The absolute indexed mode is
similar to the zero-page indexed mode in that operand1 is added to the contents
of the index register to calculate the target address. But the difference is that

operand1 is now any non-zero-page address. To understand how the target address

is calculated for Absolute,X addressing, consider the ADC 1nstruct10n in this
mode.

ADC operandl, X
The target address is a non-zero-page address plus the contents of the X-register.

Modifying Program 4.4 to illustrate Absolute,X we have:

PROGRAM 4.6

1000 * PROGRAM 4.6 ADD ABSOLUTE,X '

1005 .OR $800

0800- 18 1010 SUM CLC

0801- F8 1020 SED

0802- A9 13 1030 LDA #$13
0804- 8D 00 40 1040 STA $4000
0807- A9 86 1050 LDA #$86
0809~ A2 20 1060 LDX #$20
080B- 7D EO 3F 1070 ; ADC $3FEO, X
080E- 8D 01 40 1080 STA $4001
0811- 00 1090 BRK

SYMBOL TABLE

0800- SUM

Assemble and execute Program 4.6. The register contents are shown below.

0813~ A=99 X=20 Y=00 P=BC S=F9

75

Assembly Language for the Applesoft Programmer

Note that the contents of the X-register are now $20. The target address of the
ADC instruction is '

TA = operand1 + (X)
TA = $3FE0 + $20 = $4000

When this ADC instruction is executed, the contents of $4000, $13, are fetched
and added to the contents of the accumulator, $86, and the result, $99, is stored
in location $4001.

The Absolute,Y works in the same way, but the Y-register is used as the
index register. Since this mode is so similar to the one just illustrated no example
will be given. If you wish to do one, change all the Xs to Y$ and execute the
program again. ')

The next addressing mode to be discussed is (Zero Page,Y). This indexed
addressing mode is very different from the four indexed modes discussed thus
far. There are three differences to be remembered. First, the zero-page address
in parentheses is ONLY the first part of an adjacent PAIR of addresses. Second,
it is the CONTENTS -of this pair that are used to calculate the target address.
Third, the LEAST significant Byte (LB) of the address that is used to calculate
the target address is stored in the part SHOWN in the instruction and the MOST
significant byte (or High Byte, HB) of the address that is used to calculate the
target address is stored in the part NOT SHOWN in the instruction. To restate
this third difference again: The PAGE part of this address is stored in the part
of the pair NOT SHOWN in the instruction, and the LOCATION ON THIS PAGE
is stored in the part of the pair SHOWN in the instruction. Once this INDIRECT
part of the target address is formed it must be added to the contents of the Y-
register.

Note: This process of putting the low byte first, hiéh byte second is standard
procedure used on the 6502. This addressing practice is referred to as Low Byte—
High Byte (LBHB).

The ADC instruction will be used again to show how the target address is
calculated for this indirect indexed addressing mode. This example will use the
memory locations we know are safe because they were used in the examples
above. It will use zero-page locations $06 and $07 as the Zero-page pair to store
the indirect part of the target address, $3FE0Q, and the Y-register will contain
$20. To properly arrange the page part of the target address, $3F must be stored
in $07, and the location on page $3F, $E0, must be stored in $06. The remainder

Chapter 4 Addressing: Learning Your Way Around Memory

of the target address, $20, must be put in the Y-register. The target address
calculation looks like this: ‘ il

" Seen Not seen i
in inst. in inst. . };I
TA = (06) + (07) + (Y) ' i
Location Page ; ;i
on page part , 2 } “
TA = $EO + $3F00 + $20 = $4000 il
TA = $4000 v ' it

Editing Program 4.6 to accomplish this produces Program 4.7 shown below.

PROGRAM 4.7 _ j

1000 * PROGRAM 4.7 ADD (ZERO PAGE),Y i

1005 .OR $800
0800- 18 1010 SUM CL.C
0802- A9 3F 1030 LDA #$3F
0804- 85 07 1040 STA $07
0806~ A9 EO 1050 LDA #$EO
0808- 85 06 1060 STA $06
080A- A9 13 1070 LDA #$13
080C- 8D 00 40 1080 STA $4000
080F- A9 86 1090 LDA #$86
0811- A0 20 1100 LDY #$20
0813- 71 06 1110 ADC ($06),Y
0815- 8D 01 40 1120 STA $4001
0818- 00 1130 BRK

SYMBOL TABLE

0800- SUM

Assemble and execute Program 4.7. The register contents are shown below.

081A- A=99 X=00 Y=20 P=BC S=F9

77

Assembly Language for the Applesoft Programmer

The registers contain the same information as they did in Program 4.6. Use the
Monitor to display the contents of the locatiohs shown below:

4000- 13 99 4B 20 0A 52 53 20

Use the information to see how the target address was calculated.

The last addressing mode to be discussed is (Zero Page,X). This is another
indirect mode of addressing. The ADC instruction will be used again to show
how the target address is calculated: This indirect mode also uses a Zero-page
pair of locations. They contain the target address of the instruction, with the
page and the location on the page stored in the pair in reverse order. The ADGC
instruction found in Program 4.8 is

ADC (3%C8,X)
The target address for this instruction is calculated as follows:

TA = (C8 + (X))

TA = (C8 + 20)
TA = (E8)

Location / Page

on page part
TA = (E8) + (E9)

;

Contents Contents

of $E8 of $E9
TA = $07 + $4000 = $4007
TA = $4007

v

Editing Program 4.7 to illustrate the ADC instruction in this indexed indirect
mode produces Program 4.8 shown below: .

PROGRAM 4.8

1000 * PROGRAM 4.8 ADD (ZERO PAGE,X)

. 1005 .OR $800
0800- 18 1010 SUM CLC
0801- F8 1020 SED
0802~ A9 40 1030 LDA #$40

Chapter 4 Addressing: Learning Your Way Around Memory

0804- 85 E9 1040 STA 3E9
0806~ A9 07 1050 LDA #$07
0808- 85 E8 1060 STA $E8
080A- A9 13 1070 LDA #$13
080C- 8D 07 40 1080 STA $4007
080F- A9 86 1090 LDA #$86
0811- A2 20 1100 LDX #$20
0813- 61 C8 1110 ADC ($C8,X)
0815~ 8D 01 40 1120 STA $4001
0818- 00 1130 BRK

SYMBOL TABLE

0800- SUM

Assemble and execute Program 4.8. The register contents are shown below.
081A- A=99 X=20 Y=00 P=BC S=F9

Use the Monitor to display the contents of the locations shown below, then use
this information to see how the target address was calculated.

4000- 13 99 4B 20 0A 52 53 13

In summary, there are thirteen addressing modes available on the 6502.
Even though all modes are not available for all instructions, this is (most often)
not a handicap. A compilation ‘of the modes available to each instruction is
given in Appendix E. The examples given in this chapter were chosen to illus-
trate the structure of each addressing mode, not necessarily the most powerful
use nor the most typical. Many of the examples in the following chapters use
the indexed modes and the indexed indirect modes in typical settings.

79

CHAPTER

- | A
'BRANCHES,
LOOPS, AND
NESTING

The purpose of this chapter is to illustrate the construction of loops and the
use of branches to control loops. These are fundamental constructs because they
provide for different pathways through a program and for repetitive use of pro-
gram segments.

A loop is a program segment that contains a backward branch to an earlier
statement in the program. An example of a backward branch was given in Pro-
gram 4.2. The BCS TOP at statement 1130 is a backward branch to the label TOP
in statement 1010. Because of the BRK at statement 1020 no loop was formed.

A LOOP

To properly illustrate a backward branch used to construct a loop, consider this
problem. Often the contents of memory need to be cleared, or initialized, to

Assembly Language for the Applesoft Programmer

82

T

some specific value. We wish to write a program to initialize 256 consecutive
memory locations to a value. If the starting address of the 256 locations has the
form $XYO00, then page XY will be initialized to the chosen value.

It is convenient to divide the construction of loops into four stages: (1)
Initialization is done before entry into the loop. Most often this is the few lines
of coding just above the top of the loop. (2) The body of the loop is the part of
the coding that is executed over and over as the loop grinds onward. (3) Loop
control is usually done by incrementing or decrementing a counter, which sets
a flag in the P-register. The control part of the loop is also executed over and
over as the loop grinds onward. (4) Testing for an exit from the the loop is usually
done at the bottom of the loop. Testing the appropriate flag that was set in the
loop control step is done by a branch instruction at the bottom of the loop that
branches to the top of the loop. When the test FAILS, the loop is exited. That is
to say, when the branch condition is TRUE the next executable statement is the
one at the top of the loop. When the branch condition is FALSE the next exe-
cutable is the one below the branch. ,

Consider the program shown below, which copies the number $11 into
memory locations $4000 through $40FF.

PROGRAM 5.1

1000 * PROGRAM 5.1 MEM FILL

1005 .OR $0800 %ET ORIGIN AT $0800
0800- A9 11 1010 BEGIN LDA #$11 LOAD FILL VALUE
0802~ A0 00 1020 LDY #$00 INIT Y
0804- 99 00 40 1030 TOP STA $4000,Y STORE VALUE AT $4000+ (Y)
0807- C8 1040 INY SET Z-FLAG
0808- DO FA 1050 BNE TOP TEST Z BRANCH IF PG NOT FILLED
080A- 00 1060 DONE BRK STOP CALL: MONITOR

SYMBOL TABLE

0800- BEGIN
080A- DONE
0804- TOP

The initialization stage consists of the statements 1010 and 1020. Statement
1010 loads the fill value, $11, into the accumulator. Line 1020 initializes the
index register, Y, to $00. Statement 1030 is the top of the loop and it stores the

f

e €

Chapter 5 Branches, Loops, and Nesting

.contents of the accumulator at location $4000+ (Y). On entry into the loop the
target address is calculated like this:

TA = $4000 + (Y)
TA = $4000 + $00 = $4000

Statement 1040 is the only statement in the body of the loop. If increments the
Y register by one, $01, and sets the Z-flag each time 1040 is executed. This is
the characteristic of the INY instruction that is used to control the loop. The
loop control statement is line 1050. The Y-register is incremented each time the
loop is executed. Testing for an exit from the loop is done each time the loop
executes statement 1050. The Z-flag is tested, and if the contents of Y are not
equal to zero, that is if Z=0, the branch to TOP is taken. If you are wondering
how the contents of the Y-register ever return to zero, remember wrap-around.
That is to say, the contents of the Y-register go $00, $01, $03, .". . , $FE, $FF, $00.
On the 256th iteration of the loop, the address calculation for the target address
of the STA is

TA = $4000 + (Y)
TA = $4000 + $FF = $40FF

THEN (Y), $FF, incremented by $01, $FF + $01 = $00, and the test fails. The
branch “falls through.” The next instruction executed is the BRK instruction.

Key-in, assemble, and execute the program. When you get Program 5.1
working save it. You will use it again in Program 5.2. The contents of the registers
at the end of execution of the program are shown below.

080C- A=11 X=00 ¥Y=00 P=37 S=F9

Note that A contains the fill pattern “11,” Y is zeroed, and that the Z-flag is set
to 1.

P = 3 7
0011 0111
NV-B DIZC

Use the Monitor to see that memory alocations $4000 through $40FF have been
filled with the “11” pattern. A few lines of the results are shown below.

83

e

Assembly Language for the Applesoft Programmer

84

4000- 11 11 11 11 11 11 11 11

V

Same pattern through

40F8- 11 11 11 11 11 11 11 11
4100- FF FF 00 00 FF FF 00 00

Now modify line 1030 so that the starting location on the page is not $00.
For example, choose $4064 and change the fill value to “22.” Assemble and
execute the program again. The contents of the registers are shown below.

080C- A=22 X=00 Y=00 P=37 S=F9

Only the contents of the A-register change. The new fill pattern is “22.” If you
have not turned off your Apple since.you executed Program 5.1, and you exam-
ine memory locations $4000 through $4067, you will see the “11” pattern from
$4000 through $4063, and the “22” pattern from $4064 through $4163. A few
lines with these results are shown below.

-4000- 11 11 11 11 11 11 11 11°
Same pattern through

4060- 11 11 11 11 22 22 22 22
4068- 22 22 22 22 22 22 22 22

Same pattern through
4160- 22 22 22 22 FF FF 00 00

However, if you restart your Apple and execute only the modification to Program
5.1 you will see the start up pattern for your RAM from $4000 through $4063,
and the “22” pattern takes over through $4164. 7

We shall make one further modification to the program. Now suppose you
do not wish to pattern 256 locations at a time, but only wish to pattern part of
them. We wish to pattern only the memory locations from $4000 to some stop-
ping address that is less than $40FE The method of stopping the loop will be
to load Y with the number of locations to be filled and then decrement Y in'the
loop.

PROGRAM 5.1M2

1000 * PROGRAM 5.1M2 MEM FILL
1005 .OR $0800 SET ORIGIN AT $0800

e ¢

0800- A9 33 1010 BEGIN LDA #$33 LOAD FILL VALUE

0802- A0 10 1020 LDY #3$10 LOAD STOPPING VALUE

0804- 99 6F 40 1030 TOP STA $406F,Y STORE VALUE AT $406F+ (Y)
0807- 88 1040 DEY SET N & Z

0808- DO FA 1050 BNE TOP TEST Z BRANCH IF NOT DONE
080A- 00 1060 DONE BRK STOP CALL MONITOR

SYMBOL TABLE

0800- BEGIN
080A- DONE
0804- TOP

Note that when Program 5.1M2 is executing, memory location $407F is
filled first (TA = $406F + $10 = $407F). Then Y is decremented ($10 - $01 =
$0F). The second time the loop is performed location $407E is filled (TA =
$406F + $OF = $406E). That is to say the pattern “33” is filled from the high
address, $407E down to the low address, $4070. In other words the filling
process is done “backwards.”

Modify Program 5.1 to reflect these changes. Assemble and execute the
program. The contents of the registers are shown below.

080C- A=33 X=00 Y=00 P=37 S=F9

Use the Monitor to display memory locations $4000 through $4167. If you
have not turned off your Apple after executing Program 5.1 and its first modi-
fication you will see

4000- 11 11 11 11 11 11 11 11
Same pattern through

405F - 11 11 11 11 11 11 11 11
4060- 11 11 11 11 22 22 22 22
4068- 22 22 22 22 22 22 22 22
4070- 33 33 .33 33 33 33 33 33
4078~ 33 33 33 33 33 33 33 33
4080- 22 22 22 22 22 22 22 22

Same pattern through

4160- 22 22 22 22 FF FF 00 00

Chapter 5 Branches, Loops, and Nesting

85

A

Assembly Language for the Applesoft Programmer

Next we wish to present an example that will fill more than 256 memory loca-
tions at a time. To do this we must change the method of addressing. Indexed
addressing was used in Programs 5.1 and 5.1M2 (see line 1030). The method
used in the next example is post-indexed addressing (see line 1170 of Program
5.2). '

NESTED LOOPS AND THE COMPARE INSTRUCTIONS

Nested loops will be used to accomplish the filling of more than one page of
memory. Loops are said to be nested if one loop is contained inside another
loop. That is to say, the body of one loop, the outer loop, contains another loop,
the inner loop. Program 5.2 loops over not only the locations on a page, but also
several pages of memory. The program shown below contains an outside loop
(TOPOUT) that loops over the pages. The inside loop (TOPIN) loops the loca-
tions on the page, and actually stores the value in each location on the page.
The outside loop merely keeps track of the page on which the inside loop is
w working. The program permits starting at any location (LSTART) on an initial
page. It then fills the remainder of the initial page and every location on the
remaining pages.

PROGRAM 5.2 1000 * PROGRAM 5.2 FILL PAGES

‘ . 1005 .OR $0800 SET ORIGIN AT $0800
N 1010 * INITIALIZATION
3FF8- 1020 PSTART .EQ $3FF8 STARTING PAGE
3FF9- 1030 PSTOP .EQ $3FF9 STOPPING PAGE
0008- 1040 PAGE .EQ $08 CURRENT PAGE
3FFB- 1050 LSTART .EQ $3FFB STARTING LOC. ON 1ST PG.
0800- A9 40 1060 BEGIN LDA #$40 P STARTING PAGE
‘ 0802- 85 09 1070 STA PAGE+I STORE IT
if 0804- 8D F8 3F 1080 STA PSTART AGAIN FOR SAFE KEEPING
3‘ 0807- A9 24 1090 LDA #$24 INIT. START PAGE LOC.
0809- 85 08 1100 STA PAGE STORE IT
080B- A9 70 1110 LDA #$70 STOPPING PAGE
. 080D- 8D F9 3F 1120 STA PSTOP STORE IT
0810- A0 00 1130 LDY #$00 STARTING LOC. ON 1ST PG.
1140 * TOP OF OUTER LOOP
0812- A9 52 1150 TOPOUT LDA #$52 RELOAD FILL VALUE

1160 * TOP OF INNER LOOP
0814~ 91 08 1170 TOPIN STA (PAGE),Y STORE VALUE AT PAGE+Y
1180 * INNER LOOP CONTROL

e ¢

Chapter 5 Branches, Loops, and Nesting

0816- C8 1190 ©INY AND SET N & Z

1200 * TEST INSIDE LOOP
0817- DO FB 1210 BNE TOPIN FINISHED WITH THIS PAGE?
0819- 84 08 1220 STY PAGE STORE IT

1230 * OUTER LOOP CONTROL
081B- E6 09 1240 INC PAGE+1 INC TO NEXT PAGE
081D- AD F9 3F 1250 LDA PSTOP LOAD STOPPING PAGE
0820- C5 09 1260 CMP PAGE+1 SET N, Z & C

1270 * TEST OUTSIDE LOOP ‘
0822- DO EE 1280 BNE TOPOUT FINISHED ALL PAGES?
0824- 00 1290 DONE BRK STOP AND CALL- MONITOR

SYMBOL TABLE

0800- BEGIN
0824- DONE

3FFB- LSTART
0008- PAGE

3FF8- PSTART
3FF9- PSTOP
0814- TOPIN
0812- TOPOUT

The purpose of line 1220 is to store the $00 in the Y-register in location PAGE.
This stops the filling on a page boundary.

Outer loop control is done in this example using the CMP instruction,
which compares memory and accumulator. The CMP instruction SUBTRACTS
the contents of the memory location specified by the operand (PAGE + 1) FROM
the contents of the accumulator (PSTOP). The N, Z, and C flags are set according
to the result of the subtraction. Neither the contents of the memory location nor
the contents of the accumulator are changed, nor is the result of the subtraction
kept. The CMP instruction has the largest number of addressing modes available
of the three compare instructions.

The other compare instructions are CPX and CPY. The action taken by these
instructions is similar to the CMP instruction. Each instruction SUBTRACTS
the contents of the specified memory location FROM the indicated register (the
X-register for CPX, and the Y-register for CPY).

In the outer loop control section of the example, PAGE +1 is incremented
by 1 (line 1240); PSTOP is loaded into the accumulator (line 1250); the sub-
traction is performed and the flags are set (line 1260). Line 1280 tests the Z-flag;
if it is not zero the branch to TOPOUT is taken.

87

Assembly Language for the Applesoﬂ Programmer

Key-in the program, assemble, and execute it. The register contents are

)

shown below.

0826- A=70 X=00 Y=00 P=37 S=F9

If you have not turned off your Apple, then the results are:

3FF8- 40 70 FF FF FF FF FF, FF
4000- 11 11 11 11 11 11 11 11
4008- 11 11 11 11 11 11 11 11
4010- 11 11 11 11 11 11 11 11
4018- 11 11 11 11 11 11 11 11
4020- 11 11 11 11 52 52 52 52
4028- 52 52 52 52 52 52 52 52

Same pattern through

6FF8- 52 52 52 52 52 52 52 52
7000- 7F T7F 00 00 7F 7F 00 00

The pattern “52” begins at location $4020 and ends at location $6FFE Location
$3FF8 contains $40, the starting page; location $3FF9 contains the stopping
page. Save this program; you will need it again in Chapter 10.

To see an interesting effect, do not reload thé fill value into the accumulator
at the top of the outer loop, line 1150. Instead, load the accumulator with the
current page number, and reset line 1090 to 00. This modification is shown
below. Assemble and execute the program. Can you predict what will be in

memory after the execution of this program?

PROGRAM 5.2M1

1000 * PROGRAM 5.2M1

1005 .OR $0800

1010 * INITIALIZATION
3FF8- 1020 PSTART .EQ $3FF8
3FF9- 1030 PSTOP .EQ $3FF9
0008- 1040 PAGE .EQ $08
3FFB- 1050 LSTART .EQ $3FFB
0800- A9 40 1060 BEGIN LDA #$40
0802- 85 09 1070 STA PAGE+1
0804- 8D F8 3F 1080 STA PSTART

STARTING PAGE

v

FILL PAGES MOD1
SET ORIGIN AT $0800

STOPPING PAGE

CURRENT PAGE

STARTING LOC. ON 18T PG.
STARTING PAGE

STORE IT

AGAIN FOR SAFE KEEPING

R €

0807~ A9
0809- 85
080B- A9
080D- 8D
0810- AO

0812- A5
0814- 91
0816- C8

0817- DO
0819- 84

081B- E6
081D- AD
0820- C5

0822- DO
0824- 00

00
08
70
F9
00

09

08

FB
08

09
F9
09

EE

3F

3F

SYMBOL TABLE

0800- BEGIN
0824- DONE

3FFB- LSTART
0008- PAGE
3FF8- PSTART
3FF9- PSTOP

0814- TOPIN

0812- TOPOUT

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

Chapter 5 Branches, Loops, and Nesting

LDA #$00 INIT. START PAGE LOC.
STA PAGE STORE IT

LDA #3870 STOPPING PAGE

STA PSTOP STORE IT

LDY #$%$00 STARTING LOC. ON 1ST PG.

* TOP OF OUTER LOOP
TOPOUT LDA PAGE+1 RESET THE FILL VALUE
* TOP OF INNER LOOP
TOPIN STA (PAGE),Y STORE VALUE AT PAGE+Y
* INNER LOOP CONTROL
INY AND SET N & Z
* TEST INSIDE LOOP
' BNE TOPIN FINISHED WITH THIS PAGE?
STY PAGE RESET LOC ON PG TO $00
* OUTER LOOP CONTROL] ,
INC PAGE+1 INC TO NEXT PAGE
LDA PSTOP LOAD STOPPING PAGE
CMP PAGE+1 SET N, Z & C
* TEST OUTSIDE LOOP
BNE TOPOUT FINISHED ALL PAGES?
DONE BRK STOP AND CALL MONITOR

The contents of the registers are shown below.

0826~

A=70 X=00 Y=00 P=37 S=F9

Here is a list of a few of the memory locations filled by this program.

3FF8-
4000-
4008-

40 70 FF FF FF FF FF FF
40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40

Assembly Language for the Applesoft Programmer

Same pattern through

40F8-~ 40 40 40 40 40 40 40 40
4100- 41 41 41 41 41 41 41 41

Same pattern through

41F8- 41 41 41 41 41 41 41 41
4200~ 42 42 42 42 42 42 42 42

Same pattern through

42F8- 42 42 42 42 42 42 42 42
4300- 43 43 43 43 43 43 43 43

See how the patterns progress;
they keep going up to

6EF8- 6E BE 6E 6E 6E 6E 6E 6E
6F00- 6F 6F 6F 6F 6F 6F 6F 6F

Same 6F pattern through

6FF8- 6F 6F 6F 6F 6F 6F 6F 6F
7000- 7F 7F 00 00 7F 7F 00 00

,
In this example, the fill value is the page number. In the next example, we will

use the idea of incrementing the accumulator and storing its contents at a loca-
tion to fill a table.

TABLE BUILDING p

To further illustrate the use of nested loop, we wish to construct an 8 by 8 table.
That is, the table will have eight columns and eight rows. The table is to look
like this:

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51.52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78
81 82 83 84 85 86 87 88

Chapter 5 Branches, Loops, and Nesting

An 8 by 8 table was chosen because memory is displayed in eight columns by
the Apple Monitor. Therefore it will be easy for you to see the table on the
screem. '

To build this table an outside loop is required to count off the row locations,
and an inside loop is required to count off the column locations. As in the first
two examples in this chapter the Y-register will be used as the index register.

The program shown below will build an 8 by 8 table starting at location

$4000.

PROGRAM 5.3

1000 * PROGRAM 5.3 BUILD TABLE

1005 .OR $0800 SET ORIGIN AT $0800

1010 * INITIALIZATIONS
0008- 1020 TABLE .EQ $08 STARTING ADDRESS OF TABLE
3FF8- 1030 LR .EQ $3FF8 LENGTH OF A ROW
3FF9- 1040 LC .EQ $3FF9 LENGTH OF A COLUMN
3FFA- 1050 LRS .EQ $3FFA KEEP LR SAFE
3FFB- 1060 LCS .EQ $3FFB KEEP LC SAFE
0800- A9 40 1070 BEGIN LDA #%$40 PAGE OF TABLE
0802- 85 09 1080 STA TABLE+1 STORE IT
0804- A9 00 1090 LDA #$00 LOC ON PAGE FOR TABLE
0806- 85 08 1100 STA TABLE STORE IT
0808- A9 08 1110 LDA #$08 NUMBER OF ROWS
080A- 8D F8 3F 1120 STA LR STORE IT
080D- 8D FA 3F 1130 STA LRS AGAIN TO KEEP IT SAFE
0810- A9 08 1140 LDA #$08 NUMBER OF COLUMNS
0812- 8D F9 3F 1150 - STA LC STORE IT
0815- 8D FB 3F 1160 STA LCS AGAIN TO KEEP IT SAFE
0818- A0 00 1170 LDY #$00 INIT LOC COUNTER
081A- A9 11 1180 LDA #%$11 INIT FILL VALUE
081C- AE FB 3F 1190 TOPOUT LDX. LCS RELOAD NO. OF COLUMNS
081F- 8E F9 3F 1200 STX LC RESET NO. OF COLUMNS
0822- 91 08 1210 TOPIN' STA (TABLE),Y STORE VALUE AT TABLE+Y
0824- 18 1220 CLC ' CLEAR CARRY FOR ADDITION
0825- 69 01 1230 ADC #$01 INC ACCUM TO NEXT COL VALUE
0827- C8 1240 INY INC Y TO NEXT LOC
0828- CE F9 3F 1250 DEC LC COUNT COLUMNS SET N, Z & C
082B- DO F5 1260 BNE TOPIN FINISHED THIS ROW?

91

Assembly Language for the Applesoft Programmer

082D- 18 1270 CLC CLEAR CARRY FOR ADDITION
082E- 69 08 1280 ADC #$08 INC ACCUM TO NEXT COL VALUE
0830- CE F8 3F 1290 DEC LR COUNT ROWS SET N, Z &C
0833~ DO E7 1300 BNE TOPOUT FINISHED TABLE?

0835- 00 1310 DONE BRK STOP AND CALL MONITOR

SYMBOL TABLE

0800- BEGIN
0835- DONE
3FF9- LC
3FFB- LCS
3FF8- LR
3FFA- LRS
0008- TABLE
0822~ TOPIN
081C- TOPOUT

When you key-in, assemble, and execute the program these will be the results:

Register contents:
082D- A=91 X=08 Y=40 P=36 S=F9

Memory contents: ¢
3FF8- 00 00 08 08 FF FF FF FF
4000- 11 12 13 14 15 16 17 18
4008 - 21 22 23 24 25 26 27 28
4010- 31 32 33 34 35 36 37 38
4018- 41 42 43 44 45 46 47 48
4020- 51 52 53 54 55 56 57 58
4028- 61 62 63 64 65 66 67 68
4030- 71 72 73 74 75 76 77 78
4038- 81 82 83 84 85 86 78 88

Let us take a closer look at some aspects of this program. LR and LC have
been saved a second time in LRS and LCS (lines 1130 and 1169) as a reminder.
They serve no logical purpose in this example and these two lines may be
eliminated, if you wish. When the last element in any row is filled, the accu-
mulator will have the value R9, where R is the number of the row in the accu-
mulator when the inside loop finishes. To get the first value in the next row,
R+1, we need to add $08 to the current contents of the accumulator, that is:

92

Chapter 5 Branches, Loops, and Nesting

(A) at the end of the inside loop — R9
Add 08 — + 08
(A) at the top of the inside loop on reentry — /R+1/1

Specifically at the end of the first row: :
(A)— 19
Add 08 — + 08

(A) upon first entry of inside loop — 21

At the end of the second row:

A)— - 29
Add 08 —» + 08
{A) upon 2nd entry of inside loop — 31

and so on for all eight iterations of the outside loop.

The addition of $08 advances the value in the accumulator to the value at
the beginning of the next row. This addition is done at statement 1210. Save
Program 5.3 to disk before proceeding.

Before going on to modifications to Program 5 3 we shall modify Program
5.1 so that it can be used to clear page $40 to zeros. To do this, load Program
5.1 as the working file for your assembler. Add the ORigin directive (.OR) for
your assembler. For this example, CLEAR will be assembled into locations start-
ing at $6000. Change the fill value to $00, and change the BRK instruction in
line 1150 to the RTS instruction. Now execution of the program will fill page
$40 with zeros and return to your assembler instead of calling the Monitor when
it executes. Test your modification for proper execution and save it to disk with
the file name CLEAR. You will need to CLEAR page $40 between execution of
the modifications to Program 5.3. The CLEAR program is shown below.

1000 * PROGRAM CLEAR

1010 .OR $6000 :
6000- A9 00 1020 BEGIN LDA #$00 LOAD FILL VALUE
6002- A0 00 1030 LDY #$00 INIT Y
6004- 99 00 40 1040 TOP STA $4000,Y STORE VALUE AT $4000+Y
6007- C8 1050 INY SET N & Z
6008- DO FA 1060 BNE TOP TEST Z BRANCH IF PG NOT FILLED
600A- 60 1070 DONE RTS RETURN

SYMBOL TABLE

6000- BEGIN
600A- DONE
6004- TOP

k.

93

Assembly Language for the Applesoft Programmer

Alternatively, you could use HGR2, which begins at $F3D8, to clear the
screen to black. HGR2 also toggles the soft switch at $C052, which sets the full
screen display. (If you are working with a split screen display this characteristic
of HGR2 would be annoying.)

Program 5.3 has no flexibility. This program can construct only an 8 by 8
table. We wish to modify this program so that it will build any table up to eight
columns and as many rows as we wish. The modified program is shown below.

PROGRAM 5.3M1

3FF8-

3FF9-

SFFA-

3FFB-

3FFC-

0800- A9
0802- 8D
0805- A9
0807- 8D
080A~ 8D
080D- A0
080F- A9
0811- A2
0813- 8E
0816- AE
0819- 8E
081C- 99
081F- 18
0820- 69
0822- C8
0823- CE
0826- CE
0829- DO
082B- 8D
082E- 18
082F- 98
0830- 6D

94

04
F8
04
F9
FA
00
11
08
FB
FA
F9
00

01

FB
F9
F1
FC

-FB

1000 * PROGRAM 5.3M1 BUILD TABLE MOD1) ‘ !

1005 .OR $0800 SET ORIGIN AT $0800
1010 * INITIALIZATIONS ,

1020 LR .EQ $3FF8 LENGTH OF A ROW

1030 LC .EQ $3FF9 LENGTH OF A COLUMN
1040 LCS .EQ $3FFA KEEP LC SAFE.

1050 CNTR .EQ $3FFB . POSITION COUNTER
1060 KEEP .EQ $3FFC KEEP ACCUMULATOR HERE

1070 BEGIN LDA #$04 . NUMBER OF ROWS
3F 1080 STA LR STORE IT
1090 LDA #$04 NUMBER OF COLUMNS
3F 1100 . STA LC STORE IT
3F 1110 STA LCS AGAIN TO KEEP IT SAFE
1120 LDY #$00 INIT LOC COUNTER
1130 LDA #$11 INIT FILL VALUE
1140 TOPOUT LDX #$08 RESET COUNTER
3F 1150 STX CNTR STORE IT
3F 1160 LDX LCS RELOAD NO. OF COLUMNS
3F 1170 STX LC RESET NO. OF CbLUMNS
40 1180 TOPIN STA $4000,Y STORE VALUE AT TABLE+ (Y)
1190 CLC CLEAR CARRY FOR ADDITION
1200 ADC #$01 INC ACCUM TO NEXT COL VALUE
1210 INY INC Y TO NEXT LOC
3F 1220 DEC CNTR COUNT POSITIONS
3F 1230 DEC LC COUNT COLUMNS SET N, Z & C i
1240 BNE TOPIN FINISHED THIS ROW? : i
3F 1250 STA KEEP KEEP ACCUM FOR LATTER !
1260 CLC CLEAR CARRY FOR ADDITION
1270 TYA PUT CURRENT ADDRESS INTO A
3F 1280 ADC CNTR ADD ON LEFT OVER ADDRESSES

T ¢

Chapter 5 Branches, Loops, and Nesting

0833- A8 1290 TAY PUT UPDATED ADDRESS BACK INTO Y
0834- AD FC 3F 1300 LDA KEEP RESTORE ACCUMULATOR

0837- 18 1310 CLC CLEAR CARRY FOR ADDITION
0838- 6D FB 3F 1320 ADC CNTR ADD ON LEFT OVER POSITIONS
083B- 69 08 1330 ADC #8308 INC ACCUM TO NEXT COL VALUE
083D- CE F8 3F 1340 DEC LR COUNT ROWS SET N, Z & C
0840- DO CF 1350 BNE TOPOUT FINISHED TABLE?

0842- 00 1360 DONE BRK STOP AND CALL MONITOR
SYMBOL TABLE

0800- BEGIN

3FFB- CNTR

0842- DONE

3FFC- KEEP

3FF9- LC

3FFA- LCS

3FF8~- LR

081C- TOPIN

0811- TOPOUT

Locations LR and LC are used to store the length of a row and and the length
of a column, respectively. These locations are used to count off the rows and
columns as they are filled. The example is set up to build a 4 by 4 table; lines
1070 through 1110 put the 4s into these locations.

The accumulator must now be used to do, not only the addition for the fill
value, but also some of the addition for the addressing. CNTR is used to do the
address updating when a row is only partially filled, line 1280, and to update
the fill value when a row is only partially filled, line 1370. The purpose of line
1250 is to KEEP the current contents of the accumulator, the last fill value plus
one, safe while the address updating is done, lines 1270 through 1290, and then
to restore this value, line 1300, and update it, lines 1320 and 1330.

If you have not turned off your Apple since you ran Program 5.3, you need
to run—Iload, assemble and execute—CLEAR before running Program 5.3M1.
And if you have not turned off your Apple since you last ran CLEAR (it still
exists starting at location $6000), then you can execute CLEAR from the Monitor
by keying-in 6000G. If you do not run CLEAR before running Program 5.3M1
you will not “see” anything happen, because 5.3 put an 11 in the first row, first
column, and a 12 in the first row, second column, etc. Program 5.3M1 does the
same thing, but only in the 4 by 4 block in the table. Therefore nothing changes
in this table. Save Program 5.3M1 to disk, run CLEAR, then run Program 5.3M1.
The results are shown below.

\ |

95

;!

‘\
Ll |

Assembly Language for the Applesoft Programmer

Register contents:
084E- A=51 X-04 Y=20 P=36 S=F9
Memory contents:

3FF8- 00 00 04 04 04 45 FF FF
4000- 11 12 13 14 00 00 00 00
4008- 21 22 23 24 00 00 00 00
4010- 31 32 33 34 00 006 00 00
4018- 41 42 43 44 00 00 00 00
4020- 00 00 00 00 00 00 00 0O

This example will also fill tables that are not square. Change the number of rows
to $0B and the number of columns to $07. Run the program again; these results
are shown below.

)

Register contents:
A=C1 X=07 Y=58 P=36 S=F9
Memory contents:

3FF8- .00 00 OB 07 00 00 00 00
4000- 11 12 13 14 15 16 17 00
4008- 21 22 23 24 25 26 27 00
4010- 31 32 33 34 35 36 37 00
4018- 41 42 43 44 45 46 47 00
4020- 51 52 53 54 55 56 57 00
4028- 61 62 63 64 65 66 67 00
4030- 71 72 13 74 75 76 77 00 A
4038~ 81 82 83 84 85 86 87 00
4040- 91 92 93 94 95 96 97 00
4048- Al A2 A3 A4 A5 A6 AT 00
4050- Bl B2 B3 B4 B5 B6 B7 00
4058- 00 00 00 00 00 00 00 00

This chapter gave you some experience with branches used to construct
and control simple loops. It also showed you how to nest loops and how to
manipulate elements in a table. In the next chapter some of the examples will
use the elements in a table as input to examples on arithmetic.

i LOGICAL

OPERATIONS AND
BIT _

MANIPULATIONS

The purpose of this chapter is to illustrate two classes of instructions that are
used primarily to change or to test a single bit. Remember that a bit is the
smallest piece of information processed by a digital computer. Its value is either
a1ora 0. A byte is eight bits grouped together and is the smallest addressable
unit of information processed by a digital computer. Since only bytes (eight bits)
can be moved, stored, fetched, or processed by the 6502 ALU, there must be
instructions that easily allow for the processing, changing, and testing of single
bits in a byte. There are two classes of instructions that do this: (1) logical
operations and (2) bit shifts and rotations.

The instructions that perform logical operations are AND, EOR, and ORA.
There is one instruction that performs a logical test; it is the BIT instruction.
There are four instructions that move all the bits in a byte; they are ASL, LSR,
ROL, and ROR.

97

Assembly Language for the Applesoft Programmer

AND

)

Before going too deeply into use of these instructions, let’s look at the meaning
of the logical operation AND. This operation is performed at the bit level and
requires two bits. The table below shows all possible combinations of the required
bits in the guide row and column and the result is in the body of the table.

Mem bit
AND 01

Accbit‘ 0 ’ 00
1 01

AccBit AND Mem Bit = Result in table

0 AND 0 = 0 ,
0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

That is all there is to the AND instruction at the bit level. This is the way the
AND instruction works in the 6502:

(A) <= (A) AND (Memory)
;
That is, the contents of the accumulator are ANDed bit by bit with the contents
of a memory location, then the result is stored in the accumulator. Consider this
short program.

LDA #$33

AND #$BB s
BRK

Here is what happens.

(A) in hex — 3 3
(A) in binary — 0011 0011
(M) in binary — 1011 1011
(A) AND (M) — 0011 0011
(A) after AND — 3 3

Key-in and run this example; the results of its execution are shown below.

e ¢

Chapter 6 Logical Operations and Bit Manipulations

PROGRAM 6.1

1000 * PROGRAM 6.1 LOGICAL AND

v 1005 - .OR $800 SET ORIGIN AT $800
0800- A9 33 1010 AND LDA #$33
0802- 29 BB 1020 AND #$BB
0804- 00 1030 BRK
SYMBOL TABLE
0800- AND

Register contents:
0806- A=33 X=00 Y=00 P=35 S=F9
Note that AND sets the N and the Z flags.

(P) in hex — 3 5
(P)inbinary—-0011 0101
The flags — NV- B DI ZC

Z=0 indicating a nonzero result; N =0 indicating that bit 7 of the accumulator
is off. '

EOR

This operation is also performed bit by bit on a byte in the accumulator and a
byte in memory. This is called the Exclusive OR, EOR. The table below shows
all possible combinations of the bits. '

Mem bit
EOR 01
Acc bit 0 01
1 10

Acc Bit AND Mem Bit = Result in table

0 AND 0 = 0
0 AND 1 = 1
1 AND 0 = 1
1 AND 1 = 0

Assembly Language for the Applesoft Programmer

The EOR instruction is sometimes remembered as “one OR the other, but not

both.”)
Edit Program 6.1 to do EOR in line 1020. Key-in and run Program 6.2; the
program and the results of its execution are shown below.

PROGRAM 6.2

1000 * PROGRAM 6.2 LOGICAL EOR

1005 .OR $800 SET ORIGIN AT $800
0800- A9 33 1010 EOR LDA #$33
0802- 49 BB - 1020 ~ EOR #$BB
0804- 00 1030 BRK
SYMBOL TABLE
0800~ EOR

Register contents:

0806- A=88 X=00 Y=00 P=B5 S=F9
Here is what happened.

(A) in binary — 0011 0011

(M) in binary — 1011 1011

(A) EOR (M) — 1000 1000

(A} after EOR — 8 8

Note that EOR sets the N and the Z flags. y;
(P) in hex — B 5

(P) in binary - 1011 0101 “
The flags — NV-B DI ZC

ORA

There are two slightly different OR instructions. The other OR instruction is
called the Inclusive OR, ORA. This operation is also performed bit by bit on a

| ,f P

byte in memory and a byte in the accumulator. The table below shows all pos-
sible combinations of the bits. ‘

Mem bit
01

ORA

Acc bit 0 l 01
1 11

Acc Bit AND Mem Bit Result in table

0 AND 0 = 0
0 AND 1 = 1
1 AND 0] = 1
1 AND 1 1

The ORA instruction is sometimes remembered as “one OR the other, OR both.”
Edit Program 6.2 to do ORA in line 1020. Key-in the changes and run
Program 6.3; the program and the results of its execution are shown below.

PROGRAM 6.3

1000 * PROGRAM 6.3 LOGICAL ORA

1005 .OR $800 SET ORIGIN AT $800
0800- A9 33 1010 ORA - LDA #$33
0802- 09 BB 1020 ORA #$BB
0804- 00 1030 BRK

SYMBOL TABLE
0800- ORA

Register contents:

0806- A=BB X=00 Y=00 P=B5 S=F9
Here is what happened.

(A) in binary — 0011 0011

(M) in binary — 1011 1011

(A) ORA (M) — 1011 1011
(A) after ORA - B B

Chapter 6 Logical Operations and Bit Manipulations

;7

\
} Assembly Language for the Applesoft Programmer

BIT

Note that ORA sets the N and the Z flags.

(P) in hex —
(P) in binary - 1011 0
The flags — NV-B D

B

Z =0 indicating a nonzero result; N=1 indicating that bit 7 of the accumulator

is on.

102

The fourth logical instruction, BIT, only tests the contents of the accumulator
with the contents of a memory location. Néither the contents of the accumulator
nor the contents of memory are changed. Only the flags are changed, and the
manner in which they are set is unusual.' The BIT instruction ANDs (A) with
(M). The Z-flag is set according to the result of the operation; Z=1 if (A) AND
(M) is zero (0000), and Z=0 if (A) AND (M) is not zero (a 1 appears anywhere
in the byte). N and V are sét according to bits 7 and 6 of (M). N=bit 7 of (M);
V=bit 6 of (M). Another peculiarity of the BIT instruction is that it has only
two addressing modes: (1) zero page, (2} absolute. Edit Program 6.3 to do the
BIT instruction in line 1020; also change the contents of the accumulator to $77.
Key-in the changes and run Program 6.4; the program and the results of its

execution are shown below.

PROGRAM 6.4

0800- A9 BB
0802- 85 07
0804- A9 77
0806- 24 07
0808- 00

SYMBOL TABLE

0800- BIT

]

//

1000 * PROGRAM 6.4 LOGICAL BIT

1005 .OR $800 SET ORIGIN AT $800
1010 BIT LDA #$BB

1020 STA $07

1030 LDA #$77

1040 BIT $07

1050 BRK

Chapter 6 Logical Operations and Bit Manipulations e

Register contents:

080A- A=77 X=00 Y=00 P=B5 S=F9

Memory contents: , , |
0000- 4C 3C D4 4C 3A DB 00 BB i

|
(A) in binary — 0111 0111
(M) in binary — 1011 1011 . |
(A) AND (M) — 0011 0011(result is ‘lost‘) : ‘
(— ‘

)
A) after BIT 0111 0111(same as before)

Note that BIT sets the N, V and Z flags.

(P) in hex — B 5 I
(P) in binary — 1011 0101 ‘il
The flags -> NV-B DIZC

Z=0 indicating the result is not zero; N=1 indicating bit 7 of (M) is 1,and V=0 ‘
indicating bit 6 of (M) is-0. | |

The four instructions that move all the bits within a byte will be illustrated h ‘
next. When no operand is written for these instructions the contents of the
. accumulator are shifted or rotated. When an operand is written the contents of
: the specified memory location-are shifted or rotated. First let’s look at the shift
instructions.

ASL

The instruction that shifts bits to the left is the ASL (Arithmetic Shift Left)
instruction. This instruction sets the N, Z, and C flags. The carry bit is most
easily visualized as being situated to the left of the accumulator. The zero creator
is most easily visualized as being situated to the right of the accumulator. It has
an endless pile of zeros to place into bit 0 of the accumulator when the ASL
instruction is executed. Here is the picture, and an example that shows the
result of an ASL. -

103

Assembly Language for the Applesoft Programmer

104

Carry
bit

(A) in hex —
(A) in binary —

Bit number —

Perform an ASL on (A)—first shift.

(A) in binary— 0

(A) in hex —

Perform another ASL on (A)—second shi'ft‘."

(A) in binary — 1

(A) in hex —

Accumulator
(Memory loc)

4
0100

7654

1000

g

0000

0

3
0011

3210

0110

6

!

1100

C

Perform another ASL on (A)—third shift,

(A) in binary — 0

(A) in hex —

Perform another ASL on (A}—fourth shift.

(A} in binary — 0
{A) in hex —

The four examples shown below do 1, 2, 3, and 4 ASLs. In these examples no
operand for the ASL instruction is specified, therefore the contents of the accu-
mulator, $43, are shifted. The results of the executions are also shown.

0001

1

0011

3

1000

8

0000

0

Pile of
Zeros

f 4

PROGRAM 6.5

Chapter 6 Logical Operations and Bit Manipulations

1000 * PROGRAM 6.5

1005
0800- A9 43 1010 ASL
0802- 0A 1020
0803- 00 1030

SYMBOL TABLE
0800- ASL

Register contents:

.OR $800
LDA #%$43

ASL
BRK

0805- A=86 X=00 Y=00 P=B4 S=F9

(P) in hex — B
(P) in binary — 101 1
The flags — NV-B

PROGRAM 6.5M1

o
ao

MOVE BITS IN BYTE
SET ORIGIN AT $800

1000 * PROGRAM 6.5M1 MOVE BITS IN BYTE

1005
0800- A9 43 1010 ASL
0802- 0A 1020
0803- 0A 1021
0804~ 00 1030

SYMBOL TABLE
0800- ASL

Register contents:

.OR $800
LDA #$43
ASL
ASL
BRK

0806- A=0C X=00 Y=00 P=35 S=F9

(P) in hex — 3
(P) in binary - 0011 0
The flags - NV- B D

1
I

0o

0
Z

SET ORIGIN AT $800

105

Assembly Language for the Applesoft Programmer

PROGRAM 6.5M2
1000 * PROGRAM 6.5M2 MOVE BITS IN BYTE
1005 .OR $800 SET ORIGIN AT $800
0800- A9 03 1010 ASL LDA #$03
0802- 0A 1020 ASL
0803- 0A 1021 ASL
0804- 0OA 1022 ASL

0805- 00 1030 BRK
SYMBOL TABLE

0800- ASL

Register contents:

!

0807- A=18 X=00 Y=00 P=34 S=F9

(P) in hex — 3 4
; (P) in binary - 0011 0100
i The flags - NV- B DI ZC

PROGRAM 6.5M3

v 1000 * PROGRAM 6.5M3 MOVE BITS IN BYTE

1005 _OR $800 SET ORIGIN AT $800
0800- A9 43 1010 ASL LDA #$43
0802- 0A 1020 ASL
© 0803- OA 1021 ASL
0804- 0A 1022 ASL A
0805- OA 1023 ASL
0806- 00 1030 BRK

SYMBOL TABLE

0800- ASL
Register contents:
0808~ A=30 X=00 Y=00 P=34 S=F9

The P-flags for this program are the same as in Progrém 6.5M2.

106

Chapter € Logical Operations and Bit Manipulations , /i I
I il:

Note that a single ASL is multiplication by 2 in hex. However you must be
cautious about a 1 showing up in the Carry flag. When a 1 does show up in the
Carry flag, the result of the multiplication is no longer represented in the accu- |
mulator (memory location) alone. This is the meaning of overflow, but ASL does
not set the V-flag; only ADC and SBC do that. e

Here is a summary of the ASL operatlons viewed as mu1t1phcat10ns by two. ' i

i
First $43 li
ASL x_ $02 o ‘ i
$86 ‘ “
Ly
Second $86 ‘ *“Hi ‘ !‘
ASL X _$02 — y
10$C - (This is eight-bit overflow because the 1 is in P e
the carry flag.) ‘M ‘ |
i
Third $10C . ' i |
ASL X $002 M‘ |
$218 (But the Carry flag cannot hold a 2. In fact,
the Carry flag had a 0 shifted into it.) ‘H‘ ¥
It N
i
Fourth $18 W
ASL x_$02 I
$30 ' “ ‘
|

The instruction that shifts bits to the right is the LSR (Logical Shift Right)
instruction. For this instruction, visualize the carry bit as being situated to the
right of the accumulator (memory location), and the endless pile of zeros on the ‘ ‘ :
left of the accumulator (memory location). These zeros are placed into bit 7 of

the accumulator (memory location) when an LSR is executed. Execution of LSR i

sets the N, Z, and C flags. Since zeros are always shifted into bit 7, N is always
set to zero. Here is the picture.

- |

b
Q
~

Assembly Language for the Applesoft Programmer

108

Pile of
zeros
(M) in hex —
(M) in binary —» 0
Bit number -

First shift.
Perform an LSR on (M).

(M) in binary — 0
(M) in hex —

Second shift.

Perform another LSR on (M).

(M) in binary —» 1
(M) in hex —

Note that a single LSR is equivalent to division by two with the result truncated

to an integer. That is:

$51/$2 — (5*16 + 1)/2

The two examples shown do 1 and 2 LSRs. In these examples the operand is
the memory location $3FF8. The contents of this memory location ($51) are

Accumulator | Carry
(Memory loc) | bit

5 1
0101 0001
7654 3210
0010 1000 1

2 8
0001 0100 0

1 4

= 81/2

= 40.5 — 40 — 2*16 + 8 — $28

f

shifted. The results of the executions are shown.

PROGRAM 6.6

1000 * PROGRAM 6.6

1005
0800- A9 51 1010 LSR
0802- 8D F8 3F 1020
0805- 4E F8 3F 1030
0808- 00 1040

SYMBOL TABLE

0800- LSR

S

.OR $800
LDA #$51
STA $3FF8
LSR $3FF8 .
BRK

MOVE BITS IN BYTE

SET ORIGIN AT $800

Chapter 6 Logical Operations and Bit Manipulations

Register contents:

080A- = A=51 X=00 Y=00 P=35 S=F9
Memory contents:
3FF8- 28

(P) in hex — 3
(P) in binatry — 0011 010
The flags — NV-B DI Z

PROGRAM 6.6M1

1000 * PROGRAM 6.6M1 MOVE BITS IN BYTE

1005 .OR $800 SET ORIGIN AT $800
0800- A9 51 1010 LSR LDA #$51
0802- 8D F8 3F 1020 STA $3FF8
0805- 4E F8 3F 1030 LSR $3FF8
0808- 4E F8 3F 1040 LSR $3FF8
080B- 00 1050 BRK

SYMBOL TABLE
0800- LSR

Register contents:
080D- A=51 X=00 Y=00 P=34 S=F9
Memory contents:

3FF8- 14

(P) in hex — 3 4
(P) in binary - 0011 0100
The flags — NV-B DI ZC

109

i

Assembly Language for the Applesoft Programmer

ROL

110

There are two rotate instructions: ROL and ROR. The instruction that rotates
bits to the left is the ROL, Rotate One bit Left. This instruction sets the N, Z,
and C flags. This instruction is a rotate because bits are never lost, as they are
in a shift. The bits are circulated through the accumulator (memory location)
and the Carry bit clockwise one bit for each ROL. Visualize the Carry bit centered
above the accumulator (memory location). Here is the picture.
(Carry) — -

Contents of Acc or Mem —» ——— ———

Bit number — 7654 3218

Here is an example of how this works.

C) - 1

(A) in binary - 0101 0110

Bit nuII}ber — 7654 3210
(A) in Hex — 5 6

First Rotation..
Perform an ROL on (A). !

Q) —» 0

(A) in binary — 1010 1101

Bit number — 7654 3210
(A) in Hex — A D

Second rotation.
Perform another ROL on (A).

€ — 1

(A) in binary — 0101 1010

Bit number — 7654 3210
(A) in Hex — 5 A

PROGRAM 6.7

1005
0800- 38 1010 ROL
0801- A9 56 1020
0803- 2A - 1030
0804- 00 1040

SYMBOL TABLE
0800~ ROL

Register contents:

Chapter 6 Logical Operations and Bit Manipulations

The two examples shown below do 1 and 2 ROLs. In these examples no operand
is specified for the ROL, therefore the contents on the accumulator ($56) are
rotated left. Initially the Carry bit is set. '

1000 * PROGRAM 6.7 MOVE BITS IN BYTE

.OR $800 SET ORIGIN AT $800
SEC

LDA #$56

ROL

BRK

0806- A=AD X=00 Y=0 P=B4 S=F9

uny
wel i vs]
0o
—
N O
OO W

1000 * PROGRAM 6.7M1 MOVE BITS IN BYTE

(P) in hex —
(P) in binary - 10
The flags —- NV
PROGRAM 6.7M1
3 1005
E 0800- 38 1010 ROL
1 0801- A9 56 1020
0803- 2A 1030
0804- 2A 1035
0805- 00 1040

.OR %800 SET ORIGIN AT $800
SEC

LDA #3$56

ROL

ROL

BRK

111

;!

Assembly Language for the Applesoft Programmer

SYMBOL TABLE
0800- ROL o

Register contents:

0807- A=5A X=00 Y=00 P=35 S=F9

(P) in hex - 3 5
(P) in binary - 0011 0101
The flags — NV-B DI ZC

The last instruction to be illustrated in this chapter is the ROR, Rotate One bit
Right. This instruction sets the N, Z, and C flags. No bits are lost because they
are circulated through the accumulator (memory location) and the Carry bit
counterclockwise one bit for each ROR. As in the ROL case, visualize the Carry
bit centered above the accumulator [memor¥ location). '

() — 1

(M) in binary — 0101 0110

Bit number — 7654 3210
(M) in hex — 5 6

Perform an ROR on (M)—first rotation.

©) — 0

(M) in binary — 1010 1011

Bit number — 7654 3210
(M) in hex — A B

112

€) — 1

(M) in binary — 0101 0101

Bit number — 7654 3210
(M) in hex — 5 5

rotated. Initially the Carry bit is set.

PROGRAM 6.8

SYMBOL TABLE

0800- ROR
Register contents:
080B- A=56 X=00 Y=00 P=B4 S=F9

Memory contents:

3FF8- AB

(P} in hex — B 4
(P) in binary - 1011 0100
The flags — NV-B DI ZC

1000 * PROGRAM 6.8

Chapter 6 Logical Operations and Bit Manipulations

Perform another ROR on (M)—Sécond rotation.

The two examples shown below do 1 and 2 RORs. In these examples the operand
is the memory location $3FF8. The contents of this memory locatlon, $56, are

MOVE BITS IN BYTE

1005 .OR $800 SET ORIGIN AT $800
0800- 38 1010 ROR SEC
0801- A9 56 1020 LDA #8356
0803- 8D F8 3F 1030 STA $3FF8
0806- 6E F8 3F 1040 ROR $3FF8
0809- 00 1050 BRK

113

Assembly Language for the Applesoft Programmer

SUMMARY

PROGRAM 6.8M1

v

1000 * PROGRAM 6.8M1 MOVE BITS IN BYTE

1005 .OR $800
0800~ 38 1010 ROR SEC
0801- A9 56 1020 LDA #$56
0803- 8D F8 3F 1030 STA $3FF8
0806- 6E F8 3F 1040 ROR $3FF8
0809- 6E F8 3F 1050 " ROR $3FF8
080C- 00 1060 BRK -

SYMBOL TABLE
0800- ROR
Register contents:

080E-~ A=56 X=00 Y=00 P=35 S=F9

(P) in hex — 3 5
(P) in binary —- 0011 0101
The flags — NV- B DI ZC

SET ORIGIN AT $800

Bit operations are important because they allow you to determine the contents
of any bit of a memory location. For example, BIT (along with branch instruc-
tions) allows for program control based on the contents of a single bit. As an
alternative, an appropriate number of shift and rdtate instructions can bring any
bit into the Carry. Then the BCS, BCC instructions can be used to control the

program.

114

SECTION

LINKAGE

CHAPTER 7 .

- .

SUBROUTINE
LINKAGE .

Assembly language programming presents challenges (and opportunities) that |
the Applesoft programmer does not have. Among other things, you must decide i
where the program will be located in memory, and where each of the variables il
will be stored. As a result, you must know a little more about memory organi- i)
zation and usage than was necessary for writing Applesoft programs. Table 7.1
provides an outline of the Apple memory, and the pages ahead give a brief _ I
description of the more significant parts. | ‘

117

HOW MEMORY LOCATIONS ARE USED

Assembly Language for the Applesoft Programmer

TABLE 7.1 Apple Memory

Address

Usage

$0000—-$00FF
$0100—$01FF
$0200-$02FF
$0300—$03FF

$0400-$07FF

$0800—-$1FFF

$0800-$0BFF

$2000-$3FFF

$4000-$5FFF

$6000—$95FF
$9600—$FFFF

Page 0
Page 1; System stack
Page 2; Input buffer

Page 3; $300—$3CF: Free
space
$3D0—$3FF: System
usage

Text and Low-Resolution

Graphics page 1

Typically used for Applesoft

program and variable storage

Text and Low-Resolution -
Graphics page 2
High-Resolution Graphics
page 1

High-Resolution Graphics
page 2 .
Program and variable storage

System usage

A

118

Page Zero

Page zero consists of th

are available only through page zero.

e first 256 bytes of Apple memory, with addresses $00—
$FF These memory locations are especially useful because the 6502 architecture
allows them to be accessed more rapidly than other memory locations. For
example, the page zero reference LDA $06 requires three machine cycles, but
the reference LDA $306 requires four cycles. Further, certain addressing modes

)

Chapter 7 Subroutine Linkage

Because speed of execution is usually important to assembly language pro-
grammers, they like to use page zero as much as possible. When you are design-
ing a program, you will probably want to place many of your variables there.
Do so with caution. The programmers who wrote Applesoft, DOS, and the Mon-
itor have used many of these memory locations. Since your machine language
programs will usually use subroutines in one of these programs, or will be called
as subroutines by an Applesoft program, you must be careful that your use of
page zero does not interfere with its use by DOS or ProDOS, Applesoft, or the
Monitor. ‘

Very few page zero locations are left untouched by all three of DOS, Apple-
soft, and the Monitor. While we make no guarantees, we believe the following
are safe: $6—%$9, $19, $1E, $1F, $CE, $CF, $D7, $E3, $EB—$EE $F9—$FE

Tables in the Apple reference manuals indicate usage of page zero memory.
Be careful; the tables are incomplete. For example, in the Apple II reference
manual memory locations $1A—$1D are not shown to be used by Applesoft. In
fact, they are used by the high-resolution plotting routines. All manuals show
location $D6 to be unused by Applesoft, but it is the “mystery location.” (If the
high bit of $D6 is a 1, then all immediate-execution Applesoft commands have
the effect of-RUN.)

Your assembler probably also uses some page zero locations. This is a tem-
porary problem if you test program segments as they are assembled. The usage
of page zero by your program and by your assembler may be in conflict, causing
some strange behavior. If this occurs, you will have to exit the assembler, test
the assembled code, then reenter the assembler.

Clearly, we cannot use page zero indiscriminately. On the other hand, it is
inconvenient to be restricted to only the few “safe” locations listed above. If we
exercise some care, we can expand the list of memory locations available to us.
For example, if graphics commands will not be used by a machine language
program or by the Applesoft program that calls it, the machine language program
can use page zero locations $1A-$1C, $26, $27, $30, and others. We recommend
that you seek a source of information on zero-page usage. Several articles on
the subject have been published in computer magazines, and the book What’s
Where in the Apple, by W, E Luebbert, is an excellent reference.

Page 1

Page 1 is a term used to refer to the 256 bytes of memory addressed as $100—
$1FF. It has no speed advantages like those of page zero, and has no merit over
any other section of memory. It is used as the Apple system stack (see Chapter
3) and, as a result, should be considered to be off-limits for program or variable
storage.

Assembly Language for the Applesoft Programmer

120

Page 2

Page 2 ($200—$2FF) is used as the Apple’s input buffer. As a program line, or
input requested by a program, is typed from the keyboard, it is stored in page
2. Then, when the RETURN key is pressed the input is taken from page 2,
subjected to some processing (determined by the type of input), and stored
elsewhere in memory. Then page 2 is unused, as it awaits further input.

If you are in need of an area of memory for temporary data storage, you
may use page 2. Be careful, since any data stored there is subject to destruction
the next time you touch the keyboard.

Actually, since page 2 has no real advantages over other areas of memory,
there is no reason to use it unless you are extremely pressed for memory.

Page 3 7
Page 3 ($300—$3FF) is a more satisfactory area for storage of variables and short
machine language programs. While it does not have the speed advantage asso-
ciated with page zero, page 3 is still a desirable area of memory, since part of it
($300—$3CF) is usually unused. DOS, ProDOS, and the Monitor use locations
$3D0—$3FF so it is best to avoid their use. '

Page 4 and Beyond '

Page 1 of text (and page 1 of low-resolution graphics) occupies $400-$7FF
(except for a few bytes which are reserved for use by peripherals). If you want
to write a program that will write directly to the screen, you will do so by storing
data in this range of memory. The addressing of the text page is discussed in
Chapter 10. ’

Applesoft programs usually reside in memory beginning at $801, with their
variables and arrays usually following the program. The amount of memory
required is obviously dependent on the length of the program and on the number
of variables and arrays. Page two of text, and page two of low-resolution graph-
ics, is drawn from $800—$BFE ‘ '

High-resolution graphics page one draws its display from the memory range
$2000—$3FFF; high-resolution graphics page 2 occupies $4000—-$5FFE

Memory from $6000 to the beginning of DOS ($9600 on a 48K system) often
goes unused. Applesoft programs that are long, relocated, or have many vari-
ables or arrays may overwrite this area of memory. Otherwise it is a prime area
for use by machine language programs.

]

Chapter 7 Subroutine Linkage

ACCESSING MACHINE LANGUAGE PROGRAMS

BLOAD

The most direct way to access a machine language program is to BLOAD it from
disk, then CALL it. This was done in Program 2.7, repeated below as Program

7.1. The machine language program TONE ROUTINE is the product of the source ,

file which was given as Program 2.6. Notice that the program has no internal
references except for branches. As a result the program is relocatable (location
independent). That is, it can be loaded to any free memory locations. Line 10
of Program 7.1 could be changed to read

10 PRINT CHR$ (4); "BLOAD TONE ROUTINE, A$6000"
as long as line 60 is changed to reference the routine at this new address:

60 CALL 24576

PROGRAM 7.1

1 REM PROGRAM 7.1

2 REM MELODY

10 PRINT CHR$ (4);"BLOAD TONE ROUTINE, A$300"

20 PRINT CHR$ (4);"BLOAD TONE ROUTINE, A$300"

30 FORI =1 TO 6

40 READ DUR: POKE 6,DUR: REM DURATION OF NOTE

50 READ PITCH: POKE 7,PITCH

60 CALL 768

70 NEXT I

80 DATA 64,203,64,171,64,128,128,102,64,128,255,102

The part of memory just below DOS (or ProDOS) is a good location for storing
a machine language program. When this is done, the program can be protected
from being overwritten by Applesoft variables and strings by setting HIMEM to
a value just below the start of the program. For example, Program 7.2 loads the
TONE ROUTINE at $9500 (decimal 38144), and sets HIMEM so that the routine
is protected.

121

'—_ﬁ

Assembly Language for the Applesoft Programmer

PROGRAM 7.2

| 1 REM PROGRAM 7.2

2 REM MELODY

| 10 PRINT CHR$ (4);"BLOAD TONE ROUTINE, A$300"

| 20 HIMEM: 38144 '

30 FOR I =1TO 6

40 READ DUR: POKE 6,DUR: REM DURATION OF NOTE

50 READ PITCH: POKE 7,PITCH

60 CALL 38144

70 NEXT I

80 DATA 64,203,64,171,64,128,128,102, 64,128,255, 102E

There are occasions when it is convenient to use BRUN to BLOAD a machine
| language and begin execution of the program. This allows the machine language
“ ’ program to do some initial bookkeeping as'it is loaded. Programs 7.5 and 7.6
M‘ will illustrate the technique. v S .

I " POKE

As an alternate, we can arrange for an Applesoft program to load a machine
| I language program through the use of the POKE command. The binary file which
b is the TONE ROUTINE is given in Table 7.2.

. TABLE 7.2 Tone Routine in Hex and in Decimal

. 7

2 The File in Hex ' The File in Decimal

by

:]i

: AD 30 C0 A6 07 88 DO 04 173, 48 192, 166, 7, 136, 208, 4

) C6 06 F0 05 CA DO F6 FO 198, 6, 240, 5, 202, 208, 246, 240
* EF 60 239, 96

Program 7.3 reads the code for the subroutine from a DATA statement, then
POKEs it into memory. Note that while the approach is suitable for this example,
it would not be appropriate for a longer file. :

122

,

PROGRAM 7.3

1 REM PROGRAM 7.3

2 REM MELODY

3 REM ENTERS MACHINE LANGUAGE SUBROUTINE

10 FOR I = 0 TO 17

20 READ X: POKE 768 + I,X

30 NEXT I

40 FOR I =1 TO 6

50 READ DUR: POKE 6,DUR: REM DURATION OF NOTE
60 READ PITCH: POKE 7,PITCH

70 CALL 768

80 NEXT I

90 REM DATA FOR MACHINE LANGUAGE SUBROUTINE
100 DATA 173, 48,192,166,7,136,208,4 :
110 DATA 198,86, 240, 5,202, 208, 246, 240

120 DATA 239,96 ‘

130 REM DATA FOR TUNE

140 DATA 64,203,64,171,64,128,128,102, 64,128, 255,102

Even for short subroutines, the POKE approach is inconvenient. In this
case we first obtained a hexadecimal dump of the binary file, then converted
the numbers into decimal form. (Yes, you could use PEEK to obtain the decimal
form directly.) Then the decimal numbers must be typed into a DATA statement.
Each of these steps is cumbersome and provides opportunity for error.

Hiding a Machine Language Subroutine

It is possible to have a machine language program loaded (and saved) along
with the Applesoft program that calls it. Again, this approach is not without its
disadvantages. We will illustrate with Program 7.4. The listing shows (in line
40) that the program calls a machine language program at location 2225 ($8C3).
How did it get there? When the Applesoft program is first typed in, it will be
found that the end of the program is at 2220. The end of the program is given
by PEEK(175) + 256+*PEEK (176) .

With the Applesoft program in memory, we next BLOAD TONE ROUTINE,
A2225. Next, we change the pointer that identifies the end of the Applesoft
program: POKE 175,195: POKE 176, 8 (2243 = 195 + 256%*8). Now the pointer
identifies the end of the Applesoft program as being beyond the end of the
machine language routine. Finally, SAVE PROGRAM 7.4. DOS will save the
TONE ROUTINE along with the Applesoft program. The commands RUN PRO-

Chapter 7 Subroutine Linkage

123

Assembly Language for the Applesoft Programmer

124

GRAM 7.4 or LOAD PROGRAM 7.4 will bring both the Applesoft and the machine
language routines into memory.

WARNING: Any editing of the Applesoft program (adding, deleting, or changing
program lines) will subject the machine language program to dislocation, or
destruction. This approach should be used only with well developed Applesoft
programs, which are not likely to be edited.

PROGRAM 7.4

1 REM PROGRAM 7.4
2 REM HIDDEN PROGRAM

10 FORI = 1 TO 6 ,
20 READ DUR: POKE 6,DUR: REM DURATION OF NOTE

30 READ PITCH: POKE 7,PITCH
40 CALL 2225

50 NEXT I
60 DATA 64,203,64,,.171,64,128,128,102,64,128,255,102

& (Ampersand)

y
The most common way of accessing a machine language program is to use the
CALL command. The CALL must specify the location (in decimal) at which
execution of a machine language program is to begin. Thus CALL 768 causes
execution to begin at location 768 ($300) and CALL —151 causes execution to
begin at location 65185 (65336 — 151). The ea}lier examples in this book have
used CALL to access machine language programs from Applesoft.

The ampersand (&) symbol provides another means to transfer control to a
machine language program. & is a reserved word in Applesoft, and is a valid
Applesoft command. When the command is executed, control is transferred to
whatever machine language program is resident at $3F5. When DOS 3.3 is in
control, that program is just ’

JMP $FF58
and the program at $FF58 is

RTS

As a result, an & is nonproductive, unless provision has been made for some
worthwhile activity at $3F5

Note: ProDOS does not automatically store a JMP at $3F5.

Memory locations $3F0—$3FF have been reserved for various jump instruc-

here. Space is available at $3F5-$3F7 for a jump instruction that will be called
through the & instruction. For example, if you provide the command

3F5- 4C 6E A5 JMP $A56E

then the & instruction (either in an Applesoft program or as an immediate-
execution command) will result in a CATALOG, since the DOS CATALOG
instruction lives at address $A56E. (This can be a good use of & if you have
many disks to catalog.)

Remember that the & command is intended as a means of extending the
Applesoit language. Many utility programs that use & have been published in
computer magazines. Our purpose here is primarily to show how to effectively
use it. Providing a valuable utility program is a secondary concern. The program

we present is brief, but illustrates &, along with the display screen soft switches,
indirect and indexed addressing, loops, and TXTPTR.

Soft Switches

Program 7.5 will allow & to access the display screen soft switches. The soft
switches are eight memory locations that control the source and type of screen
display. The switches and their effects are shown in Table 7.3 and in Appen-
dix E

The program segment below illustrates the use of the soft switches. The
effect of the commands will be to display page one of high-resolution graphics,

in full screen mode. Other display modes can be displayed through similar
means.

BIT $C050
BIT $C052
BIT $C054
BIT $C055

Chapter 7 Subroutine Linkage ; ‘ |

tions. The addresses of power-up, interrupt, and similar routines are stored -

i

125

Assembly Language for the Applesoft Programmer

126

TABLE 7.3 Effects qf Soft Switches

v

Location Efféct

$C050 Display graphics
$Co51 Display text
$C052 . Full screen
$C053 Mixed screen
$C054 Page 1

$C055 " Page 2

$C056 Lo-tes graphids
$C057 Hi-res gfaphics

Note that here we are displaying the graphics page, in contrast to the commands
HGR or HGR2, which display and clear the graphics pages.

While the program segment above uses BIT to set the soft switches, other
commands (e.g., LDA $C050, STA $C055) would be just as effective.

Further use of soft switches is shown in Chapters 10 and 11.

TXTPTR

CHARGET is an Applesoft subroutine that begins at $B1. Its purpose is to read
the contents of memory locations pointed to by the contents of TXTPTR ($B8,
$B9). Usually TXTPTR is pointing at the inpyt buffer ($200 - $2FF) or at an
Applesoft program. When an Applesoft program transfers control to a machine
language program, TXTPTR provides a way for the machine language program
to read information from the Applesoft program. Programs 7.5 and 7.6 illustrate
this technique.

PROGRAM 7.5

0001 * PROGRAM 7.5
1000 .OR $300
1010 * SET UP & VECTOR ON BRUN

Chapter 7 Subroutine Linkage

0309- 69 17 1060 ADC #$117 * $17 PLUS _ y
030B- 8D F6 03 1070 STA $3F6 * DESTINATION OF |
030E- AD 73 AA 1080 LDA $AAT3 * OF FILE MOST
0311- 69 00 1090 ADC #$00 * RECENTLY BLOADED
0313- 8D F7 03 1100 STA $3F7 .
0316- 60 1110 RTS RETURN TO BASIC

1120 *ommmmm oo :

1130 * INTERPRET & COMMAND STRING
0317- A0 00 1140 LDY #$00
0319- B1 B8 1150 A LDA ($B8),Y READ CHARACTER
031B- A2 08 1160 LDX #$08 TEST AGAINST 8 COMMANDS
031D- CA 1170 B DEX
031E- 30 10 1180 BMI RET NO MATCH, QUIT
0320-'DD 31 03 1190 CMP DATA, X
0323- DO F8 1200 BNE B NOT A MATCH _
0325- 9D 50 C0.1210 STA $C050,X TOGGLE SOFT SWITCH
0328- E6 B8 1220 INC $BS8 *)
032A- DO 02 1230 - BNE C * INCREMENT TXTPTR
032C- E6 B9 1240 INC $B9 *
032E- DO E9 1250 C BNE A ALWAYS
0330- 60 1260 RET RTS

0331- 47 54 46
0334- 4D 31 32
0337- 4C 48 1270 DATA .AS /GTFM12LH/

SYMBOL TABLE

0319- A
031D- B
032E- C
0331- DATA
'0330- RET

NOTE: The .AS in the above program is the S-C Assembler’s directive that stores
the character string GTFM12LH in sequential location starting at the current loca-

127

Assembly Language for the Applesoft Programmer

128

tion ($0331). The slashes are the delimiters that denote the beginning and the end
of the character string. The equivalent directive for the Big Mac or DOS Tool Kit
assemblers is ASC.

PROGRAM 7.6

1 REM PROGRAM 7.6

2 REM DEMONSTRATES &

10 PRINT CHR$ (4);"BRUN AMPERSOFT,A$300"
20 & HIFG

30 INPUT A$

40 &T

50 INPUT A$

60 & 2LG ,

70 INPUT A$

80 & T1

Program 7.6 illustrates the use of & to call a machine language program, AMPER-
SOFT, which results from Program 7.5. Since the two programs are linked, we
will discuss them together.

Line 10 of Program 7.6 will BRUN AMPERSOFT. As a result, AMPERSOFT
is loaded and the program is executed, begihning at the specified address ($300
in this case). AMPERSOFT is relocatable, so it could be loaded elsewhere if you
wish.

AMPERSOFT has two parts: a bookkeeping phase and a soft switching
phase. BRUN actually executes only the first (bookkeeping) part of AMPER-
SOFT. The RTS at line 1120 will return control to the Applesoft program. The
initial part of AMPERSOFT (lines 1030-1120) sets the JMP address that is
required by &. The destination address of the most recently BLOADed file is
read from $AA72-$AA73 (in this case that would be $300), and an offset is
added to account for the length of the bookkeeping phase of AMPERSOFT. When
control is returned to Applesoft, the contents of $3F5—-$3F7 will be 4C 17 03,
or

$3F5- 4C 17 03 JMP $317
Whenever Applesoft encounters an &, it will transfer control to the machine

language program that is located at $317. That program is the soft-switch phase
of AMPERSOFT.

Lines 20, 40, 60, 80 of Program 7.6 illustrate the Applesoft side of the &
command, The characters G, T, E M, 1, 2, L, H are used to identify the soft
switches to be toggled, as shown in Table 7.3.

The order in which the switches are accessed is not important, and the
number of switches accessed with a single & is arbitrary. The INPUT A$ in lines
30, 50, 70 provides a request for input, to postpone further access to the soft
switches. The input is ignored.

The machine language side of the & is more complex.. The program must
(1) read each of the characters which follow the &, (2) decide which soft switch
should be toggled, and (3) toggle the switch. Further, we don’t want the program
to bomb if an extraneous character should appear; it would be better either to
print “SYNTAX ERROR,” or to take no visible action.

When Applesoft reads the &, it advances TXTPTR ($B8, $B9) so that it is
pointing at the byte that follows the keycode for &. It is at thls point that the
machine language program takes over.

After setting the Y-register to zero (line 1140), we use TXTPTR to load the
accumulator with the contents of the byte that immediately follows the & (line
1150). Lines 1160 through 1200 then try to match the contents of the accumu-
lator with the code for one of the characters G, T, E, M, 1, 2, L, H. The X-register
is used to identify the character being tested. (X will contain 0, 1, 2, 3, 4, 5, 6,
7 as we are testing G, T, E M, 1, 2, L, H, respectively.)

If a match is obtained, the contents of X provide an index to the proper soft
switch for line 1210:

1210 STA $C050,X

Then TXTPTR is incremented (lines 1220-1240) and a forced branch (line
1250) directs control to line 1150, where the next byte is read.

If no match is found, we can assume that either an extraneous character has
been read, or that we have reached the end of the & string of command char-
acters. In either case, when the X-register is decremented past zero (line 1170),
the N-flag will be set. Then line 1180 (BMI RET) will return control to the
Applesoft program without incrementing TXTPTR. Applesoft will immediately
read the byte pointed to by TXTPTR. If that byte is at the end of the command
string, its contents will be either $3A (:) or $00 (end-of-Applesoft-line code). In
this case Applesoft will continue execution of the remainder of the program.
If the unmatched character is not the expected $3A or $00, then Applesoft
will print “SYNTAX ERROR,” and exit the program.

Modify Program 7.5 to require a specific syntax from the & command string.
For example, you could require that consecutive characters be separated by
commas. The modified program would then confirm that the commas were
present before proceeding.

Chapter 7 Subroutine Linkage

129

.

Assembly Language for the Applesoft Programmer

130

CTRL-Y and USR

v

& permits the extension of the Applesoft language to include a user defined
command. CTRL-Y and USR also provide extensions. We will devote less dis-
cussion to these two, since they behave in a manner that is similar to &, but are
generally less valuable.

CTRL-Y permits extension of the Monitor. If you type CTRL-Y (press CTRL
and Y, then RETURN) while in the Monitor, you will initiate a JMP to memory
location $3F8. At that location you should have a JMP to a machine language
subroutine. For example, if you have

$3F8- 4C 6E A5 JMP $A56E

then CTRL-Y is the CATALOG command. If you are testing a machine language
program that turns on the graphics screen and displays some graphics images,
then you might want to have CTRL-Y access a machine language program that
sets the display screen to TEXT, page 1. That way you can easily return to the
text screen each time you test the graphics. program. '

USR provides another means of extending Applesoft. The syntax for use is
USR(aexpr), where aexpr is an arithmetic expression. Forms such as USR(5) or
USR(2#X) are acceptable. When Applesoft encounters USR(aexpr), it transfers
control to the machine language program that resides at $000A, after evaluating
aexpr and storing the result as a floating-point number in the Main Floating-
Point accumulator (MFP). (More on floating point numbers in Chapter 8.) It is
incumbent on you to see that an appropriate machine language program is at
$000A. Since page zero locations are in heavy demand, USR is best utilized by
having location $000A provide a jump to a machine language program. For
example,

000A- 4C 00 03 JMP $300 /

USR is not a frequently used means of passing control to machine language
programs. It can be very useful in cases that require floating-point numbers to
be passed from an Applesoft program to a machine language program.

Programs 7.7 and 7.8 illustrate the use of USR. Program 7.7 makes use of
floating-point subroutines, which are discussed in Chapter 8, so this example
may not be entirely clear as you read it. If that is the case, return to it after
reading Chapter-8.

Program 7.7 is a subroutine that multiplies a given number by ***. The
number is found in the Main Floating-Point Accumulator (put there by USR),
then multiplied by 2*** and by .5, and the result left in the Main Floating-Point
Accumulator. On return from the subroutine, the answer is found as the value

Applesoft prog

ram.

PROGRAM 7.7

1000 * PROGRAM 7.7 USR

Chapter 7 Subroutine Linkage

of USR. Program 7.8 illustrates the way in which USR can be used within an

1010 .OR $300 .
0300~ A9 64 1020 LDA #$64 .5 STORED
0302- A0 EE 1030 LDY #3$EE AT $EE64
0304- 20 7F E9 1040 JSR $E9TF MULT BY .5
0307- A9 6B 1050 _LDA #$6B 2*PI STORED
0309- A0 FO 1060 LDY #$FO0 AT $F068
030B- 20 7F E9 1070 JSR $E9TF MULT BY 2*PI
030E- 60 1080 RTS) '

PROGRAM 7.8

1 REM PROGRAM 7.8 USR i

10 POKE 10,76: POKE 11,0: POKE 12,3
20 FOR I = 768 TO 782

30 READ X: POKE I,X

40 * NEXT I

50 INPUT "ENTER A NUMBER X ";X

60 PRINT "X TIMES PI = "; USR (X)

70 PRINT : PRINT "PI = "; USR (1)

80 PRINT : INPUT "RADIUS OF CIRCLE ";RAD
90 PRINT "CIRCUMFERENCE = ";RAD * USR (2)

100 DATA
110 DATA
120 DATA

169,100,160, 238
32,127,233,169, 107
160, 240, 32,127, 233, 96

The linkage of machine language programs to Applesoft programs is an
important part of assembly language. It is not always necessary to pass variables
to the machine language program. In those cases CALLs are as effective as any
process.

The most common way to pass variables to a machine language program
seems to be the POKE and CALL approach. In many cases & might be a better
choice. Experiment with its use in some of the examples given earlier in this
book. Following the discussion of floating-point subroutines in Chapter 8, you
may find further uses for USR.

131

CHAPTER

- | N
USING APPLESOFT
FLOATING-POINT
SUBROUTINES

All of the discussion so far has been directed toward working with numbers
that are integers. A lot of programming requires nothing more, but there are
many other occasions when it is necessary to perform calculations with num-
bers that have fractional parts. Of course, the processor can deal only with 0s
and 1s. If it is necessary to perform calculations with numbers that are not
integers, we first must establish a way of representing those numbers as strings
of 0s and 1s. We will use the standard Applesoft floating-point form to represent

such numbers. We also need algorithms and subroutines that will perform the

desired calculations. Fortunately, most of this work has been done, and the
results are available in the Applesoft floating-point ROM subroutines. If you are

133

g Assembly Language for the Applesoft Programmer

not familiar with Applesoft packed and unpacked excess $80 floating-point
notation, read Appendix C before going any further.

If we wish to have a floating-point calculation performed by an assembly
language program, we will make the appropriate numbers available in floating-
point form, and then call the Applesoft subroutine that performs the arithmetic,

THE FLOATING-POINT ACCUMULATORS

134

Before accessing these Applesoft routines you most know how two areas of page
zero are organized for their use. The locations $9D, $9E, $9E $A0, $A1, $A2
together are called the Main Floating-point ACcumulator, or MFAC. Locations
$A5, $A6, $A7, $A8, $A9, $AA together are called the Secondary Floating-point
ACcumulator, or SFAC. These are new uses of the word accumulator. MFAC and
SFAC are zero page locations used to communicate with the Applesoft floating-
point subroutines that are on pages $D0 through $F7 of ROM. These locations,
MFAC and SFAC, are not the same as the 6502’s accumulator. To avoid confusion,
throughout the rest of this chapter, we will refer to the 6502’ accumulator
simply as A.
Imagine that MFAC and SFAC are laid out like this:

MFAC -» __ _ _ _ __ __
Address — $9D $9E $9F $A0 $A1 $A2
Purpose — EXP <- Mantissa -> SGN

SFAC - . __ __ _ __ __
Address — $A5 $A6 $AT $A8 $A9 $AA
Purpose — EXP <- Mantissa -> SGN

Location $9D ($A5) of MFAC (SFAC) holds the p'lcl)wer of two with $80 added to
it; this is the “excess” of excess $80 notation. This location is the EXPonent, or
EXP, of the floating-point number. Locations $9E through $A1 ($A6 through $A9)
make up the mantissa, which is the fractional part of MFAC (SFAC). Location
$A2 ($AA) is used to denote the SiGN, or SGN, of the number. Only the high
bit (leftmost bit) of $A2 ($AA) is used. The rest of the bits in this byte do not
have any meaning. If the high bit of $A2 ($AA) is off (is equal to zero), the
number in MFAC (SFAC) is positive. If the high bit is set (is equal to one), the
number in MFAC (SFAC) is negative. Each hex digit of the mantissa indicates
the reciprocal power of sixteen (the place value) it is to be multiplied by in the
conversion to base ten.

Chapter 8 Using Applesoft Floating-Point Subroutines

Here is an example of what this means. Suppose that either MFAC or SFAC
contains 84 AD 00 00 00; then the conversion to base ten goes like this:

MFAC address --> 9 D 9 E 9 F A 0 A 1
SFAC address --> A 5 A 6 A 7 A 8 A 9
Contents --> 8 4 A D 0 0 0 0 0 0
EXP <—-- Mantissa ——>
Place value --> 84-80 -1 -2 -3 -4 -5 -6 -7 -8
2 16 16 16 16 16 16 16 16
4 .
Conversion 2 x(10/16 + 13/256 + 0/4096 + 0/65536 + ...)
to 16 *(10/16 + 13/256 + 0 + 0 + 0 + 0 + O + 0)
base (10 + 13/16)
ten (10 + 0.8125)

10.8125

Note that the EXP is multiplied by the sum of all the reciprocal powers of
sixteen. : '

A word about zero is required: The Applesoft floating-point routines con-
sider a representation to be zero if EXP is zero, regardless of the value of the
mantissa.

NORMALIZATION

; There is one other peculiar, but easy to -understand, aspect of MFAC (SFAC)
that must be understood before these locations can be used to communicate
with the Applesoft floating-point subroutines: normalization. This means
that the floating point representation of the number must have the high bit (left-
most bit) of the mantissa set. If you have an excess $80 notation of a number
that is not normalized, for example 5 —> 84 50 00 00 00, it must be normal-
ized before it is used in any calculation. Shift left the bits in the mantissa; for
each shift left, decrease the EXP byte by one. Keep shifting and decreasing un-
til a 1 appears in the high bit of $9E ($A6). In the representation of 5 shown
above only one shift/decrease is required to normalize the representation of
5 —> 83 A0 00 00 00.

Assembly Language for the Applesoft Programmer

—""*1

Normalization is not something that must be done by hand. In Program 8.1,
lines 1020 through 1130 initialize MFAC and SFAC with the unnormalized

representation of +5 given in the paragraph above.

PROGRAM 8.1

E82E-~

0800- A9
0802~ 85
0804~ 85
0806- A9
0808- 85
080A- 85
080C- A9
080E- A2
0810- 95
0812- 95
0814- CA
0815- 10
0817- 20
081A- 00

84
9D
A5
50
9E
Ab6
00
03
9F
AT

F9
2E E8

SYMBOL TABLE

0800~ BEGIN
0810- LOOP
E82E- NORM

1000
1005
1010

1020

1030
1040
1050
1060
1070
1080
1090
1100

* PROGRAM 8.1 NORMALIZATION)

NORM:

.OR $800
.EQ $E82E

BEGIN LDA #$84

LOOP

1110 .

1120

1130,

1140
1150

STA $9D
STA $A5
LDA #$50

.STA $9E

STA $A6
LDA #$00
LDX #$03

STA $9F, X

STA $AT7;X
DEX

BPL LOOP

JSR NORM

BRK

SET ORIGIN AT $800 ‘

EXP
MANTISSA, HI 1

MANTISSA, SIGN

Note that the SGN bytes are clear, indicating tHat the number is positive. The
JSR (line 1140) is to the normalization routine, NORM, which begins at $E82E.

This routine normalizes MFAC, but not SFAC. The BRK leaves us in the Monitor
and the contents of the registers, MFAC ($9D through $A2) and SFAC ($A5

through $AA), can be displayed.

Registers:

081C- A=83 X=50 Y=00 P=BO S=DC

‘Memory:

009D- 83 A0 00 00 00 00
00A5- 84 50 00 00 00 00

136

00 00 00, is not.

CALCULATING; MULT

Chapter 8 Using Applesoft Floating-Point Subroutines

Note that MFAC is now normalized, 83 A0 00 00 00 00; but SFAC, 84 50 00

Program 8.2 loads MFAC and SFAC with +8 —> 84 80 00 0000 00. Lines 1020
through 1130 initialize MFAC and SFAC. Note that the SGN bytes are set to 00, -
indicating the number is positive. Lines 1160 through 1180 need further

explanation.

PROGRAM 8.2

E982-

0800- A9
0802- 85
0804- 85
0806- A9
0808- 85
080A- 85
080C- A9
080E- A2
0810- 95
0812- 95
0814- CA
0815- 10
0817- 85
0819- 85
081B- A5
081D- 20
0820- 00

84
9D
A5
80
9E
A6
00
03
9F
AT

F9

AC

9D
82 E9

SYMBOL TABLE

0800- BEGIN
0810- LOOP
E982~ MULT

1000
1005
1010
1020
1030
1040
1050
1060
107

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

* PROGRAM 8.2 MFAC & SFAC

MULT

.OR $800
.EQ $E982

BEGIN LDA #$84

LOOP

STA $9D
STA $A5
LDA #$80
STA $9E
STA $A6
LDA #$00
LDX #$03
STA $9F,X
STA $A7,X
DEX

" BPL LOOP

STA $AB

STA $AC

LDA 39D

JSR MULT
BRK

SET ORIGIN AT $800

EXP
MANTISSA, HI
MANTISSA, SIGN

FILL MANTISSA

SET $AB AND

$AC TO O
ALSO SETS Z
(MFAC) * (SFAC) -> (MFAC)

137

Assembly Language for the Applesoft Programmer

\ ‘ Registers:

0822- A=87 X=40 Y=00 P=0 S$=D8

Memory:

009D- 87 80 00 00 00 00
00A5- 84 80 00 00 00 00

This example uses the Applesoft MULTiplication subroutine that starts at $E982
Using this as an entry point requires that:

1. Byte $AB has been properly initialized. It should receive
[SGN(MFAC)] EOR [SGN (SFAC)]

‘ ! We will shortly describe a subroutine which loads SFAC. As it does so, it
‘ ‘ : also sets the value of $AB for us. '
\
|
Iy
|

‘ 2. Byte $AC is an extra (extension, guard) byte that provides greater accuracy

‘ ‘ to the result of the multiplication. In’ general, it provides this extended

I accuracy for any floating-point operation. Its place value is sixteen to the

L 1 minus nine power, 1/68,719,476,736. Since such accuracy is not required
for this example, we load $AC with 0.

3. The EXP of MFAC must be loaded in the 6502’ accumulatof just before the

MULT subroutine is called; line 1180 satisfies this requiremerit.
,

i, The multiplication is performed and the result is placed in MFAC.
8+8 = 64 - > 87 80 00 00 00 - > 27 * (8/16) = 64

Usually you will not load MFAC and SFAC /by hand as was done in this
example. There are Applesoft subroutines that perform these tasks. The true
Lo purpose of the example was to familiarize you with MFAC, SFAC, and excess
| $80 notation. We will not be loading MFAC and SFAC by hand in any of the
bl later examples.

UNPACKING AND PACKING

Several floating-point numbers are already stored in the computer (see Table
8.7 for a partial list). Use the Monitor to examine the contents of locations $EE64
through $EE68. You should see

EE64- 80 00 00 00 00

displayed on your screen. These five numbers define the number + 1/2 in PACKED
excess $80 notation. A packed number is one whose sign is stored in the high
bit of the second byte (the first byte of the mantissa). In this example this byte
has hex 00 —> binary 0000 0000. Note that the high bit is clear. This means the
number is positive. Packed format is the way the Applesoft interpreter stores
numbers in its variable storage area. You can quickly convert (UNPACK) to the
MFAC (SFAC) format by (1) storing the first byte of the mantissa in the sign byte
(of course, only the high bit is important), and (2) ORAing the first byte of the
mantissa with $80. For example, ‘

First byte of mantissa in binary — 0000 0000
ORA $80 in binary — 1000 0000

Result in binary — 1000 0000
Result in hex — 8 0

The unpacked format of +1/2 as it would appear in MFAC or SFAC is:

MFAC (SFAC) format — 80 80 00 00 00 00
(Unpacked format) EXP <Mantissa> SGN

Note that the leftmost bit of SGN is clear; this means the number is positive.
Locations $E937 through $E93B contain the packed representation of
—-1/2.

$E937- 80 80 00 00 00
The high bit of the second byte is set, indicating that the number is negative. To
unpack it, store the first byte of the mantissa in the sign byte and ORA the first
byte of the mantissa with $80:

First byte of mantissa in binary — 1000 0000
ORA $80 in binary — 1000 0000

Result in binary — 1000 0000
Result in hex — 8 0

MFAC (SFAC) format — 80 80 00 00 00 00
(Unpacked) EXP <Mantissa> SGN

Note that the leftmost bit of SGN is set, so this number is negative.
There is an Applesoft subroutine that will unpack a floating-point number
and MOVe the unpacked result into MFAC. This subroutine also initializes loca-

Chapter 8 Using Applesoft Floating-Point Subroutines

139

Assembly Language for the Applesoft Programmer

MOVMI (MOVe MFAC In), is located at $EAF9. (Remember that we are now
referring to the 6502’s accumulator simply as A.) To use MOVMI, A must be
loaded with the low byte of the address of the beginning of the number, and Y
must be loaded with the high byte of the address of the beginning of the number.

When MOVMI returns, the number has been unpacked and placed into
i MFAG, location $AB has been initialized, and EXP has been loaded into A. In
‘ Program 8.3, lines 1030 and 1040 establish the beginning address of 1/2 in Y
13; and A, $EE64. Statement 1050 calls MOVMI. The next two statements, 1060 and
|

!
|
:‘ t tion $AB and loads the MFAC EXP into the 6502’s accumulator. The subroutine,
|
\

1070, load Y and A with the beginning address of — 1/2. The Applesoft entry |
point named LMULT unpacks the number — 1/2 into SFAC, resets $AB, and then

yields control to the MULTiplication subroutine used in Program 8.2.
PROGRAM 8.3
f(ﬁ . 1000 * PROGRAM 8.3 UNPK & MULT
““ EAF9- 1010 MOVMI .EQ $EAF9
! E97F- 1020 LMULT .EQ $E97F
} 0800- A0 EE 1030 BEGIN LDY #$EE
! 0802- A9 64 1040 LDA #$64
0804~ 20 F9 EA 1050 - JSR MOVMI
| 0807- A0 E9 1060 LDY #$E9
| 0809- A9 37 1070 LDA #$37
) 080B- 20'7F E9 1080 JSR LMYLT
| 080E- 00 1090 BRK
K
‘ SYMBOL TABLE
o 0800- BEGIN ,
i E97F- LMULT -

EAF9- MOVMI |
The results of running Program 8.3 are shown below.
Registers:

0810- A=7FX=40Y=00P=34 S=Fg

Memory:

1 009D- 7F 80 00 00 00 80
‘ 00A5- 80 80 00 00 00 80
|

Chapter 8 Using Applesoft Floating-Point Subroutines

Note the result of the multiplication in MFAC:

(1/2)%(—1/2) = (—1/4) — 7F 80 00 00 00 80 — (— 2~ ')*(8/16)
= (—1/4)

Notice that Program 8.3 used MOVMI to unpack a floating-point number and
store it in MFAC. The LMULT subroutine unpacked a second number, stored it
in SFAC, then transferred control to a MULTiplication routine that returned the
product of MFAC and SFAC. ' ,

There are other subroutines that pack and unpack floating-point numbers,
and copy floating-point numbers from one location to another. These are sum-
marized in Table 8.5.

~'WHAT IS IN A NAME?

Throughout this chapter we are describing ways to access Applesoft floating-
point subroutines. It is easier to describe the subroutines if they are given names,
and we have done so. So for as we know, neither Apple Computer nor Microsoft
(which wrote the Applesoft floating point package) has published an “official”
set of names for the subroutines. .

As you read other references, you may encounter different labels. For exam-
ple, the main floating-point accumulator (MFAC) is sometimes called FAC or
MFP. The secondary floating-point accumulator is sometimes called ARG or SFP
The MULT routine has been called FMULTT, and the EXP routine has been
called FPWRT.

We do not like to see a proliferation of labels. However, the labels we have
seen elsewhere generally did not fit our desire to have short, consistent, descrip-
tive labels. As a result, we have introduced our own.

THE FLOATING-POINT REPRESENTATION OF A NUMBER

The last two programs used the multiplication subroutine of Applesoft to illus-
trate the format of floating-point numbers in memory (five bytes, packed excess
$80). In the Program 8.2, the conversion from base-ten to packed notation was
done by hand and the result was loaded directly into MFAC and SFAC. In
Program 8.3, floating-point numbers that already exist in Applesoft were used
to load MFAC and SFAC.

If we are to perform meaningful calculations, we must have a way to provide
the floating point form of any arbitrary number. The easiest way to place floating-

Assembly Language for the Applesoft Programmer

| point numbers into memory in packed notation is to use an Applesoft program
i to do the conversion. o
‘ Applesoft recognizes three types of variables: 1) Real, 2) Integer—%, 3)
String—$. We shall focus our attention on real type variables. The last part of
this chapter describes integer storage and representation. If you understand the
format of real variables the others are a snap!
Example 8.4 identifies several variable names and the values to be converted.

10 REM EXAMPLE 8.4

20 REM SIMPLE VARIABLES

100 A = 12:B = 12.73:C = -0.00321:
D= -2.9388E - 7

Type NEW, or FP, then key-in the program and RUN it. When it is run the
1 variables are packed into memory. To locate their address, erter the Monitor
; 2 (CALL —151) and examine the contents of locations $69 through $6C. These
| ’ four bytes point to the beginning address ($69 -low byte, $6A—high byte) and
! the ending address plus one ($6B—low byte, $6C—high byte) of the simple var-
iable table. In this example we find the following:

0069 - 54 08 70 08

B This tells us that the simple variables have been packed into memory starting
: at $853 and ending at $86E. The contents of these locations are:
4
P 0854- 41 00 84 40 00 00 00
: 085b- 42 00 84 4B AE 14 7B
0862- 43 00 78 D2 5E DD 03
0869- 44 00 6B 9D C6 8F 46

|

‘ } The information in these bytes is organized like this:
N
\
!

A=12-> 4 00 8 40 00 00 00
Address — $854 $855 $856 $857 $858 $859 $85A
charl char2 EXP < Mantissa —
: of of 4
| namel namel 2 %(12/16 + 0 +)
i “A” “ o 12

Each simple variable in Applesoft requires seven bytes of memory for storage.
The first two bytes contain the name of the variable, and the next five bytes

142

w

Chapter 8 Using Applesoft Floating-Point Subroutines

contain its value in packed format, ready for use by MOVML. (If you would like
to see how to convert a number to packed excess $80 notation by hand, see
Appendix C.) The rest of the values of the variables defined in statement 120

are:

B =1273— 42 00 84 4B AE 14 7B
Address— $85B $85C $86D $85E $85F $860 $861

C = —-0.00321 — 43 00 78 D2 5E DD 03
Address — $862 $863 $864 $865 $866 $867 $868
D = —2.9388E-7 — 44 00 6B 9D Cé - 8F 46

Address — $869 $86A $86B $86C $86D $86E . $86F

You can recover the memory area occupied by the program by keying-in
only the variable names and their values. When you press RETURN at the end
of the line, Applesoft begins packing the variables, starting at location $803.
Here is an example of this technique.

PROGRAM 8.4M1

JFP
]A=12:B=12.73:C=-0.00321:D=-2.9388E-7

JCALL -151
*69. 6C

0069- 03 08 1F 08
*803. 81K

0803- 41 00 84 40 00

0808- 00 00 42 00 84 4B AE 14
0810- 7B 43 00 78 D2 5E DD 03
0818~ 44 00 6B 9D C6 8F 46

ES

APPLESOFT ARRAY STORAGE

If there are more than a few variables to pack into memory, there is a more
convenient method for using Applesoft to pack the variables. Program 8.5 uses

143

Assembly Language for the Applesoft Programmer

an array designated A to organize the packing. Array storage is organized dif-
ferently because the values all have the sarne name, A, and differ only in their
position in memory. Key-in and RUN the Applesoft program shown in the exam-
ple. You can use this program to have Applesoft pack any number of variables.

PROGRAM 8.5

10 REM EXAMPLE 8.5 1-D ARRAYS

100 INPUT "N: NUMBER OF VARIABLES
TO BE CONVERTED. "; N%

110 N% = N% - 1 '

120 DIM A (N%)

130 FOR I = 0 TO N%

140 PRINT "I = ";I. INPUT A(I)

150 PRINT

160 NEXT I

JRUN

N: NUMBER OF VARIABLES TO BE CONVERTED. 4
I =0

712

I=1 4
?12.73

OII

. 00321

?-2.9388E-7

JCALL-151

*6B. 6E
06B- A4 08 BF 08

*8A4. 8BE

08A4- 41 00 1B 00

08A8- 01 00 04 84 40 00 00 00
08B0- 84 4B AE 14 7B 78 D2 5E
08B8- DD 03 6B 9D C6 8F 46

Chapter 8 Using Applesoft Floating-Point Subroutines

Call the Monitor and display the contents of locations $6B and $6C. These
Jocations contain the starting address of the array information, $8A4 (your address
may be different). Locations $6D and $6E contain the ending location plus one,
$8BE A listing of the contents pointed to by these locations is shown above.
The first several bytes of the array block (the header) describe how the entire
block is organized. For this example the header is seven bytes long. The infor-
mation in the header is organized like this:

Header — 41 00 1B 00 01 00 04
Address — $8A4 $8A5 $8A6 $8A7 $8A8 $8A9 $8AA
charl char2 LENGTH of # of Range of -

of of this block DIMs right most
name name . index
&% A.’Y. (13 ”

If the array has more than one dimension, each index requires two bytes
for its range. Since our array has only one DIMension, only two bytes are required.
If an array has three DIMensions then the header is 5 + 3%2 = 11 bytes long.
The length of an array block is contained in the third and fourth bytes of the
heading and is easily calculated. For this example: (1 DIMension) * (4, its range)
= (4 variables), (4 variables) * (5 bytes per variable) = (20 bytes for variables),
(20 bytes for variables) + (7 bytes for header) = ($1B the length of this block).

The remainder of the block is organized like this:

Starting Contents Base ten
I address - packed value
0 $8A4+%$7=%8AB 84 40 00 00 0O 12
1 $8AB+$5=%$8B0 84 4B AE14 7B 12.73
2 $8B0+$5=%8B5 78 D2 5E DDO03 —0.00321
3 $8B5+$5=$8BA 6B 9D C6 8F 46 —2.9388E—7

FLOATING-POINT CALCULATIONS

Now that you have seen an easy way of obtaining the packed form of numbers,
and have copied routines to load and store the contents of MFAC and SFAC, we
will show how to use the floating-point calculating subroutines. Each of the
following examples illustrates a floating-point calculation. The examples also
illustrate various ways of providing floating-point numbers for use by the sub-
routines; and show how the results of the subroutines can be read, or made
available to other subroutines, or passed to an Applesoft BASIC program.

145

Assembly Language for the Applesoft Programmer

Program 8.3 used MULT after MFAC and SFAC had been loaded. The other
floating-point operations (addition, subtraction, division, exponentiation) have
a similar organization to MULTlphcatlon For all the operations except expo-
nentiation there are two entry points. One entry point is provided for the case
when MFAC and SFAC are already loaded and only the operation needs to be
performed. (This is the only way exponentiation is organized.) A second entry
point is usually provided for the case in which MFAC is already loaded by
MOVMI, but SFAC needs to be loaded and then the operation performed. (Each
of these begin with a JSR MOVSI—see Table 8.5.) The result of the operation is
always placed in MFAC. Table 8.1 shows the entry points for these operations.

TABLE 8.1 Two Operand Subroutines

Name Entry Point) Action Taken

1. ADD $E7C1 _ " (MFAC) <« (SFAC) + (MFAC)
MFAC and SFAC already loaded; do the ADDition. B /

2. LADD $E7BE (MFAC) « [Y,A] + (MFAQ)
MFAC is already loaded; (Y,A) points to the memory location of the packed number to be ADDed to

(MFAQ). .

3. SUB $SE7AA (MFAC) « (SFAC) — (MFAC)
MFAC and SFAC already loaded; (SFAC will have (MFAC) SUBtracted from it.

4. LSUB $E7A7 (MFAC) < [Y,A] — (MFAC)

"MFAC is already loaded; (Y,A) points to the memory location of the packed number that will have
(MFAC) SUBtracted from it.

5. MULT $E982 {MFAQC) < (SFAC) * (MFAC)
MFAC and SFAC already loaded; do the MULTiplication. p
6. LMULT $E97F ’ (MFAQC) « [Y,A] * (MFAC)
MFAC is already loaded; (Y,A) points to the memory location of the packed number to be MULTiplied ‘
by (MFAC).
7. DIV $EA69 (MFAC) « (SFAC) / (MFAC)
MFAC and SFAC already loaded; DIVide (SFAC) by (MFAC) .
8. LDIV SEA66 (MFAQ) <« [Y,A] / (MFAC)

MFAC is already loaded; (Y,A) points to the memory location of the packed number that will be g
DIVided by (MFAG). |

9. POWER ‘ $EEQ7 (MFAC) < (SFAQ)
MFAC and SFAC already loaded; (SFAC) is raised to the (MFAC) power.

146

Note: In this table, and in the other tables in this chapter, the notation [Y,A] is used
to indicate that Y must contain the high byte of the address (the page part), and A
must contain the low byte of the address (the location on the page) of the first byte
of the floating-point number. In short, Y and A point to the floating-point number.

Program 8.6 demonstrates the Applesoft subroutine LSUB (subroutine 4 in

Table 8.1).

PROGRAM 8.6

ETAT-

EAF9Q-

0300- A0 03
0302- A9 OF
0304- 20 F9
0307- A0 03
0309- A9 14
030B- 20 A7

030E- 00

030F- 84 40
0312- 00 00
0314- 78 D2
0317- DD 03

SYMBOL TABLE

0300- BEGIN
030F- DATAX
0314- DATAY
E7AT- LSUB

EAF9- MOVMI

Note that the .HS in the above program is the S-C assembler directive that
stores a hex string of digits (8440000000} starting at the current location ($030F).
The equivalent directive for the Big Mac assembler is HEX. The DOS Tool Kit
does not have an identical directive, but its DFB directive can be use to perform

this task.

.OR
.EQ
.EQ
LDY
LDA
JSR
LDY
LDA
JSR

BRK

.HS

.HS

Chapter 8 Using Applesoft Floating-Point Subroutines

$300

$ETAT

$EAFQ

/DATAX VAR ADDR, HI

#DATAX VAR ADDR, LO

MOVMI COPY TO MFAC

/DATAY VAR ADDR, HI

#DATAY VAR ADDR, LO

LSUB (Y,A) - -> MFAC,
SFAC - MFAC ->MFAC

8440000000

78D25EDD03

* PROGRAM 8.6 LSUB & MOVE

147

Assembly Language for the Applesoft Programmer

In Program 8.6, the two operands are stored as part of the program (lines
1110, 1120). We obtained the floating-point form of the numbers from the Apple-
soft BASIC program given as Program 8.4. Note that the labels DATAX and
DATAY identify the start of each of the floating-point numbers. In lines 1040
and 1050 the high and low bytes of the address are loaded into the Y and A
registers. The “/” in LDY /DATAX designates the high-order byte of the address
identified by DATAX. Similarly, the “#” in LDA #DATAX designates the low-
order byte of the address. This use of “/” and “#” is common is 6502 assemblers.

Lines 1040 through 1060 load the MFAC with 12 — 84 40 00 00 00.
Lines 1070 and 1080 change the contents of Y and A so that they point to
—0.00321 — 78 D2 5E DD 03. The subroutine LSUB (line 1090) loads
SFAC with the number pointed to by (Y,A), then performs the subtraction
SFAC — MFAC: —0.00321 — 12 = —12.00321 — 84 C0 0D 25 ED BE and the
result is placed in MFAC. The BRK leaves us in the Monitor, where we can
i examine the contents of MFAC:

9D- 84 CO OD 25 ED BF

E A word about the .OR statement in liné 1030 in Program 8.6: Applesoft
‘ stores BASIC programs starting at $0801. The Applesoft variables are loaded at
the next available location. (In Program 8.5 this is location $08A4.) The assem-
bler we are using begins loading the machine language (assembled) program at
‘ $0800, but the destination address can be changed by the .OR (ORigin) state-
Lo ment. Your assembler should have a similar directive; use it in place of .OR. We
have moved the origin of Program 8.6 because we will soon be linking assembly
P language programs to Applesoft BASIC programs. We want to avoid a collision
e between the Applesoft program and our assembled program, so the beginning
of the assembled program has been moved to $300.

Printing the Results of a Caléulation

Program 8.7 demonstrates the Applesoft subroutine LDIV which starts at $EA66.
It is subroutine 8 in Table 8.1.

B PROGRAM 8.7

| 1000 * PROGRAM 8.7 LDIV & PRNTFAC

1010 - .OR $300
: EA66- 1020 LDIV .EQ $EA66
3; EAF9- 1030 MOVMI .EQ $EAF9
| ED2E- 1040 PRNTFAC .EQ $ED2E

. 148

L

Chapter 8 Using Applesoft Floating-Point Subroutines

0300- A0 03 1050 BEGIN LDY /DATAX VAR ADDR, HI

0302- A9 12 1060 LDA #DATAX VAR ADDR, LO

0304- 20 F9 EA 1070 JSR MOVMI (Y,A) => MFAC

0307- A0 03 1080 LDY /DATAY VAR ADDR, HI

0309- A9 17 1090 LDA #DATAY VAR ADDR, LO

030B- 20 66 EA 1100 JSR LDIV (Y,A) -> SFAC - |
1101 * : SFAC/MFAC -> MFAC ‘

030E- 20 2E ED 1110 JSR PRNTFAC PRINT MFAC ik

0311- 60 1120 RTS , J

0312- 78 D2 5E ' f
0315- DD 03 1130 DATAX .HS 78D25EDDO3 o i
0317- 6B 9D C6

031A- 8F 46 1140 DATAY .HS 6B9DC68F46

SYMBOL TABLE : ' ‘

0300~ BEGIN i
0312- DATAX W
0317- DATAY - b
EA66- LDIV Ll
EAF9- MOVMI

ED2E- PRNTFAC

] This example is organized very much like Program 8.6 MFAC is loaded using
3 MOVMI with —0.00321, then Y and A are set to point to —2.9388E-7. The
; division is performed

(-2.9388E-7) /(-0.00321) = 9.1551402E—-05 -> 73 BF FF 48 DF 4F

and the result is placed in MFAC. The jump to PRNTFAC causes the contents
of MFAC to be printed on the screen. Note that as PRNTFAC is printing the
contents of MFAC, it changes these contents. If PRNTFAC is used to display a
result that is needed for later calculations, a copy of that result should be made
(in SFAC, for example) before calling PRNTFAC. (See Table 8.5 for a listing of
copy routines.)

% Storage of Calculated Results

It would be unusual to have a machine language program that performed a single
‘ floating-point calculation. Typically, the results of calculations are stored for
[later use by the program.

149

Assembly Language for the Applesoft Programmer

Program 8.8 demonstrates the Applesoft subroutine POWER, starting at
$EE97 (subroutine 9 in Table 8.1). It also shows how the results of a calculation
can be copied from MFAC to another memory location (for later access).

PROGRAM 8.8

E9E3-

EAF9-

EB2B-

EE97-

0300- AO
0302- A9
0304- 20
0307- AO
0309- A9
030B- 20
030E- 20
0311- AO
0313- A2
0315- 20
0318- 00
0319- 84
031C- 14
031E- 84
0321- 00
0323- 00
0326- 00

SYMBOL TABLE

03
19
F9
03
1E
E3
97
03
23
2B

4B
B
40
00
00
00

0300- BEGIN
0319- DATAX
031E- DATAY
0323- DATAZ
EAF9- MOVMI
EB2B- MOVMO
E9E3- MOVSI
EE97- POWER

EA

E9
EE

EB

00

00

1000 * PROGRAM 8.8 POWER & MOVES

1010
1011 MOVSI
1020 MOVMI
1040 MOVMO
1060 POWER
1070 BEGIN
1080)
1090
1100
1110
1120
1130
1140
1150
1160
1170

1180 DATAX
1190 DATAY

1200 DATAZ

- JSR MOVSI

.OR $300

.EQ $E9E3

.EQ $EAF9

.EQ $EB2B

.EQ $EE97

LDY /DATAX VAR ADDR, HI

LDA #DATAX VAR ADDR, LO

JSR MOVMI (Y,A) -> MFAC
LDY /DATAY VAR ADDR, HI

LDA #DATAY VAR ADDR, LO
(Y,A) -> SFAC
JSR POWER (SFAC) (MFAC)
LDY /DATAZ VAR ADDR, HI

LDX #DATAZ VAR ADDR, LO

JSR MOVMO MFAC -> (Y,X)
BRK

p
.HS 844BAE147B
.HS 8440000000

.HS 0000000000
/

-> MFAC

To use POWER, both MFAC and SFAC must be loaded before it is called.
The subroutine that MOVes SFAC In is located at $E9E3. It works like MOVMI,

Chapter 8 Using Applesoft Floating-Point Subroutines

except that SFAC is loaded instead of MFAC. (It also sets $AB properly.) The
operation performed is (SFAC) to the (MFAC) power. In this example we cal-
culate 12 to the 12.73, which is 5.469873E13 — AE C6 FE 2A 1D 00. Then the
example packs the result and moves it to storage designated by DATAZ.

When the example is executed, the BRK will leave the Monitor in control.
Examine the contents of locations $323 through $327 to confirm that the cal-
culation is correct. .

Suggestions

1. Modify Program 8.8 so that —0.00321 is loaded into MFAC and 12 is loaded
into SFAC. Call POWER to perform 12 to the

—0.00321 = 0.9920551 — 80 FD F7 54 02 00.

As an alternative, have the result printed (use PRNTFAC) and use a more
familiar calculation, say 2 to the third power, so that you can easily confirm
the calculation.

2. The examples given here perform only one calculation (multiplication or
division, etc.). The subroutines need not be used in isolation, but can be
used sequentially to perform more complex calculations. Write a subroutine
to do a calculation like 24.7* (215. 4A12 — 73).

SINGLE-OPERAND SUBROUTINES

Many Applesoft subroutines require only one operand; these subroutines are
listed in Table 8.2. :
Most of the one-operand subroutines use only MFAC. MFAC is loaded, a

subroutine is called, and the result is placed into MFAC. The exceptions are the

subroutines SGNA and RND. SGNA sets (A) = $01 if (MFAC) > 0; sets (A) =
$00 if (MFAC) = $00, and sets (A) = $FF if (MFAC) < 0. RND generates a
“random number” in locations $C9 through $CD. RND is the topic of Program
8.14.

LINKAGE TO APPLESOFT PROGRAMS

One of the purposes of this chapter is to demonstrate means of linking an Apple-
soft BASIC program to a machine language program. Such linkage usually requires

151

Assembly Language for the Applesoft Programmer

152

TABLE 8.2 One-Operand Subroutines

Name Entry Point Actioil Taken
1. LOG . $E941 (MFAC) < — LOG(MFAC)
2. SGNA $EBS2 (A) <-— SGN(MFAC)
3. SGN $EB90 (MFAC) <— SGN(MFAG)
4. ABS $EBAF (MFAC) <-— ABS(MFAC)
5. INT $EC23 (MFAC) <— INT(MFAC)
6. SQR SEESD (MFAC) <- SQR(MFAC)
7. MMFAC $EEDO (MFAC) <— —(MFAC) -
8. EXP $EF09 " (MFAC) < EXP(MFAC)
9. RND SEFAE ($C9 — $CD) < — arandom number
10. COS $EFEA (MFAC) <— GOS(MFAC)
1. SIN $EFF1 (MFAC) <— SIN(MFAC) .
12. TAN $F03A .~ (MFAC) <- TAN(MFAC)
13. ATN $FO9E (MFAC) <— ATN(MFAC)

a means of passing variables between the two programs. The next programs
show several ways this can be done.

If an Applesoft BASIC program stores a variable in an easily identified
location, then that variable can be read by a machine language program. The
BASIC command LOMEM: permits the specification of the location of the begin-
ning of the simple variable table. As a result, the locations at which simple
variables are stored can be known when the ﬂoatiﬁg—point subroutine is written.

Programs 8.9A and 8.9 illustrate this process, and also illustrate the use of
the Applesoft floating-point subroutine SQR. The BASIC program (Example
8.9A) defines values for variables X and Z1, and calls a machine language sub-
routine that will calculate Z1 = SQR(X). When control is returned to the BASIC
program, the value of Z1 is printed. '

10 REM PROGRAM 8.9A
100 LOMEM: 8192
110 X = 12:Z21 = 0
120 CALL 7868

130 PRINT Z1

Chapter 8 Using Applesoft Floating-Point Subroutines

PROGRAM 8.9

1000 * PROGRAM 8.9 SQR; USES LOMEM
1010 * LINK WITH EXAMPLE 8.9A

1020 .OR $300
EAF9- 1030 MOVMI .EQ $EAF9
EB2B- 1040 MOVMO .EQ $EB2B
EE8D- 1050 SQR .EQ $EE8D
0300- A0 20 1060 BEGIN LDY #$20 ADDR OF
0302- A9 02 1070 LDA #$02 VAR #1
0304- 20 F9 EA 1080 JSR MOVMI (Y,A) -> MFAC"
0307- 20 8D EE 1090 ’ JSR SQR SQR (MFAC) -> MFAC
030A- A0 20 1100 LDY #$20 ADDR OF
030C- A2 09 1110 LDX #$09 VAR #2
030E- 20 2B EB 1120 JSR MOVMO MFEAC -> (Y,X)
0311- 60 1130 RTS i

SYMBOL TABLE

0300- BEGIN
EAF9- MOVMI
EB2B- MOVMO
EE8D- SQR

When one 110 of the BASIC program is executed, space is allocated for
variables X and Z1, and the numbers 12 and 0 are stored there in packed form.
So that the machine language program will be able to find X and know where
to store the value calculated for Z1, line 100 of the BASIC program sets LOMEM
at 8192. By doing so, LOMEM establishes the beginning of the simple variable
table at 8192 ($2000). The first seven bytes of the table will be used for the first
variable defined (X) and the next seven bytes will be used for the second variable
defined (Z1). When lines 100 and 110 have been executed, locations $2000—
$200D will contain

2000- 58 00 84 40 00 00 00
2007- 5A 31 00 00 00 00 00

Note that two bytes are used for the first two characters of the name of the
variable, and the packed floating-point form of its value occupies the next five
bytes.

When line 120 (of Program 8.9A) transfers control to the machine language
subroutine (Program 8.9), the value of X is available, starting at $2002. In Pro-

153

Assembly Language for the Applesoft Programmer

| i gram 8.9, lines 1060-1080 unpack the number and store it in MFAC. Line 1090
‘ calculates the square root of the number and stores the result in MFAC. Lines
1100-1130 copy the contents of MFAC to the bytes reserved for the value of
Z1. When control is returned to the BASIC program, the value of Z1 can be
printed.

Note: This method of providing floating-point numbers to a machine language I
subroutine provides an opportunity to pass variables between machine language

programs and BASIC programs, but it does require knowledge of exactly where the

value of a variable is to be found and stored.

Locating a Variable in the Variable Table

I " Program 8.10 passes one variable from a BASIC program to a machine language
program, and passes another variable back t6 the BASIC program (8.10A). Fur-
ther, the passing of variables is done without knowing exactly where the vari-
ables are stored. The program calls VARFND, a subroutine that locates a simple
variable. On entry to the subroutine, locations $81 and $82 must contain the
first two characters of the name of the simple variable. If the variable name does
not appear in the variable table, the subroutine creates the variable. The sub-
routine will exit with the address of the first byte of the value of the variable in
(YA). /

10 REM PROGRAM 8.10A
100 X = 12

‘ 110 CALL 768

i 120 PRINT Z1

PROGRAM 8.10

1000 *PROGRAM 8.10 LOG AND VARFND
1010 *LINK WITH EXAMPLE 8.10A

1020 .OR $300
E053- 1030 VARFND .EQ $E053
E941- 1040 LOG .EQ $E941
EAF9- 1050 MOVMI .EQ $EAF9
EB2B- © 1060 MOVMO .EQ $EB2B
0300~ A9 58 1070 BEGIN LDA #$58 ASCII CODE FOR X

S

Chapter 8 Using Applesoft Floating-Point Subroutines) ‘ 1

il
0302- 85 81 1080 - STA $81 1ST CHAR OF VAR NAME t
0304- A9 00 1090 LDA #$00 NULL CHARACTER i
0306- 85 82 1100 STA $82 2ND CHAR OF VAR NAME |
0308- 20 53 EO 1110 ~ JSR VARFND LOCATE THE VARIABLE i
1111 * ADDR IN (Y,A) WW5
030B- 20 F9 EA 1120 JSR MOVMI (Y,A) -> MFAC . ﬁya
030E- 20 41 E9 1130 JSR LOG LOG (MFAC) -> MFAC m@
0311- A9 5A 1140 LDA #$5A ASCII CODE FOR "Z" i
0313- 85 81 1150 STA $81 1ST CHAR OF VAR NAME '
: e
0315- A9 31 1160 LDA #3$31 ASCII CODE FOR "1" “WL‘
0317- 85 82 1170 STA $82 2ND CHAR OF VAR NAME i
0319- 20 53 EO 1180 JSR VARFND CREATE THE VARIABLE ik
1181 * ADDR IN (Y,A) il
031C- AA 1190 TAX MOVMO REQUIRES (Y,X) “‘
031D- 20 2B EB 1200 JSR MOVMO MFAC -> (Y,X) ww
0320- 60 1210 RTS \y‘
i
SYMBOL TABLE M;
. Il
0300- BEGIN il
E941- LOG , 1 il
EAF9- MOVMI |
EB2B- MOVMO il

E053- VARFND

Lines 1070-1100 identify the variable name as “X.” Note that the variable
name must be identified with two characters. If only one is needed, the second
is set to the null character, with ASCII code 0. Line 1110 calls VARFND, which |
returns with the address of the value of X in (L A). ‘

After the value of LOG(X) has been calculated (lines 1120, 1130), lines l

|

|
1140-1170 identify the variable name Z1. Line 1180 creates the variable, since |
it was not previously defined, and returns with the address of its value in (Y,A). j
Line 1190 arranges to have this address in (Y,X), so that line 1200 can store the
contents of MFAC as the value of Z1. ’
On return to the BASIC program, the value of Z1 (2.48490665) can be printed.
)

Note on VARFND: VARFND can be used to locate simple integer variables also. It
is again necessary that $81, $82 contain the name of the variable, but the high-
order bits of $81 and $82 must be set to 1. For example, to identify the simple Al
integer variable INT%,

155 |

Assembly Language for the Applesoft Programmer

LDA #$C9 ASCII "I" (HIGH BIT SET)
‘ﬁ STA $81 o
I LDA #$CE ASCII "N" (HIGH BIT SET)
l STA $82

Note that only the first two characters are used.

One Subroutine, Ma'ny Variables; Use of &

There are times when a machine language program might be called to perform

a calculation several times, and be expected to use different variables as oper-

ands on each occasion. Program 8.11 shows oné way to permit this. The program

1 includes a BASIC program that uses the format & varl, var2 to identify the

1 variables to be used by the machine language program. In this example, the
‘ " machine language subroutine performs the calculation var2 = EXP(varl).

10 REM PROGRAM 8.11A
! 100 POKE 1013, 76

ﬁi ‘ ‘ 110 POKE 1014, 0

i 120 POKE 1015, 3
L 130 X = 1.23

| 140 & X, Y
|

|

|

) 150 PRINT Y '
[HiE 160 & X "2+ 2 *Y,Z
. 170 PRINT Z

PROGRAM 8.11 .

N 1000 * PROGRAM 8.11 EXP, FRMEVL, PTRGET
i 1010 * LINK WITH EXAMPLE 8.11A

1020 .OR $300
DD7B- 1030 FRMEVL .EQ $DD7B
DEBE - 1040 CHKCOM .EQ $DEBE
DFE3- 1050 PTRGET .EQ $DFE3
EB2B- 1060 MOVMO .EQ $EB2B
EF09- 1070 EXP .EQ $EF09
© 0300- 20 7B DD 1080 BEGIN . JSR FRMEVL EXPR AT TXTPTR
1081 * IS PUT IN MFAC
0303- 20 09 EF 1090 JSR EXP EXP (MFAC) -> MFAC

156

0306- 20 BE DE 1100 JSR CHKCOM CONFIRM COMMA

0309- 20 E3 DF 1110 JSR PTRGET ADDR OF VAR AT TXTPTR
1111 = IS PUT IN (Y,A)

030C- AA 1120 - TAX MOVMO REQUIRES (Y, X)

030D- 20 2B EB 1130 JSR MOVMO MFAC -> (Y,X)

0310- 60 1140 RTS

SYMBOL TABLE

0300- BEGIN
DEBE- CHKCOM
EF09- EXP

DD7B- FRMEVL
EB2B- MOVMO

DFE3- PTRGET

Note that the BASIC program (8.11A) calls the machine language program
twice. The first time, Y is defined as EXP(X), or EXP(1.23). The second time, Z
is defined as EXP(XA2+2%Y). In preparation for the use of &, lines
100-1200f the BASIC program store the code JMP $300 at addresses $3F5 —
$3F7 (1013-1015).

When the machine language program is called, it must determine which
variable is to be used for calculation, and arrange to move the value of that
variable into MFAC. This is done by FRMEVL. This subroutine reads the expres-
sion that immediately follows &, evaluates it, and stores the result in MFAC.

After line 1090 performs the calculation EXP(var1), line 1100 checks to see
that a comma is present. (FRMEVL interpreted the comma as the end of varl.)
If no comma is found, the program will terminate with the message “SYNTAX
ERROR.”

Each of FRMEVL and PTRGET uses the contents of $B8, $B9 as a pointer
into the BASIC program. This pointer, called TXTPTR, identifies the location
of the next character to be read. TXTPTR is constantly being incremented as
characters are read. :

After the calculation of EXP(var1) is completed, the machine language pro-
gram must store the contents of MFAC as var2. First PTRGET is called (line
1110). This subroutine increments TXTPTR so that it is pointing at var2. The
name of the variable is read, and the location of the variable is determined. If
the variable name has not yet been used, the variable is created and assigned a
value of 0.

Next, the contents of MFAC are copied into the memory locations that are
reserved for the value of var2. When the machine language program returns
control to the BASIC program, the calculated value of var2 can be printed.

Chapter 8 Using Applesoft Floating-Point Subroutines

157

Assembly Language for the Applesoft Programmer

i If the machine language program defined by Program 8.11 is assembled at
} $300, running Program 8.11A results in the following:
| .

!]RUN
3.42122954
4252.91145

INTEGER TO FLOATING-POINT CONVERSIONS

On many occasions we must work with both real {floating-point) and .integer
values. In these cases it is convenient to have subroutines that convert one of
G these types of numb.ers to the other. Table 8.3 contains the. Applesoft subroutines
‘\ ‘ that do conversions between excess $80 and 2’s-complement hexadecimal inte-
| ger notation. The only exception is CIYM,

Program 8.12 shows how to use CIAYM to convert a 2-byte hex integer in
1 Aand Y, —5 —> FF FB, to excess $80 notation (—5 —> 83 A0 00 00 00 FF) in
I MFAC. : ’

PROGRAM 8.12

: 1000 * PROGRAM 8.12 CIAYM
i 1005 .OR $800 SET ORIGIN

kil E2F2- 1010 CIAYM .EQ $E2F2
P 0800- A9 FF 1020 BEGIN LDA #$FF HEX REP.
kr 0802- A0 FB 1030 LDY #$FB OF -5
P 0804- 20 F2 E2 1040 JSR CIAYM

i 0807- 00 1050 BRK P

SYMBOL TABLE
i 0800- BEGIN
! E2F2- CIAYM
Registers:

; 0809- A=83 X=035 Y=00 P=B4 S=F9
Memory:

009D- 83 A0 00 00 00 FF

158

Chapter 8 Using Applesoft Floating-Point Subroutines

Modify Program 8.12 to convert +5 —> 00 05 to excess $80 notation, +5

—> 83 A0 00 00 00 00, in MFAC. Here are the results when the program is run

with this modification.

Registers:

0809 — A=83X=05Y-00P=B4 S=F9

Memory:

009D- 83 A0 00 00 00 00

TABLE 8.3 Conversion Subroutines

Name Entry Point - , Action Taken

10.

. CPMIL $EBF2

. CLIM $DEE9

(Ext—>MFAC) —> ($85,$86)
The extension byte is rounded into MFAC and then MFAC is converted to a 2-byte integer in $85,$86.
See Table 8.4 for rounding only.

[$A0,$A1] —> MFAC
$A0,$A1 contain the starting address of a two-byte integer that is converted to excess $80 notation
in MFAC. '

. CPMI $E108 (MFAC) —> ($A0,$A1)
MFAC must be positive and less than 32,768; the two-byte integer is formed in $A0,$A1.
. CMI $E10C (MFAC) —> ($A0,$A1)

MFAC must be between — 32,768 and 32,768; the two-byte integer is formed in (A0,A1). If integer is
negative, it is in 2’s-complement notation.

. CIAYM $E2F2 - (AY) —> (MFACQC)
The integer in A and Y is converted to excess $80 notation in MFAC.
. CIYM f $E301 (Y) —> (MFAQ)
The integer in Y, not in 2’s-complement notation, is converted to excess $80 notation in MFAC.
CMIX $E6FB (MFAC) —> (X)
MFAC is converted to a one-byte integer in X.
CMIL $E752 (MFAC) —> ($50,$51)
MFAC is converted to a two-byte integer in locations $50,$51.
CIAM $EB93 (A) —> (MFAQ)
The integer in A is converted to excess $80 notation in MFAC.
CMIE $EBF2 (MFAC) —> ($9E,$9E$A0,$A1)

MFAC is converted to a four-byte integer in locations $9E through $A1.

159

;!

Assembly Language for the Applesoft Programmer

it The subroutine CMI, starting at $E10C, converts MFAC into a two-byte
ol integer in $A0,$A1. Program 8.13 loads 2*PI = 6.283185308 —> 83 49 OF DA
A2 into MFAC and converts it to 00 06 in $A0,$A1.

! ' PROGRAM 8.13

|

\

i 1000 * PROGRAM 8.13 CONVERSION CMI

‘ 1005 ' .OR $800 SET ORIGIN
|

\

E10C- 1010 CMI .EQ $E10C
EAF9- 1020 MOVMI .EQ $EAF9

| 0800- A0 FO 1030 BEGIN LDY #$F0 PAGE PART OF 2xPI -
0802- A9 6B 1040 LDA #$6B LOC ON PAGE OF 2x*PI
0804- 20 F9 EA 1050 * -JSR MOVMI MOVE IT TO MFAC
0807- 20 0C E1 1060 JSR CMI DO THE CONV INTO AOQ, Al
080A- 00 1070 BRK: CALL MONITOR
SYMBOL TABLE

:h

Il 0800- BEGIN

“ E10C- CMI

EAF9- MOVMI

13} Registers:

MR 080C- A=48 X=9D Y=00 P=36 S=F9

Memory:

‘L; 009D- 83 00 00 00 06 49

i 00A5- 8C FF A0 00 00 00 s

| The subroutine CMIE, starting at $EBF2, converts MFAC into a four-byte
integer in $E9 through $A1. The largest integer we could find in ROM is
1,000,000,000 — > 9E 6E 6B 28 00, which begins at $£ED14. Program 8.14 moves
this value into MFAC and converts it to 3B 9A CA 00 in $9E through $A1.

PROGRAM 8.14

1000 * PROGRAM 8.14 CONVERSION CMIE

1005 .OR $800 SET ORIGIN
EAF9- 1010 MOVMI .EQ $EAF9
EBF2- 1020 CMIE .EQ $EBF2

Chapter 8 Using Applesoft Floating-Point Subroutines ‘

0800- AO ED 1030 BEGIN LDY #3ED PAGE PART OF 1 BILLION ‘

0802- A9 14 1040 LDA #%$14 LOC ON PAGE OF 1 BILLION }i
0804- 20 F9 EA 1050 JSR MOVMI MOVE IT TO MFAC ”
0807- 20 F2 EB 1060 JSR CMIE DO THE CONV INTO 9E-Al ;
080A- 00 1070 BRK CALL MONITOR |

SYMBOL TABLE

’ I
0800- BEGIN ; ’ w
EBF2- CMIE S i
EAF9- MOVMI - .

Registers: ‘ |

080C- A=1D X=9D Y=00 P=76 S=F9 . : il
Memory:

009D- 9E 3B 9A CA 00 6E
00A5- 8C FF A0 00 00 00

The subroutine CLIM, starting at $DEE9, uses $A0,$A1 to point to the mem- |
ory location of a two-byte integer to be converted to excess $80 notation in I |
MFAC. Program 8.15 puts a +5 —> 00 05 in locations $4000 and $4001, then ‘ ‘
loads $A0,$A1 with the address ($4000) and does the conversion. |

|

PROGRAM 8.15

1000 * EXAMPLE 8.15 CONVERSION CLIM

1005 .OR %800 SET ORIGIN

4 DEE9- 1010 CLIM .EQ $DEE9

1 0800- A9 00 1020 BEGIN LDA #$00 INITIALIZE

4 0802- 8D 00 40 1030 STA $4000 LOC WITH THE

3 0805- A9 05 1040 LDA #$05 INTEGER TO BE

] 0807- 8D 01 40 1050 STA $4001 CONVERTED
080A~- A9 40 1060 LDA #$40 ESTABLISH ITS
080C- 85 Al 1070 STA $A1 ADDRESS FOR
080E- A9 00 1080 LDA #$00 USE WITH THE
0810- 85 A0 1090 STA $A0 SUBROUTINE CLIM
0812- 20 E9 DE 1100 JSR CLIM DO CONV INTO MFAC
0815~ 00 1110 BRK CALL MONITOR

SYMBOL TABLE

161

Assembly Language for the Applesoft Programmer

0800- BEGIN
DEE9- CLIM ;
Registers:

0817- A=83 X=05 Y=00 P=B4 S=F9
Memory:

009D- 83 A0 00 00 00 00
00A5- 8C FF A0 00 00 00

Modify Program 8.15 to convert — 31,482 — > 85 06 to excess $80 natation
in MFAC, 8F F5 F4 00 00 FE The results are:

Registers:
0817- A=8F X=7A Y=00 P=B4 S=F9
Memory:

009D- 8F F5 F4 00 00 FF
00A5- 8C FF A0 00 00 00

MISCELLANEOUS SUBROUTINES

Table 8.4 contains subroutines that, by their nature, did not seem to belong in
any of the previous tables. Only the normalization subroutine, entry 7 in this
table, has been used in an example. Because their use is similar in many ways
to subroutines already illustrated, no further exal}lples from this table are given.

MEMORY MOVE SUBROUTINES

Most examples in this chapter used subroutines that moved data from one mem-
ory location to another. Table 8.5 contains a summary of the subroutines that
can be used to copy floating-point numbers from one memory location to another.

The pair of subroutines in Table 8.6 uses the stack for storage. Their use is
somewhat tricky, so they will be illustrated.

To illustrate saving (MFAC) on the stack, we shall move SQR(2) = 1.414213562
—> 81 35 04 F3 34 into MFAC, then call MSTAK, located at $DE10, to pack the
extension byte into MFAC and push it onto the stack.

Chapter 8 Using Applesoft Floating-Point Subroutines

TABLE 8.4 Odds and Ends

Name Entry Point Action Taken
1. NOT $DE98 (MFAC) < — NOT(MFAC)
2. OR $DFAF (MFAC) < — (SFAC) OR (MFAC)
3. AND $DF55 (MFAC) <— (SFAC) AND (MFAC)
4. COMP $DF6A {SFAQC) is compared to (MFAQC)
MFAC is set to 1 if the result of the comparison is true. MFAC is set to 0 if the
comparison is false. The contents of location $16 determines the type of
comparison to be done according to:
Contents Comparison Shorthand
of $16 to be done Reminder
1 (SFAC) > (MFAQC) < = >
2 (SFAC) = (MFAC) 4 2 1
3 (SFAC) > or = (MFAC)
4 (SFAC) < (MFAC)
5 (SFAC) < > (MFAQC)
6 (SFAC) < or = (MFAC) .
5. MULTI . $E2B6 (Y, X) <— ($AE,$AD) * (accum,$64)
The hex integer in $AE,$AD is multiplied by the hex integer in A and $64.
6. ADDH $E7A0 (MFAC) < — (MFAC) + 1/2
7. NORM $E82E (MFAC) < — normalized(MFAC)
8. MULTT $EA39 (MFAC) < — (MFAC) * 10
9. DIVT $EA55 (MFAC) < - (MFAC)/10
10. ROUND $EB72 (MFAC) <— (ext)
The extension byte, $AC, is rounded into MFAC.
11. COMPA $EBB2 [YA] — (MFAQ)

(A) = $01 if the subtraction is negative; {A) = $00 if the subtraction is zero; (A)

= $FF if the subtraction is positive.

The program first moves SQR(2) to MFAC (li

nes 1040—1060). Next the stack

pointer is saved in location $06 (so that we will be able to confirm the operation
of MSTAK. Following the jump to MSTAK, the BRK instruction (line 1100)

leaves us in the Monitor.

Assembly Language for the Applesoft Programmer

TABLE 8.5 Moves

Name Entry Point Action Taken
1. MOVSI $E9E3 [Y,A] —> (SFAC)
2. MOVsS $E9E7 [$5E$5E] —> (SFAQ)
3. MOVMI $EAF9 [Y,A] —> (MFAC)
4. MOVsM $EAFD‘ [$5E$5E] —> (MFAC)
5. MOVM98 $EB1E (MFAC) —> ($98,$99,%9A,$9B,$9C)
6. MOVM93 $EB21. (MFAC) —> ($93,$94,$95,$96,$97)
7. MOVMZ $EB23 (MFAC) —> [X]
Move (MFAC) to the zero-page location pointed to by X.
8. MOVMs $EB27 (MFAC) —> [$86,$85]
9. MOVMO $EB2B | - (MFAC) —-> [YX]
10. MOVSM $EB53 " (SFAC) —> (MFAQ)
11. MOVMS $EB63 (MFAC) —> (SFAQ)

TABLE 8.6 Stack Moves

7

Names Entry Point Action Taken
1. MSTAK $DE10 (ext —>MFAC) then PUSH (MFAC)
onto the stack. This takes six bytes.
This subroutine ends with a JMP instead of an RTS. The JMP address is stored in
($5E,$5F) by the subroutine itself. When you use it with STAKS, put the return

address on the stack, page part first, before calling MSTAK.

2. STAKS $DE47 PULL stack, six bytes, into SFAC.

This subroutine must be called with a JMP and not with a JSR. (You do see why

~ don’t you? The stack is used to store the return address for a JSR.) It concludes with

an RTS, so there must be a proper return address on the stack before STAKS is
called.

Chapter 8 Using Applesoft Floating-Point Subroutines

PROGRAM 8.16
1000 * EXAMPLE 8.16 STACK SAVES

1005 .OR $800 SET ORIGIN
DE10- 1010 MSTAK .EQ $DE10
EAF9- 1020 MOVMI .EQ $EAF9
0006- 1030 SAVE .EQ $06
0800- A0 E9 1040 BEGIN LDY #$E9 PAGE PART OF SQR(2)
0802- A9 32 1050 LDA #$32 LOC ON PG OF SQR (2)
0804- 20 F9 EA 1060 JSR MOVMI MOVE IT TO MFAC
0807- BA 1070 TSX PUT NEXT STACK.ADDRESS IN X
0808- 8E 00 40 1080 STX SAVE SAVE IT)
080B- 20 10 DE 1090 JSR MSTAK PUSH MFAC ONTO THE STACK
080E- 00 1100 BRK CALL THE MONITOR

SYMBOL TABLE

0006- SAVE

0800- BEGIN
EAF9- MOVMI
DE10- MSTAK

When we executed this example, we found location $06 contained $FD. To
see that MSTAK had the desired effect, we examine the six bytes of MFAC and
the six stack locations $F9—$FD. (Remember, the stack pointer $FD is really
pointing at $1FD.) MSTAK also put the address of the next executable instruc-
tion in locations $5E, $5F In Program 8.16, this is the address of the BRK
instruction (line 1100).

When the example is assembled and executed the results are:

Registers:
0810- A=81 X=79 Y=35 P=B4 S=F3
Memory:

009D- 81 B5 04 F3 34 35

01F0- B5 9F BA FD F8 FE 84 FF
01F8- 81 B5 04 F3 34 35 62 10

005E- OE 08

Program 8.17 shows how to use STAKS. The program will load SQR(2) into
MFAC, then transfer it to the stack by using MSTAK. Then STAKS recovers the
number, putting it in SFAC.

165

nz

Assembly Language for the Applesoft Programmer

Before MSTAK is used, a return address is pushed onto the stack. This
address is used to direct program flow upon return from STAKS.

al PROGRAM 8.17

1000 * PROGRAM 8.17 MSTAK AND STAKS

1005 .OR $800 SET ORIGIN
DE10- 1010 MSTAK .EQ $DE10
DE47- 1020 STAKS .EQ $DE47
EAF9- 1030 MOVMI .EQ $EAF9
0800- A0 E9 1040 BEGIN LDY #$E9 LOCATION OF
; 0802- A9 32 1050 ‘ LDA #$32 SQR (2)
: f 0804- 20 F9 EA 1060 .JSR MOVMI .
g 0807- A9 08 1070 LDA /END SET UP
ﬁw 0809- 48 1080 PHA | THE RETURN
%} ’ 080A- A9 14 1080 : LDA #END _ FROM
i - 080C- 48 1100 PHA . STAKS
: 080D- 20 10 DE 1110 . JSR MSTAK MFAC -> STACK
”y 0810- 4C 47 DE 1120 JMP STAKS NOTE JMP NOT JSR
sy 0813- 60 1130 RTS THIS IS NOT USED
i 0814- 00 1140 END BRK
Ii
‘ SYMBOL TABLE
;
0800- BEGIN
0814- END
EAF9- MOVMI
DE10- MSTAK
DE47- STAKS ,
Note that when this program is executed, the RTS in line 1130 will never be

| encountered. The address of END is on the stack and provides the destination
‘ when STAKS returns. Check MFAC and SFAC to confirm that they each contain
the same thing (81 B5 04 F3 34 35, or SQR(2)).

FLOATING-POINT NUMBERS

Several times in the examples in this chapter we have used the packed excess |
$80 representation of floating-point numbers that are contained in the Applesoft

ROM:s. Table 8.7 contains these and a few more. Some of these are useful for
application and some are good only for testing purposes.

Chapter 8 Using Applesoft Floating-Point Subroutines

TABLE 8.7 Floating-Point Numbers in ROM

Base Ten Value

Starting Address

Contents

-

O O o Y
N O ks W N =R O

18.
19.
20.

© ® N e o ok W

1/4

1/2

—1/2
SQR(1/2)
SQR(2)

1

10

2+PI

PI/2

NAT. LOG(2)
1 BILLION
—32,768
0.434255942
0.576584541
0.961800759
1.442695041
2.885390074
—42.78203928
2.980232E-8
1.014753E-37

$F070
~ $EE64
$E937
$E920
$E932
$E913
$EAS50
$F06B
$F066
$E93C
$ED14
$EOFE
$E919
$E91E
$E923
$EEDB
$E928
$EA46
$EE84
$EE69

7F 00 00 00 00
81 00 00 00 00
80 80 00 00 00
80 35 04 F3 34
81 3504 F3 34
81 00 60 00 00
84 20 00 00 00
83 49 OF DA A2
81 49 OF DA A2
80317217 F8
9E 6E 6B 28 00
90 80 00 00 20
7F 5E 56 CB 79
80 13 9B 0B 64
80 76 38 93 16
81 38 AA 3B 29
82 38 AA 3B 20
86 AB 20 CEE7

9C 00 00 00 DA

FA 0A 1F 00 00

INTEGER STORAGE BY APPLESOFT

The integer variable type is recognized in Applesoft by the % at the end of a
name. Integer values are stored in memory in 2’s-complement notation. Here is

a program that shows how dimensioned integer variables are stored.

100 REM PROGRAM 8.18
110 REM INTEGER STORAGE

167

Assembly Language for the Applesoft Programmer

120 INPUT "N: NUMBER OF VARTABLES
TO BE CONVERTED. ";N%

130 N% = N% - 1 .

140 DIM AI% (N%)

150 FOR I = 0 TO N%

160 PRINT "I = ";I: INPUT AI%(I)

170 PRINT

180 NEXT I

JRUN
N: NUMBER OF VARIABLES TO BE CONVERTED.
I=20
7123

?-123

I =2
732767

I =3
?-32767

]CALL-151

*6B. 6E
006B- B2 08 C1 08

*8B2. 8CO
08B2- C1 C9 OF 00 01 00

08B8- 04 00 7B FF 85 7F FF 80 S
08CO- 01

Initialize the Applesoft pointers with the FP command, then enter the values.
Call the Monitor and find the beginning address, $865, and the ending address,
$873, of the integer storage block. The information in the header, the first seven
bytes for this example, is organized just like it is for floating-point variables:

Header — C1 C9 OF 00 01
Address — $865 $866 $867 $868 $869
CHAR1 CHAR2 LENGTH of # of
name name this block ~DIMs
«pP e

00 04
$86A $86B
RANGE of
right most
index

The remainder of the block is organized differently than it is for floating-point
storage—only two bytes are used for each integer. The remainder of the block
is organized like this:

Starting Contents Base ten
I Address 2’s complement value
0 $865+ $7 =$86C 00 7B 123
1 $86C + $2 = $86E FF 85 -123°
2 $86E+ $2 =$870 7F FF : 32767
3 $860+%$2=%872 80 01 — 32767

ADDITIONAL EXAMPLES

Chapter 8 Using Applesoft Floating-Point Subroutines

Each of the examples given earlier in this chapter focused on the use of a single
floating-point subroutine. Each of the next two examples combines several of
the types of subroutines presented so far.

SIN (at $EFF1) is a one-operand subroutine listed in Table 8.2. It calculates
the trigonometric sine of the number found in the MFAC, and stores the result
in MFAC. SIN assumes that the number found in MFAC is specified in radians.
Programs 8.19 and 8.19A illustrate a way of specifying an angular measurement
in degrees rather than radians, and having the sine of the angle calculated.

Remember how to convert degrees to radians?

Radians = (P1/2)*(Degrees/90)

PI is not stored in Applesoft ROM, but PI/2 and 2*PI are. P1/2 begins at $F066,
and 2+PI begins at $F06B. In Program 8.19 the conversion from degrees to
radians is done using PI/2. The arithmetic is:

R = D=x(PI/2)/{180/2), or
R = (D/90)x(P1/2)

Since PI/2 is provided in ROM, we need provide only the values of D and 90.
The BASIC program (Program 8.19A) will pass the value of D via the USR
function. The integer 90 will be provided as a divisor by loading that number
in the Y register and using CYIM to convert it to a floating-point number in
MFAC.

10 REM PROGRAM 8.19A
100 POKE 10,76

Assembly Language for the Applesoft Programmer

110 POKE 11,0
120 POKE 12,3
b 130 PRINT USR(40)

PROGRAM 8.19

1000 * PROGRAM 8.19 SIN(DEGREES)
1010 * LINK WITH EXAMPLE 8.19A

E301- 1020 CIYM .EQ $E301
| E97F- 1030 LMULT .EQ $E97F
' EA69- 1040 DIV .EQ $EA69
3 EB63- 1050 MOVMS .EQ $EB63
! EFF1- 1060 SIN .EQ $EFF1
1070 ..OR $300 .
0300- 20 63 EB 1080 JSR MOVMS MFAC -> SFAC
0303- A0 5A 1090 LDY #$5A DECIMAL 90
0305- 20 01 E3 1100 JSR CIYM 90 -> MFAC
| 0308- A5 A2 1110 LDA $A2° SET $AB TO
i 030A- 45 AA 1120 EOR $AA° EOR OF SIGN OF
: 030C- 85 AB 1130 STA $AB MFAC AND SFAC
i 030E- A5 9D 1140 LDA $9D ALSO SETS Z
0310- 20 69 EA 1150 JSR DIV D/90 -> MFAC
0313- A0 FO 1160 LDY #$F0 ADDR OF
0315- A9 66 1170 LDA #$66 PI/2
0317- 20 7F E9 1180 JSR LMULT RADIAN MEASURE
H# 031A- 20 F1 EF 1190 JSR SIN SIN (MFAC) -> MFAC
ﬂ‘ 031D- 60 1200 RTS
i SYMBOL TABLE
» E301- CIYM /
i EA69- DIV
d E97F- LMULT
EB63- MOVMS
EFF1- SIN

A TABLE OF RANDOM NUMBERS

; The last program in this chapter develops a table of numbers. This can be a
g useful device. Once a table is available, values can usually be read from it much
i more rapidly than they could be recalculated.
\
|

Chapter 8 Using Applesoft Floating-Point Subroutines

The table that is developed here consists of random numbers and makes I
use of the RND subroutine. Before considering Program 8.20, first note the behavior
of RND. If X is negative, RND(X) uses the value of X to calculate a “random” 1
number. (Since it is calculated, the result is predictable, and hence is not really
random.) If X is zero, RND(X) returns the most recently calculated random
number. If X is positive, RND(X) ignores X, but uses the value of the most . ‘
recently calculated random number as it calculates the next one. The number |
used to start the calculation is sometimes called the “seed.” :
If RND (at $EFAE) is called from a machine language program, the number | (
in MFAC is used in the way RND(X) uses X. When RND has completed its ‘
calculations, the result is stored in MFAC, with a copy placed in locations $C9 ‘
through $CD. If MFAC contains zero when RND is called, the number in $C9 \‘!
through $CD is moved to MFAC, and RND branches to an RTS. If MFAC contains ‘
\
\

a negative number, RND uses that number to start the calculation of a random
number. If MFAC contains a positive number, the contents of $C9 through $CD
are copied to MFAC, then used to calculate a random number.

Program 8.20 generates a table of random numbers that is stored beginning
at $4000 (page 2 of high-resolution graphics). The random number seed and the

number of entries for the table are passed from an Applesoft program (Program
8.20A).

I

10 REM EXAMPLE 8.20A RANDOM , ,
100 POKE 1013,76: POKE 1014,0: POKE 1015,3: REM SET UP & JUMP i
100 A = 3 ,
110 & - 2,A ~ 2 + 4 ‘L
120 REM -2 PROVIDES THE SEED
130 REM A”2+4 IS THE LENGTH OF THE TABLE

|

I

PROGRAM 8.20

1010 * LINK WITH PROGRAM 8.20A

0006- 1020 LEN .EQ $06

0007- 1030 LOC EQ $07

0008- - 1040 PAGE .EQ $08 |

DD7B- 1050 FRMEVL .EQ $DD7B | };

DEBE- 1060 CHKCOM .EQ $DEBE v I

E6FB- 1070 CMIX .EQ $E6FB |

EB2B- 1080 MOVMO .EQ $EB2B i

EFAE- 1090 RND .EQ $EFAE |
1100 .OR $300 |

\
I
I
|
1000 * PROGRAM 8.20

171 I

Assembly Language for the Applesoft Programmer

3 0300- A9 40 1110 LDA #$40 ADDRESS
3 0302- 85 08 1120 STA PAGE OF
‘j 0304- A9 00 1130 ‘LDA #$00 TABLE
‘ 0306- 85 07 1140 STA LOC STORAGE
‘g 0308- 20 7B DD 1150 JSR FRMEVL. EVALUATE FORMULA
i 1151 #* AT TXTPTR
i 030B- 20 FB E6 1160 JSR CMIX INT (MFAC) -> X
‘ 030E- 86 06 1170 STX LEN LENGTH OF TABLE
0310- 20 BE DE 1180 < JSR CHKCOM CONFIRM COMMA
0313- 20 7B DD 1190 JSR FRMEVL, READ NEXT FORMULA
0316- 20 AE EF 1200 LOOP JSR RND GENERATE A RANDOM NUMBER
0319- A4 08 1210 LDY PAGE DESTINATION
031B- A6 07 1220 ‘ LDX LOC ADDRESS
. 031D- 20 2B EB 1230 . JSR MOVMO MFAC -> (Y,X)
| 0320- 18 1240 - CLC READY TO
Ei 0321- A5 07 1250 LDA LOC INC DESTINATION
| 0323- 69 05 1260 © ADC #$05 FOR NEXT RANDOM
* 0325~ 85 07 1270 STA LOC NUMBER
H 0327- C6 06 1280 . DEC LEN COUNT DOWN
0329- DO EB 1290 BNE LOOP TO 0
ai 032B- 60 1300 RTS TABLE COMPLETE

i SYMBOL TABLE

§ DEBE- CHKCOM ;
“M E6FB- CMIX
DD7B- FRMEVL
! 0006- LEN
! 0007- LOC
0316- LOOP
EB2B- MOVMO , _ o
0008- PAGE
EFAE- RND

72

CHAPTER

\

- PROGRAM
INTERACTION:
AN EXTENDED

EXAMPLE

Assembly language programs are useful for a variety of reasons. Some of the
more valuable applications are those performing duties similar to those pro-
vided by Applesoft BASIC commands. When such programs are linked to BASIC,
they give the opportunity to extend it.

In this chapter we will develop an assembly language subroutine that pro-
vides such an extension to BASIC. The example was chosen because it illustrates
the process of developing such routines; because it is an example of a very
close, interactive linkage between BASIC and assembly language; and because
it provides a useful extension of BASIC. We will begin with a fundamental
statement of the problem and the goals, then develop the routine through to its
implementation in an application program.

‘ Assembly Language for the Applesoft Programmer

THE PROBLEM

'

Applesoft provides the capability of accepting user-defined variables in a pro-
- gram. By using INPUT, GET, or PEEK(—16384), the computer can accept key-
‘ ; board input and interpret it as a numeric or string variable. However, there is
|
|

no provision for the input of a function that can be used for calculation later in
the program. This capability would be useful in educational or scientific software.
We will develop a procedure that will permit user input of functions. We

‘ . will provide for linkage of the subroutine to BASIC. The subroutine will be
‘ relocatable, and will permit the identification (and re-identification) of one or

several functions. :
There are several things that must be done. The program must accept the
‘ keyboard input, put it in a form that Applesoft can use, store-it somewhere in
‘ ‘ memory, and tell the Applesoft interpreter where it can’ be found.

| Background

As a step in developing our assembly language program, let’s seé how Applesoft
handles functions. First, consider an example.

10 DEF FN F (X} = COS(X)
Enter this one-line program, RUN it, then enter the Apple Monitor (CALL —151)

u and look at the hexadecimal form of the program and variables. Type 800.821
to see the display shown below.

! ‘ 800- 00 11 08 0A 00 B8 C2 46
808- 28 58 29 DO DE 28 58 29

f;; 810~ 00 00 00 0A C6 00 0C 08 S
It 818- 1D 08 DE 58 00 00 00 00 ‘
i 820- 00 00 '

i Table 9.1 interprets the contents of this area of memory. The contents of memory

E locations $800—$813 were established by typing in the one line of the program.

L Notice that COS(X) does not appear in the same form as we typed, but is coded,
‘ or tokenized. Instead of storing the characters C, O, S, Applesoft uses the token
‘ $DE (decimal 222) to represent the cosine function. (See the Applesoft Refer-

| ence Manual for a complete list of BASIC tokens.)

‘ ‘ The contents of $814 —$822 were established when the program was run.

| k When Applesoft encountered the DEF FN F(X) = COS(X) statement, it set up

Chapter 9 Program Interaction: An Extended Example

TABLE 9.1

800- 00 Beginning-of-program-code
801- 11 Pointer to next

802- 08 program line (at $811)
803- 0A Line number $000A

804- 00 (decimal 10)

805- B8 Token for DEF

806- C2 " "FN

807- 46 Code for F

808- 28 N

809- 58 " "X

80A- 29 oy

80B- DO Token for =

80C- DE 4 " COS

80D- 28 Code for(

80E- 58 " "X

80F- 29 " ")

810- 00

811- 00 End-of-program code

812- 00

813- 0A

814- C6 Code for F (high bit set)
815- 00 Second letter of function name
816- 0C Address of function ($80C)
817- 08

818- 1D Address of argument

819- 08 variable X ($81D)

81A-DE First byte of function

81B- 58 Code for X

81C- 00 Second letter of variable name
81D- 00 Exponent of variable

81E- 00

81F- 00 Mantissa of variable

820- 00

821- 00

the function pointer ($814 —$81A). This pointer has a structure that is similar
to that of string pointers. Table 9.2 shows how the pointers to string variables

and functions are organized.

When the variable X was encountered, space was allocated and X was given

the initial value of 0.

175

Assembly Language for the Applesoft Programmer

TABLE 9.2
String Pointers ' ‘Function Pointers
NAME (pos) 1st byte NAME (neg) 1st byte
(neg) 2nd byte (pos) 2nd byte
Length one byte Function address high byte
Address high byte low byte
low byte . Variable address high byte
0 ' ' : low byte
0 First byte of function

If we wish to make a function available for use by Applesoft we must (1)
input the function, (2) tokenize the function, and (3) set up the function pointer.
Fortunately we can arrange for most of the work to be done by the BASIC pro-
gram that calls our subroutine. If a program line is encountered that contains

20 DEF FN F(X) = X

then a function pointer is established that points to the memory location at
which the tokenized function begins. Since the inclusion of such a line requires
little effort, yet handles a major part of our task, we will have such a line in the
BASIC program. Note, however, that the pointer identifies (in this case) a very
short function (one byte). In order to reserve space for the storage of a longer
function we will use the program line

20 DEF FN F(X) = X oo

When the function is received and tokenized, it will be stored in this reserved
area. p

The input of the function is most easily handled by use of a string input so
that a variable length sequence of characters can be received. Again, this is
easily done by a BASIC program line:

30 INPUT "ENTER F(X) = "; F$

With the function received as a string F$, it is time for the assembly lan-
guage program to take over. It must tokenize the string just received and store
the tokenized function starting at the memory location identified by the function
pointer.

If the machine language subroutine is called immediately after the function
string is entered, the string (which has been stored in the string storage area of

memory) will still be available in the keyboard input buffer (page 2 of memory:
$200—$2FF). This is fortunate, because the Applesoft tokenize routine (TKNZ,
which begins at $D559) expects to find keyboard input there. We will use TKNZ
to put the input string in a form that Applesoft can use for calculation.

Our subroutine will use several Applesoft and Monitor subroutines, which
we will review before considering the program itself. As Applesoft steps through
a program, TXTPTR ($B8, $B9) points at the character or token that is to be read.
The subroutine CHARGET ($B1) will first increment TXTPTR by one, then load

CHARGOT ($B7) loads the accumulator with the contents of the memory loca-
tion pointed at by TXTPTR, but does not increment TXTPTR. The two routines
(CHARGET, CHARGOT) also set the Carry and Zero flags to classify the contents
of the accumulator, but that is not of direct consequence to us now.

We will also use the Applesoft routine FNFIND. PTRGET ($DFE3) locates
the memory location of the variable (real, integer, or string pointer) whose name
is pointed at by TXTPTR. On return from PTRGET, memory locations $9B and
$9C will contain the address of the variable’s name. FNFIND ($DFEA), which
is a part of PTRGET, performs the same type of duty for functions. When we
call FNFIND, we must be sure that TXTPTR is pointing to the first byte of the
name of the function, and that the accumulator and memory location $14 con-
tain the first byte (negative) of the name of the function. On return from FNFIND,
locations $9B, $9C will contain the address of the function pointer.

The last Applesoft subroutine we will use is TOKEN ($D559). This routine

in the keyboard buffer.

Chapter 9 Program Interaction: An Extended Example

the accumulator with the contents of the memory location pointed at by TXTPTR..

tokenizes the input string that is pointed to by TXTPTR, and stores the result

THE SUBROUTINE

We can now turn to the outline of the machine language program. This routine
must accomplish several things for us. It must (1) find the function pointer (we
will use FNFIND to handle this task); (2) tokenize the string (use TOKEN) and
store it in a suitable location; and (3) store the first byte of the tokenized function
as the last byte of the function pointer. ,

The subroutine is intended to be called from Applesoft immediately after
a string has been received. Applesoft will store the string and set up the string
pointer. Although the string will be put in regular string storage, just below
HIMEM, it will also remain in the input buffer (page 2) beginning at $200, until
it is overwritten by later input. Our.tokenizing routine will expect to find the
string here (at $200).

Assembly Language for the Applesoft Programmer

One question must yet be resolved: How is the subroutine to be accessed
‘ from BASIC? Several methods are available. We will use the & vector method,
| since this makes it easy to pass the name of the function to the subroutine. We
! will thus be able to use the subroutine repeatedly to identify several different
functions.

Two temporary pointers are defined for use by the routine. FNPTR ($FD,
$FE) will contain the address of the function pointer. FNADR ($FB, $FC) will
contain the address of the tokenized function.

Lines 10801110 locate the function pointer. JSR CHARGOT, in line 1080,
reads the first byte of the function name. The first byte of the function name
must be negative (high bit set to 1); this is arranged by the ORA #$80 in line
1090. With this byte in the accumulator and in memory location $14, we can
jump to the subroutine FNFIND. This Applesoft subroutine will locate the func-
tion pointer {or create one if no function by this name has previously been
defined). On return from FNFIND, locations $9B, $9C will contain the address
of the function pointer. Lines 1140-1170 save this address in FNPTR, FNPTR +1
for later use. Then lines 1200—1250 read the address of the function from the
function pointer (established by the BASIC program] and store the address in
FNADR, FNADR+1.

We can now turn to the task of tokenizing the function. Since this process
will modify TXTPTR, its contents are first saved on the stack (lines 1280-1310).
Location $B8 is then set to 0 (lines 340—1350) in preparation for the call to
Applesoft subroutine TKNZ (line 1370). TKNZ will read the input line at $200
(the string is still there), tokenize it, and store the result, again at $200. On
| return from TKNZ, the Y-register will contain a number that is 5 larger than the
: ? length of the tokenized function.

We subtract 3, that leaves a result which is 2 larger than the length of the
tokenized function (lines 1410-1440). This allows us to store the function and
B two extra bytes in the position previously occupied by the dummy function
o (lines 1460-1590). The two extra bytes are the codes for “:” and “REM”. We
i then store the first byte of the function as the 14st byte of the function pointer
| (lines 1630-1650), and restore TXTPTR to its earlier value (lines 1680—1710).
a The task is complete, and function is ready for later use.

; 00B7- 1000 CHARGOT .EQ $B7

g 00FB- 1010 FNADR .EQ $FB

; 00FD- 1020 FNPTR .EQ $FD

] D559- 1030 TKNZ .EQ $D559

i DFEA- 1040 FNFIND .EQ $DFEA

. 1050 .OR $300

(. 1060 *——m oo o e e

} 1070 * LOCATE FUNCTION POINTER

0300-
0303-
0305-
0307-

030A-
030C-
030E-
0310-

0312-
0314-
0316-
0318-
0319-
031B-

031D-
031F-
0320-
0322-

0323-
0325-

0327-

032A-
032B-
032C-
032E-

032F-
0331-
0333-

20
09
85
20

A5
85
A5
85

AO
Bl
85
C8
B1
85

A5
48
A5
48

A9
85

20

98
18
E9
A8

A9
91
88

Chapter 9 Program Interaction: An Extended Example

B7 00 1080 JSR CHARGOT READ 1ST BYTE OF FN LABEL
80 1090 ORA #$80 SET HIGH BIT
14 1100 STA $14 STORE FOR ACCESS BY FNFIND
EA DF 1110 JSR FNFIND LOCATE OR CREATE FN POINTER
1120 *--—-mmmmmmm e mm e
1130 * FNPTR, FNPTR+1 GET ADDRESS OF FUNCTION POINTER
9B 1140 LDA $9B
FD 1150 STA FNPTR
9C 1160 LDA $9C
FE 1170 STA FNPTR+1
1180 #-—-mmmmm e m e e e .
1190 FNADR, FNADR+1 GET ADDRESS OF FUNCTION
02 1200 LDY #$02
FD 1210 LDA (FNPTIR),Y
FB 1220 STA FNADR
1230 INY
FD 1240 LDA (FNPTR),Y
FC 1250 STA FNADR+1
1260 *---——-——mm e —m—mm e
1270 SAVE TXTPTR WHEN CALLING TKNZ
B8 1280 LDA $B8
1290 PHA
B9 1300 LDA $B9
1310 PHA
1320 *~--——- - m e m -
1330 TOKENIZE THE STRING
00 1340 LDA #3$00
B8 1350 STA $B8 NEEDED FOR TKNZ SUBROUTINE
1360 #------mmm e mm o
59 D5 1370 JSR TKNZ TOKENIZE THE STRING
1380 #-------——mmm e mmmmmm e
1390 * SUBTRACT 5 FROM Y TO GET THE
1400 * LENGTH OF THE TOKENIZED STRING
1410 TYA
1420 CLC
03 1430 SBC #$03 LENGTH+2
1440 TAY
1450 %—--comm e
1460 STORE A "REM"
B2 1470 LDA #$B2 TOKEN FOR "REM"
FB 1480 STA (FNADR),Y
1490 DEY

179

Assembly Language for the Applesoft Programmer

1500 * STORE A ":"
0334- A9 3A 1510 LDA #$3A CODE FOR ": "
0336- 91 FB 1520 STA (FNADR),Y
0338- 88 1530 DEY
1540 #mm oo
1550 * STORE TOKENIZED FUNCTION
; 0339- B9 00 02 1560 A LDA $200,Y
: 033C- 91 FB 1570 STA (FNADR),Y
033E- 88 1580 " DEY
3 033F- 10 F8 1590 BPL A |
i 1600 *—mm oo o oo e |
‘ 1610 * SET LAST BYTE OF FUNCTION POINTER -
1620 * TO THE FIRST BYTE OF THE FUNCTION
0341- AD 00 02 1630 LDA $200
0344- A0 06 1640 LDY #$06
0346- 91 FD 1650 STA (FNPTR),Y
1660 H=—-—m oo e
‘ 1670 * RESTORE TXTPTR :
! 0348- 68 1680 PLA
; 0349- 85 B9 1690 STA $B9
L 034B- 638 1700 - PLA
034C- 85 B8 1710 STA $BS
1720 #mm oo e e
034E- 60 1730 RTS
SYMBOL TABLE
0339- A
00B7- CHARGOT
00FB- FNADR P
DFEA- FNFIND g
00FD- FNPTR
D559- TKNZ

Access from Applesoft
: The following BASIC program segment illustrates the use of this subroutine.
vl 10 PRINT CHR$ (4); "BRUN FNINPT"

20 DEF FN F(X) = x : : : : : : : :
30 INPUT "ENTER F(X) = ";F$: &F

Chapter 9 Program |nieraction: An Extended Example

As the subroutine is loaded in line 10, it makes the & connection. Line 20 causes
the function pointer to be established. The function in line 20 is a dummy, used
to allow Applesoft to complete the function pointer. Line 20 also provides a
location where a variable length function can later be stored. (If you anticipate
long functions, then provide more colons; excess colons will be interpreted as
multiple-statement indicators.) Line 30 receives the function and calls the sub-
routine via &E The name of the input string and the name of the function need
not agree, but it is important that the function name given with the & be the
same as that which appears in an earlier DEF FN statement.

After entering the program, run it and enter a function, say COS(Xr2 — 4).
Then list the program. You will find line 20 is modified to define the new
function. The function definition is immediately followed by “: REM”, as pro-
vided by lines 1470-1520 of the assembly language program. This has been
provided so that the function can be redefined, using functions of different
length. To see this in action, type RUN 20, and enter a short function, say X»3.
Then list the program again.

It is possible to use the subroutine repeatedly, to define different functions.
To the BASIC program above, add the following.

25 DEF FNYX) =X : @ :
40 INPUT "ENTER Y(X) = ¥: &Y

The program will now accept two user-defined functions.

Notes

There are several resources you can turn to for additional information about
CHARGET, TXTPTR, and other Applesoft and Monitor internal locations. CALL
A.PPL.E has published several articles in their monthly magazine, and also some
compilations of articles: All About Applesoft, More About Applesoft. S-C Soft-
ware offers a complete disassembly of Applesoft, with comments (you must
have the S-C Macro Assembler to access this). Articles on Applesoft appear with
some regularity in several magazines: CALL A.PPL.E, MICRO, Softalk, etc.

181

SECTION

v

GRAPHICS

a2)
INTRODUCTION TO
THE SCREEN:
ORGANIZATION
AND ADDRESSING

The purpose of this chapter is to introduce you to the organization of the screen
and its relationship to the memory locations whose contents are displayed on
the screen. We will first consider the TEXT screen, then the low-resolution
graphics screen, and finally the high-resolution graphics screen.

TEXT DISPLAY

There are two areas of memory that may be used to display text on the screen.
Memory locations $0400 through $07FF are called the primary text page, or
page 1 of text. (Note that the use of the word page here is different from its use
in earlier chapters, where it meant the 256 locations that make up a page of

CHAPTER 10

(s)

j Assembly Language for the Applesoft Programmer

memory.) The primary text page is made up of the four pages of memory $04,
$05, $06, and $07. The next four pages of memory, consisting of memory loca-
tions $0800 through $0BFE are used as the secondary text page (also called
page 2 of text).

Although it is possible to dlsplay text on either of the two text pages, only
page 1 is supported by Applesoft BASIC or the Monitor. We will begin by using
this text page, but will later explain how page 2 of text may be used.

| Note: In our discussions we are assuming a forty-column display. Things change
| somewhat when the eighty-column mode is used (see the reference manual sup-
plied with your eighty-column card for further information.)

: If we want to display messages on the text screen, we might begin by using
3] the character output subroutine that is provided in the Apple Monitor. COUT
i begins at $FDED, and will output the character whose ASCII code is in the
| accumulator. In order to print a message, we could load the accumulator with
P the ASCII code for each character of the message, then jump to COUT. For
| example:
|
|
il Assembler ASCI What appears
" code - code — on the screen
|
! LDA #3%C8 $C8 — H
L JSR COUT
| LDA #$C5 $C5 — E
Do JSR COUT
N LDA #$CC $CC — L py
i JSR COUT ’
- LDA #$CC $CC — L
b JSR COUT
L LDA #$CF $CF — 0
NN JSR COUT

P (A list of ASCII codes is given in the reference manual.)
e Although this process is effective, it is a cumbersome way to print messages.
P ‘ L For greater efficiency we might use a loop such as the following:

LDY #$00
| : LOOP LDA MESG,Y

186

BEQ END

JSR COUT

INY

BNE LOOP

END RTS '

MESG .DA #$C8, #3$C5, #$CC, #$CC, #3CF, #$00

Note that the .DA is the S-C Assembler directive that creates the constants $Cs,
$C5, $CC, $CE, $00 in memory, starting at the current location. The label (MESG)
is associated with the address of the first constant in the string ($C8). The
directive to accomplish this task using Big Mac is DA. The DOS Tool Kit does
not have an identical directive, but its DFB directive can be used to perform
this task.

The loop will consecutively load the accumulator with the ASCII codes of
each of the characters in the message, then jump to COUT. A null character (with
ASCII code 0) is used to signél the end of the message. Note that, at most, 256
characters can be printed in a message. After the 256th character, the Y-register
will have been incremented to 0 and the BNE LOOP test will fail.

Program 10.1 shows how the above loop can be used to print a message.
The program accesses several Monitor subroutines in addition to COUT. HOME
is the Monitor routine that clears page 1 of text and moves the cursor to the top
of the screen. VTAB reads the contents of memory location $25 (which we label
CV) to identify the vertical position on the screen at which printing should take
place. (CV should contain a number from $0 through $17.) COUT uses this value
and reads the contents of memory location $24 (labeled as CH) to identify the
horizontal screen position. '
Lines 1080 through 1120 identify CH and CV, and JSR to (call) VTAB. The
remainder of the program consists of the loop described above. Note that it is
necessary to set CH and CV only once. As COUT prints each character of the
message, it also increments CH (and CV if necessary).

PROGRAM 10.1

1000 * PROGRAM 10.1

1010 * PRINTING ON TEXT PAGE 1

0024- 1020 CH .EQ $24

0025- 1030 CvV .EQ $25

FDED- 1040 COUT .EQ $FDED

FC22- 1050 VTAB .EQ $FC22

FC58- 1060 HOME .EQ $FC58

1070 .OR $300

1080 #-—-—————-—mmmmm e mm— e

Chapter 10 Introduction to the Screen: Organization and Addressing

e

i 0300- 20
I 0303- A9
‘ 0305- 85
I 0307- A9
‘ 0309- 85
030B- 20
" 030E- A2
0310- BD
0313- FO
0315- 20
0318- ES8
0319- DO
031B- 60
¥ 031C- C5
ERNF 031F- CD
s 0322- C5
* ' 0325- BO
0328- 00

T 0024- CH

1140 with

188

58
OE
24
05
25
22
00
1C
06
ED

F5

D8

DO
A0

o SYMBOL, TABLE

FDED- COUT
1 0025- CV

031B- END

FC58- HOME
0310- LOOP
‘ 031C- MESG
| FC22- VTAB

FC

FC

03

FD

C1
CcC
Bl
B1

1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

1220
1230

|

; :

11 : Assembly Language for the Applesoft Programmer
|

LOOP

END

MESG

1140 LOOP LDA (ADDR),Y

JSR
LDA
STA
LDA

.STA

JSR
LDX
LDA
BEQ
JSR
INX
BNE
RTS

_AS
.DA

HOME
#$0E
CH
#305
Ccv
VTAB
#$00
MESG, X
END
COUT

LOOP

0 .

CLEAR SCREEN

SET

HORIZONTAL POSITION
SET

VERTICAL POSITION

READ A CHARACTER
IF END OF MESSAGE
PRINT IT

INC INDEX

GET NEXT CHARACTER

-/EXAMPLE 10.1/

Note that the .AS directive used above stof(es the hex form of the ASCII
string of characters (Program 10.1) in sequence starting at the current location.
The slashes are delimiters that mark the beginning and end of the string. The
dash (minus sign) preceding the string indicates that the high bit of each byte
0o (character) is set (1). The directive to accomplish this task, using either Big Mac
i or DOS Tool Kit, is ASC. In Program 10.1 the .DA directive is used to create the
null character that signals the end of the message.

The message printing routine in Program 10.1 can be used in a variety of
settings. If several messages are to be printed, it would be best to replace line

Chapter 10 Introduction to the Screen: Organization and Addressing .

Then when a message is to be printed, its address can be stored in ADDR and
ADDR +1 (any two consecutive, unused page-zero locations could be used). A
jump to the subroutine will print the designated message.

TEXT Screen Addressing

After executing Program 10.1, enter the Monitor and list the contents of memory
locations $68E through $699. You should find the following.

068E- C5 D8 C1 CD DO CC C5 A0 Bl BO AE Bl

Note that the memory contents correspond exactly to the ASCII codes of the
message that was printed. Memory locations $68E through $699 are a part of
text page 1. Their contents determine exactly what is displayed on the 15th
through the 26th positions of the 5th line of the text display. (If any screen
scrolling has taken place, the memory contents will have changed.)

Figure 10.1 shows the addressing structure of TEXT page 1. Note that the
addresses listed for the leftmost byte of each screen line are not consecutive (or
logical?). However, once the address of the leftmost position in a screen line is
known, the other positions in that line are numbered consecutively.

With Figure 10.1 available for reference, we could display messages on the
text screen by storing the ASCII character codes in appropriate screen memory
locations (that is what COUT does). Program 10.2 does this. Compare it with
Program 10.1.

PROGRAM 10.2

1000 * PROGRAM 10.2
1010 * PRINTS BY STORING ASCII CODES

0026- 1020 BASL .EQ $26
0027- 1030 BASH .EQ $27
FC58- 1040 HOME .EQ $FC58

0300- 20 58 FC 1070 JSR HOME CLEAR SCREEN
0303- A9 80 1080 . LDA #$80 SET BASE
0305- 85 26 1090 STA BASL ADDRESS TO
0307- A9 06 1100 LDA #$06 $0680

0309- 85 27 1110 STA BASH (VTAB 6)

HTAB

3 ‘ Assembly Language for the Applesoft Programmer
L# Hex Dec Hex Dec v
j ocraovwornon e - N RYRRER 2RO dRILLRNRRRnNRILSELERY
| 0 $400 1204 $800 2048]
! 1 $480 1152 $880 2176 B
‘ 2 $500 1280 $900 2304
i 3 $580 1408 $980 2432 B
1 4 $600 1536 $A00 2560
5 $680 1664 $ABO 2688
6 $700 1792 $BOO 2816
7 $780 1920 $B8O0 2944
8 $428 1064 $828 - 2088
9 $4A8 1192 $8AB 2216
10 $528 1320 $928 2344
“ 11 $5AB 1448 $9A8 2472
| 12 $628 1576 $A28 2600
1] 13 $6A8 1704 $AA8 2728
‘ 14 $728 1832 $B28 2856
AR 15 $7A8 1960 $BA8 2084
R 16 $450 1104 $850 2128
Do 17 $4DO 1232 $850 2256
s | 18 $550 1360 $950 2384
! i 19 $5D0 1488 $9D0 2512
N 20 $650 1616 $AS50 2640
21 $6D0 1744 SADO 2768
22 $750 1872 $BSO 2896
23 $7D0 2000 $BDO 3024
FIGURE 10.1 Text page/Lo-res page addresses
3“
b |
b o,
‘ 030D- A2 00 1130 LDX #$00
030F- BD 1B 03 1140 LOOP LDA MESG, X READ A CHARACTER
0312- FO 06 1150 BEQ END IF END OF MESSAGE
0314- 91 26 1160 STA (BASL),Y PRINT CHARACTER
0316- C8 1170 INY INC HTAB
0317- ES8 1180 INX INC INDEX
0318- DO F5 1190 BNE LOOP ° GET NEXT CHARACTER
031A- 60 1200 END RTS
031B- C5 D8 C1 i
031E- CD DO CC
0321- C5 A0 B1

0324- BO AE B2 1210 MESG .AS -/EXAMPLE 10.2/
0327- 00 00 1220 .DA 00

SYMBOL TABLE

0027- BASH
0026- BASL
031A- END

FC58- HOME
030F- LOOP
031B- MESG

Extended Example: Printing on Pagev 2 of Text

As noted above, the secondary text page consists of memory locations $0800—
$OBFE This text page is not directly supported by Applesoft or the Monitor. It
is not frequently needed. We are con51der1ng it here as we illustrate screen
addressing techniques.

Program 10.3 displays several messages on page 2 of text. In order to do
this, the program must do several things:

1. Set the display switches to show this text screen.
2. Clear this section of memory ($800—$BFF) so that the display is black.

3. Print the messages by storing the appropriate ASCII codes in the proper
memory locations.

We will consider these tasks separately, developing routines which are com-
bined as Program 10.3.

Page two of text can be displayed by toggling the appropriate soft switches.
In this case, we must toggle the switches for TEXT {$C051) and the switch for
PAGE 2 ($C055). This can be done by

BIT $C051
BIT $C055

Toggling these soft switches will cause page 2 of text to be displayed, but
the screen contents will be unpredictable. The display screen will interpret the
contents of memory locations $800—$BFF as text. This section of memory may
contain an Applesoft program, a machine language program, data, or garbage.
In order to have page 2 of text displayed as a blank (black) screen, it is necessary

Assembly Language for the Applesoft Programmer

to clear the screen. HOME ($FC58) performs this task for page 1 of text, but is
not effective for page 2. o

Clearing the screen really means displaying a screen full of blank spaces
(ASCII code $A0). We could imitate the behavior of HOME, but that would not
be efficient. Rather, we will simply store the code $A0 in each memory location
from $800 through $BFF.

| CLEAR LDA #$04 4 PAGES OF MEMORY
i : STA NPGS '
LDA #$08 STARTING WITH PAGE 8
| STA PAGE+1
| LDY #$00 INITIALIZE Y AND
f— STY PAGE COMPLETE PAGE ADDRESS
fi LDA #$A0 FILL VALUE (SPACE)
R ' LOOP STA (PAGE),Y STORE IT AT (PAGE)+Y
%\ 1 INY NEXT BYTE
” i BNE LOOP IF NOT END OF PAGE
] INC PAGE+1 NEXT PAGE
. DEC NPGS COUNTER
: 'BNE LOOP IF NOT DONE

\
;} f - RTS
‘ We use NPGS to identify the number of pages yet to be cleared, and decrement
‘ | NPGS from 4 to 0. PAGE and PAGE + 1 1dent1fy the page currently being cleared.
! There is a significant difference between the above subroutine and the method
“ by which HOME clears text page 1. We have stored $A0 in each of the 1024
v memory locations from $800 to $BFFE. HOME stores $AO0 in in each of 960 mem-
‘ ory locations (forty characters in each of twenty-four lines), not in all of the
! 1024 memory locations from $400 through $7FF DOS uses the memory loca-
P tions that are not cleared (and not displayed).

With page 2 of text displayed and cleared, we can turn to the printing of
specific messages. We will use a modification of the printing method of Program
10.2 (lines 1140-1200 of that program).

STY INDX
| PLOOP LDY INDX '
I ’ | LDA (MESG),Y READ A CHARACTER,

BEQ END IF END OF STRING

LDY CH GET HTAB

STA (BASL),Y STORE CHARACTER
i INC CH FOR NEXT HTAB

INC INDX FOR NEXT CHARACTER

Chapter 10 Introduction to the Screen: Organization and Addressing

BNE PLOOP IF NOT NOT DONE
END RTS MESSAGE PRINTED

INDX is a zero-page location that is an index into the message. It identifies
the character to be printed next. CH identifies the horizontal screen location at (1
which the next character is to be printed. MESG and MESG +1 are zero-page ‘U
locations that are used to identify the address of the message that is to be printed.
|

|

‘\

Before calling this routine, it is necessary to identify the address of the
message (MESG, MESG + 1), identify the horizontal print location (CH), and.
identify the vertical print position (specify BASL, BASH). i

As in Program 10.2, BASL and BASH identify the base address (address of ‘
the memory location that controls the leftmost position) of the print line. Figure “
10.1 gives the base addresses of the screen lines of text page 1. The correspond- ik
ing base addresses for text page 2 are each exactly $400 hlgher (as indicated in |
Table 10.1 later in this chapter).

For a given vertical print position (VTAB) there are two ways of obtaining
the base address (BASL, BASH): calculate the value of BASL and BASH; or find 1
the values of BASL and BASH in an address table. The Apple Monitor obtains |
BASL and BASH (for text page 1) by calculation, performed by the subroutine ‘
BASCALC, at location $FBC1 through $FBD8. (See the Monitor disassembly in i
the Apple Reference Manual.) A similar routine can (easily?) be written for page
two of text. (Study the disassembly of BASCALC, then try it.)

In Program 10.3 we illustrate the use of a look-up table for obtaining BASL
and BASH. The base addresses of each screen line (twenty-four addresses, or
forty-eight bytes) are given in the table ADDR. In order to obtain the base address
of a specific screen line, we load the X-register with 2xVTAB, then

STA BASH
INX

LDA ADDR, X
STA BASL

Note: VTAB can have values of 0 through 23, so the X-register should be loaded

|

|
LDA ADDR, X |

‘

|
with an even integer between 0 and 46.

PROGRAM 10.3

1000 * EXAMPLE 10.3
1010 * PRINTING ON TEXT PAGE 2
0007~ 1020 INDX .EQ $07

Assembly Language for the Applesoft Programmer

194

0008-
0008-
0024-
0026-
0026-
0027-
C000-
C010-
C051-
C054-
C055-

6000-
6003-
6006-

6009-
600B-
600D-
600F -

6011-
6013-

6016-
6018-
601A-
601C-

601E-
6020-

6023-
6025-
6027-
6029-
602B-

602D-

6030-
6033-

2C
2C
20

A9
85
A9
A0

A2
20

A9
85
A9
A0

A2
20

A9
85
A9
A0
A2
20

AD
10

51
55
60

08
24
60
TA

02
3C

0B
24
60
87

08
3C

OE
24
60
99
OE
3C

00
FB

Co
Co
60

60

60

60

co

10630
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

1210 -

1220

1230

1240
1250
1260
1270
1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400

1410 .
1420

NPGS .EQ $08
MESG .EQ $08
CH .EQ $24
PAGE .EQ $26
BASL .EQ $26
BASH .EQ $27
KBD .EQ $C000
STROBE .EQ $C010
TEXT .EQ $C051
PAGI .EQ $C054
PAG2 .EQ $C055
.OR $6000

BEGIN BIT TEXT DISPLAY TEXT

BIT PAG2 PAGE2
JSR /CLEAR CLEAR SCREEN
+PRINT FIRST MESSAGE
LDA #$08 HTAB -
STA CH :
LDA /M1 HI BYTE OF ADDRESS
LDY #M1 LO BYTE OF ADDRESS
LDX #$02 VTAB*2
JSR PRINT
*PRINT SECOND MESSAGE
LDA #$0B HTAB
STA CH
LDA /M2 HI BYTE OF ADDRESS
LDY #M2 LO BYTE OF ADDRESS
yd
LDX #$08 VTAB*2
JSR PRINT
*PRINT THIRD MESSAGE
LDA #$0E HTAB
STA CH)
LDA /M3 HI BYTE OF ADDRESS
LDY #M3 . LO BYTE OF ADDRESS
LDX #$0E VTAB*2
JSR PRINT
K e e e e e
1 LDA KBD READ KEYBOARD

BPL .1 IF NO KEYPRESS

6035-
6038-
603B-

603C-
603E-
6040-
6043-
6045-
6046-
6049-
604B-
604D~
604F -
6051-
6053-
6055-
6057-
6059-
605B-
605D-
605F -

6060-
6062-
6064-
6066~
6068-
606A-
606C-
606E-
6070-
6071-
6073-
6075~
6077~
6079-

607A-
607D~
6080-
6083-

2C
2C
60

84
85
BD
85
E8
BD
85
A0
84
A4
B1
FO
A4
91
E6
E6
DO
60

A9
85
A9
85
AO
84
A9
91
c8
DO
E6
cé
DO
60

C5
CD
C5
BO

10
54

08
09
A8
27

A8
26
00
07
07
08
0A
24
26
24
07
FO

04
08
08
21
00
26
A0
26

FB
27
08
F5

D8
DO
A0

co
Co

60

60

C1
cC
B1
B3

Introduction to the Screen: Organization and Addressing

CLEAR STROBE
DISPLAY PAGE 1
DONE

READ A . CHARACTER
IF END OF STRING
GET HTAB

STORE CHARACTER
FOR NEXT HTAB

FOR NEXT CHARACTER
IF NOT NOT DONE
MESSAGE PRINTED

4 PAGES OF MEMORY
STARTING WITH PAGE 8

INITIALIZE Y AND
COMPLETE PAGE ADDRESS

FILL VALUE (SPACE)

STORE IT AT (PAGE)-+Y

NEXT BYTE

IF NOT END OF PAGE

NEXT PAGE

COUNTER

IF NOT DONE

Chapter 10
1430 BIT STROBE
1440 BIT PAGl
1450 RTS
1460 *-—--———-—— e — e m— e m
1470 PRINT STY MESG
1480 STA MESG+1
1490 LDA ADDR,X
1500 STA BASH
1510 INX
1520 LDA ADDR, X
1530 STA BASL
1540 LDY #300
1550 STY INDX
1560 PLOOP LDY INDX
1570 LDA (MESG),Y
1580 BEQ END
1590 LDY CH
1600 STA (BASL),Y
1610 INC CH
1620 INC INDX
1630 BNE PLOOP
1640 END RTS
1650 #m—mmmmm e e e
1660 CLEAR LDA #%$04
1670 STA NPGS
1680 LDA #$08
1690 STA PAGE+1
1700 LDY_#$00
1710 STY PAGE
1720 LDA #$A0
1730 LOOP STA (PAGE),Y
1740 INY
1750 BNE LOOP
1760 INC PAGE+1
1770 DEC NPGS
1780 BNE LOOP
1790 RTS
1800 #--—-mmmm e e
1810 M1 .AS

-/EXAMPLE 10.3/

Assembly Language for the Applesoft Programmer

196

6086-
6087-
608A-
608D-
6090-
6093-
6096-
6098-
6099-
609C-
609F -
60A2-
60A5-
60AT-

60A8-
60AB-
60AE -
60B1-
60B4-
60B7-~
60B8-
60BB-
60BE -
60C1-
60C4 -
60C7-
60C8-
60CB-
60CE-
60D1-
60D4~
60D7-

SYMBOL TABLE

60A8-
0027-
0026-

6000~

0024-
6060-

00
DO
CE
CE
CD
D3
C5
00
CF
D4
D4
C1
A0
00

08
80
09
00
0B
80
08
A8
09
28
0B
A8
08
DO
09
50
0B
DO

D2
D4
C1
C5
C1
D3

CE
C5
A0
C17
B2

00
09
80
0A
00

28
09
A8
0A
28

50
09
DO
0A
50

ADDR
BASH
BASL
BEGIN

-CH

CLEAR

C9
C9
A0
D3
C1

A0
D8
DO
C5

08
00
0A
80
0B

08
28
0A
A8
0B

08
50
0A
DO
0B

1820

1830 M2

1840

1850 M3
1860 .
1870 *BASE AD

1880 ADDR

1890

1900

HS 00

)

.AS -/PRINTING MESSAGES/
.HS 00

_AS -/ON TEXT PAGE 2/
'HS 00

DRESS TABLE FOR TEXT PAGE 2

.HS 08000880090009800A000A800B000B80O

.HS 082808A8092809A80A280AA80B280BAS

.HS 085008D0095009D00A500AD0O0B500BDO

Chapter 10 Introduction to the Screen: Organization and Addressing

605F- END
0007~ INDX
C000- KBD
606E- LOOP
607A- M1
6087~ M2
6099- M3
0008- MESG
0008- NPGS
C054- PAGI
C055- PAG2
0026- PAGE
604F- PLOOP
603C- PRINT
C010- STROBE
C051- TEXT

Notes on Program 10.3

1.

3.

Note the exit routine (lines 1410-1450). Since this program is for illustra-
tive purposes only, it seemed desirable to return the display screen to text
page 1 on exit. Lines 1410 and 1420 cause a wait until a key is pressed.
Then the keyboard strobe is cleared (line 1430), so that later keypresses can
be properly read, and the display screen is set to page 1 (line 1440).

Most applications do not require the use of text page 2. However, if page 2
of high-resolution graphics is to be displayed in mixed mode, the four lines
of text displayed at the bottom of the screen are taken from text page 2.

The use of page 2 of text is in conflict with any Applesoft program that is
currently in memory, since program storage usually begins at memory loca-
tion $0801. If you wish to use page 2 of text and have an Applesoft program
in memory, it is necessary to relocate the Applesoft program.

Say you have an Applesoft program PROG stored on disk. If you LOAD
PROG or RUN PROG, the program is loaded into memory and stored at the
destination specified by the contents of locations 103 and 104 ($67, $68).
Typically location 103 contains a 1 and location 104 contains an 8, and the
program is stored beginning at location $801 (decimal 2049).

By changing the contents of locations 103 and 104, you can control the
destination of PROG. For example, if you store a 1 ($01) in location 103 and
a 64 ($40) in location 104, then LOAD PROG will cause the program to be

197

i T

Assembly Language for the Applesoft Programmer

¥ located at 16385 ($4001). An Applésoft program can be made to relocate
itself if a line like the following is used at the beginning of the program.

! 1 IF PEEK(103) < > 1 OR PEEK(104) < > 64 OR PEEK (16384)
o < > 0 THEN POKE 103,1: POKE 104, 64: POKE 16384, 0: PRINT
P CHR$ (4); "RUN PROG"

This line will cause PROG to be loaded at 16385 ($4001). Since the
byte that immediately precedes the start of the program must contain the
! start of program code (0), it was necessary to confirm that location 16384
N ($4000) does contain a 0. .
- Other destinations for Applesoft programs are clearly available, simply
al by modifying the above program line. '

4. Note that Program 10.3 makes no provision for moving to a lower screen
line if a message is too long to fit on a designated line. Further, no provision
is made for scrolling the screen. Provision of these features is not a trivial
task, but would be an interesting challenge.

5. As an alternate to obtaining BASL and BASH from an address table, we
could load the accumulator with VTAB (between $0 and $17), then call
BASCALC (at $FBC1). On return from this subroutine, BASL and BASH
will be set to the proper base address for printing on text page 1. The
corresponding page 2 address can then be obtained by adding $04 to BASH.

|
I f
l

LOW-RESOLUTION GRAPHICS

S Very few commercially available programs use Lo-res graphics, and you prob-
‘ i ‘ ably will not have much interest in it. But if”you want a display that shows
i g colored rectangles, Lo-res is THE way to go. Lo-res graphics occupies the same
area of memory as TEXT. There are two Lo-res graphics pages: The PRIMARY
‘ Lo-res graphics page starts at $0400 and runs through $07FE The SECONDARY
P Lo-tes graphics page starts at $0800 and runs through $0BFE Each block of
AT Table 10.1 is vertically divided in half and you can choose the color of the top
S half separate from the bottom half according to the table shown at the top of
5 page 199. ’

Each byte in memory holds two hex digits. A single hex digit in a byte is
called a nibble. The left nibble sets the bottom color of a block and the right
nibble sets the top color of a block. The example shown below uses the Monitor
subroutine KEYIN located at $FD1B. KEYIN waits for a keypress. When it finds

g

Chapter 10

Introduction to the Screen: Organization and Addressing

TABLE 10.1 Lo-Res Colors

Hex Dec Color Hex Dec Color

$0 o Black $8 8 Brown

$1 1 Magenta $9 9 Orange

$2 2 " Darkblue $A 10 Gray2

$3 3 Purple $B 11 Pink ‘
$4 4 Dark green $GC 12 Light green
$5 5 Gray 1 $D 13 Yellow

$6 6 Medium blue $E 14 Aquamarine
87 7 Light blue $F 15 White

one, it places the keycode into the accumulator. (You can find the keycodes in
Appendix B.)

PROGRAM 10.4

C050-
C054-
C056-
F836-
FD1B-

0300-
0303-
0306-
0309-
030C-
030E-
0311-

0314-
0315-
0317-

2C
2C
2C
20
A2
20
9D
E8
EO
DO

50
54
56

36-

00
1B
00

28
F5

.CO

Cco
Co
F8

FD

04

1000
1010
1020
1030
1040
1050
1060
1070 -
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170

*PROGRAM 10.4 LO-RES COLORS

GR .EQ
PAGI .EQ
LORES .EQ
CLRTOP .EQ
KEYIN .EQ
.OR

BEGIN BIT
BIT

BIT

JSR

LDX

LOOP JSR
: STA
INX
CPX
BNE
RTS

$C050
$C054
$C056
$F836
$FD1B
$300
GR
PAG1
LORES
CLRTOP
#3$00
KEYIN
$0400,X

#$28
LOOP

TOGGLE GRAPHICS
TOGGLE PAGE 1

TOGGLE LO-RES

CLEAR SCREEN TO BLACK
SET X

GET A COLOR

STORE IT AT $400+X
INC X TO NEXT BLOCK
END OF ROW?

NO? KEEP GOING

199

Assembly Language for the Applesoft Programmer

SYMBOL TABLE

0300- BEGIN -
F836- CLRTOP

C050- GR

FD1B- KEYIN

030E- LOOP

C056- LORES

C054- PAG1

Line 1130 stores the keycode at location $0400 plus the contents of X, so that

i it is displayed on the screen.

; When you run Program 10.4 the screen stays black untll you press a key,

I then the key’s color is displayed in the top row of the screen. If the first key

I pressed is the E-key, its keycode, $C5, is displayed in the upper lefthand corner

‘ block as the colors gray 1 over light green., That is, left nibble is C -> light green

h ' appears on the bottom; the right nibble is 5 -> gray 1 appears on the top. If you press

‘ 1 the RETURN key in the next block you will see yellow over brown, $8D.

i The example will end after forty keypresses; if you would like to “see” more
keys, run the program again, or modify the program to flll the next row on the
screen.

The next “row” (of two-high blocks) starts with memory. location $0480
- and extends to $04A7. Note that these are the same memory locations that are
used for the second line of the TEXT screen. The addressing of the low-reso-

i lution graphics screen (page 1 or 2) is the same as the addressing structure of
the TEXT screen (page 1 or 2).

- Notes ,

1. The subroutines that Applesoft uses to draw images on the low-resolution
graphics screen are actually part of the Monitor. If it is useful to draw low-
resolution images from a machine language program, these subroutines can
be accessed, as indicated in Table 10.2.

2. The subroutines listed above are effective only for low-resolution graphics
page 1. The use of low-resolution graphics page 2 requires that you develop
images by storing color codes in appropriate memory locations (as in Pro-

\
v i gram 10.4). If you wish to do this, note that the addressing structure of page

2 of low-resolution graphics parallels that of low-resolution graphics page
1, with the address of each memory location being higher by $0400.

200

Chapter 10 Introduction to the Screen: Organization and Addressing

TABLE 10.2 Io-Res subroutines

Name Entry Point Action Taken
1. CLRSCR $F832 Clears the entire (full screen) low-res screen.
2. CLRTOP $F836 Clears the top (mixed screen) low-res screen.
3. SETCOL $F864 Set color to use for plottlng Color number ($0—$F) is found
in X.
4. PLOT $F800 : Plots a block whose vertical position is found i£1 A and whose

horizontal position is found in Y.

5. HLINE $F819 Draws a horizontal line of blocks at vertical position given in
A, from horizontal position given in Y rightward to horizontal

position given in $2C.

6. VLINE $F828 Draws a vertical line of blocks at horizontal position given in Y,
from vertical position given in A downward to vertical position

given in $2C.

7. SCRN $F871 Reads the color of the block whose vertical position is given in
A and whose horizontal position is given in Y. The color is

returned in A.

HIGH-RESOLUTION GRAPHICS

The high-resolution graphics pages are located in a different area of memory
from the TEXT/Lo-res graphics areas. The PRIMARY Hi-res graphics page runs
from $2000 through $3FFE The SECONDARY Hi-res page runs from $4000
through $5FFF So there are two 8K blocks of memory for use in Hi-res graphics
applications.

Before reading the next paragraph look at Figure 10.1 and remember how
the blocks on the right side of the figure are organized. Look at Figure 10.6
(given later in this chapter) and note its similarity to Figure 10.1 (both are
arranged as 40 by 24 blocks). Also note their differences: (1) The line numbers
increase by one in Figure 10.1, whereas the line numbers increase by eight in
Figure 10.6; and (2) the address of each block is different. Now look at Figure
10.6 and visualize each block as being divided into eight horizontal slices (see
Figure 10.4) to accommodate the “missing” addresses.

Focus your attention on the upper lefthand block of Figure 10.1 (TEXT/Lo-
res screen) and use the addresses for page 2. This is what you should see:

Pag2 Upper Left-
L# Hex hand Block
0 $800

FIGURE 10.2 The upper lefthand covrn]er block of the TEXT/Lo-res screen

Figure 10.2 will be used.-to develbp the upper lefthand corner block of the
Hi-res screen (see Figure 10.6). The Hi-res screen can be visualized as 40 by 24
blocks, but each block must first be divided horizontally into eight slices.

Pag2 Upper Left-
L# Hex hand Block
;

0 $4000

1 $4400

2 $4800 y

3 $4C00

4 $5000

5 $5400

6 $5800

7 $5C00

FIGURE 10.3 Divide Figure 10.2 into eight horizontal slices

Chapter 10 Introduction to the Screen: Organization and Addressing

Now vertically divided into seven segments.

Pag2 Upper Left-
L# Hex hand Block

$4000

$4400

$4800

$4C00

$5000

$5400

$5800

$5C00

FIGURE 10.4 The upper lefthand corner block of the Hi-res screen

Each of the smaller blocks in the larger block in Figure 10.2 represents a single
dot of light on the Hi-res screen. Each of these dots of light is called a “pixel,”
which is the acronym for “picture element.” Whether or not a pixel is lighted
(on) depends on wheter the contents of the corresponding bit in the byte ($4000,
for example) are on (1).

Complication Number 1: The high bit (number 7) is NOT displayed on the
Hi-res screen. It is used to select the color (color bit) of the pixels in the byte.
(Remember, eight bits to a byte, but seven vertical segments on the screen.)

Imagine that location $4000 contains $D5.

Contents

of $4000 In binary
$D5 — 1101 0101

Bit number — 7654 3210

Complication number 2: The bit numbers and their contents must be reversed
from the way we imagined them in the earlier chapters.

Assembly Language for the Applesoft Programmer

Contents
of $4000 Reversed in binary
$D5 —— 1010 1011

Bit number ———— 0123 4567

Now clip off the high bit.

Contents
of $4000 Reversed in binary
$D5 —— 1010 101

Bit number — 0123 456

When $D5 is stored in location $4000 and page 2 of the hi-res screen is displayed, this is
what you will see: ;

L .
i 0 1 2 3 4 5 6 <« Columnnumber
n 0 1 2 3 4 5 6 <« Bitnumber (See note below)
e V G’V G V G V < Colorbitoff (0)
Address # B O B O B O B <« Colorbiton(1) -
i T
it g$4000 0 |1 |O[1]O]| 10| 1] < $D5 with hibit clipped off
$4400 1
i $4800 2
| y
| |i $4C00 3
ik
iy $5000 4
; $5400 5
i i
- $5800 6
I
i
Ul
il $5C00 7
[

FIGURE 10.5 Upper lefthand corner block on the Hi-res screen

Chapter 10 Introduction to the Screen: Organization and Addressing

Program 10.5 is a reworking of Program 10.4 to make it illustrate the struc-
ture of the Hi-res graphics pages. It uses page 2 of Hi-res graphics, but page 1
works exactly the same way, except that the addresses are different. Assemble
and execute Program 10.5 so that you can see what is happening as you read.

PROGRAM 10.5

1000 * PROGRAM 10.5 HI-RES COLORS

F3D8- 1010 HGR2 .EQ $F3D8
FD1B- 1020 KEYIN .EQ $FD1B

1030 .OR $300
0300- 20 D8 F3 1040 BEGIN JSR HGR2 DISPLAY HI-RES PAGE 2
0303- A2 00 1050 LDX #3%$00 INIT X
0305- 20 1B FD 1060 LOOP JSR KEYIN GET A KEYCODE
0308- 9D 00 40 1070 STA $4000,X STORE IT
030B- E8 1080 INX INC TO NEXT VALUE
030C- EO 27 1090 CPX #$27 END OF ROW?
030E- DO F5 1100 BNE LOOP NO, KEEP GOING
0310- 60 1110 RTS STOP

SYMBOL TABLE

0300~ BEGIN
F3D8- HGR2
FD1B- KEYIN
0305- LOOP

As your first keypress, choose the U-key and repeat it across the top of the screen.
The keycode for U is $D5, so memory locations $4000 through $4027 all contain
$D5. (You can check this by calling the Monitor and listing these locations.)
What you should see on the screen is a continuous line made up of a short blue
bar followed by a white dot, followed by an orange bar, white dot, blue bar, etc.
This pattern repeats across the top line of the screen.

If you have a monochrome screen, you see a broken line that looks like this:
white dot, black dot, white dot, black dot, white dot, black dot, white dot, white
dot (these two white dots smear together to give a short white bar that probably
appears brighter than the white dots) black dot, etc. This pattern repeats across
the top line of the screen.

To understand what is going on you must look at each bit in the bytes. Each
picture element, a dot or pixel, is on if the corresponding bit in memory is on
(1). If a bit is on you see a white (or colored) pixel. However, only seven bits of

205

Assembly Language for the Applesoft Programmer

206

a byte are displayed on the screen. The high bit, bit number seven, is used to
control the color of the dot. Each bit can dlsplay one of two colors (see Figure
10.5). The colors are violet or blue if the COLUMN number is even, and green
or orange if the COLUMN number is odd. The colors violet and green occur
when the high bit contains a 0; blue and orange occur when the high bit containg
1. To see this arrangement, let’s imagine a few more screen locatlons adjacent
to the upper left corner.

1111111111222222222233333
01234567890123456789012345678901234
VGVGVGVGVGVGVGVGVGVGVGVGVGVGVGVGVGV
BOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB
10101011010101101010110101011010101
<blue>ww<orn>ww<blu>ww<orn>ww<blu>w
01234560123456012345601234560123456
<$4000><$4001><$4002><$4003><$4004>

Column number
Color if hi-bit=0
Color if hi-bit=1

Contents
what you see
Bit number
Byte address

R R

Now you can see what happened when: yoﬁ entered the string of U’s:

h

[l o A =l

U — $D5 — 1010101 1 '
Bit number — 0123456 7

Note that the bit numbers are reversed from the way we have been looking at
them in earlier chapters!

The high bit is on, so the blue-orange color line is chosen. The blue-on/
orange-off/blue-on pattern smears together to produce the blue bar seen on the
screen. At the byte borders, the blue and the orange bits are both on, side by
side. This produces the white dot you see on the screen.

If you have a monochrome screen, the odd and even pixels do not smear
together and you can see the black dot where the bit is off.

How would you produce a solid blue line across the top of the screen? The
high bit must be set in each byte, and the bit pattern must lock like this:

BOBOBOBOBOBOBOBOBOBOBOBOBOBO
©1010101010101010101010101010
<$4000><$4001><$4003><$4004>

Chapter 10 Introduction to the Screen: Organization and Addressing

1 1010101 — $D5 — key U
1 0101010 — $AA — key =*

($4000)
($4001)

If you run Program 10.5 again and enter UxUxUxUxUxUxUxUx . . . as the
keystrokes, you will see a solid blue line across the top of the screen. In mon-
ochrome you see white dot, black dot repeated across the top of the screen. How
would you produce an orange line? Try *UU*UsU+UxU*UxU. . . .

Addressing the High-Resolution Graphics .
Screen

Figure 10.6 shows the addressing pattern of the high-resolution graphics pages.

The addresses of all eight lines of the upper left block of the Hi-res screen
page 2 are given in Figure 10.5.

The next example displays everything that can happen on the screen as the
contents of a byte are changed from $00 to $FE which is everything that can be
stored in the byte. Let’s move down to line 96 on Hi-res page 2 (the byte in
column 0 is $4228) and out to byte column $14. The address of this byte is
$4228 + $14 = $423C.

Program 10.6 uses the KEYIN subroutine to wait until you are ready to
increment the contents of $423C. Each keypress increments the contents of
$423C by one.

PROGRAM 10.6

1000 * PROGRAM 10.6 SEE THE DOTS

F3D8- 1010 HGR2 .EQ $F3D8
FD1B- 1020 KEYIN .EQ $FD1B

1030 .OR $7000
7000- 20 D8 F3 1040 BEGIN JSR HGR2 CLEAR SCREEN TO BLACK
7003- A2 00 1050 LDX #3%$00 STARTING VALUE
7008- 8E 3C 42 1070 LOOP STX $423C PUT IT IN THE BYTE
700B- 20 1B FD 1080 JSR KEYIN WAIT FOR A KEYPRESS
700E- 20 D8 F3 1090 JSR HGR2 CLEAR SCREEN EACH TIME
7014- ES8 1110 INX INC TO NEXT VALUE
7018- DO EE 1130 BNE LOOP DO ALL VALUES!
701A- 60 1140 RTS

207

Assembly Language for the Applesoft Programmer

SYMBOL TABLE
7000- BEGIN
F3D8- HGR2
FD1B- KEYIN
7008-. LOOP

The Applesoft subroutine HGR2 begins at $F3D8; it is used to set up and clear
page 2 to black. Key-in, assemble, and execute Program 10.6. Table 10.3 sum-
marizes what you see on a color screen after each key press.

If you have trouble seeing the dots in Program 10.6, Program 10.6M1 should
alleviate the problem. In this modification the contents of $423C are repeated
in the seven bytes below it. This should make it easier to see what is going on.

Pag1 Pagl Pag2 Pag? OrANNTWVENOOILCONOOWULO+-ANMTVLONOOLCOOAULL O -N®IDON
ag ag ag ag 0000000000000 rrrrrrrrrr - NN NNN
PR PP P PP PP PR PPRAR AR AL LAND AL HDALOAANAAPRPAABEH

L# Hex Dec Hex Dec S
OrANOTVONDIOrANTOVO-OIO-NRIWNO©N DG
Or AN TVONBOr—rrrrr e, et NANNAANANNNOIOIOOOODOOOO

0 $2000 8192 $4000 16384

8 3$2080 8320 $4080 16512
16 $2100 8448 §$4100 16640
24 $2180 8576 $4180 16767
32 $2200 8704 $4200 16896
40 $2280 8832 $4280 17024
48 $2300 8960 $4300 17152 d
56 $2380 9088 $4380 17280
64 $2028 8232 $4028 16424
72 $20A8 8360 $40A8 16552
80 $2128 8488 $4128 16680
88 $21A8 8616 $41A8 16808
96 $2228 8744 $4228 16936
104 $22A8 8872 $42A8 17064
112 $2328 9000 $4328 17192
120 $23A8 9128 $43A8 17320
128 $2050 8272 $4050 16464
136 $20D0 8400 = $40D0 16592
144 $2150 8528 $4150 16720
152 $21D0 8656 $41D0 16848
160 $2250 8784 $4250 16976
168 $22D0 8912 $42D0 17104
176 $2350 9040 $4350 17232
184 $23D0 9168 $43D0 17360

FIGURE 10.6 Hi-res page addresses

208

Chapter 10 Introduction to the Screen: Organization and Addressing

TABLE 10.3 Seeing the pixels
Byte address — <$423C> h
Bitnumber — 0123456 i
Placevalue — 1248124 b
Color hi-bit=0 — VGVGVGV i
Color hi-bit=1 — BOBOBOB t What you see
Keypress Contents Hex in color
1 1000000 0 — 01 Violet dot
2 0100000 0 - 02 Green dot
3 1100000 0 - 03 White fat dot -
4 0010000 0 — 04 Violet dot
5 1010000 0 — 05 Violet bar
6 0110000 0 — 06 White fat dot
7 1110000 0 - 07 VWG smear
8 0001000 0 - 08 © Green dot
9 1001000 0 — 09 V G dots
10 0101000 0 — 0A Green bar
11 1101000 0 - 0B WG bar
12 0011000 0 —> oC White fat dot
13 1011000 0 - 0D VW smear
14 0111000 0 — OFE White bar
15 1111000 0 — OF White bar.
16 0000100 0 — 10 Violet dot
17 1000100 0 — 11 V dot blk bar V dot
You can see the
pattern now.
The next
interesting
patterns occur
when the hi-bit
comes on and
the colors
change.)
127 1111111 0o - 7F V dot blk bar V dot
128 0000000 1 - 80 All black!
129 1000000 1 — 81 Blue dot
130 0100000 1 — 82 . Orange dot
131 1100000 1 - 83 White fat dot
Got the
picture?

209

| Fi Assembly Language for the Applesoft Programmer
‘1 ‘ If you have trouble seeing the dots in Program 10.6, Program 10. 6M1 should
|| alleviate the problem. In this modification the contents of $423C are repeated
l‘ in the seven bytes below it. This should make it easier to see what is going on.
i
b PROGRAM
;i 1000 * PROGRAM 10.6M1 SEE THE BARS
: F3D8- 1010 HGR2 .EQ $¥3D8
FD1B- 1020 KEYIN .EQ $FD1B
11040 .OR $7000 .
7000- 20 D8 F3 1050 BEGIN JSR HGR2 CLEAR SCREEN TO BLACK
1 7003- A2 00 1060 LDX #3$00 STARTING VALUE
} 7008- 8E 3C 42 1080 LOOP STX $423C PUT IT IN THE BYTE
_ 700B- 8E 3C 46 1090) STX $46}3C AND ALL THE BYTES IN THE BLOCK
H 700E- 8E 3C 4A 1100 ‘STX $4A3C "
| 7011- 8E 3C 4E 1110 STX $4E3C: =) "
7014- 8E 3C 52 1120 . STX $523C - "
7017- 8E 3C 56 1130 STX $563C f
701D- 8E 3C 5E 1150 STX $5E3C "
| 7020- 20 1B FD 1160 JSR KEYIN WAIT FOR KEYPRESS
;! ‘ 7023- 20 D8 F3 1170 JSR HGR2 CLEAR SCREEN EACH TIME
‘ 702C- DO DA 1200 BNE LOOP DO ALL VALUES!
T02E- 00 1210 RTS ’
| SYMBOL TABLE
| 7000- BEGIN
iX F3D8- HGR2
: 7FFF- KEEP
Ak FD1B- KEYIN S
A 7008- LOOP
Run Program 10.6M1. Table 10.3 explains what you see in the eight slices.
‘ What should be clear, to those of you with color screens, is that no pixel
| on the screen is white! In fact there are only red, green, and blue pixels. To get
;| a white dot to appear on a color screen you must turn two colored pixels side
b by side. They add up to a fat white dot. But even then the left and the right ends
of the white dot will show some color. You may need a magnifying glass to see
the colored fringes. Alternatively, you can view the screen from across the room
with a pair of binoculars!

o

Chapter 10 Introduction to the Screen: Organization and Addressing

If you have a monochrome screen, you see each pixel that is on in Table
10.3 as a white dot. Two white dots on together appear as a slightly brighter
white bar.

Bit Pattern Images: A Letter

Enough of this dot business, let’s build something. We suggeét an A in the middle
of the screen. The layout for our A is shown below. .

h
i
Place value -> 12481241248124 b
Left Right Contents Color -> BOBOBOBOBOBOBO i if hi bit=1
byte byte L R Color -> VGVGVGVGVGVGVG t if hi bit=0
$55BB $55BC --> 00 01 ————-o-——- > 00000001000000 O
$59BB $59BC --> 00 02 ———--o-——- > 00000010100000 O
$5DBB $5DBC --> 20 04 ———--cc-——- > 0000010001000Q 0
$423B $423C --> 20 04 —----ceoe-eaen > 00000100010000 O
$463B $463C ~~> 60 07 ———-—--———— > 00000111110000 O
$4A3B $4A3C --> 20 04 ———--o-—- > 00000100010000 O
$4E3B $4E3C --> 20 04 ———-c———- > 00000100010000 ©

For 4 review of binary-to-hex conversion, see Appendix B.

Note that defining the “middle” of the screen presents us with some deci-
sions. There is an even number of byte columns, 40, across the screen. We have
decided to put the left “half” (three of the seven bit columns of the A) in byte
column $13; and the other “half” (four of the seven bit columns) in byte column
$14. There is an even number of rows down the screen, 192. We have decided
to use rows 93 through 99. ,

Refer to Figure 10.7. It gives the line numbers and the corresponding addresses
of the left edge of the screen for high-resolution graphics pages one and two.
The byte at the left edge of the screen on line 93 is $55A8; move over to column
$13. The address of this byte is $55A8 + $13 = $55BB. Program 10.7 stores
the appropriate values in the fourteen bytes needed to build an A. To see how
the contents are determined, let’s look at the crossbar in the A.

211

s

Assembly Language for the Applesoft Programmer

212

L# Hex
0 $00
1 $01
2 $02
3 $03
4 $04
5 $05
6 $06
7 $07
8 $08
9 $09

10 $0A

11 $0B

12 $0C

13 $0D

14 $OE

15 $OF

16 $10

17 $11

18 $12

19 $13

20 $14
21 $15
22 $16
23 - $17
24 $18
25 $19
26 $1A
27 $1B
28 $1C
29 $1D
30 $1E

31 $tF

32 $20

33 $21

34 $22
35 $23
26 $24
37 $25
38 $26
39 $27
40 $28
Chl $29
42 $2A
43 $2B
44 $2C
45 $2D
46 $2E
47 $2F
48 $30
49 $31

50 $32
51 $33
52 $34

53 $35

54 $36

55 $37

56 $38

57 $39

58 $3A

59 $3B

60 $3C

61 $3D

62 $3E

63 $3F

Top Third
Pag1

$2000
$2400
$2800
$2C00
$3000
$3400
$3800
$3C00
$2080
$2480
$2880
$2C80
$3080
$3480
$3880
$3C80
$2100
$2500
$2900
$2D00
$3100
$3500
$3900
$3D00
$2180
$2580
$2980
$2D80
$3180
$3580
$3980
$3D80
$2200
$2600
$2A00
$2E00
$3200
$3600
$3A00
$3E00
$2280
$2680
$2A80
$2E80
$3280
$3680
$3A80
$3E80
$2300
$2700
$2B00
$2F00
$3300
$3700
$3B00
$3F00
$2380
$2780
$2B80
$2F80
$3300
$3780
$3B80
$3F80

Pag2

$4000
$4400
$4800
$4C00
$5000
$5400
$5800
$5C00
$4080
$4480
$4880
$4C80
$5080
$5480
$5800
$5C80
$4100
$4500
$4900
$4D00
$5100
$5500
$5900
$5D00
$4180
$4580
$4980
$4D80
$5180
$5580
$5980
$5D80
$4200
$4600
$4A00
$4E00
$5200
$5600
$5A00
$5E00
$4280
$4680
$4A80
$4E80
$5280
$5680
$5A80
$5E80
$4300
$4700
$4B00
$4F00
$5300
$5700
$5B00
$5F00
$4380
$4780
$4B80
$4F80
$5300
$5780
$5B80
$5F80

L#

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

13

14

115

116

17

118

119

120

121

122

123

124

125

126

127

Middle Third
Hex Pag1
1
$40 - $2028
$41 $2428
$42 $2828
$43 $2C28
$44 $3028
$45 $3428
$46 $3828
$47 $3C28
$48 $20A8
$49 $24A8
$4A $28A8
$4B $2CA8
$4C $30A8
$4D $34A8
$4E $38A8
$4F $3CA8
$50 $2128
$51 $2528
$52 $2928
$53 $2D28
$54 $3128
$55 $3528
$56 $3928
$57 $3D2§
$58 $21A8
$59 $25A8
$5A $29A8
$5B -$2DA8
$5C $31A8
$5D $35A8
$5E $39A8
$5F $3DA8
$60 $2228
$61 $2628
$62 $2A28
$63 $2E28
$64 $3228
$65 $3628
$66 $3A28
$67 $3E28
$68 $22A8
$69 $26A8
$6A $2AA8
$6B $2EA8
$6C $32A8
$6D $36A8
$6E $3AA8
$6F $3EA8
$70 $2328
$71 $2728
$72 $2B28
$73 $2F28
$74 $3328
$75 $3728
$76 $3B28
$77 $3F28
2878 $23A8
$79 $27A8
$7A $2BA8
$7B $2FA8
$7C $33A8
$7D $37A8
$7E $3BA8
$7F $3FA8

N

Pag2

$4028
$4428
$4828
$4C28
$5028
$5428
$5828
$5C28
$40A8
$44A8
$48A8
$4CA8
$50A8
$54A8
$58A8
$5CA8
$4128
$4528
$4928
$4D28
$5128
$5528
$5928
$5D28
$41A8

$45A8

$49A8
$4DAS
$51A8
$55A8
$59A8
$5DA8
$4228
$4628
$4A28
$4E28
$5228
$5628

 $5A28

$5E28
$42A8
$46A8
$4AAB
$4EAB
$52A8
$56A8
$5AA8
$5EA8
$4328°
$4728
$4B28
$4F28
$5328
$5728
$5B28
$5F28
$43A8
$47A8
$4BAB
$4FAB
$53A8
$57A8
$5BA8
$5FA8

L#

128
129
130
131

132
133
134
135
136
137
138
139
140
41

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

Bottom Third
Hex Pag1
$80 $2050
$81 $2450
$82 $2850
$83 $2C50
$84 $3050
$85 $3450
$86 $3850
$87 $3Cs50
$88 $20D0
$89 $24D0
$8A $28D0
$8B $2CDO
$8C $30D0
$8D $34D0
$8E $38D0
$8F $3CD0
$90 $2150 |
$91 $2550
$92 $2950
$93 $2D50
$94 $3150
$95 $3550
$96 $3950
$97 $3D50
$98 $21D0
$99 $25D0
$9A $29D0
$9B $2DD0
$9C $31D0
$9D $35D0
$9E $39D0
$9F $3DD0O
$A0 $2250
$A1 $2650
$A2 $2A50
$A3 $2E50
$A4 $3250
$AS $3650
$A6 $3A50
$A7 $3E50
$A8 $22D0
$A9 $26D0
$AA $2ADO
$AB $2EDO
$AC $32D0
$AD $36D0
$AE $3ADO
$AF $3EDO
$B0 $2350
$B1 $2750
$B2 $2B50
$B3 $2F50
$B4 $3350
$B5 $3750
$B6 $3B50
$B7 $3F50
$B8 $23D0
$B9 $27D0
$BA $2BDO
$8B $2FDO
$B8C $33D0
$BD $37D0
$BE $3BDO
$BF $3FDO

Pag2

$4050
$4450
$4850
$4C50
$5050
$5450
$5850
$5C50
$40D0
$44D0
$48D0
$4CDO
$50D0
$54D0
$58D0
$5CD0
$4150
$4550
$4950
$4D50
$5150
$5550
$5950
$5D50
$41D0
$45D0
$49D0
$4DD0
$51D0
$55D0
$59D0
$5DD0
$4250
$4650
$4A50
$4E50
$5250
$5650
$5A50
$5E50
$42D0
$46D0
$4ADO
$4EDO
$52D0
$56D0
$5AD0
$5EDO
$4350
$4750
$4B50
$4F50
$5350
$5750
$5B50
$5F50
$43D0
$47D0
$4BDO
$4FDO
$53D0
$57D0
$5BD0
$5FDO

FIGURE 10.7 Hi-res screen line numbers and the addresses of the left edge
of the screen .

Chapter 10 Introduction to the Screen: Organization and Addressing

h h

i i

b b

i i

Place value --> 1248124 t 1248124 t

Contents in binary --> 0000011 0 1110000 0
Contents in hex --> 0 6 7 0
Swap the nibbles --> 6 0 0o 7
Address --> $463B $463C

Since we have free choice over the high bit, we have set it to 0.

PROGRAM 10.7

1000 * PROGRAM 10.7 BUILD AN A WITH HI-BIT OFF

F3D8- 1010 HGR2 .EQ $F3D8
FD1B- 1020 KEYIN .EQ $FD1B
1025 .OR $800
0800- 20 D8 F3 1030 BEGIN JSR HGR2 CLEAR PAGE 2 TO BLACK
0803- A9 01 1040 LDA #3$01 TOP OF THE A
0805- 8D BC 55 1050 STA $55BC ITS BYTE
0808- A9 40 1060 LDA #$40 NEXT LINE OF A
080A- 8D BB 59 1070 STA $59BB ITS BYTE
080D- A9 02 1080 LDA #$02 NEXT LINE OF A
080F- 8D BC 59 1090 STA $59BC ITS BYTE
0812- A9 20 1100 LDA #$20 DO ALL THESE AT ONCE
0814- 8D BB 5D 1110 STA $5DBB TOP LEFT LEG
0817- 8D 3B 42 1120 STA $423B NEXT DOT DOWN LEFT LEG
081A- 8D 3B 4A 1130 STA $4A3B BOTTOM LEFT LEG
081D- 8D 3B 4E 1140 STA $4E3B BOTTOM DOT ON LEFT LEG
0820~ A9 04 1150 LDA #$04 DO ALL THESE AT ONCE
0822- 8D BC 5D 1160 STA $5DBC TOP RIGHT LEG
0825- 8D 3C 42 1170 STA $423C NEXT DOT DOWN LEFT LEG
0828- 8D 3C 4A 1180 STA $4A3C BOTTOM RIGHT LEG
082B- 8D 3C 4E 1190 STA $4E3C BOTTOM DOT ON RIGHT LEG
082E- A9 60 1200 LDA #$60 LEFT CROSS BAR
0830- 8D 3B 46 1210 STA $463B ITS BYTE
0833- A9 07 1220 LDA #$07 RIGHT CROSS BAR
0835- 8D 3C 46 1230 STA $463C ITS BYTE
0838- 20 1B FD 1240 JSR KEYIN WAIT FOR KEY PRESS TO RETURN

1250 RTS

Assembly Language for the Applesoft Programmer

SYMBOL TABLE

0800- BEGIN
F3D8- HGR2
FD1B- KEYIN

Clearly, this is not an efficient way to generate images on the high-resolution
graphics screen. That is not the intent of the example. Rather, it is intended to
show how the graphics screen addressing is organized, and how the contents
of specific memory locations are related to the image that is displayed.

In Chapter 11 we shall use this bit pattern to illustrate an animation technique.

| Bit Pattern Images: A Gremlin

In Chapter 12 we discuss the development of a classic “shoot-em-up” game.
The target is a “gremlin.” The data that make up the gremlin cannot be stored

h§ ’ Address --> $4#*x0 $4771
! . 136 136
Base-ten place values --> 12386241248624

Hex place values --> 12481241248124

Base » Base
‘ L# *k 10 Hex ! Hex 10 ??
@ 32 $4200 -—> 48 30 11 11 ocC 12 <-- $4201

i 33 $4600 --> 124 7C 111111131111 3F 63 <-- $4601
1] 34 $4A00 -—> 68 44 1 111 1 23 35 <-- $4A01
‘ 35 $4E00 -—> 70 46 11 111 11 63 99 <-- $4E01
1&; ’ 36 $5200 --> 70 46 11 111 A1 63 99 <-- $5201

i 37 $5600 --> 126 TE 1111111117111 7F - 127 <-- $5601

38 $5A00 --> 120 78 111111111 1F 31 <-- $5A01
¥ 39 $5E00 ——> 72 48 1 111 1 13 19 <-- $5E01
" 40 $4280 --> 78 4E 111 111 111 73 115 <-- $4281
! 41 $4680 --> 14 E 111 111 70 112 <-- $4681
”} 42 $4A80 --> 126 T7E 1111111111111 7F 127 <-- $4A81
‘i 43 $4E80 ——> 4 4 1 1 20 32 <-- $4ES81

44 $5280 --> 4 4 1 1 20 32 <-- $5281

45 $5680 --> 4 4 1 1 20 32 <-- $5681

46 $5A80 --> 4 4 1 1 20 32 <-- $5A81

47 $5E80 -—> 14 E 111 111 70 112 <-- $5E81

| 214

Chapter 10 Introduction to the Screen: Organization and Addressing

on the Hi-res screen directly, as was done for the A in Program 10.7, because
we plan later to make the gremlin move across the screen. The gremlin will be
stored “out of sight” in the program area and then moved to the Hi-res screen
for display. The facing display shows the layout of the gremlin as it will appear
on the Hi-res screen. ‘

Most assemblers provide directives that allow for the storage of data. Some
assemblers permit base ten values in their data directives, and some allow only
hex values. Both place value systems are shown in the gremlin layout. If base
ten place values are used it is not necessary to swap the nibbles to get the
contents of a byte. The only price to pay for this convenience is larger numbers
in the addition. '

The program that contains the gremlin data is shown below.

PROGRAM 10.8

1000 * PROGRAM 10.8 SCREEN ADDRESSING
1010 * AND THE GREMLIN

TFFE- 1020 WIDTH .EQ $7FFE
7FFF - 1030 HEIGHT .EQ $7FFF
0006- 1040 BASET .EQ $06
000A- 1050 BASEB .EQ $0A
] FD1B- 1060 KEYIN .EQ $FD1B
4 F3D8- 1070 HGRZ .EQ $F3DS8
1 1080 .OR $7000
1 7000- A9 42 1090 GREM LDA #$42 PAGE PART
7002- 85 07 1100 STA BASET+1 OF TOP
7004- 85 OB 1110 STA BASEB+1 AND BOTTOM
7006- A9 00 1120 LDA #$00 LOC ON PAGE
7008- 85 06 1130 STA BASET OF TOP ‘
7004~ A9 80 1140 LDA #$80 LOC ON PAGE
700C- 85 0A 1150 - STA BASEB OF BOTTOM
700E- A9 08 1160 LDA #$08 GREMLIN IS EIGHT
7010- 8D FF 7F 1170 STA HEIGHT BYTES HIGH
7013- 20 D8 F3 1180 JSR HGR2 CLEAR SCREEN TO BLACK
7016- A2 00 1190 LDX #$00 INIT X, GET GREMLIN INDEX
7018- A9 02 1200 LOOPO LDA #$02 THE WIDTH OF GREMLIN
701A- 8D FE 7F 1210 STA WIDTH STORE IT
701D- A0 00 1220 LDY #$00 INIT Y, SEND GREMLIN INDEX
701F- 20 1B FD 1230 LOOPI JSR KEYIN WAIT FOR KEYPRESS
215

|
|
|
‘{ Assembly Language for the Applesoft Programmer
7022~ BD 49 70 1240 LDA DATGT, X GET TOP OF GREMLIN
7025- 91 06 1250 STA (BASET),Y SEND TOP TO SCREEN
7027- BD 59 70 1260 LDA DATGB, X GET BOTTOM OF GREMLIN
702A- 91 0A 1270 STA (BASEB),Y SEND BOTTOM TO SCREEN
702C- E8 1280 INX INC TO NEXT GET BYTE
702D- C8 1290 INY INC TO NEXT SEND BYTE
T702E- CE FE 7F 1300 DEC WIDTH KEEP TRACK OF WHICH PART
ﬁ 7031- DO EC 1310 BNE LOOPI MOVED BOTH SIDES OF GREMLIN?
i 7033- 18 1320 CLC " CLEAR CARRY FOR ADD
7034- A5 07 1330 LDA BASET+1 NEED TO ADD
| 7036~ 69 04 1340 ADC #$%04 $04 TO TOP TO STEP DOWN TO
3! 7038- 85 07 1350 STA BASET+1 NEXT SCREEN LINE
E T03A- A5 OB 1360 LDA BASEB+1 DO SAME THING
[‘ 703C- 69 04 1370 ADC #$04 TO BOTTOM OF .
; T03E- 85 OB 1380 STA BASEB+1 GREMLIN
iW‘ _7040- CE FF 7F 1390 DEC HEIGHT ‘ KEEP TRACK OF WHICH LINE
3} 7043- DO D3 1400 BNE LOOPO MOVED 8 SLICES OF GREMLIN?
| 7045- 20 1B FD 1410 JSR KEYIN WAIT FOR KEYPRESS TO RTN
‘ 7048- 60 1420 RTS : ’

1 1430 % DATA STORAGE OF THE GREMLIN. DATA IS
1440 * STORED IN PAIRS BY LINE. LEFT BYTE, RIGHT BYTE.

1450 * NEXT PAIR IS NEXT LINE, ETC.

7049- 30 0C 17C !

704C- 3F 44 23

704F- 46 63 1460 DATGT .DA #48,#12,#124,#63, #68, #35, #70, #99

7051- 46 63 TE

7054- TF 78 1F

| 7057- 48 13 1470 DA #70, #99, #126, #127, #120, #31, #72, #19
7059~ 4E 73 OE :

705C- 70 TE TF

705F- 04 20 1480 DATGB .DA #78,#115,#14,#112, #126, #127, #4, #32

7061- 04 20 04

7064- 20 04 20

7067- OE 70 1490 DA #4,#32, #4, #32, #4, #32,#14, #112

SYMBOL: TABLE

000A- BASEB
0006~ BASET
7059- DATGB

Chapter 10 Introduction to the Screen: Organization and Addressing

7049- DATGT
7000~ GREM
7FFF- HEIGHT
F3D8- HGR2
FD1B- KEYIN
701F- LOOPI
7018~ LOOPO
TFFE- WIDTH

The data directive for the assembler used in Program 10.8 is .DA; the # in
front of each number means that it is a base ten number. (A prefix of #$ would
signify a number given in hexadecimal form.) The hex equivalent is assembled
into memory. Note how lines 1460 through 1490 are assembled into locations
$7049 through $7068. The DATa for the Top of the Gremlin is in lines 1460 and
1470. It is organized in pairs by line. The first pair (#48; #12) is the top line of
the gremlin; the next pair (#124, #63) is the second line, etc. The same orga-
nization is followed for the DATa for the Bottom of the Gremlin in lines 1480
and 1490.

The program copies a byte for the top left and a byte for the bottom left of
the gremlin from the data area to the screen; then bytes for the top right and the
bottom right are moved from the data area to the screen. Lines 1090, 1100, and
1120 establish the page part of the top left and the bottom left of the gremlin.
Lines 1120 through 1160 establish the location on the page of these parts. The
height of the top and of the bottom is eight bytes. The outer loop (lines 1200
through 1400) steps down through the eight slices (X=0, 1, 2, 3, 4, 5, 6, 7) in
the top and the bottom of the gremlin. The inside loop (lines 1230 through
1310) steps left to right (Y = 0, 1) across the gremlin. The bottom of the outer
loop (lines 1320 through 1400) increments the base address of the gremlin on
the screen.

The purpose of the instruction, JSR KEYIN, at the top of the inner loop is
to cause the program to wait for a keypress, so that you can see each part of the
gremlin as it is moved to the screen. If you remove the JSR KEYIN, the gremlin
appears instantly on the screen.

You should design some other bit pattern images, and write programs to
position the images at various locations on the high-resolution graphics screen.
Consider ways to animate such images. (Draw the image—erase it—draw again
in a nearby position—erase—etc.) You will find that the screen addressing pat-
tern is a hurdle to reasonable animation. In the next two chapters we will dem-
onstrate several animation techniques.

CHAPTER

a | |)

HIGH-RESOLUTION
GRAPHICS

In this chapter we will give examples of assembly language programs that gen-
erate graphic displays. The intention is to demonstrate the use of the assembly
language instructions that were presented in earlier chapters, and to illustrate
graphics techniques. The first examples use Applesoft subroutines to draw lines
and plot points. Later examples discard the Applesoft subroutines in favor of
techniques that provide increased speed, and plot points in a manner that is
more useful in our specific application.

HI-RES SUBROUTINES

Recall from Chapter 10 how Apple I Hi-res graphics are organized: the display
screen consists of 192 rows of individual dots (pixels). Each row has 280 pixels

219

Assembly Language for the Applesoft Programmer

in it. The ability to generate a graphic image rests on the ability to turn pixels
on or off, o

A portion of the Apple memory is set aside to support the graphics display.
Memory with addresses in the range $2000—-$3FFF is used for high-resolution
graphics page 1, and the range $4000—$5FFF is used for high-resolution graph-
ics page 2. Each pixel on the graphics screen corresponds to a bit in the graphics
memory. A pixel is turned on if the corresponding bit is on. The ability to turn
pixels on or off thus rests on the ability to identify the corresponding bit and
turn it on or off. .

Undoubtedly Chapter 10 convinced you that the addressing of individual
pixels is not a simple matter. Rather than tackle the problem directly, we will
first access the Applesoft subroutines that perform the task. Later in this chapter
the addressing of individual pixels will be considered.)

If we are writing an Applesoft program to turn on the dot at screen location
(135,76), we '

1. Identify the graphics screen to be used (HGR or HGR2).
2. Identify the HCOLOR to be used (HCOLOR = 0,1,2,3,4,5,6,7). .
3. Plot the dot (HPLOT 135,76). o

If we are writing an assembly language program to turn on the dot at screen
location (135,76), we must accomplish the same tasks. In the next several pages
we will detail each of these steps. '

HGR and HGR2 ,

The Applesoft commands HGR and HGR2 perform several tasks. Each displays
a graphics screen, identifies that screen as the one to be used for plotting, and
clears the screen to black. If we are content with the functioning of these com-
mands we can use them as subroutines (JSR $F3E2 for HGR; JSR $F3D8 for
HGR2). On the other hand, if we wish to contro] the graphics activity more
directly, we can do so.

Displaying a graphics screen is a matter of toggling the appropriate soft
switches. Table 11.1 shows the memory locations of the soft switches and the
function of each.

To display high-resolution graphics page, 1 we could use the following
commands:

BIT HIRES
BIT MIXEDSCR
BIT PAG1

BIT GR

Chapter 11 High-Resolution Graphics

TABLE 11.1 Soft Switches

Variable Memory
Name Function Location
GR Display graphics $C050
TEXT Display text $C051
FULLSCR Display all text or graphics $Cos2
MIXEDSCR Display mixed graphics/text $C053
PAG1 Display page 1 of text or graphics - $C054
PAG2 Display page 2 of text or graphics $Cos55 -
LORES Display lores mode $C056
HIRES Display hires mode $C057

In each of the above commands the result of the logical operation BIT is ignored.
Tt is the mere accessing of the memory location that toggles the soft switch.
Other commands such as LDA or STA would have the same effect as BIT.

To identify the graphics screen to be used for plotting we must store a $20
(for high-resolution graphics page 1) or a $40 (for high-resolution graphics page
2) in memory location $E6. This location will be referenced by the Applesoft
plotting routines.

Clearing the screen to black is most easily done by calling the Applesoft
subroutine HCLR at $F3F2. Clearing the screen to other colors is possible. The
examples given in Chapter 1 showed how to do this.

HCOLOR

The Applesoft subroutine SETHCOL at location $F6EC will set the color to be
used for plotting. To use the subroutine, load the X-register with the number
of the HCOLOR you wish to use for plotting (HCOLOR = 0,1,2,3,4,5,6,7) and
jump to the subroutine. For example, to set the plotting color to violet
(HCOLOR = 2),

LDX #3%02
JSR SETHCOL

Any future calls to HPLOT subroutines (described below) will use. HCOLOR
= 2.

Assembly Language for the Applesoft Programmer

Actually, the setting of plotting color can easily be done directly. The HCO-
LOR number (0,1,2,3,4,5,6,7) is really an index into a table of color codes, as
indicated in Table 11.2.

TABLE 11.2 HCOLOR Index

HCOLOR Color Code Color
0 $00 Black1
1 $2A Violet
2 $55 Blue
3 $7F White1
4 $80 Black2
5 $AA Orange

| 6 $D5 Blue

: 7

|

$FF White2

It is necessary that the proper color code be stored in location $E4 If we wish
| to specify HCOLOR = 2, we may do so by

‘ LDA #$55
il STA $E4
i HPLOT ,
| We will consider the Applesoft HPLOT command as two Applesoft subroutines:
HPLOT (at $F457) and HLIN (at $F53A). The HPLOT subroutine can be used to
plot individual points; HLIN is a subroutine used to plot lines.

Before calling the HPLOT subroutine it is necessary to load the A-, X-, and
i Y-registers as follows: S

A: vertical coordinate
X: low byte of horizontal coordinate
Y: high byte of horizontal coordinate

For example, to plot a dot at screen location (135,76), which has hex coordinates
(387,%$4C), we could use the following (assuming that the color code and plotting
screen have been specified):

LDA #$4C VERTICAL COORD (DECIMAL 76)
LDY #$00 HORIZ COORD HIGH
JSR HPLOT

Chapter 11 High-Resolution Graphics

While HPLOT will plot a dot at the location specified by the contents of
the A-, X-, and Y-registers, HLIN will draw a line from the dot most recently
plotted to a newly specified screen location. Before calling the HLIN subroutine
it is necessary to load the A-, X-, and Y-registers as follows:

A: low byte of horizontal coordinate
X: high byte of horizontal coordinate
Y: vertical coordinate

Note that the registers are not used as they are for HPLOT.

To plot a line from screen location 135,76 to 275,145, we could first plot a
dot at location 135,76, as described above, then reload the A-, X-, and Y-registers
to identify screen location 275,145 and jump to the HLIN subroutine. Program
11.1 demonstrates the procedure.

PROGRAM 11.1

1000 * PROGRAM 11.1
1010 * DRAW A RECTANGLE

00E4- 1020 COLOR .EQ $E4
F3D8- 1030 HGR2 .EQ $F3D8
F457- 1040 HPLOT .EQ $F457
F53A- 1050 HLIN .EQ $F53A

1055 .OR $800
0800- A9 TF 1060 LDA #$7TF
0802- 85 E4 1070 STA COLOR WHITE
0804- 20 D8 F3 1080 JSR HGR2 PAGE 2
0807- A9 46 1090 LDA #$46 VERTICAL
0809- A2 64 1100 LDX #%$64 HORIZ LOW
080B- A0 00 1110 LDY #$00 " -HIGH
080D- 20 57 F4 1120 JSR HPLOT: POINT AT 100,70
0810- A9 OE 1130 LDA #$0E HORIZ LOW
0812- A2 01 1140 LDX #$01 " HIGH
0814- AO 46 1150 LDY #%$46 VERTICAL
0816- 20 3A F5 1160 JSR HLIN LINE TO 270,70
0819- A9 OE 1170 LDA #$0E HORIZ LOW
081B- A2 01 1180 LDX #$01 " HIGH
081D- A0 7D 1190 LDY #$7D VERTICAL
081F- 20 3A F5 1200 JSR HLIN LINE TO 270,125
0822- A9 64 1210 LDA #$64 HORIZ LOW

LDX #$00 " HIGH

Assembly Language for the Applesoft Programmer

0826- A0 7D 1230 LDY #$7D VERTICAL

0828- 20 3A F5 1240 JSR HLIN LINE TO 100,125
082B- A9 64 1250 .- LDA #%64 HORIZ LOW
082D- A2 00 1260 LDX #$00 " HIGH
082F- A0 46 1270 LDY #$46 VERTICAL

0831~ 20 3A F5 1280 JSR HLIN LINE TO 100, 70
0834- 60 1290 RTS

SYMBOL TABLE

00E4- COLOR

F3D8- HGR2

F53A- HLIN

F457- HPLOT

There are a number of Applesoft subroutines that are of value when writing
programs that produce graphic images. Table 11.3 lists the more useful ones.

BIT PATTERN ANIMATION

We can display a graphic image in motion if we follow this sequence:

1. Draw the image at a specified location.
2. Calculate the new position for the imaée.
3. Erase the current image.

4. Go to step 1.

One-Dimensional Animation -~

If the consecutive locations of the image are close together and if only a short
time is required for each of the above steps, then an image can be made to
appear to move smoothly. Program 11.2 illustrates the process by having a dot
move from the left side to the right side of the graphics screen.

PROGRAM 11.2

1000 * PROGRAM 11.2
1010 * MOVE A DOT ACROSS\I?E SCREEN
\

Chapter 11 High-Resolution Graphics

TABLE 11.3 High Resolution Gréphics Subroutines

Name Entry Point

HGR $F3E2 '
Sets display screen soft switches to Page 1, Mixed-screen, High-resolution, Graphics mode; stores $20 in
Jocation $E6, establishing $2000—$3FFF as the section of memory to be used by plotting subroutines; and
clears this section of memory.

HGR2 $F3D8 .
Sets display screen soft switches to Page 2, Full-screen, High-resolution, Graphics mode; stores $40 in
location $E6, establishing $4000 —$5FFF as the section of memory to be used by plotting subroutines; and

clears this section of memory.

HCLR $F3F2
Clears the graphics screen currently designated by the contents of $E6. To clear page 1 ($2000 —$3FFF),
store $20 in $E6 and enter the subroutine. To clear page 2 ($4000—$5FFF), store $40 in $E6 before entering
the subroutine. '

BKGND $F3F6
Colors the graphics screen currently designated by the contents of $E6 (as in HCLR above), using the color

code in $1C. Consult the color codes in Table 11.2. :

SETHCOL $F6EC
Sets the color to be used by subsequent plotting subroutines. The color number (0—7) in the X-register is
used to select the color code (as in Table 11.2). This color code is stored in $E4.

HPOSN $F411
Positions the “high-res cursor” Actually it calculates the values of BASL, BASH, the OFFSET, and the
BITMASK in order to identify the byte and bit corresponding to a designated screen location. On entry,
the high byte of the horizontal position is in the Y-register, the low byte is in the X-register, and the vertical
position is in the A-register. HPOSN also transfers the color code in the reference location $E4 to the
location $1C, where it is accessed by plotting subroutines.

HPLOT $F457
First calls HPOSN (above), then reads the color code in $1C and plots a single dot at the designated screen
location. On entry, the registers should be as for HPOSN.

HLIN $F53A
Draws a line from the most recently plotted point to the point designated by the contents of the X-, Y-,
and A-registers. On entry, the high byte of the horizontal position should be in the X-register, the low byte
in the A-register, and the vertical position in the Y-register. HLIN uses the color code that is stored in $1C.

|
!
i{ Assembly Language for the Applesoft Programmer

0000- 1020 XPOSL .EQ $00

0001- 1030 XPOSH .EQ $01‘
L 0002- 1040 YPOS .EQ $02
Ei 0005- 1070 ENDFLG .EQ $05
:! I 00E4- 1080 COLOR .EQ $E4

C051- 1090 TEXT .EQ $C051

C054- 1100 PAGE1 .EQ $C054

F3D8- 1110 HGR2 .EQ $F3D8

F457- 1120 HPLOT .EQ $F457

FC58- : 1130 HOME .EQ $FC58

FCA8- 1140 WAIT .EQ $FCAS8

1145 .OR $800
1150 *INITIALIZATION

0800- A9 00 1160 .LDA #$00

0802- 85 05 1170 STA ENDFLG

0804- 85 00 1180 STA XPOSL START AT LEFT
! 0806- 85 01 1190 ‘ STA XPOSH OF SCREEN
k 0808- A9 14 1200 LDA #$14 '~ SET VERTICAL
it 080A- 85 02 1210 . STA YPOS SCREEN POSITION
% 080C- 20 D8 F3 1220 JSR HGR2 PAGE 2
| 1230 *

i 1240 *MAIN CONTROL LOOP
k}‘ 080F- 20 2E 08 1250 REPT JSR DRAW

| 0812~ 20 4A 08 1260 JSR INC.POSITION
i 0815- 20 5C 08 1270 JSR COMPARE
i 0818- A9 30 1280 LDA #$30 PAUSE TO
: 081A- 20 A8 FC 1290 JSR WAIT = DECREASE SPEED
‘ 081D- 20 3C 08 1300 JSR ERASE
I 0820- A5 05 1310 LDA ENDFLG
w 0822- FO EB 1320 BEQ REPT
| W , 1330 *END MAIN CONTROL LOOP
ik 1340 *EXIT
} 0824- 20 58 FC 1350 JSR HOME
| 0827- 2C 54 CO 1360 BIT PAGE1
i 082A- 2C 51 CO 1370 BIT TEXT
) 082D- 60 1380 RTS
i 082E- A9 7F 1390 DRAW LDA #$7F
i 0830- 85 E4 1400 STA COLOR WHITEl
| 0832- A5 02° 1410 LDA YPOS VERTICAL
‘ 0834- A6 00 1420 LDX XPOSL ~ HORIZ LOW
0836- A4 01 1430 LDY XPOSH " HIGH

0838- 20 57 F4 1440 JSR HPLOT DRAW THE DOT

083B- 60 1450
083C- A9 00 1460
083E- 85 E4 1470
0840- A5 02 1480
0842- A6 03 1490
0844- A4 04 1500
0846- 20 57 F4 1510
0849- 60 1520

1530
084A- A5 00 1540
084C- 85 03 1550
084E- 18 1560
084F- 69 01 1570
0851- 85 00 1580
0853- A5 01 1590
0855- 85 04 1600
0857- 69 00 1610
0859- 85 01 1620
085B- 60 1630

1640

1650
085C- A5 01 1660
085E- FO 08 1670
0860- A5 00 1680
0862- C9 18 1690
0864- DO 02 1700
0866- 85 05 1710
0868- 60 1720

SYMBOL TABLE

00E4- COLOR

085C- COMPARE
082E- DRAW

0005- ENDFLG

083C- ERASE

F3D8- HGR2

FC58- HOME

F457- HPLOT

084A- INC.POSITION
0004- OLDXH

RTS

ERASE LDA #$00
STA COLOR
LDA YPOS
LDX OLDXL
LDY OLDXH
JSR HPLOT
RTS

INC. POSITION
LDA XPOSL
STA OLDXL
CLC
ADC #$01
STA XPOSL
LDA XPOSH
STA OLDXH
ADC #$00
STA XPOSH
RTS

COMPARE

Chapter 11 High-Resolution Graphics

BLACK
VERTICAL
HORIZ LOW

" HIGH
DRAW THE DOT

HORIZ LOW

SAVE FOR ERASE |

INC HORIZ LOW
SAVE NEW VALUE
HORIZ HIGH

SAVE FOR ERASE
INC HORIZ HIGH
IF CARRY IS SET

*HAS THE DOT CROSSED THE SCREEN?

LDA XPOSH
BEQ RET
LDA XPOSL
CMP #$18
BNE RET

STA ENDFLG

RET RTS

HORIZ HIGH -

IF HORIZ < 258
IF HORIZ > 255
IS HORIZ = 2807
IF NOT

SIGNAL EXIT

Assembly Language for the Applesoft Programmer

0003- OLDXL

N C054- PAGE1 ‘
1 080F- REPT '
1 0868~ RET
I C051- TEXT
|l FCA8- WAIT
0001- XPOSH
0000- XPOSL
0002- YPOS

NOTES AND SUGGESTIONS

1. You may notice that Program 11.2 uses page zero memory locations (0-5)
that are generally accessed by Applesoft. No harm is done, unless the
program is to be called by an Applesoft program. If this use is intended,
other locations should be used. o

2. The program immediately displays and clears the text page when the ani-
mated dot reaches the right screen boundary (lines 350-1380). You might

; provide a pause, or a “WAIT FOR KEYPRESS” routine before switching

| from the display of the graphics page.

3. Can you animate the dot from right to left? The process is sumlar Try
animation in the vertical direction.

| 4. It was necessary to include a delay loop in this program (lines 1280—1290).
i Without it the animation is far too fast to be seen. in some of the later
: examples in this chapter the delay is not needed, because the image being
animated is more complex.

Two-Dimensional Animation’

E Program 11.2 provides animation in one direction only (horizontal). If the
INC.POSITION subroutine added an increment to the Y position as well as to
the X position, the program would provide animation in two directions. Pro-
gram 11.3 gives this type of mobility.

| PROGRAM 11.3

1000 * PROGRAM 11.3
1010 * 2-D ANIMATION

Chapter 11 High-Resolution Graphics

0001- 1020 DATA .EQ $01
0001- 1030 XPOS - .EQ $01
0002~ 1040 YPOS .EQ $02
0003- 1050 DLX .EQ $03
0004- 1060 DLY .EQ $04
0005- 1070 OLDX .EQ $05
0006- 1080 OLDY .EQ $06
00E0- 1090 XHI .EQ $EO
0020- 1100 XLO .EQ $20
0090- 1110 YHI .EQ $90
0020- 1120 YLO .EQ $20
00E4- 1130 COLOR .EQ $E4
F3D8- 1140 HGR2 .EQ $F3DS8
F457- 1150 HPLOT .EQ $F457
FCAS8- 1160 WAIT .EQ $FCAS

1170 .OR $6000

1175 *INITIALIZATION
6000- A9 T0 1180 INIT LDA #$70 INITIAL
6002- 85 01 1190 STA XPOS HORIZONTAL POSITION
6004- A9 80 1200 LDA #$80 INITIAL
6006- 85 02 1210 STA YPOS VERTICAL POSITION
6008- A9 01 1220 LDA #$01 , ,
600A- 85 03 1230 STA DLX INITIAL
600C- 85 04 1240 STA DLY INCREMENTS
600E- 20 D8 F3 1250 JSR HGR2

1260 *

1270 *MAIN CONTROL LOOP
6011- 20 30 60 1280 REPT JSR DRAW

6014~ A9 30 1290 LDA #$30 PAUSE TO
6016- 20 A8 FC 1300 JSR WAIT DECREASE SPEED
6019- 20 3E 60 1310 JSR INC.POSITION
601C- 20 22 60 1320 JSR ERASE
601F- 4C 11 60 1330 JMP REPT

1335 *END MAIN CONTROL LOOP

1336 =*
6022- A9 00 1430 ERASE LDA #$00
6024- 85 E4 1440 STA COLOR BLACK
6026- A5 06 1450 LDA OLDY VERTICAL
6028- A6 05 1460 LDX OLDX HORIZONTAL LOW
602A- A0 00 1470 LDY #$00 HORIZONTAL HIGH
602C- 20 57 F4 1480 JSR HPLOT DRAW THE DOT
602F- 60 1490 RTS

6030- A9
6032- 85

| 6034- A5
1 6036- A6
i 6038- A0
| 603A- 20
| 603D- 60

603E- A5
| 6040- 85
“ 6042- 18
6043- 65
6045- 85
6047- C9
| 6049- FO
| _ 604B- C9
Ik 604D~ DO
] 604F- A9
‘ 6051- 18
6052- 45
‘ 6054- 69
| 6056- 85
k 6058- A5
ik 605A- 85
i 605C- 18

“ 605D- 65
ity 605F- 85
Il 6061- C9

i 6063- FO
6065- C9
6067~ DO
| 6069- A9
! 606B- 18
| 606C- 45
606E- 69
e 6070- 85
i 6072- 60

F
E4
02
01
00
57

01
05

03
01
EO
04
20
09
FF

03
01
03
02
06

04
02
90
04
20
09
FF

04
01
04

g SYMBOL, TABLE

; O0OE4- COLOR
0001- DATA

F4

Assembly Language for the Applesoft Programmer

1500 DRAW LDA
1510 STA
1520 LDA
1530 LDX
1540 LDY
1550 JSR
1560 RTS
1570 INC.POSITION
1580 -~ LDA
1590 STA
1600 CLC
1610 ADC
1620 STA
1630 CMP
1640 BEQ .
1650 CMP
1660 BNE
1670 .1 LDA
1680 CLC
1690 EOR
1700 . ADC
1710 STA
1720 .2 LDA
1730 STA
1740 CLC
1750 ADC
1760 STA
1770 CMP
1780 BEQ
1790 CMP
1800 BNE
1810 .3 LDA
1820 CLC
1830 EOR
1840 ADC
1850 STA
1860 .4 RTS

#$7F
COLOR
YPOS
XPOS
#3$00
HPLOT

XPOS
OLDX

DLX
XPOS
#XHI
1
#XLO
2
#$FF

DLX
#$01
DLX
YPOS
OLDY
!
DLY
YPOS
#YHI
.3
#YLO
.4
#$FF

DLY
#3$01
DLY

v

WHITE1

VERTICAL
HORIZONTAL LOW
HORIZONTAL HIGH
DRAW THE DOT

HORIZ
SAVE FOR ERASE

XPOS = XPOS + DLX
NEW HORIZ

AT RIGHT BOUNDARY
IF SO BOUNCE

AT LEFT BOUNDARY
IF NOT CHECK VERT

NEGATE
DLX

VERT _
SAVE FOR ERASE

YPOS = YPOS + DLY
NEW VERT

AT BOTTOM BOUNDARY
IF SO, BOUNCE

AT TOP BOUNDARY

NEGATE
DLY

Chapter 11 High-Resolution Graphics

0003- DLX

0C04- DLY

6030- DRAW

6022- ERASE

F3D8- HGR2

F457- HPLOT

603E- INC.POSITION :
.01=604F, .02=6058, .03=6069, .04=6072
6000- INIT

0005~ OLDX

0006- OLDY

6011- REPT

FCA8- WAIT

00E0- XHI

0020- XLO

0001- XPOS

0090- YHI

0020- YLO

0002~ YPOS

NOTES AND SUGGESTIONS

As in Program 11.2 a dot is set in motion. The dot will move only within
the rectangle bounded on the left by XMIN, on the right by XMAX, on the
top by YMIN, and on the bottom by YMAX. Between successive HPLOTs
we add DELX and DELY to XPOS and YPOS respectively. Each of DELX
and DELY are given an initial value of 1. When the dot touches the left or
right boundaries, DELX is changed in sign. When the dot touches the top
or bottom boundaries, DELY is changed in sign. As a result, the dot will
appear to bounce off the boundaries.

To make the programming a little easier, one-byte values are used for the
horizontal limits of the rectangle within which the dot bounces. This means
the far right columns (256 through 279) are never used. Can you see how
to extend the motion to this part of the graphics screen?

Note the process by which DLX and DLY are negated (lines 16101710 and
1810-1850). Work out the bit manipulation for several values of DLX and
DLY. In this example, DLX and DLY can only attain the values 1 and —1
($FF).

Use the HPLOT and HLIN subroutines (as in Program 11.1) to draw a rec-
tangle around the region within which the dot bounces.

_ o

\ Assembly Language for the Applesoft Programmer

} Animated Bit Pattern

We will next arrange to animate a graphic image by moving each of the dots that
make up the image. The image we will use is the upper case letter A. As shown
in Figure 11.1, the letter consists of sixteen dots. The letter is initially positioned
at approximately the screen center. The screen locations of the dots that make
up the letter are indicated in Figure 11.1, and are listed in Table 11.4.

Table 11.4 identifies initial values of DELX and DELY for each dot. With
sixteen dots and increments of +1, —1 ($01, $FF) and +2, —2 ($02, $FE) we
are able to assign a unique velocity to each dot. As a result, the dots in the bit
pattern will not move as a unit, but instead will be moving separately. The image
will be a recognizable letter A only when the dots return to their original positions.

Note that while there is a clear pattern evident in the assignment of the
values $02, $01, $FF, $FE to DELY, it may appear that the assignment of values
to DELX was done in a disorganized manner. While the present arrangement is
not the only one that would work, there is some reason for it. We will be arrang-
ing that the dots bounce off the top, bottom, left, and right boundaries. In doing
so, we want each dot to exactly attain each of the extreme positions. That is
never a problem when increments of +1, —1 ($01, $FF) are used, since the dots
will move through every possible X and Y value until an extreme position is

“ FIGURE 11.1

Chapter 11 High-Resolution Graphics

TABLE 11.4

POINT XPOS YPOS DLS DLY

1 $8A $63 $02 $02

2 $8A $62 $01 $01

3 $8A . $61 $02 $02 |

4 $8A $60 $01 $01 , I

5 $8A $5F $02 -$o02 i

6 $8B $5E $01 $01 ' ‘

7 $8C $5D $02 $02 . ‘ |

8 $8D $5E $01 $01 .

9 $8E $5F $FE $FE
10 $8E $60 $FF $FF | !
11 $8E $61 $FE $FE
12 $8E $62 $FF . $FF i
13 $8E $63 $FE $FE i
14 $8B $61 $FF $FF “
15 $8C $61 $FE S$FE f
16 $8D $61 $FF $FF | |

l
I
reached. On the other hand, when increments of +2, —2 ($02, $FE) are used,
the dots will skip positions as the X and Y values are incremented. The assign- i
ment in Table 11.4 was made to assure that each dot would attain each extreme . ‘
position. |
Program 11.4 animates the dots in the bit pattern. Several components of |
the program were lifted from Program 11.3, but we will comment only on the ‘
new parts. Program 11.4 follows the model of Program 11.3 in animating the
dot whose position {XPOS, YPOS, OLDX, OLDY) and velocity (DELX, DELY)
are available in memory locations $01-$06. Since sixteen dots will be animated,
the data corresponding to each dot will be copied into memory locations $01—
$06 when it is needed. Other methods for accessing the data could be used. We |
are using this method because it will allow us to easily increase the number of Il
dots to be animated without the need for cumbersome addressing techniques. |

|
PROGRAM 11.4 {|

1010 * ANIMATED BIT PATTERN

|

|
1000 * PROGRAM 11.4 |
0001~ 1020 DATA .EQ $01

Assembly Language for the Applesoft Programmer

0001-
0002~
0003-
0004-
0005-
0006-
0007-
0090-
0020-
06091-
0021-
000B-
000C-
000E-~
00E4-
C051-
C054-
F3D8~
F457-
FC58-

6000- A9
6002- 85
6004- 85
6006- 20
6009- 20

600C- 20
600F- 20
6012- 20
6015- 20
6018- 20
601B- 20
601E- A5
6020- DO
6022- 4C

00
OE
07
D8
2F

3C
87
95
52
47
A3
07
03
ocC

F3
60

60
60
60
60
60
60

60

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440

XPOS .EQ $01
YPOS .EQ $02
DLX JEQ $03
DLY .EQ $04
OLDX .EQ $05
OLDY .EQ $06
ENDFLG .EQ $07
XHI .EQ $90
XLO .EQ $20
YHI .EQ $91
YLO .EQ $21
COUNTR .EQ $0B
PNTR .EQ $0C
CNTR .EQ $0OE
COLOR .EQ $E4
TEXT .EQ $C051
PAGEl .EQ $C054
HGR2 .EQ $F3D8
HPLOT .EQ $F457
HOME .EQ $FC58
) .OR $6000
*INITTALIZATION
LDA #$00
STA CNTR
STA ENDFLG
JSR HGR2
JSR INIT.PNTR
E
* MAIN CONTROL LOOP
REPT JSR COPY.DATA. IN
JSR ERASE”
JSR DRAW
JSR INC.POSITION
JSR COPY. DATA. OUT
JSR BOOKKEEPING
LDA ENDFLG
BNE EXIT
JMP REPT
* END MAIN CONTROL LOOP

*
*
EXIT

Chapter 11 High-Resolution Graphics

6025- 20 58 FC 1450 " JSR HOME CLEAR SCREEN
6028- 2C 54 CO 1460 BIT PAGEl DISPLAY PAGE 1
602B- 2C 51 CO 1470 BIT TEXT OF TEXT
602E- 60 1480 RTS END PROGRAM

1490 INIT.PNTR .
602F- A9 DS 1500 LDA #DATA0O LOW BYTE OF DATA
6031- 85 0C 1510 STA PNTR STORAGE ADDRESS
6033- A9 60 1520 LDA /DATA0 HIGH BYTE OF DATA
6035- 85 OD 1530 STA PNTR+1 STORAGE ADDRESS
6037- A9 00 1540 LDA #$00 START DRAW CYCLE
6039- 85 OB 1550 STA COUNTR OVER AGAIN
603B- 60 1560 RTS

1570 COPY.DATA. IN
603C- A0 05 1580 LDY #$05 MOVE 6 NUMBERS R
603E- Bl 0C 1590 .1 LDA (PNTR),Y FROM STORAGE
6040- 99 01 00 1600 STA DATA,Y TO WORKSPACE
6043- 88 1610 DEY
6044- 10 F8 1620 BPL .1
6046- 60 1630 RTS

1640 COPY.DATA. OUT
6047- A0 05 1650 LDY #$05 MOVE 6 NUMBERS
6049- B9 01 00 1660 .1 LDA DATA,Y FROM WORKSPACE
604C- 91 0C 1670 STA (PNTR),Y TO STORAGE
604FE- 88 1680 DEY
604F- 10 F8 1690 BPL .1
6051- 60 . 1700 RTS

‘ 1710 INC.POSITION

6052- A5 01 1720 LDA XPOS HORIZ
6054- 85 05 1730 STA OLDX SAVE FOR ERASE
6056- 18 1740 CLC :
6057- 65 03 1750 ADC DLX XPOS = XPOS + DLX
6059~ 85 01 1760 STA XPOS NEW HORIZ
605B- C9 90 1770 CMP #XHI AT RIGHT BOUNDARY
605D- FO 04 1780 BEQ .1 IF SO BOUNCE
605F- C9 20 1790 CMP #XLO AT LEFT BOUNDARY
6061- DO 09 1800 BNE .2 IF NOT CHECK VERT
6063- A9 FF 1810 .1 LDA #$FF
6065- 18 1820 CLC
6066- 45 03 1830 EOR DLX NEGATE
6068- 69 01 1840 ADC #$01 DLX
606A- 85 03 1850 STA DLX
606C- A5 02 1860 .2 LDA YPOS VERT

Assembly Language for the Applesoft Programmer

606E-
6070-
6071-
6073~
6075~
6077-
6079-
607B-
607D-
607F-
6080~
6082-
6084 -
6086-
6087-
6089-
608B-
608D~
608F -
6091-
6094 -
- 6095-
6097~
6099-
609B-
609D-
609F -
60A2-

60A3-
60A5-
60AT-
60A9-
60AB-
60AC-
60AE-
60B0-
60B2-
60B4-
60B6-
60B8-

85
18
65
85
C9
FO
C9
DO
A9
18
45
69
85
60
A9
85
A5
A6
AO
20
60
A9
85
A5
A6
A0
20
60

E6
A5
C9
FO
18
A5
69
85
A5
69
85
AD

06 1870
1880
04 1890
02 1900
91 1910
04 1920
21 1930
09 1940
FF 1950
1960
04 1970
01 1980
04 1990
2000
00 2010
E4 2020
06 2030
05 2040
00 2050 -
57 F4 2060
2070
F 2080
E4 2090
02 2100
01 2110
00 2120
57 F4 2130
2140
2150
2160
0B 2170
0B 2180
10 2190
1A 2200
2210
oC 2220
06 2230
ocC 2240
0D 2250
00 2260
0D 2270
00 CO 2280

STA OLDY
CLC
'ADC DLY
STA YPOS
CMP #YHI
BEQ .3
CMP #YLO
BNE .4
.3 © LDA #$FF
CLC
EOR DLY
ADC #$01
STA DLY
.4 .RTS
ERASE LDA #$00
STA ,COLOR
LDA OLDY
LDX OLDX
LDY #$00
JSR HPLOT
RTS
LDA #$TF
STA COLOR
LDA YPOS
LDX XPOS
LDY #$00
JSR HPLOT
RTS
*GET BASH
BOOKKEEPING
INC COUNTR
LDA COUNTR
CMP #3$10
BEQ .1
CLC
LDA PNTR
ADC #$06
STA PNTR

DRAW

LDA PNTR+1
ADC #$00

STA PNTR+1
LDA $C000

SAVE FOR ERASE

YPOS = YPOS + DLY
NEW VERT

AT BOTTOM BOUNDARY
IF SO, BOUNCE

AT TOP BOUNDARY

NEGATE
DLY,

BLACK

HORIZ HIGH

WHITE1

HORIZ HIGH

COUNT NUMBER OF
DOTS DRAWN SO FAR
ALL DOTS DONE?

IF SO, START OVER

POINT

TO

DATA

FOR

NEXT

DOT
KEYPRESS?

60BB-
60BD-
60CO-
60C2-

60C5-
60C8-
60CA-
60CC-
60CE-
60D0-
60D3-
60D5-
60D7-
60D8-
60DB-
60DE-
60E1-
60E4-
60E7-
60EA-
60ED-

60F3-
60F9-
60FF -
6102-
6105-
6108-
610B-
6111-
6114-
6117-
611D-
6123~

6129-

10
AD
A9
85

20
E6
A5
C9
DO
20
A9
85
60
8A
02
8A
01
8A
02
8A
01

02
01
02
8D
01
8E
FE
FF
8E
FE
FF
FE

FF

1A
10
01
07

2F
OE
OE
El
017
ocC
01
OE

63
00
62
00
61
00
60
00

00
00
00
5E
00
5F
00
00
61
00
00
00

00

2290
C0 2300
2310
2320

60 2340
2350
2360
2370
2380

FD 2390
2400
2410
2420

01

00 2430

FE

00 2440

FE

00 2450

02

00 2460

00 2470
00 2480
00 2490
01

00 2500
FF

00 2510
00 2520
FE

00 2530
00 2540
00 2550

00 2560

Chapter 11 High-Resolution Graphics

BPL .2 IF NOT, RETURN
LDA $C010 CLEAR KEYBOARD STROBE
LDA #$01

STA ENDFLG SET EXIT FLAG

.1 » JSR INIT.PNTR

INC CNTR NUMBER OF CYCLES

LDA CNTR
_CMP #$E1 BACK TO ORIGINAL?

BNE .2 : ,
JSR $FDOC WAIT FOR KEYPRESS
LDA #$01 :
STA CNTR RESET

.2 RTS ‘

DATAO .DA #3$8A,#363, #$301; #$02, #300, #300

DATA1 .DA #$8A,#$62,#$FE,#$01,#$00,#$00
DATAZ .DA #$8A,#$61,#$FE,#$02,#$00,#$00
DATA3 .DA #$8A, #3$60, #302, #$01, #3$00, #300
DATA4 .DA #$8A, #$5F, #$FF, #$02, #3$00, #300
DATA5 .DA #$8B, #35E, #$FF, #$01, #$00, #3$00
DATA6 .DA #$8C, #35D, #3$02, #$02, #$00, #300

DATAT .DA #$8D, #35E, #3801, #801, #300, #$00

DATAS .DA#$8E, #3$5F, #$FF, #$FE, #$00, #300
DATA9 .DA #38E, #360, #302, #$FF, #300, #300
DATA10 .DA #$8E, #$61, #$FE, #$FE, #$00, #$00
DATA11 .DA #$8E, #$62, #$FE, #$FF, #300, #$00
DATA12 ;DA #3$8E, #$63, #301, #$FE, #$00, #300

DATA13 .DA #$8B, #$61, #$FF, #$FF, #$00, #$00

JUE s

Assembly Language for the Applesoft Programmer

612C- 8C 61 02

612F- FE 00 00 2570 DATA14 .DA ¥$8C, #$61,#302, #$FE, #$00, #3500
6132- 8D 61 01 S

6135- FF 00 00 2580 DATA15 .DA #$8D, #$61, #301, #$FF, #$00, #$00

SYMBOL TABLE

60A3- BOOKKEEPING .01=60C5, .02=60D7
000E- CNTR

00E4- COLOR

603C- COPY.DATA.IN .01=603E

6047- COPY.DATA.OUT .01=6049

| PNTR is a two-byte (PNTR, PNTR+ 1) variable that points to the byte of
li memory at which the data for a given dot begin. The subroutine INITPNTR sets
' PNTR so that it identifies the beginning of the data table. Subroutine
COPY.DATA.IN copies six consecutive bytes into the DATA workspace ($01-
i - $06). A dot is then ready. After the dot is erased and redrawn, its position can
‘ be incremented. This process duplicates the subroutines of Program 11.3. Next
‘ COPY.DATA.OUT puts the workspace DATA values back into the data table,
I ready for future use. (

i The subroutine BOOKKEEPING serves several functions. First, COUNTR
3 is incremented. This variable keeps track of the number of dots that have been
‘ drawn. If COUNTR is less than 16, PNTRyis incremented by 6 so that it points
i to the beginning of the data for the next dot. Then a check is made to see if a

i key has been pressed (a signal to end the program).
‘ i When COUNTR is incremented to 16, all dots have been drawn. A branch
“ to AGAIN arranges to start the entire cycle over again. PNTR is reset. The var-
il iable CNTR is checked. If it has reached 225, then all the dots have returned to
" their original positions. (The key value for CN'FR is determined by the positions
i of the boundaries against which the dots will bounce.) Animation ceases until
‘ a keypress gives the signal to resume motion.
i There is one visible defect in Program 11.4. When the bit pattern returns
i ; to its original position, a couple of dots are not visible. To see the cause, note
o that each dot is erased from its old position (OLDX,0LDY), then redrawn in its
(R new position (XPOS,YPOS). Assume that dot number 10 is occupying position
1 P and dot number 8 is occupying position Q, but is about to be moved to position
'P. When it is moved, position Q is erased and position P is drawn (it is drawn
again, since dot number 10 is there). When dot number 10 is moved, its old
H position (P) will be erased. That means dot number 8 will not be visible.

Chapter 11 High-Resolution Graphics

BITMASKING TECHNIQUES

Before developing a method of correcting this problem, we will look at the
HPLOT subroutine. It is listed below. You can see it (without labels and vari-
ables) at $F457.

HPLOT JSR HPOSN
LDA COLOR
EOR (BASL),Y
AND BITMASK
EOR (BASL),Y
STA (BASL),Y _ |

RTS

The first thing HPLOT does is to jump to the HPOSN subroutine. This
accomplishes several tasks:

1. HPOSN identifies the address of the leftmost byte of the row in which the
HPLOT is to occur. This address is stored in BASL ($26) and BASH ($27).

|

2. Within the plotting row identified by BASL and BASH, HPOSN identifies I

the byte that is to be affected. On return from the subroutine, the Y-register

is an index to this byte, so that (BASL),Y will identify the address of the . |

byte. , }
3. HPOSN identifies the bit position to be affected within the plotting byte.

The corresponding bit (and bit 7) are turned On in BITMASK ($30). The I

other bits in BITMASK are Off. (Bit 7 is turned on in order to accommodate i

colors. See the Apple II Reference Manual for some background.) 7 0

To illustrate the effect of HPOSN, assume we wish to plot a dot at (94,123)
(HPLOT 94,123). We can do this, assuming the color has been specified, with
the following:

LDA #$7B * VERTICAL (DEC 123)

LDX #$5E * HORIZONTAL LOW (DEC 94)
LDY #$00 * HORIZONTAL HIGH

JSR HPLOT

RTS

240

1.

2.

Assembly Language for the Applesoft Programmer

T

As we have seen, the first action taken by HPLOT will be to call HPOSN.
The contribution of HPOSN in this case will be to

Identify the base address of the plotting row, which is $2F28. BASL will
receive $28 and BASH will receive $2F.

Identify the byte index, which is $13. (The designated point is in the thir-
teenth byte from the left of the screen.) On return from HPOSN, the Y-
register will contain $13.

Identify the bit to be turned on, which is bit number 2. BITMASK will

receive the number 132 (binary 10000100). (Note that bit number 2 is the
third bit, since the first bit is number 0.) : '

We will use two examples to illustrate the function served by the remaining
parts of HPLOT. In each case we will show the changesthat take place in the
Accumulator and in the screen display byte (BASL),Y.

JSR HPOSN
LDA COLOR

EOR

(BASL) ,Y

AND BITMASK

EOR
STA
RTS

(BASL) ,Y
(BASL) ,Y

BITMASK

10000100

Example 1: Plotting (in white; HCOLOR = 3) in a position which is initially
black. :

Screen Disp’lay Byte Color - Accumulator

(BASL) ,Y

01000000 01111111 XXXXXXXX

;
01000100

01111111
00111111
00000100
01000100

Note that bit 6 of the display byte was on before the HPLOT occurred. It was
not changed when dot 2 was plotted.

Example 2: Plotting (in black; HCOLOR ="~ 0) in a position that is initially
white.

JSR HPOSN
LDA COLOR

EOR

(BASL) ,Y

AND BITMASK

EOR
STA
RTS

(BASL) ,Y
Y

(BASL)

BITMASK

10000100

Screen Display Byte
(BASL) ,Y
01000100

01000000

Color Accumulator

00000000 3OOOKXKX
00000000
01000100
00000100
01000000

Chapter 11 High-Resolution Graphics

‘

Try a few examples of your own. We will not be using colors other than
white and black, but you might experiment to see how the other colors work.
The color codes are given in Table 11.2.

The use of EOR and AND in HPLOT permits a general purpose point-
plotting subroutine to handle the plotting of a variety of colors. We can design
special purpose plotting subroutines that provide features that HPLOT does not
offer. The program segment listed below is an example.

JSR HPOSN
LDA BITMASK
EOR (BASL),Y
STA (BASL),Y
RTS ‘

We will give two examples to show the effect of this subroutine.
Example 3: Plotting a dot in a position that is initially OFF (black).

BITMASK Screen Display Byte Accumulator

(BASL) ,Y
JSR HPOSN 10000100 01000000 KXXXXXXX
LDA BITMASK 10000100
EOR (BASL),Y 11000100
STA (BASL),Y 11000100

Note that while no COLOR was specified or accessed, a dot was plotted in the
position indicated by the BITMASK. Bit 6 of the screen display byte, that was
On before the plotting subroutine, remains On. Note also that while bit 7 gets
turned On, it is not displayed. Again, it is strictly for color control.

Example 4: Plotting a dot in a position that is already ON.

BITMASK Screen Display Byte Accumulator
(BASL) ,Y
JSR HPOSN 10000100 01000100 KXXXXXXX
LDA BITMASK 10000100
EOR (BASL),Y 11000000
STA (BASL),Y 11000000

In this case, while no COLOR was specified or accessed, the dot indicated by

the BITMASK was changed from ON to OFF

Assembly Language for the Applesoft Programmer

The subroutine above has the effect of a complementary plot. As with
HPLOT, BITMASK identifies the bit pattern at which plotting occurs. If the
indicated bit is ON, the subroutine turns it OFE If the bit is OFF it is turned
ON. This is a convenient tool, one that will correct the shortcoming encountered
in Program 11.4.

COMPLEMENTARY DRAWING

242

Recall the difficulty with Program 11.4: Some dots did not appear when the bit
pattern returned to its original position. The reason for this-is that each dot is
erased from its old position (OLDX,0LDY), then redrawn in its new position
(XPOS,YPOS). Occasionally one dot moves into a position that is about to be
vacated by another dot. To illustrate this problem, assume dot number 10 is
drawn in position P and dot number 8 is drawn in position Q, but is about to
be moved to position P. When it is moved, position Q is erased and position P
is drawn (it was already drawn for dot number 10). When dot number 10 is
moved, its old position (P) will be erased. As a result, no trace of dot number 8
remains. .

If we use the complementary draw subroutine instead of HPLOT, the prob-
lem disappears. If dot number 10 occupies P and dot number 8 occupies Q and
is about to move to P, then when dot number 8 is moved from Q, the comple-
mentary draw will erase (}. When dot numbér 8 is moved to B the complemen-
tary draw will erase P (which was ON for dot number 10). Then when dot
number 10 is moved from P, the complementary draw will turn P ON again. As
a result, dot number 8 is visible. And all the other dots will be visible also.
~ While a listing of the amended program is not given, here are the changes
to make to Program 11.4 in order to provide for complementary drawing. We
will refer to the amended program as Program 11.5.

1. Replace the identification of HPLOT with
HPOSN .EQ $F411
and define BTMSK as

BTMSK .EQ $30

2. Rewrite DRAW as follows:

DRAW LDA YPOS

LDX XPOS

LDY #3%$00 HORIZ HIGH

JSR HPOSN GET ADDRESS, BITMASK
LDA BTMSK

EOR (BASL),Y BITMASK EOR SCREEN
STA (BASL),Y SAVE TO SCREEN
RTS

3. Rewrite ERASE as follows:

ERASE LDA FLAG DON'T ERASE ON
BEQ RET FIRST CYCLE
LDA OLDY
LDX OLDX
LDY #$00 HORIZ HIGH
JSR HPOSN GET ADDRESS, BITMASK
LDA BTMSK '

EOR (BASL),Y BITMASK EOR SCREEN
STA (BASL),Y SAVE TO SCREEN
RTS

4. Insert additional lines into Program 11.4:

1015 FLAG .EQ $00
1255 STA FLAG INITIALIZE TO ZERO
2365 STA FLAG SET TO NONZERO

FLAG was not needed in Program 11.4 because the ERASE always resulted in
drawing in black, which was the background color. Since ERASE now results
in a complementary draw, we will skip ERASE the first time through the erase-
draw cycle (since there is nothing to erase). ' .

To make this program a little more interesting, you can increase the size of
the data set. The result can be a pleasant looking animation, with swirling dots
coalescing to form a name or graphics image. The present structure of the pro-
gram will limit the number of dots to less than 256; but larger numbers are not
desirable, since the resulting animation would be extremely slow.

Speeding Up Animation

The animation provided by Program 11.5 is satisfactory. The dots move smoothly,
with good speed, and the image is clear. However, if a large number of dots is

Chapter 11 High-Resolution Graphics

;7

Assembly Language for the Applesoft Programmer

to be animated the movement of dots could become unreasonably slow. We can
‘ achieve a noticeable increase in speed, .and thus be able to animate many more
“ dots, by avoiding the use of the HPOSN subroutine and arranging to achieve its
i results through more efficient methods. In fact, the result we will achieve pro-
3 vides movement that is almost too fast for the 16 dots we have been working
with. We have had very satisfactory animation with more than 150 dots. In those
cases we were animating a name or object.
i Of course, in the process of gaining speed, we must sacrifice somethlng In
I this case we are sacrificing compactness. Rather than obtaining byte location
and bit location through calculation, as is done in HPOSN, we will look up the
| values in long reference tables (look-up tables). We will trade a 3-byte call to
an Applesoft subroutine (JSR HPOSN) for a 32-byte subroutine and 650 bytes
S of tables.
18 Our reference tables will provrde the same results as we obtalned from
1 | HPOSN:
“ g . . !
] “ \ 1. We must identify the address of the leftmost byte of the row in which the
o HPLOT is to occur. We W1ll again store the result in BASL [$26) and BASH
($27).

= 2. Within the plotting row identified by BASL and BASH, we must identify
i ‘ ‘ the byte that is to be affected. We will load the Y-register with an index to

this byte so that once more (BASL),Y will identify the address of the byte.
‘ We will call this index the Y-offset, and will refer to the corresponding table
“ ‘ as the OFFSET table.

i 3. We must identify the bit position to be affected within the plotting byte.
| ‘ The corresponding bit will be turned ON in BITMASK ($30) (We will not

A turn on bit 7 as HPOSN does, since color is not important here. If you are
1

5 using colors, you may need to turn on bit 7 to achieve the desired color—
] it is easily done.) The other bits in BITMASK are OFF.

g We will consider each of these tasks separately.

BASE ADDRESS TABLES

Table 10.5 lists the base addresses of all 192 high-resolution graphics lines. The
| first column contains the base addresses for the top third of the screen. The
second and third columns give base addresses for the middle and bottom thirds
of the screen. Look over the lists. You should notice some consistent patterns.

Chapter 11 High-Resolution Graphics

These patterns provide the basis for formulas that can be used to calculate the
base address associated with a given horizontal plotting position. Before you
start developing such formulas, remember: that is what HPOSN does. Our inten-
tion is to use the table of addresses in order to save calculation time. We will
store the addresses in two tables, which we will call TBLYL (low part of the
addresses) and TBLYH (high part of the addresses).

We will use no calculation to obtain the value of BASH or BASL. TBLYH
will have the high byte of each address in it. TBLYL will have all 192 low
addresses in it. They can be accessed by the following routine.

LDY YPOS
LDA TBLYL,Y
STA BASL
LDA TBLYH,Y
STA BASH

OFFSET Table

Next we must identify the byte that is to be affected within the plotting row.
There are forty bytes on each plotting line, so it might seem that the offset table
would need forty entries. On the other hand, there are 280 positions in each
plotting line. Plotting the first 7 positions will result in modifying the first byte
only (offset 0). Plotting in the eighth through fourteenth positions will affect
the second byte (offset 1). And so on.

If we want to avoid calculation, we will have an offset table that has 280
entries in it. The first 7 entries will be 0s; the next 7 entries will be 1s, and so
on. The last 7 entries will have 39s ($27). Then, for a given horizontal position
XPOS, we might try the following routine to obtain the offset.

LDX XPOS
LDY OFFSET,X
STY OFFSET

You will note that the above routine will access only 256 of the numbers in our
280-byte table. That is all right if you are willing to give up the use of the right
margin of the screen. (We will do so in the program we are developing.) If you
want to use the entire width, it will be necessary to use two tables: TBLXL (for
positions 0 through 255) and TBLXH (for positions 256 through 279). Access
to the tables can then be controlled by way of a two-byte X position: XPOSL,

245

;7

i ""___"*""""""""""“““““““‘"""‘l||
|l
|
o ! } Assembly Language for the Applesoft Programmer
|
\

i
.

XPOSH. If XPOSH is 0, read from TBLXL. If XPOSH is 1, read from TBLXH.
Thus: o

s LDA XPOSH
\ BNE HERE
: LDY TBLXL,X
BPL CONT ALWAYS
A HERE LDY TBLXH, X
! CONT STY OFFSET

i BITMASK Table

We must now obtain the bit mask, which identifies the specific bit to be affected
within the plotting byte. While this could be accomplished through the use of
another table, we will instead do a little ar1thmetlc Algebralcally we can say
that

BIT POSITION = XPOS — 7*OFFSET

We can easily multiply by factors of 2, 4, 8, etc. (use ASL), and will take advan-
tage of this by noting that

! 7%*OFFSET = 8*OFFSET — OFFSET '

Il The following subroutine will obtain the BITMASK when provided with
T the horizontal plotting position XPOS. (Again we assume that XPOS is a one-
byte value.)

i LDA OFFSET
AL ASL MULTIPLY
I ASL OFFSET
i ASL BY 8
H : SEC
N SBC OFFSET
S STA TEMP 7*OFFSET
i LDA XPOS
P - SEC
‘ SBC TEMP XP0OS - T7*QFFSET
TAX

. LDA MASKTBL, X

Chapter 11 High-Resolution Graphics

MASKTBL will have seven numbers in it. Each number, in binary form, will
have all positions zero except for the bit position that we want to plot. The
entries of the table are thus 1, 2, 4, 8, 16, 32, 64.

We can combine the three functions of HPOSN into a single subroutine,
HPOSN1. Before entering the subroutine we will load the X- and Y-registers
with the horizontal and vertical coordinates of the point that is to be plotted.

*GET BASH AND BASL
LDA TBLYH,Y READ TABLE

STA BASH STORE. IT
LDA TBLYL,Y READ TABLE
STA BASL STORE IT

*GET OFFSET
LDY OFFSET,X READ TABLE
STY OFFSET STORE IT
*GET BITMASK
TYA

ASL
ASL
ASL

MULTIPLY
OFFSET
BY 8

SEC

SBC OFFSET
STA TEMP
TXA

SBC TEMP
TAX

LDA MASKTBL, X
RTS

7*0FFSET

XPOS - TxOFFSET

On return from the subroutine, BASL and BASH will be loaded as they would
be by HPOSN. The Y-register will have the OFFSET in it, and the Accumulator
will have the BITMASK. Since XPOS and YPOS are not referenced directly by
the subroutine HPOSN1, we can use it for ERASE as well as for DRAW.

The task remaining is to update the previous program (Program 11.5) so
that these newer features are added. It will be fairly easy to modify the source
file to provide for HPOSN1. The onerous task is to type in all of the data for the
tables. We can ease that burden too. For the price of a small delay (not noticeable)
at the start of the program, before the graphics begins, we can have a subroutine
fill the tables for us. This is done in lines 2770—3070 of Program 11.6, which
shows the updated form of the earlier programs.

247

0000-
0001-
0001-
0002-
0003 -
0004-
0005-
0006-
0007-
0009-
000A-
000B-
000C-
000E-
000F -
0010-
il 0090-
‘ 0020-
| 0091-
. 0021-
| 0026-
i 0027-
o ' 0030-
ik 00E6-
R C051-
i CO54-
N F3D8-
o F411-
FC58-

6000~ 20
6003- A9
! 6005- 85
‘ 6007- 85
o 6009- 85

* 600B- 20

FF 60
00
O0E
07
00
D8 F3

PROGRAM 11.6

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380

Assembly Language for the Applesoft Programmer

* PROGRAM 11.6
* FASTER ANIMATION
FLAG .EQ $00
DATA .EQ $01
XPOS .EQ $01
YPOS . EQ $02
DLX .EQ $03
DLY .EQ $04
OLDX .EQ $05
OLDY .EQ $06
ENDFLG .EQ $07
LINNUM .EQ $09
INDX .EQ $0A
COUNTR .EQ $0B
PNTR .EQ- $0C
CNTR .EQ $0E
NDOTS .EQ $OF
OFFSET .EQ $10
XHI .EQ $90
XLO .EQ $20
YHI .EQ $91
YLO .EQ $21°
BASL .EQ $26
BASH .EQ $27
TEMP .EQ $30
HPAGE .EQ $E6
TEXT .EQ $C051
PAGE1 .EQ $C054
HGR2 .EQ $F3DS8
HPOSN .EQ $F411
HOME .EQ $FC58
.OR $6000
*INITIALIZATION
JSR FILL.TABLES
LDA #$00
STA CNTR
STA ENDFLG
STA FLAG
JSR HGR2

Chapter 11 High-Resolution Graphics

600E- 20 ‘ JSR INIT.PNTR

CONTROL LOOP

6011- 20 JSR COPY.DATA. IN
6014- 20 JSR ERASE
6017- 20 JSR DRAW
601A- 20 JSR INC.POSITION
601D- 20 JSR COPY.DATA. OUT
6020- 20 JSR BOOKKEEPING
6023- A5 LDA ENDFLG
6025- DO BNE EXIT
6027- 4C JMP REPT

CONTROL LOOP

JSR 'CLEAR TEXT SCREEN
BIT DISPLAY PAGE 1
BIT OF TEXT
RTS END PROGRAM
INIT. PNTR il
LDA #DATAO LOW BYTE OF DATA i
STA PNTR STORAGE ADDRESS i
LDA /DATA0 HIGH BYTE OF DATA
STA PNTR+1 STORAGE ADDRESS
LDA #$00 START DRAW CYCLE |
STA COUNTR OVER AGAIN
RTS |
COPY. DATA. IN i
LDY #$05 MOVE 6 NUMBERS 1‘
LDA (PNTR),Y FROM STORAGE |
STA DATA,Y TO WORKSPACE i
DEY
BPL .1 ~ TIL Y IS NEGATIVE |
RTS Il

COPY. DATA. OUT
LDY #$05 MOVE 6 NUMBERS
LDA DATA,Y FROM WORKSPACE
STA (PNTR),Y TO STORAGE
DEY '
BPL .1
RTS

Assembly Language for the Applesoft Programmer

250

6057-
6059-
605B-
6805C-
605E-
6060-
6062-
6064-
6066-
6068~
B606A-
606B-
606D-
B06F -
6071-
6073-
6075~
6076-
6078-
607A-
607C-
607E-
6080-
6082-
6084-
6085-
6087-
6089-
608B-
608C-
608E-
6090-
6092-
6094 -
6097-
6099-
609B-
609C-
609E-
60A0-
60A3-

A5
85
18
65
85
C9
FO
o
DO
A9
18
45
69
85
A5
85
18
65
85
9
FO
C9
DO
A9
18
45
69
85
60
A5
FO
A4
A6
20
51
91
60
A4
A6
20
51

01
05

03
01
90
04
20
09

FF -

03
01
03
02
06

04

02

91
04
21
09
FF

04
01
04

00
0B
06
05
A8
26
26

02
01
A8
26

60

60

1810 INC.POSITION

1820
1830
1840
1850
1860
1870
1880
1890
1900

1910 .

1920
1930
1940
1950

1960 .

1970
1980
1990
2000
2010
2020
2030
2040

2050 .

2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

‘2160

2170

2180 .

2190
2200
2210
2220

ERASE

DRAW

LDA
STA
CLC

ADC

STA
CMP
BEQ

".CMP

BNE
LDA

 CLC

EOR
ADC
STA
LDA
STA
CLC
ADC
STA
CMP
BEQ
CMP
BNE
LDA
CLC
EOR

STA
RTS
LDA
BEQ
LDY
LDX
JSR
EOR
STA
RTS
LDY
LDX
JSR
EOR

XPOS

‘OLDX

DLX
XPOS
#XHI
1
#XLO
.2
#$FF

DLX

#3%$01

DLX
YPOS
OLDY .

DLY
YPOS
#YHI
.3
#YLO

4
#$Ff
DLY

#3$01
DLY

FLAG
.1

OLDY
OLDX

HPOSN1

(BASL) ,Y
(BASL) ,Y

YPOS
XPOS
HPOSN1
(BASL) ,Y

HORIZ |
SAVE FOR ERASE i

XPOS = XPOS + DLX
NEW HORIZ

AT RIGHT BOUNDARY?
IF SO BOUNCE

AT LEFT BOUNDARY?
IF NOT CHECK VERT

NEGATE
DLX -

VERT

. SAVE FOR ERASE

YPOS = YPOS -+ DLY
NEW VERT

AT BOTTOM BOUNDARY?
IF SO, BOUNCE

"AT TOP BOUNDARY?

NEGATE
DLY

DON'T ERASE ON
FIRST CYCLE

GET ADDRESS, BITMASK
BITMASK EOR SCREEN
SAVE TO SCREEN

GET ADDRESS, BITMASK
BITMASK EOR SCREEN

Chapter 11 High-Resolution Graphics
60A5- 91 26 2230 STA (BASL),Y SAVE TO SCREEN
60AT- 60 2240 RTS

» 2250 *GET BASH

60A8- B9 42 62 2260 HPOSN1 LDA TBLYH,Y
60AB- 85 27 2270 STA BASH
60AD- B9 02 63 2280 LDA TBLYL,Y
60BO- 85 26 2290 STA BASL

2300 *GET OFFSET
60B2- BC 42 61 2310 LDY OFFTBL, X
60B5- 84 10 2320 STY OFFSET

2330 *GET BITMASK
‘60BT- 98 2340 TYA
60B8- OA 2350 ASL MULTIPLY
60B9- OA 2360 ASL OFFSET
60BA- OA 2370 ASL BY 8
60BB- 38 2380 SEC ,
60BC- E5 10 2390 SBC OFFSET
60BE- 85 30 2400 STA TEMP T+OFFSET
60C0- 8A 2410 TXA
60C1- E5 30 2420 SBC TEMP XPOS - T*OFFSET
60C3- AA 2430 TAX
60C4- BD 3B 61 2440 LDA MASKTBL, X
60C7- 60 2450 RTS

2460 BOOKKEEPING
60C8- E6 OB 2470 INC COUNTR COUNT NUMBER OF
60CA- A5 OB 2480 LDA COUNTR DOTS DRAWN SO FAR
60CC- C9 OF 2490 CMP #NDOTS ALL DOTS DONE?
60CE- FO 1A 2500 BEQ .1 IF SO, START OVER
60D0- 18 2510 CLC : o
60D1- A5 0C 2520 LDA PNTR POINT
60D3- 69 06 2530 ADC #$06 TO
60D5- 85 OC 2540 STA PNTR. DATA
60D7- A5 0D 2550 LDA PNTR+1 = FOR
60D9- 69 00 2560 ADC #$00 NEXT
60DB- 85 0D 2570 STA PNTR+1 DOT
60DD- AD 00 CO 2580 LDA $C000 KEYPRESS?
60E0- 10 1C 2590 BPL .2 IF ‘NOT, RETURN
60E2- AD 10 CO 2600 LDA $C010 CLEAR KEYBOARD STROBE
60E5- A9 01 2610 LDA #$01
60E7- 85 07 2620 " STA ENDFLG SET EXIT FLAG
60E9- 60 2630 RTS
60EA- 20 34 60 2640 .1 JSR INIT.PNTR

251

) 60ED- E6
il 60EF- A5
i 60F1- 85
it 60F3- C9
60F5- DO
60F7- 20
60FA- A9
60FC- 85
60FE- 60

L 60FF- 18
6100- A9
6102- A0
6104- A2
6106- 99
6109- C8
610A- FO
610C- CA
610D- 10
610F- 69
6111- DO

6113- A9
‘ 6115- 85
HIE 6117- A9
6119- 85
611B- 85
: 611D- A0
i 611F- A2
} 6121- 20
Rl 6124- A4
o 6126- A5
e 6128- 99
612B- A5
612D- 99
: 6130- E6
N 6132- E6
: 6134- A5
l 6136~ C9
ol 6138- DO

OE
OE
00
El
07
0C
01
OE

00
00
06
42

07

F7
01
F1

40
E6
00
09
0A
00
00
11
0A
26
02
27
42
0A
09
09
Co
E3

FD

61

F4

63

62

2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780

2790
2800 .

2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920

2930 .

2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050

Assembly Language for the Applesoft Programmer

CNTR

INC NUMBER OF CYCLES
LDA CNTR
STA FLAG SET TO NONZERO
CMP #$E1 BACK TO ORIGINAL POSITION?
BNE .2 IF NOT
JSR $FDOC WAIT FOR KEYPRESS
LDA #$01
STA CNTR RESET
.2 RTS
FILL. TABLES
*LOAD OFFTBL
CLC :
LDA #$00 INITIAL VALUE TO TABLE
LDY #300 INDEX ‘TO TABLE
1 LDX #$06 '
2 STA OFFTBL, Y
INY o
BEQ..3 - OFFTBL HOLDS 256 NUMBERS
DEX i /
BPL .2 UNTIL 7 NUMBERS STORED
ADC #$01 INCREASE NO TO BE STORED
BNE .1 ALWAYS
*LOAD TBLYL AND TBLYH
.3 LDA #$40 DESIGNATE HIGH
STA HPAGE RES PAGE 2
LDA #$00 START AT TOP
STA LINNUM OF SCREEN
STA INDX INDEX TO TABLE STORAGE
4 LDY #$00 HORIZONTAL HIGH BYTE
LDX #$00 , HORIZONTAL LOW BYTE
JSR HPOSN ~
LDY - INDX TABLE INDEX
LDA BASL BASE ADDRESS LOW BYTE
STA TBLYL,Y
LDA BASH BASE ADDRESS HIGH BYTE
STA TBLYH, Y
INC INDX X o
INC LINNUM DOWN ONE LINE
LDA LINNUM VERTICAL POSITION
CMP #$CO BOTTOM OF SCREEN?
BNE

.4 IF NOT

Chapter 11 High-Resolution Graphics

613A- 60 3060 RTS DONE; EXIT
3070 MASKTBL
613B- 01 02 04
613E- 08 10 20 -
6141~ 40 3080 .DA #$01, #$02, #$04, #$08, #$10, #820, #$40

6142- 3090 OFFTBL .BS $100
6242- 3100 TBLYH .BS $CO
6302- 3110 TBLYL .BS $CO

63C2- 8A 63 01 _

63C5- 02 00 00 3120 DATAO .DA #$8A, #$63, #3501, #$02, #3$00, #300
63C8- 8A 62 FE o
63CB- 01 00 00 3130 DATA1 .DA #$8A, #$62, #$FE, #301, #$00, #300
63CE- 8A 61 FE

63D1- 02 00 00 3140 DATA2 .DA #$8A, #361, #$FE, #302, #300, #300
63D4- 8A 60 02 - '

63D7- 01 00 00 3150 DATA3 .DA #$8A, #$60, #$02, #301, #$00, #300
63DA- 8A S5F FF

63DD- 02 00 00 3160 DATA4 .DA #$8A, #$5F, #$FF, #802, #$00, #$00
63E0- 8B 5E FF

63E3- 01 00 00 3170 DATA5S .DA #$8B, #$5E, #$FF, #801, #$00, #$00
63E6- 8C 5D 02

63E9- 02 00 00 3180 DATA6 .DA #$8C, #$5D, #$02,#802, #$00, #$00
63EC- 8D 5E 01

63EF- 01 00 00 3190 DATA7 .DA #$8D, #$5E, #301, #301, #300, #300
63F2- 8E S5F FF '
63F5- FE 00 00 3200 DATA8 .DA #$8E, #$5F, #$FF, #$FE, #$00, #$00
63F8- 8E 60 02 ,

63FB- FF 00 00 3210 DATA9 .DA #$8E, #$60, #$02, #$FF, #$00, #300
63FE- 8E 61 FE

6401- FE 00 00 3220 DATA10 .DA #$8E, #$61, #$FE, #$FE, #$00, #$00
6404- 8E 62 FE :

6407- FF 00 00 3230 DATA11 .DA #$8E, #$62, #$FE, #$FF, #300, #300
640A- 8E 63 01 v

640D~ FE 00 00 3240 DATA12 .DA #$8E, #$63,#$01, #3FE, #$00, #300
6410- 8B 61 FF

6413- FF 00 00 3250 DATA13 .DA #$8B, #$61, #$FF, #$FF, #$00, #$00
6416- 8C 61 02

6419- FE 00 00 3260 DATA14 .DA #$8C, #$61, #$02, #$FE, #$00, #$00
641C- 8D 61 01

641F- FF 00 00 3270 DATA15 .DA #$8D, #$61, #$01, #$FF, #$00, #800

Assembly Language for the Applesoft Programmer

SYMBOL TABLE

1 0026- BASL
1 60C8- BOOKKEEPING .01=60EA, .02=60FE

000E- CNTR

6041- COPY.DATA.IN .01=6043

604C- COPY.DATA.OUT .01=604FE

000B- COUNTR '

0001- DATA

63C2- DATAO

63C8- DATA1

63FE- DATA10

6404- DATAl1 . .

640A- DATA12 '

6410- DATA13 ,

6416- DATAl4

641C- DATA15

63CE- DATA2 :
63D4- DATA3 ‘

0027~ BASH '
\
|

63DA- DATA4
63E0- DATA5
63E6- DATA6
| 63EC- DATA7
i : 63F2- DATAS
i 63F8- DATA9
0003- DLX |
0004- DLY '

: 609C- DRAW
i 0007- ENDFLG p
i & 608C- ERASE .01=609B
| 602A- EXIT | ,
e 60FF- FILL.TABLES .01=6104, .02=6106, .03=6113, .04=611D
0000- FLAG
N _ F3D8- HGR2 , '
FC58- HOME

00E6- HPAGE

F411- HPOSN
| 60A8- HPOSN1
I 6057- INC.POSITION .01=6068, .02=6071, .03=6082, .04=608B
l 000A- INDX
|

Chapter 11 High-Resolution Graphics

6034- INIT.PNTR
0009- LINNUM
613B- MASKTBL
000F- NDOTS
0010- OFFSET"
6142- OFFTBL
0005- OLDX
0006- OLDY
C054- PAGE1
000C- PNTR
6011- REPT
6242- TBLYH
6302- TBLYL
0030- TEMP
C051- TEXT
0090- XHI
0020- XLO
0001- XPOS
0091- YHI
0021- YLO
0002- YPOS

NOTES AND SUGGESTIONS .

1. Note the process through which the tables are filled. OFFTBL receives
seven Os, then seven 1s, then seven 2s, etc., until it contains 256 numbers.
The entries for TBLYL and TBLYH can be calculated in several ways. Here
we are taking advantage of the HPOSN subroutine to calculate the address
of the leftmost byte of each high-resolution screen line. HPOSN stores the
address in BASL, BASH ($26, $27), so after each call to HPOSN, the contents
of BASL and BASH are copied into TBLYL and TBLYH, respectively.

2. More elaborate images can be animated. You can map out an image on
graph paper, and assign initial values of DLY and DLY to each point. Then
enlarge the data set (presently DATAO through DATA15), and set NDOTS
equal to the number of dots in the image.

3. What happens if the bit pattern is animated across an existing graphics
image? Work through the bitmasking by hand, then check your answer by
trying the program.

Assembly Language for the Applesoft Programmer

4. With access to the address tables TBLYL and TBLYH, the addressmg struc-
- ture of the graphics screen is not so. cumbersome. Write an alternative to
HCLR, a subroutine that clears the screen from top to bottam, or from left
to rlght Or, write a subroutine that copies an image from graphics page 1

;. to graphics page 2, filling page 2 from top to bottom.

‘ 256

- — Y
. GAME
| DEVELOPMENT

In this chapter we will describe techniques of animating graphics images. We
will use a video game as the context for this discussion, and will develop a
working game as we progress. The development of a complete game would
require an entire book by itself; so we will provide an elementary game, which
can be adapted and expanded as you like.

Even this simplified game program will be rather long. It is, in fact, the
longest example of this book. When approaching such a large task, we can
minimize later frustration if we plan well at the outset. In this case that includes
making decisions regarding the game activities to be included, and providing
for expansion in case that is desired at a later date.

12

i Assembly Language for the Applesoft Programmer

| OUTLINE AND CONTROL LOOP

| v

| This will be a traditional “shoot-em-up” game. We will have a “gremlin” run
| across the top of the screen. A “defender” will be positioned at the bottom. By
1 pressing the left- or right-arrow keys, the game player can move the defender
in the corresponding direction. Pressing the “/” (slash) key will cause the defender
to stop. If the space bar is pressed, a missile will be fired upwards. The program
will note whether the missile hits the gremlin or not. To provide an incentive
for accuracy, each miss will result in the partial construction of a barricade, or
shield, which protects the gremlin. (The defender’s missiles cannot penetrate
this shield.) Each time the gremlin is hit the barricades will be partially removed.
The game will end if the barricade reaches across the screen (if misses —
hits = 7).

That’s it. The program will not keep score nor display it. The gremlin will
not fire on the defender. We provide no explosive sounds or displays if the
gremlin is hit. Those, and other enhancements, are left to the reader. Suggestions
will be made throughout the chapter.

CONTROLLER

JSR GREMLIN
JSR KEYBOARD

JSR DEFENDER

JSR MISSILES

JSR BARRICADES

JSR GREMLIN

JSR MISSILES

LDA #$60

JSR WAIT p;
BIT BRKD ’

BPL A

RTS

‘ Above is the main control loop for the program, which follows the outline
, of the game as suggested. We have identified the main components of the pro-
I gram as subroutines, and call them in sequence. We will briefly outline the
| function of each of the subroutines here, then discuss them in detail.

GREMLIN. This subroutine will display the gremlin on the graphics screen.
On each call, the subroutine will replace the previous image with one fur-

258

i

Chapter 12 Game Development

ther to the right. When the gremlin reaches the far right of the screen, it
will be restarted at the left.

DEFENDER. Draw the defender in an appropriate position: further left,
further right, or in the same position as before. If the defender has reached
the far left or far right screen positions, have it stop there.

KEYBOARD. Here we learn the wishes of the game player. The left-arrow
key, the right-arrow key, the “/” key, and the space bar are recognized and
used to control movement and firing activities.

MISSILE. Draw a missile along an upward path. If the missile bumps into
anything (barricade, gremlin), take appropriate action. If missile is.a miss,
increase the size of the barricade.

BARRICADE. Draw the barricades on the screen. These will always be at
the same vertical level. The width of the barricades will vary as the game
progresses.

Miscellaneous. A pause (lines 1550,1560) is built into the main control
loop. Without this pause, the action would be too fast to perceive. If more
images were being drawn, the length of the pause could be decreased to
maintain reasonable animation speed.

The GREMLIN subroutine is called twice by the control loop. This causes
the gremlin to move twice as fast as the defender. It is easy to tamper with the
relative speeds of the two by changing the frequency of the subroutine calls. In
the same manner it is easy to control the speed of the missiles.

The control loop also provides for an exit from the game when the barri-
cades extend across the screen. At this point the variable BRKD will have the
value $80. BIT BRKD (line 1570) will-result in the N-flag being set and the Z-
flag being clear. The test BPL A (line 1580) will fail, and the program will end.

Note that additional subroutines can be called from this control loop. You
might add more gremlins and other creatures, or a subroutine that causes the
creatures to fire at the defender. A routine to keep score and to display the score
would also be useful. With the control loop determined, we will now consider
each of the subroutines. .

You may notice that many of the variables were defined at page zero loca-
tions that are normally reserved for use by Applesoft. That does not present a
problem here since the program is not intended to be called as a subroutine
from an Applesoft program. Further, the program makes use of only one Apple-
soft subroutine (HGR2, to display and clear graphics page 2). While that sub-
routine does use page zero location $1C, it does so before the GREMLIN program
assigns a value there.

) Y

Assembly Language for the Applesoft Programmer

Gremlin

If you have worked with Apple graphics before you know that there are several
" ways to generate graphic images. In BASIC the HPLOT, HPLOT TO, DRAW, and
j XDRAW commands provide for dots, lines, and shapes. We could access any of
i these from an assembly language program, but there is a better, faster way to
| generate the images we want.

Display Technique

The Apple graphics display is a bit-mapped raster screen. The display screen
shows individual dots (pixels) turned ON or OFF, depending on whether cor-
responding bits are ON or OFF in the graphics page of memory. As a result, the
screen display shows the data that is stored in the graphics page. To quickly
display an image on the screen we will copy the corresponding data from a
prepared data table to the graphics page. By controlling the destination addresses,
we can have the image move around on the display screen. .

Big Pattern) Decimal Hexadecimal

1 T T ' 4 12 0 $30 $0C $00

2 tlhhpppff 124 63 0 $7C $3F $00

3 1 111 11 68 35 0 $44 $23 $00

4 [hh T 11 70 99 0 $46 $63 $00

5 11 111 11 70 99 © $46 $63 300

6 Tt 26127 0 $7E $7F $00

7 1 1|11 1 “120 31 0 $78 $1F $00

1 8 1 1|14 1 72 19 0 $48 $13 $00

i 9 1111 11 111 78 115 0 $4E $73 $00

10 1(1]1 111 14 112 0 $OE $70 $00

11 {1 126 127 0 $7E $7F $00

12 1 1 4 32 0 $04 $20 $00

13 1 1 4 32 0 $04 $20 $00

14 1 1 4 32 0 $04 $20 $00

15 1111 1 14 32 0 $0E $20 $00

16 e 1[11]1 ' 0112 0 $00 $70 $00
1

FIGURE 12.1

Chapter 12 Game Development

Figure 12.1 shows one of the bit patterns we will be using for the gremlin.
At the right of the figure we show the corresponding data. Note that only seven
bits of each byte are displayed. The eighth is a color bit. While we conventionally
identify bit positions right-to-left, they are displayed left-to-right on the graphics
screen.

You may note that three bytes are provided for the gremlin bit pattern, but
only two are used. To see why, consider the movement of the gremlin. The
leftmost edge of the bit pattern is shown in the second bit of the leftmost bytes.
As the gremlin is moved to the right, this leftmost bit will progress through the

third, fourth, fifth, sixth, and seventh bits of the left bytes, then to the first,

second, . . . bit of the middle bytes, etc. :

We will store data for seven complete gremlins and refer to each as a “frame.”
Each frame will be three bytes wide and will show the gremlin to be one bit
further to the right than in the previous frame. These seven frames are shown
in Figures 12.1 through 12.7. If the frames were copied successively into the
same block (three bytes wide, sixteen bytes high) of the graphics screen, the
gremlin would appear to walk to the right within this block. When the sequence
of seven frames is completed, the cycle can be repeated with another block

Bit Pattern Decimal Hexadecimal

; r T 96 24 0 $60 $18 $00
2 IEIEIE! EIEIEARARIEIE 120 127 0 $78 $7F $00
3 1 1111 1 8 71 0 $08 $47 $00
4 11 1111 11 12 71 1 $0C $47 $01
5 101 111 1[1 12 71 1 $0C 47 $01
6 EIEIEIE] EIEAEAEARRENRL K 124 127 1 $7C $7F S0t
7 I EIEIEIEAEAE 112 63 0 $70 $3F $00
8 1 T] 16 39 0 $10 $27 $00
9 OB RN ERALE 28 103 1 $1C $67 $01

10 NEIE 1111 28 96 1 $1C $60 $01

1" EIEIEIE EIEIEI EA ORI B 124 127 1 $7C $7F $01

12 1 1 16 16 0 $10 $10 $00

13 p 1 16 16 0 $10 $10 $00

i T] 56 16 0 $38 $10 $00

15 7 0 16 0 " $00 $10 $00

16 11111 0-5 0 $00 $38 $00

FIGURE 12.2 ‘

‘ i Assembly Language for the Applesoft Programmer

|
I
Bit Pattern Decimal Hexadecimal
1 1[4 11 : 64 49 0 $40 $31 $00
2] s AR RaRl K 112 127 1 $70 $7F $00
3 1 1111 1 16 14 1 $10 30E $01
4 11 11]1 11 24 14 3 $18 $OE $03
5 111 1111 14 24 14 3 $18 $0E $03
6 AANASS SRR GRRERARTR] RARER! 120 127 3 378 $7F $03
| 7 a4 96 127 0 $60 $7F $00
} 8 A TR T T 32 78 0 $20 $4E $00
| 9 1]11 111 L 56 78 3 $38. $4E $03
10 1111 t]1]1 56 64 3 $38 $40 $03
1 EIEIE] EXER A EIEDEOEN ENER IS 120 127 3 $78 $7F $03
k= 12 1 1 64 8 0 $40 $08 $00
N 13 1 iE 64 8 0 $40 $08 $00
| 14 1 1 , 64 8 0 $40 $08 $00
: 15 HE DHEE : % 9 0 $60 $09 $00
16 111]1 0 28 0 $00 $1C $00

1 FIGURE 12.3

(three bytes wide, sixteen bytes high) which begins one byte further to the right
- on the graphics screen.

Since five of the seven frames require three bytes to contain the image, it
is simpler to make the other two frames three bytes wide than to handle them
as special cases. Further, if each of the seven frames is consecutively copied
into the same block of graphics memory, we do not have to take any action to
erase an image when a new one is drawn; that is’done automatically.

The seven frames (numbered 0—6) are stored in the data tables DATG1 and
DATG2. DATG1 contains the data for the upper half of each frame while DATG2
contains the data for the lower half. The data is broken into two parts because
of the inconvenient addressing structure of the graphics page.

The graphics screen is addressed in three segments (upper, middle, lower).
Each segment has eight rows of forty blocks. Each block contains eight bytes.
The addressing of bytes from left to right is easy: just add 1 to move one byte
to the right. The addressing of bytes within an eight-byte block is also easy: add
$400 (1024) to the address to move one byte down the screen. The addressing
of vertically adjacent bytes in different blocks or in different segments is less
convenient.

Chapter 12 Game Development

Bit Pattern : Decimal Hexadecimal
1 11 11 0 99 0 $00 $63 $00
2 ipppipfpfg 96 127 3 $60 $7F $03
3 1 1411 1 32 28 2 $20 $2C $02
4 11 11114 11 48 28 6 $30 $2C $06
5 111 1111 111 48 28 6 $30 $2C $06
6 11| 112 127 7 $70 $7F $07
7 1 SEREIEIERERE £ 64 127 1 ° $40 $7F $01
8 1 1111 1 64 28 1- $40 $2C $01
9 11111 11111 11111 112 28 7 $70 $2C $07
10 111[4 1111 112 0 7 $70 $00 $07
11 tARIR! ARRARARARARES] RARAS! 112 127 7 $70 $7F $07
12 1 1 0 34 0 $00 $22 $00
13 1 1 0 34 0 $00 $22 $00
14 1 1 0 34 0 $00 $22 $00
15 1 11114 0114 0 $00 $72 $00
16 11114 0 70 $00 $07 $00

FIGURE 12.4

We will simplify addressing by storing the data for each frame of the gremlin
in two parts. Each part will fit into a rectangular area that is three bytes wide
and eight bytes high. When we wish to display a frame, we will do so by copying
data into three adjacent (left-to-right) bytes, then move down one raster line
(one byte lower on the screen) and copy three more bytes. If the first byte stored
goes into the top of a screen block, we can copy twenty-four bytes very easily ‘
into three side-by-side screen blocks. With the top half of the image done we |

\
I
\
|
I

can turn to the bottom half, treating it in essentially the same way. (Actually it
is easier to copy both halves concurrently, as you will soon see.)

Variables

The GREMLIN subroutine makes use of several variables. We will describe the
function of each of them before discussing the operation of the subroutine.
BASG1 and BASG1 +1 identify the base address of a raster line on the
graphics screen. BASG1 contains the low-order byte of the address of the left-
most byte of the raster line; BASG1 + 1 contains the high-order byte of the address.

|
o .
;‘ : Assembly Language for the Applesoft Programmer

Bit Pattern Decimal Hexadecimal

‘ ’ 1T e 1 0 70 1 $00 $46 $01
- 2 1 ENEIEREARAEIE] CEIE 64.127 7 $40 $7F 307
= 3 1 1]1]1 1 64 56 4 $40 $38 $04
‘ 4 1)1 1111 11 96 56 12 $60 $38 soC
5 11 1[1]1 11 96 56 12 $60 $38 $0C

| 6 Ui ARSI RER) LAERRRE! 96 127 15 $60 $7F $OF

| 7 SERRIEACICRE BN 0127 3 $00 $7F $03

8 1 1111 1 0 57 2 $00 $39 $02

_ 9 1111 111]1 111[1 96 57 14 $60 $39 $OE

1 10 111]4 111 9 014 $96 $00 $OE

‘ 11 LRI AERERIRIREEIEI DREOERE 96 127 15 $60 $7F $OF

12 1 1 0 21 - $00 $02 $01

13 1 1 0 21 - $00 $02 $01

14 1 111 0 66 3 $00 $42 $03

15 1 0 20 $00 $02 $00

16 111 "0 70 $00 $07 $00

FIGURE 12.5

| We will use this address to position the upper half of the gremlin. BASG2,
L BASG2 +1 serve the same purpose for the lower half of the gremlin.

As mentioned earlier, DATG1 and DATG2 are the addresses of the tables of
l data for the upper and lower halves of the gremlin. When we are ready to copy
k the data to the graphics screen we will arrange that the X-register will be an
index to the data tables and the Y-register will index the raster line to identify
} i which byte of memory is to receive the data. Thtin the commands
! '
iE LDA DATGI, X
STA (BASGl),Y
LDA DATG2,X
STA (BASG2),Y

| will copy the data.

| We will be copying data into three consecutive eight-byte blocks in the
‘i graphics page. In doing so, we can increment the Y-register to indicate which
RIE block. is being referenced. HORIZG will remember the index to the leftmost
‘ block. WIDTH identifies the width (three bytes) of the image, while HEIGHT

Chapter 12 Game Development

Bit Pattern ' Decimal Hexadecimal
1 11 111 0 12 3 $00 $0C $03
2 SICAEREREI R KD A KR RN 0 127 15 $00 $7F $OF
3 1 11 1 0113 8 $00° $71 $08
4 14 1111 11 64 113 24 $40 $71 $18
5 1|1 111 11 64 113 24 $40 $71 $18
6 1 EIEIEREREAERE] (AR RAR 64 127 31 $40 $7F $1F
7 SEIRREARA RN ARAR 0126 7 $00 $7E $07
8 1 1]1]4 1 0114 4 $00 $72 $04
9 11111 1{111 1111 64 115 28 $40 $73 $1C
10 1111 11111 64 328 $40 $03 $1C
11 N EIE1EAEARIEIE] EIRIENRIE 64 127 31 $40 $7F $1F
12 1 1 0 2 4 $00 $02 $04
13 1 1 0. 2 4. $00° $02 $04
14 1 1111 0 214 $00 $02 $OE
15 1 0 10 $00 $01 $00
16 1{1]1 0 70 $00 $07 $00
FIGURE 12.6

identifies the height (eight bytes) of each of the upper and lower halves of the
gremlin.

The other variable that this subroutine uses is FRMNUMG, which is the
number (0— 6) of the frame that is being displayed. FRMNUMG is used to obtain
the index to the data tables DATG1 and DATG2.

The Operation of the Subroutine

As the listing of Figure 12.7 shows, we first define the screen base addresses ||
BASG1+1 and BASG2+1 (lines 2360-2380). These are changed by the sub- “
routine and must be reset at each re-entry. BASG1 and BASG2 are never changed,
and are set during initialization (lines 1320, 1390, 1400). '

Next (lines 2390, 2400) we identify the height of each half of the gremlin
o be eight bytes.

In copying the data from DATG1 and DATG2 to the graphics page we will
copy twenty-four bytes from DATG1 and twenty-four bytes from DATG?2 each i
time we draw one complete frame of the gremlin image. The X-register will ‘

265 |

S

Assembly Language for the Applesoft Programmer

Bit Pattern Decimal Hexadecimal
1 11 11 - 0 24 6 $00 $18 $06
2 U E Aaank 0 126 31 $00 $7E $1F
3 1 111 1 0 98 17 $00 $62 $11
4 11 11| 11 0 99 49 $00 $63 $31
5 1|1 111 1 0 99 49 $00 $63 $31
6 T ftpfpafe 0 127 63 - $00 $7F $3F
7 T[] 0 127 15 $00 $7C $OF
8 1 1[1h 1 0100 9 $00 $64 $09
9 1[1{1 1[1]1 111 0 103 57 © $00 $67 $39
10 111 111 0 756 $00 $07 $38
11) 0 127 63 $00 $7F $3F
12 1 1 0 2,16 $00 $02 $10
13 1 1 0 216 $00 $02 $10
14 1 1 0 216 $00 $02 $10
15 1 1 0 2186 $00 $02 $10
16 1(1[1 1{1]1 0 756 $00 307 $39

FIGURE 12.7

serve as the index to the data tables. We gan increment the X-register (INX)
o through the twenty-four bytes as we are copying data, but each time we begin
a new frame, we must calculate (or remember) the starting index.
‘i While it is slightly faster (and certainly easier) to define an additional var-
11 iable to remember this index, we will calculate it from our knowledge of the
t value of FRMNUMG. (Remember, our objective is to illustrate the methods dis-
cussed in previous chapters, even if they are ocefisionally not the best program-
ming method.)

Since each frame requires twenty-four bytes from each of the two data tables
DATG1 and DATG2, we can obtain the value of the starting index for a frame
by multiplying FRMNUMG by 24 ($18). We accomplish this in lines 2430 —2510.
First we load the accumulator with the value of FRMNUMG. ASL will multiply
this number by 2, so three consecutive ASLs will multiply FRMNUMG by 8.
i This result is stored in TEMP (line 2470) and the number in the accumulator
i , receives one more ASL (line 2480). The accumulator now contains FRMNUMG
times 16 and TEMP contains FRMNUMG times 8. Their sum (lines 2490, 2500)
is the desired index, which is transferred to the X-register (line 2510).

266

The Copy Routine

The program now enters a pair of nested loops that will perform the actual
copying of data. The outer loop (lines 2530—-2720) is run eight times (each half
of the gremlin is eight bytes high). On each pass-the inner loop (lines 2560—
2630) is executed three times (the gremlin is three bytes wide).

In lines 2530 and 2540 the width of the gremlin is stated. The Y-register
receives the index to the leftmost screen position that will receive data (line
2550) and the data transfer begins (lines 2560—2590). One byte is copied from
the data table for the upper half of the gremlin [LDA DATG1,X] and stored in
the graphics page [STA (BASG1),Y] and one byte is copied from the data table
for the lower half of the gremlin [LDA DATG2,X] and stored in the graphics
page [STA (BASG2),Y]. With this transfer completed, the data table index is
incremented (line 2600) and the graphics index is incremented (line 2610). The
program is now ready to read the next data entry and store it one byte to the
right of the last. This cycle is run three times due to the width of the image
(lines 2620, 2630). This completes the inner loop.

It is necessary to reset the screen base addresses BASG1, BASG1+1 and
BASG2, BASG2 +1 and copy data into the raster line that is directly under the
one just completed. To move down one raster line within a block, it is necessary
to add $400 (1024) to the screen address. That affects only the high byte of the
addresses (BASG1+1 and BASG2 + 1). Lines 2640—2700 perform this addition.
Lines 2710, 2720 complete the outer loop of the copy subroutine.

A little bookkeeping must be done before returning from this subroutine.
First, we must increment FRMNUMG in order that the next image is drawn
further to the right (line 2730). Then we must check to see whether FRMNUMG
moved past the last frame (FRMNUMG should vary from 0 through 6). If it has,
we will increment HORIZG (to continue rightward movement) and reset
FRMNUMG to 0 (lines 2770—2780). Finally the program determines whether
the gremlin has reached the right side of the screen (lines 2810, 2820). If the
gremlin has reached the right side of the screen, it is erased and restarted at the
left (lines 2830-2850). Otherwise the subroutine is ended (lines 2820, 2860).

ERASE.G

Since arrival at the right side of the display screen requires the erasure of the
gremlin image, we will refer you to ERASE.G at this time. This subroutine
behaves very much like GREMLIN, and will not be discussed in as much detail.
In fact we will point out only the differences.

Assembly Language for the Applesoft Programmer

Erasure is accomplished by copying zeros into graphics page memory loca-
tions. As a result, we do not need FRMNUMG, a data table, or an index to a data
table. Further, there is no need to increment HORIZG (no rightward movement)

; or check to see if the image has reached the right screen boundary.

You may note that the image that is to be erased is only two bytes wide (the
last frame drawn was number 6). The width of three is maintained, since this
subroutine is called from elsewhere in the program where the width of the image
to be erased is likely to be three.

NOTES AND SUGGESTIONS

This subroutine provided for only horizontal movement. If you would like to
have vertical (or diagonal) movement as well, the screen addressing becomes a
little more troublesome. It is then best to provide a complete screen base address
table, as was done in Chapter 11. Then, with the vertical screen coordinate in
the X-register, the base address can be read from a low-order address table
LOBAS (192 bytes) and a high-order address table HIBAS (another 192 bytes)
as follows:

LDA LOBAS, X

STA BASG1

LDA HIBAS, X

STA BASG1+1 !

This must be done every time a byte of data is transferred from a data table to
the graphics page of memory.

DEFENDER /!

This subroutine is very similar to GREMLIN. It puts the “defender” on the
bottom of the graphics display screen, arranging for movement to the left or
right as instructed from the keyboard. It is the movement to the right or left that
primarily distinguishes DEFENDER from GREMLIN.
| Before considering the subroutine, note the design of the defender image.
| As in the case of the gremlin, there are seven frames, to provide for movement
H through seven positions before recycling. The seven frames, with corresponding
i data, are given in Figures 12.8-12.14. Note that the frames are still three bytes
i wide, but are shorter (six bytes high) than those for the gremlin. These seven
frames of data are stored in the data table DATAD.

1 268

Bit Pattern
1 1
2 1
3 1
4 101 1 111
5 1Ttpfrprpap i
6 ERRRRRARARE RARRRARRRARAN]
FIGURE 12.8

Bit Pattern
1 1
2 1
3 1
4 111 1 1
5 T
6 Ty

FIGURE 12.9

Bit Pattern

1 1
2 1
3 1
4 1]1 1
5 1000 000080E
6 I DD 00HE

FIGURE 12.10

Decimal

0 1
0o 1
o 1

6 97
126 127
126 127

o O O O O o

Decimal

0 2

0o 2

0 2
12 66
124 127
124 127

Decimal

o o
& b b~ oM

24
120 127
120 127

W wwooo

- a0 00 0

Hexadecimal

$00 $01 $00
$00 $01 $00
$00 $01 $00
$00 $61 $00
$7E $7F $00
$7E $7F $00

Hexadecimal

$00 $02 $00
$00 $02 $00
$00 $02 $00

* $0C $42 s$01

$7C $7F $01
$7C $7F $01

Hexadecimal

$00 $04 $00
$00 $04 $00
$00 $04 $00
$18 $04 $03
$78 $7F $03
$78 $7F $03

Chapter 12 Game Development

Assembly Language for the Applesoft Programmer

E Bit Pattern Decimal Hexadecimal

| \
1 1 0 8 0 $00 308 $00
2 1 0 8 0 $00 $08 $00
3 1 0 8 0 $00 $08 $00
4 11 1 1[4 48 8 6 $30 $08 $06
5 1T1ptpfrppfrpp 112 127 7 $70 $7F %07
6 SRR LARARARRRR AR RRANAE 112 127 7 $70 $7F 307
FIGURE 12.11
'
Bit Pattern) ~ Decimal Hexadecimal
o 1 1 0 16 0 , $00 $10 $00
2 1 0 16 0 $00 $10 $00
3 3 1 0 16 0 $00 $10 $00
4 11 1 11 96 16 12) $60 $10 $0C
5 itpppppppppppp 96 127 15 $60 $7F $OF
6 tppppprapg 96 127 15 $60 $7F $OF

FIGURE 12.12

,’/
E Bit Pattern Decimal Hexadecimal
5
| N
3‘ 1 1 0 64 0 $00 $40 $00
2 1 0 64 0 $00 $40 $00
3 1 0 64 0 $00 $40 $00
4 11 1 11 6 67 58 $00 $43 $30
5 b 0 127 63 $00 $7F $3F
/ 6 1 SIEARI EREREREI EIRAEIRRE) 0 127 63 $00 $7F $3F
Hi

| FIGURE 12.13

270

Chapter 12 Game Development

Bit Pattern Decimal Hexadecimal
1 1 0 64 0 $00 $40 $00
2 1 0 64 0 $00 $40 $00
3 1 0 64 0 $00 $40 $00
4 11 1 11 6 67 58 $00 $43 $30
5 Tt 0 127 63 $00 $7F $3F
6 ERERRRRRNRRRE SRR ANAE! 0 127 63 $00. $7F $3F

FIGURE 12.14

Direction of Movement

The variable DIR identifies the direction of movement of the defender. DIR is
assigned a value of —1 ($FF) or 1 to direct movement to the left or to the right,
and is given a value of 0 if the defender is to remain in one location without
moving. The value of DIR is assigned in the KEYBOARD subroutlne which is
discussed later.

The opening commands of DEFENDER (lines 1620— 1660) use the value of
DIR to branch to the DRAW component of the routine if the defender is stopped
(DIR = 0) or to the LEFT component if the defender should be moving to the
left (DIR = $FF). If DIR is positive, each of the branch tests will fail, and control
of the program will fall through to line 1680, which is the start of the MOVE
RIGHT component of the program.

The MOVE RIGHT part of the subroutine (lines 1680—1850) and the MOVE
LEFT component (lines 1880—2000) are each preliminary to the DRAW com-
ponent. These two movement routines are similar to one another, and serve as
bookkeeping components. They check to see if the defender is at the screen
boundary, and adjust the frame and byte index counters. Because of their sim-
ilarities, we will discuss only the MOVE LEFT component, and will leave the
details of MOVE RIGHT to the reader.

HORIZD serves the same function as HORIZG did in the GREMLIN sub-
routine. It remembers the byte index that identifies the horizontal position of
the defender on the graphics screen. In line 1880 and 1890 the value of HORIZD
is checked to see if the defender has reached the leftmost byte (HORIZD = 0).
If it has not, further movement is permitted (line 1900).

If the defender has reached the leftmost byte, it can still continue to move
left until FRMNUMD reaches 0. Lines 1910, 1920 test for this condition. If the

;7

Assembly Language for the Applesoft Programmer

‘ defender has reached this leftmost position, DIR is set to O {to cause the defender
{ to stop) and control is transferred to the DRAW routine.

Pl If the defender is in fact moving to the left, lines 1960—-2000 decrement
li FRMNUMD. If it has passed the last frame (FRMNUMD varies from 0-6) and
is negative, then FRMNUMD is reset to 6 and HORIZD is decreased by 1 to
continue the leftward movement. Program control then passes to DRAW.

i DRAW

This routine is very similar to the heart of the GREMLIN subroutine. Its primary
task is to copy the data that represents the defender from a.data table (DATAD)
L to the graphics screen. '
C Lines 2020, 2030 set the screen base address to $4350. (BASD never changes,
and was set at initialization.) Lines 2040, 2050 set the height of the image to 6.
Next, FRMNUMD is used to calculate, the starting index to the data table.
Since the defender is three bytes wide and six bytes high, each frame requires
eighteen bytes of data. It follows that the starting index to each frame can be
obtained by multiplying FRMNUMD by 18. That is accomplished in lines 2080
| 2160.

- The nested loops of lines 2180—2320 are similar to those used in the GREM-
LIN subroutine. The only difference is that the defender’s height (six bytes)
o requires only one base address (BASD, BASD + 1), while the gremlin’s height
it (sixteen bytes) required two base addresses (BASG1, BASG1+1 and BASG2,
iy BASG2+1). ¢

KEYBOARD

\ The KEYBOARD subroutine (lines 3150—3360) yses a sequence of branches to

1‘ read and interpret keyboard input. Line 3150 réads the keyboard. If a key has
1 been pressed the value obtained will have the high bit set, and thus will be a
negative number. If this is not the case, there is no need to continue; line 3160
causes a branch out of the subroutine.

The left-arrow key causes the number $FF to be stored in the variable DIR.
The right-arrow key stores the number 1 in DIR, and the “/” key stores a 0 in
DIR. These three numbers are used to control the defender’s movements, as
described earlier. '

The space bar controls the contents of MFLG, which is a flag used to identify
missile status. If a missile has been fired and is moving upward on the screen,
the MISSILE subroutine will have set MFLG to $FE Lines 3310, 3320 use this
information to prevent the launch of a second missile.

Chapter 12 Game Development

i

\
If there is no missile activity on the screen, MFLG will be set to 0. If the
space bar is then pressed, lines 3330, 3340 set MFLG = 1 to initiate the launch
of a missile. :
Before leaving the subroutine, line 3350 toggles the keyboard strobe. This
resets the high bit of KBD to 0. It will remain 0 until a key is pressed.
|
I

MISSILES

This subroutine controls missile activity. Before considering how it functions
we will outline the function of each of its variables.

Variables

MFLG is a flag that signals the type of missile activity that is taking place. It
will have one of the values —1 ($FF), 0, or 1. MFLG = -1 indicates that a
missile has been launched, and should be continued on an upward course.
MFLG = 0 indicates no missile activity, and MFLG = 1 signals the launch of a
new missile.

The missile is displayed by drawing a short vertical line segment. This is
done by storing one of the numbers 1, 2, 4, 8, 16, 32,64 in a sequence of four |
vertically adjacent bytes on the graphics screen. These numbers are stored in
the missile data table MISL and were chosen because each will turn on exactly |
one bit (see Figure 12.15). The number to be used is selected by the position of b | ‘
the defender’s artillery. Thus FRMNUMD, which identifies the frame number i
and the bit position of the artillery, is copied to MSLNM (missile number), the
index to the missile data table MISL.

FIGURE 12.15

| T

‘ Assembly Language for the Applesoft Programmer
|
]

MISL .DA #1,#2,#4,#8,#16,#32,#64
FIGURE 12.16

As the missile moves upward, it is necessary to erase each old image as a
new one is drawn. This requires different animation techniques than we have
previously used, since the screen addressing structure makes the addressing of
consecutive vertical bytes somewhat inconyenient. We adopt two strategies for
handling this. First, the missile will be four bytes high and these bytes will be
either the top four or the bottom four bytes of a graphics screen block. Second,
we will use an address table to store the base addresses of the uppermost byte
| and the fifth byte of each row of screen blocks. Since there are twenty-four rows

| of screen blocks on the graphics page, we will need forty-eight addresses (two
‘ bytes each) or ninety-six bytes for the table, which we label ADDR.

As the missile moves upward, it will move from the top four bytes of one
block to the lower four bytes of the next higher screen block; then to the top
four bytes of that block etc. MLEVL will remember the starting index to the
ADDR table for each frame of the missile. We will use MLEVL to read two
addresses from ADDR. The first will be BASMD, BASMD + 1, which is the begin-
i ning base address for the drawing of the missile in its new position. The second
i address will be BASME, BASME + 1, the beginning base address for the erasure
of the missile from its old position.

HORIZM identifies the horizontal index that positions the missile along
the raster line. As the missile moves upward, it may contact the barricades or
the gremlin. If this happens, COLFLG is set to 1 to indicate that a collision has

! occurred. The variable HEIGHT is used again to indicate the height of the image
(4 bytes).

The Operation of the Subroutine

MISSILE is the longest of the subroutines of this program. Fortunately, some of
its components are very similar to parts of DEFENDER and GREMLIN. Other
components perform routine bookkeeping chores.

Chapter 12 Game Development , Ll
|

Lines 3550—3370 read the value of MFLG and direct program control
depending on its contents. If MFLG is positive lines 35803680 first reset MFLG
to $FF to indicate that a missile is in motion, then zero the collision flag COLFLG.
Next, the defender’s frame number (FRMNUMD) is copied to MSLNM, which
is an index to the missile table. The defender’s horizontal byte counter (HOR-
1ZD) plus 1 provides the byte counter (HORIZM) for the missile. (The missile
is launched from the defender’s artillery, which is in the second byte of the
defender’s three byte width.) Finally, the initial missile level, MLEVL, is set at

$50 (decimal 80). This identifies the point at which the missile is first drawn. -

After lines 3580 —3680 initialize the launch of a new missile, control passes
to CONT, which is also used when a missile is continuing its upward path.

Lines 3700—3830 copy the base addresses for drawing and erasing the’

missile. These addresses are read from the ADDR table and stored in the base
address pointers BASMD, BASMD + 1 and BASME, BASME + 1. The starting
index is.remembered by MLEVL. Note that after MLEVL is read, it can be dec-
remented by 2 (each address uses two bytes) in preparation for the next call.

Lines 3850, 3860 read the missile table index and the missile screen byte
index in preparation for drawing the missile. Before entering the drawing rou-
tine, MLEVL is tested. If the missile is not at the top of the screen the drawing
can proceed (line 3890). If the gremlin reaches the top of the screen, it has
missed the gremlin. Then the BRKD variable is adjusted, the missile flag is set
to 0, and a branch is taken to erase the previously drawn missile.

Consider the functioning of the barricade variable, BRKD. It will have one of
the values 0, 1, 3, 7, 15, 31, 63, or 127, and will be copied by the BARRICADE
subroutine into all forty bytes of a graphics screen raster line. If BRKD is equal
to 127, the raster line will appear to be a solid line. If BRKD is 0, the raster line
will be clear.

If we want to increase the width of the barricades, we will use the command
sequence

SEC
ROL BRKD

This will shift all bits one position to the left, and move a 1 into the least
significant bit. This is done when the missile misses the gremlin (lines 3900,
3910). If we want to decrease the width of the barricades, we will use the
sequence

275

}j ‘ Assembly Language for the Applesoft Programmer

CLC \ @
ROR BRKD o _ 1
|
|
1

This will shift all bits one position to the right, discarding the least significant
bit and moving a 0 into the most significant bit. This is done whenever the
missile hits the gremlin (lines 4340, 4350).

DRAW

The DRAW component (lines 3960—4110) of this subroutine is very similar to
the drawing components of the GREMLIN and DEFENDER subroutines. The
names of the variables are slightly different, but the primary difference is the
means of storing the image on the screen. Line 3980 puts the bit pattern in the
accumulator. Before storing it in the graphics page of memory, line 3990 first
tests to see if the corresponding bit in the graphics page is already turned on.
If it is, the missile is about to collide with something (barricade or gremlin), the
collision flag (COLFLG) is set (lines 4000, 4010), and a branch is taken to the
ERASE routine. Otherwise lines 4030-4050 proceed to copy the missile bit
pattern onto the graphics page. Lines 4060—4110 increment the screen base
address and cycle back to copy the rest of the missile.

ERASE f
Erasure (lines 4130-—4250) is accomplished by a complementary draw (lines {
4180, 4190). That is, the missile bit pattern (in the accumulator) is used to change |
corresponding bits from ON to OFF or from OFF to ON. Since the intent here
‘ , is to turn a bit OFFE line 4160 first determines whether the bit is ON. A branch
1‘ ‘ is taken around the complementary draw if the bit is already OFF (line 4170).
i The remainder of ERASE should look familiar to you by now.

After the missile has been drawn in its new position and erased from its old
position, control passes to the EXIT part of the MISSILE subroutine. Here the
collision flag is checked (line 4280) to determine whether a collision has occurred.
[If so, the missile flag MFLG is set to zero so that the space bar will again be
‘ recognized by the KEYBOARD subroutine.

It is necessary to determine whether the missile has hit the gremlin or the
barricades. The decision is based on the value of MLEVL. If MLEVL is less than

EXIT

276

Chapter 12 Game Development

$30 (decimal 48) then the missile has passed by the barricades. Any collision
must be with the gremlin. Control is passed to the HIT component (lines 4310—
4410) which toggles the Apple speaker, erases the gremlin from its current
location and restores it at the left of the screen, and removes one bit from each
of the barricades. ‘

BARRICADES

This subroutine (lines 3390—3480) is responsible for updating the barricades.
This is done by copying a bit pattern into each of the bytes in one raster line
on the graphics page. As described earlier, the bit pattern is stored as the variable
BRKD. Its status is maintained in the MISSILE subroutine.

Since the graphics display screen is forty bytes wide, line 3390 loads the
horizontal byte index (Y-register) with $28 (decimal 40). Line 3410 then stores
the contents of the accumulator (BRKD) is each of the raster line pointed to by
BASB, BASB + 1. The raster line base address was specified in the initialization
to be $5228.

NOTES AND SUGGESTIONS

At the beginning of this chapter we noted that this game was rather primitive,
but could be expanded. Try some of the following.

1. Arrange for a varied assortment of creatures instead of using the gremlin
exclusively. This will require the use of an additional data set for each
creature, and a means of cycling through the data sets.

2. Make the gremlin bidirectional, permitting right-to-left motion.

3. Have more than one creature on the screen at any one time. Place them at
different screen levels.

4. Have the creatures fire at the defender.

5. Arrange for scorekeeping. Counting the number of hits will not be difficult.
It will be more challenging to display the score on the graphics screen.

PROGRAM 12.1 Game

0006- 1000 HORIZD .EQ $06 SCREEN HORIZ BYTE LOCATION OF DEFENDER
0007- 1010 HORIZG .EQ $07 SCREEN HORIZ BYTE LOCATION OF GREMLIN
0008- 1020 HORIZM .EQ $08 SCREEN HORIZ BYTE LOCATION OF MISSILE

277

0009-
| 000A-
! 000B-
| 000C-
| 000D-
000E-
000F -
0010~
0011-
0012-
0014-
0016-
0018-
0019-
0OFA-
00FC-
0OFE-
C000-
Co10-
FBDD-
FCAS-

6000- A9
6002- 85
6004- 85
6006- 85
6008- 85
600A- 85
600C- 85
600E- A9
6010- 85
6012- A9
6014- 85
6016- A9
6018- 85
601A- A9
M 601C- 85
| 601E- A9
v 6020- 85
6022- A9
|

|

6024- 85

278

00
19
07
OF
0A
09
FC
01
0B
52
13
27
12
80
FE
50
FA
15
06

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410

1420

1430
1440

‘ Assembly Language for the Applesoft Programmer
| .

FRMNUMD .EQ $09
FRMNUMG .EQ $0A

DIR .EQ $0B
HEIGHT .EQ $0C
WIDTH .EQ 3$0D

TEMP .EQ $0E
MFLG .EQ $0OF
MSLNM .EQ $10
MLEVL .EQ $11
BASB .EQ $12
BASMD .EQ $14
BASME .EQ $16
COLFLG .EQ $18
BRKD .EQ $19
BASD .EQ $FA
BASG1 .EQ $FC
BASG2 .EQ 3FE
KBD .EQ $C000
STROBE .EQ $C010
BELL .EQ $FBDD
WAIT .EQ $FCA8
.OR $6000

STA HORIZG

STA MFLG

STA FRMNUMG
STA FRMNUMD

STA BASG1
LDA #3$01
STA DIR
LDA #8$52

STA BASB+1

LDA #$27
STA BASB
LDA #$80
STA BASG2
'LDA #$50
STA BASD
LDA #$15

STA HORIZD

"MONITOR "PAUSE"

FRAME NUMBER, OF DEFENDER
FRAME NUMBER OF GREMLIN

IDENTIFIES DIRECTION OF DEFENDER'S MOVEMENT
HEIGHT (# OF BYTES) OF IMAGE TO BE DRAWN
WIDTH (# OF BYTES) OF IMAGE TO BE DRAWN
TEMPORARY STORAGE

IDENTIFIES WHETHER MISSILE IS TO BE DRAWN
MISSILE NUMBER (0 - 6)

INDEX TO BASE ADDRESS TABLE FOR MISSILES
BASE ADDRESS OF BARRICADES

SCREEN BASE ADDRESS (UPPER) OF MISSILE
SCREEN BASE ADDRESS (LOWER) OF MISSILE
EXPLOSION FLAG

BARRICADE BIT PATTERN

USES $FB ALSO

USES $FD ALSO

USES $FF ALSO

READ KEYBOARD HERE

CLEARS KEYBOARD STROBE

BEEP SPEAKER

ROUTINE

6026-

6029-
602C-
602F -
6032-
6035-
6038-
603B-
603E-
6040-
6043~
6045-
6047~

6048-
604A-
604C-

604E-
© 6050-
6052-
6054-
6056-
6058-
605A-
605C-
605E-

6060~
6062-
6064~
6066-
6068-
606A-
606C-
606E-

20

20
20
20
20
20
20
20
A9
20
24
10
60

A5

FO

30

A5
C9
DO
A5
C9
DO
A9
85
FO

E6
A5
C9
DO
E6
A9
85
FO

D8

BB
41
48
86
6E
BB
86
60
A8
19
E2

0B

3E

22

06
25
oC
09
06
06
00
0B
2A

09
09
07
22
06
00
09
1A

F3

60
61
60
61
61
60
61

FC

JSR

Chapter 12 Game Development

1450 $F3D8 HGR2

1460 #—---——--mmmmmm e e
1470 * CONTROLLER

1480 A JSR GREMLIN

1490 JSR KEYBOARD

1500 JSR DEFENDER

1510 JSR MISSILES

1520 JSR BARRICADES

1530 JSR GREMLIN

1540 JSR MISSILES

1550 LDA #$60

1560 JSR WAIT

1570 BIT BRKD

1580 BPL A

1590 RTS

1600 *-——--———mmm e e
1610 DEFENDER

1620 LDA DIR

1630 * STATIONARY?

1640 BEQ DRAW IF STOPPED

1650 * MOVE LEFT?

1660 BMI LEFT IF MOVING LEFT
1670 * MOVE RIGHT.

1680 LDA HORIZD IF MOVING RIGHT
1690 CMP #$25 FAR RIGHT BYTE?
1700 BNE MOVRT IF NOT, THEN MOVE
1710 LDA FRMNUMD

1720 CMP #8306 LAST POSITION?
1730 BNE MOVRT

1740 LDA #$00 IF SO, STOP IT
1750 STA DIR

1760 BEQ DRAW ALWAYS

1770 #--———mm e e e — e m e —
1780 MOVRT INC FRMNUMD KEEP MOVING RIGHT
1790 LDA FRMNUMD

1800 CMP #$07 PAST LAST FRAME?
1810 BNE DRAW IF NOT, DRAW
1820 INC HORIZD NEXT BYTE TO THE RIGHT
1830 LDA #$00 RESET FRMNUMD TO ZERO
1840 STA FRMNUMD

1850 BEQ DRAW ALWAYS

1860 #-—---—=cmmmmmmmmmm e mm e

279

TN

Assembly Language for the Applesoft Programmer

vl 1870 * MOVE LEFT ,
6070- A5 06 1880 LEFT LDA HORIZD MOVING 'LEFT

x 6072- C9 00 1890 CMP #$00 FAR LEFT BYTE?
H 6074- DO 0A 1900 BNE MOVLFT IF NOT, THEN MOVE
: 6076- A5 09 1910 LDA FRMNUMD LAST POSITION?
| 6078- DO 06 1920 BNE MOVLET IF NOT, THEN MOVE
j 607A- A9 00 1930 LDA #3%00 IF LAST POSITION,
| 607C- 85 OB 1940 STA DIR _ STOP MOVING
! 607E- FO 0A 1950 BEQ DRAW ALWAYS
6080- C6 09 1960 MOVLFT DEC FRMNUMD KEEP MOVING LEFT
6082- 10 06 1970 BPL DRAW
. 6084- A9 06 1980 LDA #$06 IF FRMNUMD IS NEG
] 6086- 85 09 1990 STA FRMNUMD RESET IT TO.6 ,
L 6088- C6 06 2000 DEC HORIZD AND DECREMENT HORIZ' INDEX
| 2010 #= == m oo oo dm e memmemm oo
? 608A- A9 43 2020 DRAW LDA #$43 SET DEFENDER BASE
608C- 85 FB 2030 STA BASD+1 ADDRESS TQ. $4350
608E- A9 06 2040 LDA #$06 DEFENDER IS
6090- 85 0C 2050 STA HEIGHT 6 BYTES HIGH
2060 *-—mmm e oo
v 2070 * CALCULATE INDEX" FOR DEFENDER DATA TABLE
Il 6092- A5 09 2080 LDA FRMNUMD INDEX IS
1 6094- 0A 2090 ASL FRMNUMD X 18
ifl 6095- 85 OE 2100 * STA TEMP TEMP HAS FRMNUMD X 2
1 6097- 0A 2110 ASL
1l 6098- 0A 2120 ASL
| 6099- 0A 2130 ASL ACC HAS FRMNUMD X 16
i 609A- 18 2140 CLC
: 609B- 65 OE 2150 ADC TEMP ACC HAS FRMNUMD X 18
609D- AA 2160 TAX X-REGISTER GETS INDEX
2170 H—mmm oo e ’
i 609E- A9 03 2180 .1 LDA #$03 DEFENDER IS
- 60A0- 85 0D 2190 STA WIDTH 3 BYTES WIDE
y‘ 60A2- A4 06 2200 LDY HORIZD SCREEN HORIZ POS
. 60A4- BD 79 63 2210 .2 LDA DATAD,X COPY IMAGE
fh 60A7- 91 FA 2220 STA (BASD),Y TO SCREEN
£§ 80A9- ES8 2230 INX INCREMENT
ML 60AA- C8 2240 INY INDICES
I 60AB- C6 0D 2250 DEC WIDTH DO THIS
i 60AD- DO F5 2260 BNE .2 3 TIMES
Il B0AF- 18 2270 CLC
| 60BO- A5 FB 2280 LDA BASD+1 ADD $400 (1024)
il
|
|
280

Chapter 12 Game Development

;7

60B2- 69 04 2290 ADC #$04 TO DEFENDER'S SCREEN

60B4- 85 FB 2300 STA BASD+1 BASE ADDRESS

60B6- C6 0C 2310 DEC HEIGHT DO THIS :

60B8- DO E4 2320 BNE .1 6 TIMES i

60BA- 60 2330 RTS : %
2840 #--mmmmm e oo mmmmmmmm—mmmmmmmmm e
2350 GREMLIN

60BB- A9 42 2360 LDA #$42 SET GREMLIN SCREEN BASE ‘i

60BD- 85 FD 2370 STA BASG1+1 ADDRESSES TO : ;

60BF- 85 FF 2380 STA BASG2+1 $4200 AND $4280 H

60C1- A9 08 2390 LDA #$08 GREMLIN IS TWO PARTS, k

60C3- 85 0C 2400 STA HEIGHT EACH 8 BYTES HIGH |
2410 H-mmmmm oo mmmmmmmmmmmmmmm o ‘
2420 * CALCULATE INDEX

60C5- A5 0A 2430 LDA FRMNUMG INDEX IS :

60CT- OA 2440 ASL FRMNUMG X 24]

60C8- O0A 2450 ASL 3

60C9- 0A 2460 ASL i

60CA- 85 OE 2470 STA TEMP TEMP HAS FRMNUMG X 8 "

60CC- OA 2480 ASL ACC HAS FRMNUMG X 16 il

60CD- 18 2490 CLC ;

60CE- 65 OE 2500 ADC TEMP ACC HAS FRMNUMG X 24 i

60D0- AA 2510 TAX X-REGISTER GETS INDEX |
2520 Hmmmmmmmmmmmmmmmm e mm—mmm o= |

60D1- A9 03 2530 .1 LDA #$03 GREMLIN IS I

60D3- 85 OD 2540 STA WIDTH 3 BYTES WIDE i

60D5- A4 07 2550 LDY HORIZG INDEX TO GREMLIN SCREEN LOC.

60D7- BD 29 62 2560 .2 LDA DATG1,X COPY TOP OF GREMLIN

60DA- 91 FC 2570 STA (BASG1),Y TO SCREEN

60DC- BD D1 62 2580 LDA DATG2,X COPY BOTTOM OF GREMLIN

60DF- 91 FE 2590 STA (BASG2),Y TO SCREEN

60E1- E8 2600 INX INCREMENT

60E2- C8 2610 " INY INDICES

60E3- C6 OD 2620 DEC WIDTH DO THIS

60E5- DO FO 2630 BNE .2 3 TIMES

60E7- 18 2640 CLC

60E8- A5 FD 2650 LDA BASG1+1 ADD $400 (1024)

60EA- 69 04 2660 ADC #$04

60EC- 85 FD 2670 STA BASG1+1 TO GREMLIN SCREEN BASE

60EE- A5 FF 2680 LDA BASG2+1 (MOVE DOWN

60F0- 69 04 2690 ADC #$04 ONE RASTER LINE)

60F2- 85 FF 2700 STA BASG2+1

281

60F4-
60F6-
60F8-
60FA-
60FC-
60FE-
6100-
6102~
6104-
6106-
6108-
610A-
610C-
610F-
6111~
6113-

6114-
6116~
6118-
611A-
611C-
611E-
6120-
6122~
6124-
6126-
6128-
612A-
612B-
612D-
612F -
6130-
6132-
6134-
6136-
6138-
613A-
613C-
613E-
6140-

C6
DO
E6
A5
C9
DO
A9
85
E6
A5
C9
DO
20
A9
85
60

A9
85
85
A9
85
A9
85
A4
A9
91
91
c8
C6
DO
18
A5
69
85
A5
69
85
Cé6
DO
60

282

oC
D9
0A
0A
07
13
00
0A
07
07
24
07

00
07

42
FD
FF
08
0ocC
03
0D
07
00
FC
FE

F7

FD
04
FD
FF
04
FF
oC
DE

61

2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930

2940 .

2950
2960
2970

2980 .

2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090

3100

3110
3120

T

Assembly Language for the Applesoft Programmer

DEC
BNE
INC
LDA
CMP
BNE
LDA
STA
INC
LDA

CLC
LDA
ADC
STA
LDA

STA
DEC
BNE
RTS

HEIGHT DO THIS

1 8 TIMES

FRMNUMG MOVE RIGHT

FRMNUMG

#$07 PAST LAST FRAME

RET IF NOT, CONTINUE

#$00 IF SO,

FRMNUMG RESET FRMNUMG

HORIZG MOVE TO NEXT BYTE

HORIZG

#$24 AT FAR RIGHT OF SCREEN?

RET IF NOT, CONTINUE

ERASE.G IF SO, ERASE IMAGE

#3$00 GO TO LEFT

HORIZG OF GRAPHICS SCREEN

#$42 'SET GREMLIN SCREEN BASE

BASG1+1 ADDRESSES TO

BASG2+1- $4200 AND $4280

#3$08 GREMLIN IS

HEIGHT 8 BYTES HIGH

#$03 GREMLIN IS

WIDTH 3 BYTES WIDE

HORIZG INDEX TO GREMLIN SCREEN LOC.

#$00 STORE ZEROS IN

(BASG1) ,Y SCREEN LOCATIONS

(BASG2) ,Y WHICH CONTAINED GREMLIN
INC INDEX i

WIDTH DO THIS ’

.2 3 TIMES

BASG1+1 ADD $400 (1024)

#$04 TO GREMLIN

BASG1+1 SCREEN BASE ADDRESSES

BASG2+1 .

#$04 (MOVE DOWN ONE

BASG2+1 RASTER LINE)

HEIGHT DO THIS

.1 8 TIMES

Chapter 12 Game Development
3180 #--mmmmmmmmm—mmmmm—mmmmm—————m
3140 KEYBOARD
6141- AD 00 CO 3150 LDA KBD READ KEYBOARD
6144- 10 27 3160 BPL RTN IF NO KEYPRESS, RETURN
6146- C9 95 3170 CMP #$95 RIGHT ARROW
6148- DO 04 3180 BNE .1
614A- A9 01 3190 LDA #$01 SIGNAL TO
614C- 85 0B 3200 STA DIR MOVE RIGHT
614E- C9 88 3210 .1 CMP #$88 LEFT ARROW
6150- DO 04 3220 BNE .2
6152- A9 FF 3230 LDA #$FF SIGNAL TO
6154- 85 OB 3240 STA DIR MOVE LEFT
6156- C9 AF 3250 .2 CMP #$AF w/n KEY
6158- DO 04 3260 BNE .3
615A- A9 00 3270 LDA #$00 SIGNAL FOR
615C- 85 OB 3280 STA DIR NO MOVEMENT
615E- C9 A0 3290 .3 CMP #$A0 FIRE (SPACE BAR)
6160- DO 08 3300 BNE .4
6162- A5 OF 3310 LDA MFLG IF MISSILE IS MOVING
6164- 30 04 3320 BMI .4 DON'T LAUNCH ANOTHER
6166- A9 01 3330 LDA #$01
6168- 85 OF 3340 STA MFLG SET MISSILE FLAG
616A- AD 10 CO 3350 .4 LDA STROBE
616D~ 60 3360 RTN RTS
3370 #-——-mm—mmmmmmmmmmmmm e mm i —
3380 BARRICADES
616E- A0 28 3390 LDY #$28 SCREEN INDEX
6170- A5 19 3400 LDA BRKD GET BARRICADE CODE BYTE
6172- 91 12 3410 .1 STA (BASB),Y AND STORE ON SCREEN
6174~ 88 3420 DEY RIGHT-TO-LEFT
6175- DO FB 3430 BNE .1
6177- A5 19 3440 LDA BRKD
6179- C9 TF 3450 CMP - #$7F ACROSS SCREEN?
617B- DO 02 3460 BNE .2 IF NOT
617D- E6 19 3470 INC BRKD SET EXIT SIGNAL
617F- 60 3480 .2 RTS
3490 Hemommm o mm—mmmm e m—mmmmm—mm—mm— o
6180- A9 10 3500 DELAY LDA #$10
6182- 20 A8 FC 3510 JSR WAIT
6185- 60 3520 RTS
3530 #o—mmrommmmmm—mm—m e mmmmm———m =

3540 MISSILES

Assembly Language for the Applesoft Programmer

6186- A5
6188- FO
618A- 30
618C- A9
618E- 85
6190- A9
6192- 85
6194- A5
6196- 85
6198- A5
619A- 85
619C- E6
619E- A9
61A0- 85

61A2- A6
61A4- C6
61A6- C6
61A8- BD
61AB- 85
61AD- E8
61AE- BD
61B1- 85
61B3- E8
61B4- BD
61B7- 85
61B9- ES
61BA- BD
61BD- 85

61BF- A6
61C1- A4
61C3- A5
61C5- C9
61C7- DO
61C9- 38
61CA- 26
61CC- A9
61CE- 85
61D0- FO

61D2- A9

284

OF
Fo6
16
FF
OF
00
18
09
10
06
08
08
50
11

11
11
11
FE
14

FE
15

FE
16

FE
17

10
08
11
06
09

19
00
OF
21

04

63

63

63

63

3550 LDA MFLG ,

3560 BEQ DELAY MFLG = O :, NO MISSILE ACTIVITY
3570 BMI CONT MFLG < 0 : CONTINUE A MISSILE
3580 LDA #$FF MFLG > 0 : LAUNCH A NEW MISSILE
3590 STA MFLG RESET MFLG

3600 LDA #$00

3610 STA COLFLG ZERO EXPLODE FLAG

3620 LDA FRMNUMD

3630 STA MSLNM IDENTIFY MISSILE NUMBER

3640 LDA HORIZD MISSILE SCREEN BYTE LOCATION
3650 STA HORIZM IS 1 LARGER

3660 INC HORIZM THAN DEFENDER LOCATION

3670 LDA #$50 STARTING LEVEL

3680 STA MLEVL OF MISSILE

3690 Hmm oo m e _______

3700 CONT LDX MLEVL SERVES AS INDEX

3710 DEC MLEVL '

3720 DEC MLEVL

3730 LDA ADDR, X

3740 STA BASMD = ESTABLISH

3750 INX - SCREEN BASE

3760 LDA ADDR, X ADDRESS FOR

3770 STA BASMD+1 DRAWING MISSILE

3780 INX ‘

3790 LDA ADDR, X !

3800 STA BASME ESTABLISH

3810 INX SCREEN BASE

3820 LDA ADDR, X ADDRESS FOR

3830 STA BASME+1 ERASING MISSILE

3840 H-mmm oo e _____ p

3850 LDX MSLNM MISSILE INDEX

3860 LDY HORIZM INDEX TO SCREEN BYTE LOCATION
3870 LDA MLEVL INDEX TO MISSILE ADDRESS TABLE
3880 CMP #$06 TOP OF SCREEN

3890 BNE DRW IF NOT THERE YET

3900 SEC MISSED GREMLIN

3910 ROL BRKD ADD A BIT TO BARRICADES

3920 LDA #$00 RESET MISSILE FLAG

3930 STA MFLG

3940 BEQ ERASE ALWAYS

3950 Hmmm oo m e m e o e ooilo

3960 DRW LDA #$04 MISSILE IS

61D4- 85
61D6- BD
61D9- 31
61DB- 05
61DD- 85
61DF- DO
61E1- BD
61E4- 11
61E6- 91
61E8- 18
61E9- A5
61EB- 69
61ED- 85
61EF- C6
61F1- DO

61F3- A9
61F5- 85
61F7- BD
61FA- 31
61FC- FO
61FE- 51
6200- 91
6202- 18
6203- A5
6205~ 69
6207- 85
6209- C6
620B- DO

620D- A5
620F- FO

6211- A9
6213- 85
6215- A5
6217~ C9
6219- BO

621B- 20
621E-~ 20

ocC 3970
F7 63 3980
14 3990
18 4000
18 4010
12 4020
F7 63 4030
14 4040
14 4050
4060
15 4070
04 4080
15 4090
0oC 4100
E3 4110
4120
04 4130
e 4140
F7 63 4150 .
16 4160
04 4170
16 4180
16 4190
4200 .
17 4210
04 4220
17 4230
oC 4240
EA 4250
4260
4270
18 4280
17 4290
4300
00 4310
OF 4320
11 4330
30 4340
0D 4350
4360
DD FB 4370
14 61 4380

STA
.1 LDA

ORA
STA

Chapter 12 Game Development

HEIGHT 4 BYTES HIGH

MISL,X GET MISSILE BIT PATTERN
(BASMD) ,Y IS BIT ON ALREADY?
COLFLG IF SO, SET EXPLODE FLAG
COLFLG TO NONZERO

ERASE

MISL,X GET MISSILE BIT PATTERN
(BASMD) ,Y ADD IT TO THE

(BASMD) ,Y CURRENT SCREEN CONTENTS
BASMD+1 ADD $400 (1024)

#$04 TO BASE ADDRESS

BASMD+1 (MOVE DOWN 1 RASTER LINE)
HEIGHT DO THIS

.1 4 TIMES

#304 MISSILE IS

HEIGHT 4 BYTES HIGH

MISL,X GET MISSILE BIT PATTERN

(BASME) ,Y IS BIT ALREADY ON?
.4 IF NOT, DON'T ERASE IT
(BASME) ,Y COMPLEMENTARY DRAW

(BASME) , Y TO ERASE BIT
~ ADD $400 (1024)

BASME+1 TO BASE ADDRESS

#$04 (MOVE DOWN

BASME+1 - 1 RASTER LINE)

HEIGHT DO THIS

.3 4 TIMES

COLFLG HIT ANYTHING?

RT1 IF NO

#3$00 HIT SOMETHING!

MFLG RESET MFLG

MLEVL IF MLEVL IS

#$30 LESS THAN $30

RT1 THEN HIT GREMLIN!

BELL HIT GREMLIN! RING BELL.

ERASE.G ERASE GREMLIN

285

Assembly Language for the Applesoft Programmer

6221- A9
6223- 85
6225- 18
6226- 66
6228- 60

6229- 30
622C- 17C
622F- 44
6232- 46
6235- 46
6238~ TE
623B- 78
623E- 48

6241- 60
6244- T8
6247- 08
624A- 0C
624D- 0C
6250- 7C
6253- 70
6256- 10

6259~ 40
625C- 70
625F- 10
6262- 18
6265- 18
6268- 178
626B- 60
626E- 20

6271~ 00
6274~ 60
6277- 20
627A- 30
627D- 30
6280- 70
6283- 40
6286- 40

286

60
07

19

ocC
3F
23
63
63
F
1F
13

18
F
47
47
47
F
3F
27

31
F
OE
OE
O0E
F
F
4E

63
F
1C
1C
1C
F
TF
1C

00
00
00
00
00
00
00
00

00
00
00
01
01
01
00
00

00
01
01
03
03
03
00
00

00
03
02
06
06
07
01
01

4390
4400
4410
4420
4430
4440

4450

4460
4470

4480

4490
4500

4510

4520
4530

4540

4550

DATG1

* FRAME

* FRAME

* FRAME

LDA #$00 START IT AT LEFT
STA HORIZG OF SCREEN .

CLC REMOVE 1 BIT

ROR BRKD FROM BARRICADES
RTS

DA #48, #12, #0, #124, #63, #0, #68, #35, #0, #70, #99, #0

.DA #70,#99,#0,#126,#127,#0,#120,#31,#0,#72,#19,#0
NUMBER 2 '

.DA #96,#24,#0,#120,#127,#0,#8,#71,#0,#12,#71,#1

DA #12,#71,#1,#124, #127, #1,#112, #63, #0, #16, #39, #0
NUMBER 3

’

DA #64,#49,#0, #112, #127, #1, #16, #14, #1, #24, #14, #3

v

-DA #24,#14,#3,#120, #127, #3, #96, #127, #0, #32, #78, #0
NUMBER 4

-DA #0, #99, #0, #96, #127, #3, #32, #28, #2, #48, #28, #6

DA #48, #28, #6, #112, #127, #7, #64, #127, #1, #64, #28, #1

4560 * FRAME NUMBER 5

6289-
628C-
628F-
6292-
6295-
6298-
629B-
629E-

62A1-
62A4-
62A7-
62AA-
62AD-
62B0-
62B3-
62B6-

62B9-
62BC-
62BF -
62C2-
62C5-
62C8-
62CB-
. 62CE-
62D1-
62D4 -
62D7-
62DA-
62DD-
62E0-
62E3-
62E6-

62E9-
62EC-
62EF -
62F2-
62F5-
62F8-
62FB-

00
40
40
60
60
60
00
00

00
00
00
40
40
40
00
00

00
00
00
00
00
00
00
00
4E
0E
7E
04
04
04
OE
00

1C
1C
7C
10
10
38
00

46
F
38
38
38
F
F
39

ocC
F
71
71
71
F
TE
12

18
7E
62
63
63
TF
7C
64
73
70
TF
20
20
20
20
70

67
60
TF
10
10
10
10

01
07
04
0C
0C
OF
03
02

03
OF
08
18
18
1F
07
04

06
1F
11
31
31
3F
OF
09
00
00
00
00

4570

4580
4590

4600

4610
4620

4630

4640

4650

00 -

00
00
00

01
01
01
00
00
00
00

4660
4670

4680

* FRAME

* FRAME

DATG2

* FRAME

Chapter 12 Game Development

.DA #0,#70, #1, #64, #127, #7, #64, #56, #4, #96, #56, #12

.DA #96,#56, #12, #96, #127,#15, #0, #127, #3, #0, #57, #2

NUMBER 6

.DA #0,#12, #3, #0, #127, #15,#0, #113, #8, #64, #113, #24

.DA #64,#113,#24,#64,#127, #31, #0, #126, #7, #0, #114, #4

NUMBER 7

.DA #0,#24,#6,#0,#126, #31, #0, #98, #17, #0,#99, #49
.DA #0,#99, #49, #0, #127, #63, #0, #124, #15, #0,#100, #9
.DA #78,#115,#0, #14, #112, #0, #126, #127, #0, #4, #32, #0

.DA #4,#32,#0, #4, #32, #0, #14, #32, #0, #0, #112, #0

NUMBER 2

DA #28,#103, #1, #28, #96, #1, #124, #127, #1, #16, #16, #0

287

N

Assembly Language for the Applesoft Programmer

62FE~- 00

6301- 38
6304- 38
6307~ 178
630A- 40
630D- 40
6310- 40
6313- 60
6316- 00

6319- 170
631C- 70
631F- 70
6322~ 00

6325- 00

6328- 00
632B- 00
632E- 00

6331- 60
6334~ 60
6337- 60
633A- 00
633D- 00
6340~ 00
6343- 00
6346~ 00

6349- 40
634C- 40
634F- 40
6352- 00
6355~ 00
6358- 00
635B- 00
635E- 00

6361~ 00
6364- 00
6367- 00
636A- 00

288

38

4E
40
F
08
08
08
08
1C

1C
00
F
22
22
22
72
07

39
01
F
02
02
42
02
07

73
03
TF
02
02
02
02
07

67
07
F
02

00

03
03
03
00
00
00
00
00

07
07
07
00
00
00
00
00

OE
OE
OF
01
01
03
60
00

1C
1C
1F
04
04
OE
00
00

39
38
3F
10

4690
4700

4710

4720
4730

4740

4750
4760

4770

4780
4790

4800

4810
4820

4830

* FRAME

* FRAME

* FRAME

.DA #16, #16,#0, #56, #16, #0, #0, #16, #0, #0, #56, #0

NUMBER 3 o

-DA #56, #78, #3, #56, #64, #3, #120, #127, #3, #64, #8, #0

.DA #64, #8, #0, #64, #8, #0, #96, #8, #0, #0, #28, #0

NUMBER 4

DA #112, #28, #7, #112, #0, #7, #112, #127, #7, #0, #34, #0

DA #0, #34, #0, #0, #34, #0, #0, #114, #0, #0, #7, #0

NUMBER 5

.DA #96, #57, #14,#96, #1, #14, #96, #127, #15, #0, #2, #1
f

* FRAME

* FRAME

-DA #0, #2, #1, #0, #66, #3, #0, #2, #0, #0, #7, #0

NUMBER 6
v

.DA #64,#115, #28, #64, #3, #28, #64, #127, #31, #0, #2, #4

DA #0, #2, #4, #0, #2, #14, #0, #2,#0, #0, #7, #0

NUMBER 7

-DA #0,#103, #57, #0, #7, #56, #0, #127, #63, #0, #2, #16

636D- 00
6370- 00
6373- 00
6376- 00

6379~ 00
637C- 00
637F- 00
6382- .06
6385- TE
6388~ TE

638B- 00
638E- 00
6391- 00
6394- 0C
6397~ 17C
639A- 17C

639D- 00
63A0- 00
63A3- 00
63A6- 18
63A9- 178
B63AC- 78

63AF- 00
63B2- 00
63B5- 00
63B8- 30
63BB- 70
63BE- T0

63C1- 00
63C4- 00
63C7- 00
63CA- 60
63CD~ 60
63D0- 60

63D3- 00

02
02
02
07

01
01
01
61
F
F

02
02
02
42
F
F

04
04
04
04
TF
F

08
08
08
08
F
F

10
10
10
10
TF
TF

20

10
10
10
38

00
00
00
00
00
00

00
00
00
01
01
01

00
00
00
03
03
03

00
00
00
06
07

07

00
00
00
ocC
OF
OF

00

4840
4850
4860

4870

4880
4890

4900

4910
4920

4930

4940
4950

4960

4970
4980

4990

5000
5010

DATAD
* FRAME

* FRAME

Chapter 12 Game Development

.DA #0,#2,#16, #0, #2, #16, #0, #2, #16, #0, #7, #56

NUMBER 2

.DA #0,#1, #0, #0, #1, #0, #0, #1, #0

DA #B, #97, #0, #126, #127, #0, #126, #127, 40

NUMBER 3

.DA #0,#2,#0, #0, #2, #0, #0, #2, #0

.DA #12,#66,#1,#124, #127, #1, #124, #127, #1

NUMBER 4

.DA #0, #4,#0,#0, #4, #0, #0, #4, #0

.DA #24,#4,#3,#120, #127, #3, #120, #1217, #3

NUMBER 5

.DA #0, #8, #0, #0, #8, #0, #0, #8, #0

.DA #48,#8,#6, #112, #127, #7,#112, #127, #7

NUMBER 6

.DA #0,#16, #0, #0, #16, #0, #0, #16, #0

.DA #96,#16,#12,#96, #127, #15, #96, #127, #15

NUMBER 7

289

Assembly Language for the Applesoft Programmer

| 63D6- 00 20 00 ‘
63D9- 00 20 00 5020 DA #0,#32,#0, #0, #32, #0, #0, #32, #0
‘ 63DC- 40 21 18
| 63DF- 40 TF 1F
63E2- 40 7F 1F 5030 .DA #64, #33, #24, #64, #127, #31, #64, #1217, #31
\ 63E5- 00 40 00
63E8- 00 40 00
63EB- 00 40 00 5040 DA #0,#64, #0, #0, #64, #0, #0, #64, #0
j 63EE- 00 43 30 '
: 63F1- 00 7F 3F
d 63F4- 00 7F 3F 5050 DA #0,#67, #48, #0, #1217, #63, #0, #127, #63
i 63F7- 01 02 04 -
| 63FA- 08 10 20 .
63FD- 40 5060 MISL .DA #1,#2,#4,#8, #16, #32, #64
63FE- 00 40 00 ‘
| _ 6401- 50 80 40 : ‘)
i 6404- 80 50 5070 ADDR .HS 0040005080408050 .
: 6406- 00 41 00 _ ‘
l 6409- 51 80 41
| 640C- 80 51 5080 .HS 0041005180418051
640E- 00 42 00
6411~ 52 80 42
6414- 80 52 5090 .HS 0042005280428052
| 6416- 00 43 00 -
W 6419- 53 80 43
|

i

641C- 80 53 5100 .HS 0043005380438053
‘ 641E- 28 40 28
\ 6421- 50 A8 40

6424- A8 50 5110 .HS 28402850A840A850
‘ 6426- 28 41 28 y
w 6429- 51 A8 41 ’
h 642C- A8 51 5120 .HS 28412851A841A851

642E- 28 42 28

6431- 52 A8 42

6434- A8 32 5130 .HS 28422852A842A852

6436- 28 43 28

6439- 53 A8 43 .

643C- A8 53 5140 .HS 28432853A843A853

643E- 50 40 50

6441- 50 DO 40

6444- DO 50 5150 .HS 50405050D040D050
‘ 6446- 50 41 50

290

SYMBOL TABLE

6029- A

63FE- ADDR

616E- BARRICADES
.01=6172, .02=61TF
0012- BASB

00FA- BASD

00FC- BASG1

00FE- BASG2

0014- BASMD

0016- BASME

FBDD- BELL

0019- BRKD

0018- COLFLG

61A2- CONT

6379- DATAD

6229- DATG1

62D1- DATG2

6048- DEFENDER
6180- DELAY

000B- DIR

608A- DRAW
.01=609E, .02=60A4
61D2- DRW

.01=61D6

61F3- ERASE
.03=61F7, .04=6202
6114- ERASE.G
.01=611E, .02=6126
0009- FRMNUMD
000A- FRMNUMG

.HS 50415051D041D051

.HS 50428052D042D052

.HS 50435053D043D053

Chapter 12 Game Development

Y

Assembly Language for the Applesoft Programmer

60BB- GREMLIN
.01=60D1, .02=6127

000C- HEIGHT

6211- HIT

0006- HORIZD

0007- HORIZG

0008~ HORIZM

6000- INIT

C000- KBD

6141- KEYBOARD

.01=614E, .02=6156, .03=615E, .04=616A
6070- LEFT

000F- MFLG

63F7- MISL

6186- MISSILES

0011- MLEVL

6080- MOVLFT

6060- MOVRT

0010- MSLNM

6113- RET

6228~ RT1

616D- RTN

C010- STROBE

000E- TEMP .

FCA8- WAIT '
000D- WIDTH

292

SECTION

Vv

A Searching and Sorting

CHAPTER

4)

SEARCHING AND
SORTING

At some time you have probably wanted to sort a disk file. The data in this file
will be either numeric or alphabetic. Writing an Applesoft Bubble Sort program
to sort this list is a relatively simple task. However, as the number of elements
on the list increases, the amount of time required to sort the list becomes irri-
tatingly long. For example, to sort a list of 256 elements with an Applesoft
program requires more than sixteen minutes. The sorting time can be reduced
to approximately twenty-one seconds when the sorting routine is assembled in
memory and called from Applesoft. That is a 97.8% reduction!

The purpose of this chapter is to show you how to write a sorting routine
in assembly language that will sort 256 elements in less than twenty-five sec-
onds. The more general problem of describing and comparing the efficiencies
of different sorting techniques is beyond the purpose of this chapter. If you are

13

295

i ‘ o j

Assembly Language for the Applesoft Programmer

interested in searching and sorting in the general sense, we suggest you begin
by reading the article “A Comparison of Sorts, Revisited” by Howard Kaplan,
published in Creative Computing, May 1983, page 217. If you wish a more
definitive approach to searching and sorting, we suggest The Art of Computer
Programming, Volume 3, by Donald Knuth, published by Addison-Wesley.

The sorting technique we use in the examples in this chapter is called a
“bubble” sort, because the “lighter” elements “float” to the top of the list. We
chose the bubble sort for three reasons: (1) It is the easiest to understand, and
(2) it will sort 256 elements in less than twenty-five seconds. (3) It is also the
“heart” of some very fast sort routines. This sorting technique is described the
Kaplan article and is called “Quicksort.” When Quicksort gets down to brass
tacks it finally does a bubble sort on a much smaller sublist of the original list.
If you need to sort lists in the thousands of elements, then it will benefit you to
master the bubble sort given in this chapter and incorporate, it into a Quicksort
routine. The “last word” on searching and sorting has not yet been written.

The Applesoft program shown below will generate a list of random numbers
and store them in the array E Sorting disk files w1ll be dealt with later.

20 REM

30 PRINT "HOW MANY ELEMENTS?

40 INPUT N

50 N=N-1

60 DIM F(N)

70 PRINT "THE RANDOM NUMBERS WILL BE CALCULATED"
80 PRINT "ACCORDING TO: "

90 PRINT

100 PRINT " X=R+ S * RND(J)"
110 PRINT " F(I) = INT(X)"

120 PRINT

130 PRINT "INPUT J, R, S" v
140 INPUT J,R,S

150 PRINT

160 PRINT "THE LIST"

170 FOR I = 0 TO N

180 X =R + S * RND(J)

190 F(I) = INT (X)

200 PRINT I + 1;". ";F(I)

210 NEXT I

220 REM

230 REM BUBBLE SORT

240 REM

10 REM GENERATE RANDOM NUMBERS

296

250 LE =N -1

260 FL = 0

270 FOR I = 0 TO LE

280 IF (F(I) < =F(I + 1)) GOTO 320
290 T = F(I)

300 F(I) = F(I + 1)

310 F(I + 1) =T

320 FL = 1

330 NEXT I

340 LE = LE -1

350 IF (FL = 1) GOTO 250

360 PRINT

370 REM

380 REM PRINT THE SORTED LIST
390 REM :
400 PRINT "THE SORTED LIST."
410 FOR I = 0 TON

420 PRINT I + 1;". ™;F(I)
430 NEXT I '

440 END

The generation of 256 integers is quick. The time-consuming part of the
program is the bubble sort. Using only the second hand on a watch, this routine
required sixteen minutes, eighteen seconds to sort 256 elements.

The time required for any bubble sort to run is proportional to the number
of elements, N, squared. That is,

T = A*N?

If the number of elements is doubled (N — 2N), then the program takes four
times as long to run (T — 4T). This proportion holds true even if the bubble
sort is assembled into machine language. How then is such a great time savings
accomplished when using an assembled bubble sort routine? The A in the above
equation is much smaller than it is for an Applesoft program. The assembled
bubble sort will run approximately forty-five times faster. That is, 128 elements
will be sorted in about five seconds; 256 elements in about twenty-one seconds.

The Applesoft bubble sort shown above compares F(I) with F(I+1); if F(I+1)
is smaller the elements are swapped. Lines 290, 300, and 310 do the swapping.
Line 290 moves F(I) into a Temporary location. Line 300 moves F(I+ 1) into F(I),
and then T is moved into F(I+1). Line 320 sets a FLag. When the FLag is set
another pass (line 350) through the list is required.

297

Assembly Language for the Applesoft Programmer

298

If you are uncertain on how this program sorts, try inserting these lines;
321 FORI =0 TO N '

322 PRINT I+1;". ";F(I)

323 NEXT 1

324 INPUT A%

This modification will allow you to watch each “heavy” number “sink” to
the bottom. The purpose of line 324 is to halt execution of the loop so that you
can scan the list of numbers to see which number is “sinking.” The variable A$
has no logical purpose in the program. When this modification is installed keep
the number of elements small (less than ten).

If you insert this line into the program

331 PRINT "A PASS THROUGH THE LIST HAS BEEN COMPLETED.™"

along with the others you will see that one by one the heavy elements “sink” to
the bottom. Notice that when this message first appears the “heaviest” element
has “sunk” completely to the bottom. This elément is now sorted: it need not
be compared again. Therefore LE (Loop End) can be decremented by one (line
340).

The overall idea in this chapter is to write an Applesoft program to generate
and print the the unsorted list, then call our assembled bubble sort. It will sort
the list forty-five times faster than Applesoft could have. Finally return to the
Applesoft program to print the sorted list. Our objective is to translate the
Applesoft bubble sort into Assembly Language without changing the logic of
the program. The program shown below is that translation.

PROGRAM 13.1

1000 H=mm—mmmm e

1010 * THIS EXAMPLE WILL SORT 256 OR LESS
1020 * NUMBERS THAT WERE LOADED INTO AN

1030 * ARRAY BY THE BASIC PROGRAM SHOWN ABOVE.

1040 %= mmmmmmm o mme e

1050 .OR $300 MUST STAY OUT OF $800
1060 #~--mmmm e '

1070 * BECAUSE THAT IS THE
1080 * STARTING LOCATION
1090 * OF APPLESOFT.

1100 #—mmmm s e el

0006-
0008-
0016-
0019-
001E-
001F-
0094-
009D-
DF6A-
DFE3-
E9E3-
EAF9-
EB2B-
EB53-

0300- 20
0303- A5
0305~ 38
0306- E9
0308- 85
030A- A5
030C- E9
030E- 85
0310- A0
0312- B1
0314- AA
0315- CA
0316- 86
0318- A9
031A- 85

031C- A5
031E- 85
0320~ A9
0322- 85
0324~ A4
0326- 84
0328- A5

E3 DF
94

01
1E
95
00
1F
00
1E

1E
06
16

1E
1F
00
19
95
07
94

1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

Chapter 13 Searching and Sorting

ELEML. .EQ $06 LEFT-HAND ELEM

ELEMR .EQ $08 RIGHT-HAND ELEM

MASK .EQ $16 FOR THE COMPARISON
FLAG .EQ $19 KEEP FLAG HERE

NUMB .EQ $1E THE NUMBER OF ELEM'S
COUNT .EQ $1F THE CURRENT NUMBER
FIRST .EQ $94 ADDRESS OF FIRST NUMBER
MFAC :EQ $9D

COMP .EQ 3DF6A
PTRGET .EQ $DFE3
MOVSI .EQ $ESE3
MOVMI .EQ $EAF9
MOVMO .EQ $EB2B
MOVSM .EQ $EB533

BEGIN JSR PTRGET PUT ADDR OF 1ST NUMBER INTO FIRST
LDA FIRST GET LOCATION PART OF FIRST NUMBER

SEC SET CARRY FOR SUBTRACTION

SBC #$01 BACKUP TO NUMBER TO SORT

STA NUMB LOCATION PART

LDA FIRST+1 GET PAGE PART OF FIRST NUMBER
SBC #$00 NEAT WAY TO TAKE CARE OF PG BNDRY
STA NUMB+1 PAGE PART OF ADDRESS

LDY #$00 PREPARE FOR INDIRECT ADDRESSING
LDA (NUMB),Y LOAD NUMBER TO BE SORTED INTO A
TAX MOVE IT TO X

DEX TAKE OFF 1

STX NUMB STORE IT HERE

LDA #$06 SELECT COMPARISON <= >

STA MASK COMP WANTS IT HERE 421

* THIS IS THE TOP OF THE OUTER LOOP.
B 2 .

PASS LDA NUMB RE-LOAD NUMBER OF ELEMENTS
STA COUNT SET. THE COUNTER
LDA #$00 CLEAR THE FLAG
STA FLAG IT IS CLEARED

LDY FIRST+1l GET PAGE PART OF FIRST NUMBER
STY ELEML+1 SAVE IT HERE
LDA FIRST GET LOC PART OF ITS ADDRESS

299

Assembly Language for the Applesoft Programmer

032A- 85 06 1530 STA ELEML ~ LOC OF FIRST NUMBER ON LIST
1540 H=ommmmmmmmm oo mmmmm e el
1550 * THIS IS THE TOP OF THE INNER LOOP.
1560 *--——-———mm—mmmmmmmmmmmmm oo
032C- 20 E3 E9 1570 TOP JSR MOVSI MOVE IT INTO SFAC
032F- A4 07 1580 LDY ELEML+1 MUST RECOVER THESE
0331- A5 06 1590 LDA ELEML AFTER THE JSR IN LINE 1570
0333- 18 1600 CLC SET UP TO
0334- 69 05 1610 ADC #$05 RIGHT ELEM
0336- 85 08 1620 STA ELEMR SAVE IT HERE
0338- 98 1630 TYA PREPARE TO CHECK FOR PG BNDRY
0339- 69 00 1640 ADC #$00 FIX IF NECESSARY
033B- A8 1650 TAY PUT IT BACK
033C- 85 09 1660 STA ELEMR+1 SAVE IT HERE
033E- A5 08 1670 LDA ELEMR RIGHT ELEM IS READY
0340- 20 F9 EA 1680 JSR MOVMI ~ MOVE IT INTO MFAC
0343- 20 6A DF 1690 JSR COMP DO THE COMPARISON
0346- A5 9D 1700 LDA MFAC SET Z-FLAG; IS MFAC = 0?
0348- DO 13 1710 BNE NOSWP- NEED TO SWAP'EM?
1720 oo mm oo oo
1730 * THIS SECTION -SWAPS THE RIGHT AND THE LEFT ELEMENTS
1740 #- oo oo e e e
034A- A9 FF 1750 LDA #$FF YES!
034C- 85 19 1760 STA FLAG SO SET FLAG
034E- A0 04 1770 LDY #$04 MOVE ALL 5 PARTS
0350- B1 08 1780 SWAP LDA (ELEMR),Y OF THE F-P NUMBER
0352- AA 1790 TAX USE X AS TEMP STORAGE
0353- Bl 06 1800 LDA (ELEML),Y MOVE LEFT PART
0355- 91 08 1810 STA (ELEMR),Y TO THE RIGHT
0357- 8A 1820 TXA MOVE OLD RIGHT
0358- 91 06 1830 STA (ELEML),Y TO THE LEFT
035A- 88 1840 DEY COUNT DOWN
035B- 10 F3 1850 BPL SWAP MOVE THEM ALL YET?
1860 *-mmmmmmmmmmmm oo m oo oo
035D- A4 09 1870 NOSWP LDY ELEMR+1 DO NOT NEED TO SWAP'EM
035F- 84 07 1880 STY ELEML+1 OLD RIGHT BECOMES NEW LEFT
0361- A5 08 1890 LDA ELEMR PREPARE TO MOVE UP RIGHT
0363- 85 06 1900 STA ELEML THIS TAKES CARE OF PG PART
0365- C6 1F 1910 DEC COUNT COUNT OFF ANOTHER 1
0367- DO C3 1920 BNE TOP DO'EM ALL YET?
‘ 1930 H oo m oo oo oo
1940 * BOTTOM OF INNER LOOP.

300

Chapter 13 Searching and Sorting

1950 #-mmmmmmmm e
0369- C6 1E 1960 DEC NUMB DO NOT NEED TO RE-CHECK THE REST
036B- A5 19 1970 LDA FLAG - SET Z-FLAG; IS IT 07
036D- DO AD 1980 BNE PASS DO ANY SWAPS?
1990 #mmmmm e
2000 * BOTTOM OF THE OUTER LOOP.
2010 #mmmmm e
036F- 60 2020 RTS HOW NICE IT IS!

SYMBOL TABLE

0300- BEGIN
DFBA- COMP
001F- COUNT
0006- ELEML
0008- ELEMR
0094- FIRST
0019- FLAG
0016~ MASK
009D- MFAC
EAF9- MOVMI
EB2B- MOVMO
E9E3- MOVSI
EB53- MOVSM
035D- NOSWP
001E- NUMB
031C- PASS
DFE3- PTRGET
0350- SWAP
032C- TOP

& USAGE

The first executable line in the program (line 1280) indicates that the & com-
mand will be used to call the routine. PoinTeR GET will find the address of the
first element in the numeric array and put it in FIRST (locations $94, $95). To
understand the purpose of lines 1300 through 1390, you must realize that the
last byte of the header contains the number of elements in the array. (Remember
how Applesoft organizes numeric array storage. If you need refreshing on this
see Chapter 8.)

301

Assembly Language for the Applesoft Programmer

PREPARATION FOR SORTING

SORTING

B

Our plan is to sort 256 or fewer elements. Then we need only move the contents
of the last header byte into NUMB. To accomplish this, one is subtracted from
the location (low byte) part of the first element’s address. The subtraction may
cross a page boundary. For example ($94, $95) = 00 0B could be the contents
of FIRST and FIRST + 1. When the subtraction is performed we want FF 0C not
FF 0B! Lines 1330 and 1340 take care of this by using the C-flag. If a page
boundary is crossed in the subtraction, the C-flag will be set and the page part
(high byte, FIRST + 1), will be properly adjusted when the subtraction in line
1340 is executed. .)
The address of the number of elements is now formed in NUMB and
NUMB +1. Line 1370 loads the NUMBer of elements to be sorted into A, it is
transferred to X, and one is subtracted. The number of elements is stored in
NUMB. Next the type of comparison to be done is selected according to

>
1

[N-TT]

<
4

Since $06 = $04 + $02, the type of comparison to be done is <=.

302

;
We imagine going through the array a pair of elements (ELEML and ELEMR) at
atime. The address of the left-hand element is contained in $06 and $07 (ELEML
and ELEML + 1); the address of the right-hand element is contained in $08 and
$09 (ELEMR and ELEMR + 1). We will use the COMParison routine, already in
ROM, which was pointed out in Table 8.4. Its starting location is $DF6A and
the kind of comparison that is done is stored in-$16 (MASK). The number of
elements to be sorted is contained in $1E (NUMB).

Each pass through the list begins by initializing COUNT to NUMB, setting
the FLAG to zero and establishing the address of the first element in ELEML
and ELEML + 1. The inner loop begins by loading the contents of ELEML into
SFAC and then moving up by five bytes to ELEMR. A move of five bytes ‘is
required because each floating-point number is five bytes long (remember Chap-
ter 8). Each move of five bytes requires a check to see if the Carry been set, If
the Carry has been set that means a move across a page boundary has occurred.
If a move across a page boundary occurred the page part of the address (ELEMR + 1)
must be incremented by one. The floating-point number is then loaded into
MFAC and the comparison is performed. : :

-

Chapter 13 Searching and Sorting

If the result of the comparison is false, the contents of MFAC are set equal
to zero (00 00 00 00 00). If the result is true, the contents of MFAC are set equal
to one (81 80 00 00 00). Next the contents of $9D (the first byte of MFAC) are
loaded into A and the Z-flag is set according to the result. If Z=0 the branch to
NOSWP is taken; if Z=1 the contents of ELEML and ELEMR are swapped.

On entry into the swap section of the program the flag is set indicating that
a swap has occurred. The Y-register is initialized and used as an index register.
Byte by byte the two floating-point numbers are swapped. First each byte is

loaded into A (line 1780}, then transferred into X. The X-register is used as the .

temporary storage location. Now a left byte is moved into a right byte. Finally
the byte in X is moved to the left, Y is decremented, and the SWAP loop runs
again (if necessary). In summary, the process goes (1) right byte into X, (2) left
byte moved to the right, (3) X is moved to the left, (4) repeat four more times.

Now ELEMR becomes ELEML, and the COUNTer is decremented. A check
for the end of the list is made and (if necessary) the inner loop is run one more
time. If we are at the end of the list, check the FLAG to determine if another
pass through the list is required. If a pass through the entire list is made and
no swaps have occurred, then FLAG = 0, the list is sorted, and the RTS back
to the Applesoft program is taken.

SEARCHING

Once the list of numbers has been sorted the construction of the frequency
distribution is relatively easy. That is, the effort (time + thought) required to
translate and debug the part of the Applesoft program that searches and counts
identical elements does not seem justified. Who cares if you can trim a section
of code that requires ten seconds or so to run in Applesoft down to less than
one second? But it is the kind of exercise you should do as practice, or just for
fun. The example shown below has the frequency distribution tacked onto the
bottom the the earlier Applesoft program. This program has the bubble sort
segment replaced by an & call (line 360) to the machine language bubble sort
that is BLOADed into memory (line 70).

Finally, a sample run of the program is shown below. Do not forget to assem-
ble and BSAVE the bubble sort to disk before running this example.

10 REM SORT RANDOM NUMBERS
20 REM BY LINKING TO MACHINE
30 REM LANGUAGE ROUTINE

40 REM LOADED AT $300

50 REM

Assembly Language for the Applesoft Programmer

304

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
3170
380
390
400
410
420
430
440

450"

460
470

D$ = CHR$ (4): REM CNTRL-D
PRINT D$; "BLOAD ML.BUBBLE" |
PRINT "HOW MANY ELEMENTS?"’

INPUT N

N=N-1

DIM F (N)

PRINT "THE RANDOM NUMBERS WILL BE CALCULATED"
PRINT "ACCORDING TO: "

PRINT

PRINT * X =R+ S *xRNDJ)"
PRINT " F(I) = INT(X)"
PRINT :

PRINT "INPUT J, R, S"

INPUT J,R,S

PRINT

PRINT "THE LIST" ,

FOR I = 0 TON ‘

X =R + S * RND(J)

F(I) = INT (X)

PRINT I + 1;". ";F(I)

NEXT 1

REM

REM ESTABLISH THE & VECTOR

REM .

POKE 1013, 76 !
REM

REM ESTABLISH THE & LINK ADDRESS
POKE 1014, 00

POKE 1015, 03

REM LINK TO THE ROUTINE p
& F(2) o
REM

PRINT

REM

REM PRINT THE SORTED LIST

REM

PRINT "THE SORTED LIST."
FOR I =0TON

PRINT I + 1;". ";F(I)
NEXT I

REM :

REM NOW CONSTRUCT THE

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

RUN

REM FREQUENCY DISTRIBUTION
REM

PRINT

PRINT "THE FREQUENCY DISTRIBUTION"
L=20

cC=20

PC =1

FORR =1 TON

IF (F(L) < > F(R)) GOTO 500
c=C+1

GOTO 540

PRINT PC;". ";F(L);". ";C
L=R

c=1

PC =PC +1

NEXT R

PRINT PC;". "™;F(L);" ";C
END

HOW MANY ELEMENTS?

?15
THE

RANDOM NUMBERS WILL BE CALCULATED
ACCORDING TO: '

X =R+ S * RND(J)
F(I) = INT(X)

INPUT J, R, S
?4,10,-10

THE LIST

© W0 1IN U W

Y
o

2

W o wmNn-ao o+

Chapter 13 Searching and Sorting

i

I

Assembly Language for the Applesoft Programmer

11. 6

12. 7)

13. 3

14. 8 /
15. 6

THE SORTED LIST

: 1. 0
2. 0
3. 1
4. 2
5. 2
6. 3
| 8. 3
9. 6 :
: 10. 6
f 11. 6
: 12. 6
i 13. 1
| 14. 1
| 15. 8
|
: THE FREQUENCY DISTRIBUTION ,
ﬁ 1. 0 2 !
I 2. 1 1
E 3. 2 2
4. 3 3
5. 6 4
6. T 2 Y
7. 8 1

STRINGS

In this part of the chapter you need to know how strings are stored in memaory.
To make your results match those discussed in this part of the chapter you must
enter the following list of names in the order they appear below.

i

‘ 1. SANDY
2. KELLY
|

| 306
. i

00 -9 D G W

9.

10.
11.
12.
13.
14.
15.

MICHAEL
ANTHONY
BILL
LINDA
KAREN
ALICE
GLENN
NEAL
ROY

MOM

DAD
RICHARD
LINDA

Chapter 13 Searching and Sorting

Here is a short Applesoft program that will create the list on disk.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

REM USE THIS PROGRAM
REM TO CREATE THE
REM LIST OF NAMES
D$ = CHR$ (4): REM CNTRL-D
PRINT "HOW MANY ELEMENTS?*
INPUT N
N=N-1
DIM F$ (N)
FOR I = 0 TO N

INPUT F$(I)

PRINT I + 1;". ™;F$(I)
NEXT I

PRINT

PRINT D$; "OPEN LIST"
PRINT D$; "WRITE LIST"
FOR I =0 TON

PRINT F$(I)

NEXT I

PRINT D$; "CLOSE LIST"

END

You will have to do this task only once, but get it done accurately. Once the list
is created on disk you can read it as often as necessary with this program:

10
20

REM THIS PROGRAM WILL
REM READ IN THE LIST

’
/

Assembly Language for the Applesoft Programmer

308

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

REM OF NAMES
D$ = CHR$ (4): REM CNTRL-D
PRINT "HOW MANY NAMES DO YOU WISH TO READ IN?"
INPUT N
N=N-1
DIM F$ (N)
PRINT D$; "READ LIST"

FORI = 0 TO N

INPUT F$ (I)

NEXT I

PRINT D$; "CLOSE LIST"
PRINT

FORI =0 TO N

PRINT I + 1;". ";F$(I)
NEXT I

CALL -151

END

The above program finishes with a CALL to the Monitor because we are
interested in how Applesoft has stored the names in memory. Create this list
on disk and run the program to read it into memory. Here is what you should

see:

NEW
RUN
HOW
715

’

MANY NAMES DO YOU WISH TO READ IN?

(The list of names)
(When the monitor prompt appears) y

(do

*6B,

the following memory listings.)

70

006B- 3B 09 6F 09 B6

0070- 95
*93B. 96E This is the array space.

‘ Stored here are the string
093B- 46 80 34 00 01 descriptor blocks.

0940- 00 OF 05 FA 95 05 F5 95 Each descriptor block is
0948- 07 EE 95 07 E7 95 04 E3 three bytes long. The first
0950- 95 05 DE 95 05 D9 95 05 byte contains the length

Chapter 13 Searching and Sorting

0958- D4 95 05 CF 95 04 CB 95 of the string. The next two
0960- 03 C8 95 03 C5 95 03 C2 bytes point to the strings
0968- 95 07 BB 95 05 B6 95 themselves.

*95B6. 95FF This is where the strings
are stored:

95B6- 4C 49 LI

95B8- 4E 44 41 52 49 43 48 41 NDARICHA
95C0- 52 44 44 41 44 4D 4F 4D RDDADMOM
95C8- 52 4F 59 4E 45 41 4C 47 ROYNEALG
95D0- 4C 45 4E 4E 41 4C 49 43 LENNALIC
95D8- 45 4B 41 52 45 4E 4C 49 EKARENLI
95E0- 4E 44 41 42 49 4C 4C 41 NDABILLA
95E8- 4E 54 48 4F 4E 59 4D 49 NTHONYMI
95F0- 43 48 41 45 4C 4B 45 4C CHAELKEL
95F8- 4C 59 53 41 4E 44 59 04 LYSANDY

Locations $6B through $70 contain the following information: (1) $6BB and
$6C contain the starting address of the array space, (2) $6D and $6E contain the
anding address of the array space, (3) $6F and $70 contain the starting address
of the location in memory where the names are actually stored. Note that the
string of names is not contained in the array space pomted to by $6B through
$6E, as is the case for numeric arrays.

What is contained in the array space pointed to by $6B through $6E? The
first seven bytes are the header. It is organized in the same fashion as it was in
Chapter 8. The information you will see in the header after running the read
list program is:

Header --> 46 80 34 00 01 00 OF
Address --> $93B $93C $93D $93E $93F $940 $9401
charl char2 LENGTH of # of range of
of of this block DIMs rightmost
name hame ’ index
HFII n "

The first bit in each byte of the name (char1 and char2) is used to identify the
type of data contained in the array. In this case the ASCII Screen Character for
a normal F is $C6 — 1100 0110, but the high bit has been turned off — 0100
0110, so a 46 appears as the first character of the array name. There is no second
character in the name of our array, but the high bit is turned on — 1000 0000.

309

Assembly Language for the Applesoft Programmer

The pattern used by Applesoft to identify the type of information stored in

memory is: o
First bit First bit Type of
of char1 of chr2 array
1 1 Integer
0 0 Real
0 1 String

For our array, the high bit of char1 is off, and the high bit of char2 is on,
indicating the array contains information about strings, but not the strings them-
selves. The names are stored elsewhere in memory. The rest of the information
in the array is organized in string descriptor blocks of three bytes. For example,

Array contents --> 05 FA 95
Address --> $942 $943 $944

The first byte of the descriptor block is the length’($05) of the string starting at
$95FA (SANDY). Looking at the $05 byte string at $95FA we see:

ASCII --> S A N D Y
Contents --> 53 41 4F 44 59
Address --> $95FA $95FB $95FC $95FDr, $95FE

The rest of the information is organized in the same fashion. Looking at the last
byte we see:

Array contents --> 05 B6 95
Address --> $96C $96D $96E 7

Which points to

ASCII --> L I N D A
Contents --> 46 49 4E 44 41
Address --> $95B6 $95B7 $95B8 $95B9 $95BA

In summary, the array contains the lengths of the strings and pointers to

the strings. The strings themselves are stored at $95FE and grow downward.
~ There is an Applesoft routine in ROM that will compare two strings. The
STRing CoMPare routine begins at $DF7D. To use this routine, the type of com-
parison to be done is stored in location $16 with the usual meaning. The low

310

TABLE 13.1 String Comparison Subroutine

Name Entry Action
Point " Taken
STRCMP $DF7D (SFAC) is compared to (MFAC)

MFAC is set to 1, if the result of the comparison is true. MFAC is set to 0 if the comparison

is false. The contents of location $16 determine the type of comparison to be done

according to: .

Contents Comparison Mnemonic
of $16 - . to be done

1 [$A8,3A9]* > [$A0,$A1] < =>
2 [$A8,$A9] = [$A0,$A1] ‘ 421

3 [$A8,3A9] >= [$A0,$A1] : '

4 [$A8,3A9] < [$A0,%3A1]

5 [$A8,$A9] <= [$A0,$A1]

6 [$A8,3A9] <= [$A0,5A1]

*[$A8,$A9] means “pointed to by the contents of $A8,$A9.”

byte of an address descriptor block must be loaded into $A8 (SFAC + 3) and the
high byte of the block loaded into $A9 (SFAC+4). The comparison string
descriptor block is loaded into $A0 (MFAC + 3) and $A1 (MFAC +4). Then JSR
to $DF7D (STRCMP). When STRCMP returns, the result of the comparison is
left in MFAC in floating-point form. MFAC is set to 1 (81 80 00 00 00) if the
result of the comparison is true. MFAC is set to 0 (00 00 00 00 00) if the result
of the comparison is false. The-use of the string comparison is summarized in
Table 13.1. ’

The assembly language routine shown below sorts strings. It is similar to
the one that sorts numbers. It will sort 256 or less elements.

PROGRAM 13.2

1000 #——--mmmm e
1010 = THIS PROGRAM WILL SORT 256 OR FEWER STRING
1020 * - ELEMENTS WHICH WERE LOADED INTO AN ARRAY BY
1030 =* THE BASIC PROGRAM. SHOWN ABOVE.
1040 #--—--mm e

1050 .OR $300
1060 #---mmmm o e

Chapter 13 Searching and Sorting

Assembly Language for the Applesoft Programmer

1070 *
1080 *
1090 *
1100 #===-m—mmmmmmmmmmmo
0006- 1110 ELEML .EQ $06
0008- 1120 ELEMR .EQ $08
0016- 1130 MASK .EQ $16
0019- 1140 FLAG .EQ $19
001E- 1150 NUMB .EQ $1E
001F- 1160 COUNT .EQ $1F
0094- 1170 FIRST .EQ $94
009D- 1180 MFAC .EQ $9D
00A5- 1190 SFAC .EQ $A5
DFE3- 1200 PTRGET .EQ $DFE3
DF7D- 1210 STRCMP .EQ $DFTD
1220 %---m—mmmmmmmmmmmm
1230 * BEGINNING OF
1240 *=mmmmmmmmmmmm oo
0300- 20 E3 DF 1250 BEGIN JSR PTRGET
0303- A5 94 1260 LDA FIRST
0305- 38 1270 SEC -
0306- E9 01 1280 SBC #$01
0308- 85 1E 1290 STA NUMB
030A- A5 95 1300 LDA FIRST+1
030C- E9 00 1310 SBC #3$00
030E- 85 1F 1320 STA NUMB+1
0310- A0 00 1330 LDY #$00
0312- Bl 1E 1340 LDA (NUMB),Y
0314- AA 1350 TAX
0315- CA 1360 DEX
0316- 86 1E 1370 STX NUMB
0318- A9 06 1380 LDA #$06
031A- 85 16 1390 STA MASK
1400 *=-==mmmmmmmmmmemm o
1410 = THIS
1420 *—-—mmmmmmmm e mmmm o
031C- A5 1E 1430 PASS LDA NUMB
031E- 85 1F 1440 STA COUNT
0320- A9 00 1450 LDA #$00
0322- 85 19 1460 STA FLAG
0324- A6 95 1470 LDX FIRST+1
0326- 86 07 1480 STX ELEML+1

312

BECAUSE THAT IS THE
STARTING LOCATION

OF APPLESOFT.
LEFT-HAND. ELEM
RIGHT-HAND ELEM

FOR THE COMPARISON
KEEP FLAG

THE NUMBER OF ELEM'S
THE CURRENT NUMB
ADDRESS OF FIRST ELEM

_———— e - | S—

PROGRAM

- PUT ADDR OF iST ELEM INTO FIRST

GET LOCATION PART OF FIRST ELEM
SET CARRY FOR SUBTRACTION

BACKUP TO NUMBER OF ELEM'S'
LOCATION PART :

GET PAGE PART OF FIRST ELEM

NEAT WAY TO TAKE CARE OF PG BNDRY

PAGE PART OF NUMB ADDRESS

PREPARE FOR INDIRECT ADDRESSING
LOAD NUMBER OF ELEM'S INTO A

MOVE IT TO X

TAKE OFF 1

STORE IT HERE

SELECT COMPARISON <= >
STRCMP WANTS IT HERE 4 2 1

RESET THE
COUNTER

CLEAR THE FLAG
IT IS CLEARED
GET PG PART
SAVE IT HERE

Chapter 13 Searching and Sorting

0328- A5 94 1490 LDA FIRST GET LOC PART OF ADDRESS
032A- 85 06 1500 STA ELEML SAVE IT HERE
1510 # - = m oo
1520 * THIS IS THE TOP OF THE INNER LOOP.
1530 - - —m oo
032C- 18 1540 TOP CLC ESTABLISH ADDRESS OF -
032D- 69 03 1550 ADC #$03 RIGHT HAND ELEM
032F- 85 A0 1560 STA MFAC+3 LOC IS READY TO GO
0331- 85 08 1570 STA ELEMR SAVE IT HERE
0333- 8A 1580 TXA PREPARE TO CHECK FOR PG BNDRY
0334- 69 00 1590 ADC #$00 FIX IT IF NECESSARY
0336~ 85 Al 1600 STA MFAC+4 PG IS READY
0338- 85 09 1610 STA ELEMR+1 SAVE IT HERE
033A- A5 06 1620 LDA ELEML ESTABLISH ADDRESS OF
033C- 85 A8 1630 STA SFAC+3 LEFT-HAND ELEM
033E- A5 07 1640 LDA ELEML+1 LOC IS READY
0340- 85 A9 1650 STA SFAC+4 PG IS READY
0342- 20 7D DF 1660 JSR STRCMP DO THE COMPARISON
0345- A5 9D 1670 LDA MFAC SET Z-FLAG; IS MFAC = 0?
0347- DO 13 1680 BNE NOSWP NEED TO SWAP THEM?
1690 #—mmm———mmmm e
1700 * THIS SECTION SWAPS THE RIGHT AND THE LEFT ELEMENTS.
1710 Hmmmmm e o e
0349- A9 FF 1720 LDA #$FF YES! SET FLAG
034B- 85 19 1730 STA FLAG THE FLAG IS SET
034D- A0 02 1740 LDY #$02 MOVE ALL 3 PARTS
034F- Bl 08 1750 SWAP LDA (ELEMR),Y OF THE ADDRESS
0351- AA 1760 TAX RIGHT ELEM TO TEMP
0352- Bl 06 1770 LDA (ELEML),Y MOVE LEFT ELEM
0354- 91 08 1780 STA (ELEMR),Y TO RIGHT ELEM
0356- 8A 1790 TXA MOVE THE RIGHT
0357- 91 06 1800 STA (ELEML),Y TO THE LEFT
0359- 88 1810 DEY COUNT DOWN |
035A- 10 F3 1820 BPL SWAP DONE YET? i
1830 #—mmmmmmmm e 3
035C- A6 09 1840 NOSWP LDX ELEMR+1 DO NOT NEED TO SWAP'EM
035E- 86 07 1850 STX ELEML+1 OLD RIGHT BECOMES NEW LEFT
0360- A5 08 1860 LDA ELEMR PREPARE TO MOVE UP RIGHT
0362- 85 06 1870 STA ELEML THIS TAKES CARE OF PG PART
0364- 85 06 1880 STA ELEML SAVE IT
0366- C6 1F 1890 DEC COUNT COUNT DOWN
0368- DO C2 1900 BNE TOP DO'EM ALL YET?

313

Assembly Language for the Applesoft Programmer

036A- C6 1E
036C- A5 19
036E- DO AC

0370- 60
SYMBOL TABLE

0300- BEGIN
001F- COUNT
0006- ELEML
0008- ELEMR
0094- FIRST
0019- FLAG
0016- MASK
009D- MFAC
035C- NOSWP
001E- NUMB
031C- PASS
DFE3- PTRGET
00A5- SFAC
DF7D- STRCMP
034F- SWAP
'032C- TOP

& USAGE

1910
1920
1930
1940
1950
1960
1970
1980
1990
2000

~ DEC NUMB
LDA FLAG
BNE PASS

DO NOT NEED TO RE-CHECK THE REST
SET Z-FLAG; IS IT 07
DO ANY SWAPS?

HOW NICE IT IS!

The routine begins with a JSR PTRGET. When PTRGET returns, the address of

the first string descriptor block is stored in FIRST ($94,$95). Lines 1260 through
1390 put the NUMBer of elements in NUMB (for this example this is 15 = $0F)

and select the type of comparison to be done { <=).

SORTING

The top of the outer loop is vefy similar to the numeric sort routine. Reset the

COUNTer, clear the FLAG, and re-establish the address of the first string. At the

314

Chapter 13 Searching and Sorting

top of the inner loop the address of the right-hand string is established. The
strings are compared; MFAC is loaded into A to set the Z-flag. If a swap is
necessary the string descriptor blocks (not the strings themselves!) are swapped.
Lines 1720 and 1730 set the FLAG. Line 1740 sets the counter in Y. The SWAP
loop will run three times and all three bytes of the descriptor block are swapped.

At the bottom of the inner loop ELEMR becomes ELEML, and the COUNTer
is decremented. A check for the end of the list is made and (if necessary) the
inner loop is run again. When the end of the list is encountered, the FLAG is
checked to determine if another pass through the list is required. When a pass
through the entire list is made and no swaps have occurred (FLAG = 0) the list
is sorted; the RTS back to the Applesoft program is taken.

The program shown below uses the & feature of Applesoft to call the string
sorting routine.

10 REM SORT LIST BY LINKING

20 REM TO A ROUTINE BLOADED

30 REM AT 768 = $300

40 REM

50 D$ = CHR$ (4): REM CNTRL-D,

60 PRINT D$; "BLOAD ML.STRING"

70 PRINT "HOW MANY NAMES TO BE SORTED?"
80 INPUT N

90 N=0N-1

100 DIM F$ (N)

110 PRINT D$; "READ LIST"

120 FOR I = 0 TO N

130 INPUT F$(I)

140 NEXT I

150 PRINT D$; "CLOSE LIST"

160 PRINT

170 PRINT "THE LIST."

180 FOR I = 0 TO N

190 PRINT I + 1;". ";F$(I)

200 NEXT I

210 REM

220 REM ESTABLISHED THE & VECTOR
230 REM

240 POKE 1013,76

250 REM

260 REM ESTABLISHED THE & ADDRESS
270 REM

280 POKE 1014, 00

315

Assembly Language for the Applesoft Programmer

290 POKE 1015, 03
300 REM ‘

310 REM LINK TO THE ROUTINE

320 & F$(2) ' ;
330 REM

340 PRINT v

350 PRINT "THE SORTED LIST."

360 FOR I = 0 TO N

370 PRINT I + 1;". ";F$(I)

380 NEXTI

390 END

Before running the Applesoft program, assemble and BSAVE the sort routine to
disk. An execution of the program is shawn below. '

]RUN
HOW MANY NAMES TO BE SORTED.
?15

THE LIST
SANDY
KELLY
MICHAEL

ANTHONY
BILL ’
LINDA
KAREN
ALICE

GLENN

NEAL

ROY -
MOM

DAD

RICHARD

LINDA

O 00 -3 O UL b W N =

o e e
GU W N O

=

SORTED LIST
ALICE
ANTHONY
‘BILL

DAD

GLENN

Ut b W

316

Chapter 13 Searching and Sorting

6 KAREN

7. KELLY

8. LINDA

9. LINDA

10. = MICHAEL
11. MOM

12. NEAL

13. RICHARD
14. ROY

15. SANDY

' NOTES AND SUGGESTIONS

If the string array F$ is dimensioned to hold N strings, the above subroutine
will attempt to sort all of them, even if some have not been defined. Can
you modify the subroutine so that null strings will not be sorted?

Modify the subroutine so that it can sort more than 256 entries.

Modify the program to count the number of swaps and passes that are
required to sort a list.

Modify the Applesoft program to “do a sort on entry.” That is, to assume
that the list of names is being entered from the keyboard and sort each entry
as it is entered.

APPENDIX

MINIASSEMBLER

A number of good assemblers are available for the Apple II/Ile. Their prices and
capabilities vary. However, even if you have not purchased one of these assem-
blers, you probably already own an assembler: the Miniassembler. It is included
in Integer BASIC, so you get it for free with that language.

If you have an Apple Ile, or an Apple II Plus with a language card, you can
have Integer BASIC available by booting the system with the DOS 3.3 System
Master. Then type INT and press RETURN to have Integer BASIC active. With
the Integer BASIC prompt (>) displayed, type CALL —2458 and press RETURN.
The computer should “beep,” and the Miniassembler prompt (!) should appear.
The Miniassembler is active.

If you have an Apple II Plus with no language card, the Miniassembler is
still available. It is part of INTBASIC, on the DOS 3.3 System Master disk. If

319

Assembly Language for the Applesoft Programmer

320

you can’t load Integer BASIC into a language card, you can still load INTBASIC
into RAM and edit the Miniassembler so that it will be functional at a relocated
address. The following Applesoft program does this, then stores the edited code
back to disk under the name MINIASSEMBLER. Run the program. You can then
use the Miniassembler if you BRUN MINIASSEMBLER. It will run at $2000
(8192).

The instructions for the use of the Miniassembler are given in the Apple II
and Ile reference manuals. The Miniassembler is quite functional, and can be
useful for entering and testing short program segments. It produces no source
code, and does not provide the capability of using labels, so it is not at all
convenient for assembling large programs. It is a good learning tool, and will
work well for entering the short example programs in this book.

REM MINI MOVER .

REM RELOCATES MINIASSEMBLER

REM TO RUN AT $2000

REM INTBASIC MUST BE ON THE

REM DISK IN THE DRIVE WHEN

REM THIS PROGRAM IS RUN

REM ----mmmmmme oo -

PRINT CHR$ (4);"BLOAD INTBASIC,A$2000"

POKE 768, 160: POKE 769, 0: POKE 770, 76: POKE 771, 44:

POKE 772, 254

30 REM MOVE TO LOCATION$2000

40 POKE 60,0: POKE 61,69: POKE 62,60: POKE 63,70: POKE 66, 3:
POKE 67,32: CALL 768

50 REM FIX ENTRY

60 POKE 8192,76: POKE 8193,149: POKE 8194, 32

70 REM FIX JSR'S

80 POKE 8249,152: POKE 8250, 32

90 POKE 8285,152: POKE 8286, 32

100 POKE 8385,55: POKE 8386, 33

110 POKE 8415,55: POKE 8416, 33

115 POKE 8425,55: POKE 8426, 33

120 POKE 8501,95: POKE 8502, 32

130 INPUT "INSERT DISK ON WHICH MINIASSEMBLER IS TO BE

SAVED, THEN PRESS 'RETURN'";A$ i
140 PRINT CHR$ (4); "BSAVE MINIASSEMBLER, A$2000,L$140"

H -1 3 Ot W+

no
o o

APPENDIX

4)

REPRESENTATIONS
OF NUMBERS
AND ARITHMETIC

There are three systems of numbers with which you must be familiar: base two,
base ten and base sixteen. If we are working in base two, only two digits (0, 1)
are needed. If we are working in the base ten system, ten digits (0, 1, 2, 3, 4, 5,
6, 7, 8, 9) are needed. And if we are working in the base sixteen system, sixteen
digits (0, 1, 2, 3, 4,5, 6,7, 8,9, A, B, C,D, E, F) are needed. No one who is
reading this book needs to read anything about the base ten system; it is THE
system that we use. No one needs any lessons on how it works. However, the
base two system or the base sixteen system may be another matter.

Exactly what is a base? The idea of a base is intimately related to the idea
of place value. Visualize any number in any base like this:

etc.— - - — . — — _—etc
The place values
go down here —

Assembly Language for the Applesoft Programmer

322

Each blank represents a place and each place has a value depending on the base.
The point in the picture above points out the one’s place. The one’s place is
always immediately to the left of the point. The one’s place has the value of
one. An important fact to keep in mind is that any number, N, except zero, raised
to the zero power is one.

That is

CN° =1,

Hence in base two the one’s place is represented as 2° = 1

In base ten, the one’s place is represented as 10° = 1. In base sixteen, the
one’s place is represented as 16° = 1. So far, you know how .to visualize the
first place to the left of the point.

etc. — - ~ - . = - - etc.
Base two — ' 25
Base ten — ' 10°
Base sixteen — . 16°

The powers of the base go up one at a time to the left. That is

etc. — - — - . = — — etc.
Base two — 23 22 2! 20
Base ten— 10° 10®° 10 10°
Base sixteen — 16° 162> 16' 16° '

The powers of the base go down one at a time to the right. That is

etc. -— — — - .- - - etc.
Base two — 2.1 272 278
Base ten — 100' 1072 1078
Base sixteen — 16s-' 167% 1678

All together the place values look like this:

etc. — — — — R — — etc.
Base two— 2° 22 2! 2° 271 272 273
Baseten— 10° 10% 10' 10° 10! 10°% 107°°
Base sixteen — 16* 162 16' 16° 16°!' 1672 16°°

We shall not need the places to the right of the point for a while, so we shall no
longer write them, nor the point.

Appendix B Representations of Numbers and Arithmetic

Now consider a four-digit number, for example 1010. Until the base is known
you do not know the value of the number. That is to say you do not know how
many things—bytes, Apples, dollars, etc.—this picture, 1010, represents until
you know the base so that the place values can be computed. If we consider the
base ten, then the place values are well known, and the number means one
thousand ten things. That is

1 0 1 0
108 102 10? 10°
1000 100 10 1

1%1000 + 1%10 = 1010 (one thousand ten)
However, if we consider the base two the place values are

1 0 1 0
22 22 2t 20
8 4 2 1

s
1
i and the same picture represents 1*8 + 1%*2 = 10 (ten). That is to say 1010 base
! two is 10 base ten. In base sixteen the place values are

1 0 1 0
163 162 161 16°
4096 256 16 1

1%4096 + 1%16 = 4112 (four thousand one hundred twelve). That is to say
1010 base-sixteen is 4112 base-ten.

In this book, when any misconception about bases is likely to occur, we
will always put a $ sign in front of base sixteen numbers. Also, the name of the
base sixteen place value system is the hexadecimal system, orf hex for short.
The name of the base two system is the binary system.

A word of caution: This picture, 10, has the name “ten” ONLY in the decimal
system. In fact only the base ten pictures have names. It is improper, very
misleading, and just wrong to write this picture, 10, think base two, and say
“ten.” This picture does not have a short name in base two, nor in base sixteen.
You must say each digit place by place from left to right. That is you must say,
“one zero,” in either base two or base sixteen. You must never say “ten” when
thinking base two or sixteen.

Remember: Only the base ten pictures have names.

Assembly Language for the Applesoft Programmer

324

The conversion between binary and hex is very easy, when groupings of
four binary digits are done. Group any binary number in fours from the right;
write down the place values under EACH group; convert each group to hex. As
an example, take a rather long binary number, 111011010. Separate it into groups,
11 1101 1010; then write down the binary place values for EACH group.

Thebinary—> 1 1 1 1 0 1 10 10
Place valuess— 2 1 8 4 2 1 8 4 2 1

Add each group — 2+1 8+4 +1 8 +2
Base-ten sum — 3 13 10
The hex — 3 D A

In summary, the binary representation‘1111011010 has the hex representation
3DA. The process works equally well in the other direction. For example, what
is the binary representation of F4D hex?

The hex — F . 4 : D
The decimal — - 15 4 .13
in binary
Place values — 8+4+2+1 4 8+4 +1

The binary — 11 1 1 01 00 1.1 0 1

In summary, hex F4D is 111101001101 in binary. From now on we shall write
binary representations in groups of four digité.

The conversion from hex to base ten is reasonably quick; from the above
examples you can see that it involves a knowledge of the hex place values and
the mathematical operations multiplication and addition. The reverse conver-
sion from base ten to hex is slightly slower because you must make a quantitative
judgment to begin. A base ten to hex conversion involves knowledge of the hex
system place values and the mathematical operations division and subtraction.

When a base ten number, 12,5086, is to be converted to its hex representation,
the quantitative judgement to be made is: What is the largest hex place value
that will divide into the base ten number? In this example the answer is 4096
(which is 16®). Do the division.

3< The 4096’ digit
Hex place value — 4096) 12506
12288 .

218« Proceed with the remainder

After this decision and division you know the leading digit in the hex
representation.

Appendix B Representations of Numbers and Arithmetic

4096 256 16 1

e

Perform the same routine with the remainder, 218. What is the largest hex place
value that will divide into the remainder? The answer is 16, but see that the an
place value, 256, has been skipped. Because it has been skipped a zero is put
in its place. Now you know the first two digits of the hex representation.

3 0

4096 256 16 1

Do the division.

13 — D <« the 16 digit
Hex place value — 16)218 :
208

10 — A < the 1’s digit

Finally the entire hex representation is known

3 0 DA

4096 256 16 1

As a second example, suppose the base ten number, 51,376, is to be con-
verted to its hex representation.

12 — C < the 4096’ digit
4096) 51376
49152
2224

8« the 256’ digit
256) 2224
2048
176

- 11« the 16’ digit
16) 176

176
0« the 1’s digit

Assembly Language for the Applesoft Programmer

In summary, the base-ten number 51,376 has the hex representation

3

_ G _
4096 256 16

o
=2
- o

An understanding of the base two system is necessary because it is the
easiest to use for describing the state (contents) of the smallest element of infor-
mation in memory, the bit. More about how information is stored in memory is
covered in Chapter 4. A bit is either on (1) or off (0). Hence only two symbols,
digits, are required. The problem with binary representations is the length of.
the pictures. They are inconveniently long. The pictures are so long because
the place values progress slowly upward in value. The binary representations
are inconvenient to display on the screen, to write down, or even to see when
they are so long. Hex representations relieve this problem. -

Hex is used to display the information in memory for at least two important
reasons. First, the length of the pictures in the hex system is much more com-
pact, because the place values progress much more rapidly upward in value. So
hex representations are more convenient to display on the screen, to write down,
and even to see. Second, the interconversion between hex and binary is rapid
and reasonably easy. In fact, the only reason for keeping the decimal system
around is that, first, we have a great deal of prior training in its use. Second, we
have ten fingers, which are handy memory storage devices in a pinch!

Since all of you have these years of training and practice invested in the
base ten system; we will use it whenever possible for doing base sixteen arith-
metic. The addition problem, 18 + 11, has tie same picture for the result in
base ten as in the base sixteen, 29. The difference is in the answer to the ques-
tion, What does it, 29, mean? To answer that question you must apply the place
values and do the conversion to base ten: 29 base-sixteen means 216 + 9x*1
= 41 base ten. '

When doing additions base sixteen the major /difference occurs when the
following addition is considered, 9 + 1. The resudit, 9 + 1 = A base sixteen.
In base sixteen, two digits are not needed until sixteen is reached. That is, 9 +
1=A,9+2=B,94+3=C,9+4=D,9+5=E,9+ 6 =Fandthen9
+ 7 = 10.

Most people have such an investment in the decimal system that it is the
only one that “works” for them. Therefore, we propose to “cash in” on this
investment as much as possible when hex arithmetic is required.

Remember the following-convention table:

Base sixteen picture— A B C D E F
Base ten picture— 10 11 12 13 14 15

Appendix B Representations of Numbers and Arithmetic

’

A short example, using the table, to begin. Consider the hex addition
B+ C

The hex— B+ C
Think base ten — 11+ 12= 23 = 16 + 7 = 1(16) + 7 = $17

And one more

The hex— E+ F
Think base ten — 14+ 15= 29

16 + 13 = 1(16) + 13 = $1D

When many-digit base sixteen arithmetic is required, as in this example

3E9F
+ DA34

| proceed as you would in base ten: do the addition column by column. That is

Thehex— F + 4 = 1 3 =13
Think base ten — 15 + 4 =19 = 16 + 3

Write down the 3, carry the one

1
3E9F
+ DA34
3
then do
Thehex— 1+9+3=0D
Think baseten - 1+ 9 + 3 =13

Write down the D, but no carry this time.

3E9F
+ DA34
D3

Now do

Thehex— E+ A= 1 8
Think base ten— 14 + 10 =24 = 16+ 8

327

Assembly Language for the Applesoft Programmer

Write down the 8, carry the 1

1
3E9F
+ DA34
8D3

Finally do

The hex— 1 + 3 +
Think baseten— 1 + 3 + 13 = 17 = 16 + 1

carry the 1, and the result is

3E9F
+ DA34
118D3

The bottom line is that hex arithmetic, done this way, is not as confusing as
long as you “cash in” on all of your base ten training.

The same method “works” for subtraction. Consider this three-digit hex
subtraction

8A4 ‘ ,
— 7B5 . !

and proceed as you would in base ten; do the subtraction column by column.

This example begins by requiring a borrow from the A in the second column.

Borrowing from the A means, A — 1 = 9. Put the 9 where the A was and move
" the 1 over to the 4. Vi

(1)
894
— 7B5

Do not forget that the borrowed one, (1), is worth sixteen. The arithmetic in the
one’s column is ’

Thehex— (1) +4 — 5 = F
Think baseten— 16 + 4 — 5 =20 — 5 = 15

328

Y §

Appendix B Representations of Numbers and Arithmetic

Write down the F

894
— 7B5
F

then move to the next column; realize that another borrow is required, 8 — 1
= 7. Put the 7 where the 8 was and put the borrowed 1 above.the 9

(1)
794

~ 7B5
F

The sixteen’s column subtraction is

The hex— (1)+9 - B =
Think baseten— 16 + 9 — 11 = 14

|
2l

Write down the E

794
— 7B5
EF

and see that the last column is 7 — 7 = 0. Leading zeros are not written. The
important point to remember in base sixteen subtraction is that borrows are
worth sixteen.

Multiplication and division in base sixteen are not skills you need to develop
to a high degree. Therefore, we shall not describe them here. You must, however,
understand how negative numbers are represented in memory. The scheme is
called 2’s-complement notation. The binary system is the most convenient to
use to see how the process works, because “taking the complement” means
changing all the 1s to 0s AND changing all the 0s to 1s. For example,

The binary — 1011 0011
Its complement — 0100 1100

Understand why the usual notation, — (a negative sign), will not work.
Everything in memory must be represented as strings of 1s and 0s! The con-
vention is: If the leftmost binary digit is a 1, then the number is negative. When

Assembly Language for the Applesoft Programmer

this convention for representing negative numbers is used the range of base ten
numbers that can be represented (0 to 255) changes to (—127 to +127). The
leftmost bit now designates the sign of the number, not its place value.

Remember: If the left most binary digit is a 1, then the number is negative!

In our examples of negative numbers in 2’s-complement notation we shall
always use eight-digit binary numbers. The reason eight-digit binary numbers
are used will be even more obvious when you have read Chapter 8. Consider
negative five base ten, —5. To find its 2’s-complement representation, follow
this procedure:

Positive base ten — 5
Eight-digit base two — 00 O 1001
Base-two place values — S643216 . 8421
The complement — 1111 1010
Nowadd1— + 1

The 2’s-complement — 1111 1011
Conversion to hex — 8 4 2 1 8421
In hex — F B

Note that the S under the leftmost digit means this is the Sign digit. Negative
five base ten in 2’s-complement notation is 1111 1011, which is FB in hex.

As a second example, find the 2’s-complement notation of negative ninety-
five, — 95, base ten. :

Positive base ten — ' 95
Eight-digit base two — 010 1 111
Base two place values — S64 3216 8421
The complement — 1010 0000
Nowadd1— + 1

The 2's-complement — 1010 0001
Conversion to hex — 84 2 1 8421
In hex — A 1

Negative ninety-five, —95, base ten in 2’s-complement notation is 1010 0001,
which is A1 in hex.

The reverse conversion is just as quick. Suppose that a memory location
contains DC, find the base ten picture.

Appendix B Representations of Numbers and Arithmetic

The hex — . D

C
The 2’s-complement — 1 1 0 1 1 1 0 0
Its complement — 0 o0 1 0 0 0 1 1
Nowadd1— + 1
Eight-digit base two — 0 0 1 o0 0.1 0 0
Base two place values —> S 64 32 16 8 4 2 1
Convert to base ten — ' 32 + 4
Positive base ten — A 36
Put on the minus —) —36

In summary, there are two other place value systems, in addition to the
base ten system, with which you must become familiar. Familiarity with the
binary system is required because of the very nature of digital computers, and
familiarity with the hexadecimal system is required because most of the binary
information in the computer is displayed in this systém because its represen-
tations are compact. A small amount of hex/base ten interconversion must be
done by hand, but even this may be avoided if your assembler can do the inter-
conversions. (Check the manual to see if it can do this.) Often additions and
subtractions must be done in hex, but this task is not onerous providing you
“cash in” on your base ten “investment.”

In this book you will not need any more knowledge about the binary and
hex systems than is presented here to fully understand their topics. By the time
you finish these chapters, you will be in a position to “cash in” on your invest-
ment in your Apple II and have it do any arithmetic tasks for you.

APPENDIX

4 h

FLOATING-POINT
NOTATION

Appendix B discussed ways to represent numbers in binary and hexadecimal
form. The methods presented there are intended to be used to represent integers.
In this appendix, we will extend that discussion to include the representation
of rational numbers (with fractional parts). We will also use the method to
represent numbers (integer or rational) of arbitrary magnitude. The notation we
use is generally referred to as the floating-point form of the numbers.

Let’s begin by noting that the number 26.71875 can be written in binary
form as :

11010.10111 = 1(2)* + 1(2)® + 0(2)% + (2)1 + 0(2]

127"+ 0(2) 2 +1(2) %+ 1(2)~* (21‘5 =
16 + 8+ 2 + .5+ .125 + .0625 + 03125
26.71875

Assembly Language for the Applesoft Programmer

334

or in hexadecimal form as

$1A.B8 = 1(16)! + 10(16)° + 11(16)" 1 + 8(16) 2
1(16) + 10 + 11(.0625) + 8(.00390625)
26.71875

f

Note that multiplication by powers of 2 has the effect of shifting the location of
the binary point in the binary form of the number. The number 26.71875 is
represented by each of the following: -

2* *(1101.01011100)
22 *(110.101011100)
*(11.0101011100)
2% *(1.10101011100)
25 *(.110101011100)

The last form listed (2° *(.110101011100)) is called the normalized form of the
number. (If we were purists and insisted that everything be expressed in binary,
we would write 10'°°* * ,1101010111. The base 2 > 10 and the exponent 5 —
0101 .) The 5 is called the exponent and the 1101010111 is called the mantissa
of the number. If this normalized form is written with its mantissa in hexadec-
imal notation, it becomes 2° *.D5C. This is close to the form that Applesoft uses
to store floating-point numbers. ‘

In unpacked floating-point form, Applesoft uses one byte for the exponent
of 2 (5), four bytes for the mantissa, and one byte for the sign of the number.
Further, Applesoft uses “excess $80” notation when representing floating-point
numbers ($80 is added to the exponent). The Applesoft model for floating point
numbers is thus

EXP Mantissa SGN e

When the above number (26.71875) is stored in this form, it becomes

85 D5C0060000 00

In the SGN byte, only the highest bit is significant. If the number is negative,
that bit is set to 1; if the number is positive, the bit is set to 0.

As a second example, let’s represent the number 751.375 in excess $80
floating-point form. We first put it in binary form:

1011101111.011

Appendix C Floating-Point Notation

then in normalized binary form
2'°(.1011101111011)

The exponent (decimal 10) in hex is $A, and in excess $80 form is $8A. The
mantissa (1011 1011 1101 1000) can be written in hexadecimal form as $BBDS.
The Applesoft excess $80 floating-point form of the number is

8A BBD80000 00
EXP Mantissa SGN

NOTES

We can shorten the calculation of the floating-point form of a number N if we
note that:

1. The EXP is the smallest integer which will cause M = N/(25%F) to be less
than 1.

2. The first hex digit of the mantissa is obtained by dividing by .0625 (10).
Successive digits are obtained by dividing the fractional part of the quotient
by .0625. : ’

Using the above procedure, we can obtain the following excess $80 floating-
point representations:

1000 : 8A FA 00 00 00 00
-1000: 8A FA 00 00 00 FA
.05 :7C CC CC CC CD o0
—-.05 :7C CC CC CC CD CC

Z 7277z

Note that when N is negative, the sign byte agrees with the first byte of the
mantissa. Since only the high-order bit of the sign byte is significant, other
values could have been used. We used the first byte of the mantissa because that
is what Applesoft does.

The above floating-point numbers are all in unpacked form. There is also a
packed form of the numbers, which we turn to now.

Packed Form

You may feel it is wasteful to use a byte to designate the sign of a number when
only one bit of that byte is important. That is true, and while the sign byte is

335

Assembly Language for the Applesoft Programmer

336

necessary when numbers are being used for calculation purposes, the extra byte
is inconvenient when a floating-point number is to be stored. Since only one
bit of the sign byte is used, the byte could be dropped if the bit could be stored
elsewhere.

Look back over the binary form of the mantissas calculated so far. You
should find that the leading bit is always a 1. (This was a requirement for
normalized form.) Since the bit is always a 1, we could do well without it (except
at calculation time), or with that bit used as a sign bit. That is done in the packed
form of the number. The high-order bit of the mantissa is set to 0 if the number
is positive, and is set to 1 if the number is negative.

Note on Use of Packed Form

Packed form is used for storage of floating-point numbers, but unpacked form
is required when the numbers are needed for calculation. Our earlier numbers
can be written in packed form as:

N = 1000 :8A FA 00 00 00
N = -1000 : 8A 7A 00 00 00
N = .05 :7F 4C CC CC CD
N = -05 :7F CC CC CC CD

APPENDIX

~

APPLESOFT
ENTRY POINTS
AND NOTES

il
;Y

I

I

Assembly Language for the Applesoft Programmer

)

Powers of 16

162 = 256 16° = 4,096 16* = 65,536 16° = 1,048,576

16° = 16,777,216

Reciprocal Powers of 16

1671 = 6.25 * 1072 16 ~2 = 3.90625 * 103 16 % = 2.44140625 * 10~ *

167° = 1.52587890625 * 107° 16~ ° = 5.9604644775390025 * 10~°

The MFAC and SFAC Layout

MFAC address — 9 D 9 E 9 F A
SFAC address — A 5 A 6 A 7 A
Contents > 8 4 A D 0 0 0
EXP — Mantissa
Place Value — 84-80
2 16~ 1672 1673 167 * 16°°

| oo ©
o » >
J/'OCO)—\

16°° 1677 1678

P

The Applesoft Array Header

Header — 41 00 1B 00 01
Address — $8A4 $8A5 $8A6 $8A7 ./ $8AS8
char1 char2 LENGTH of # of
of of this block DIMs
name name
“K’ “ ”

00 04
$8A9 $8AA
Range of
rightmost
index

338

Appendix D Applesoft Entry Points Notation -

TABLE 8.1 Two-Operand Subroutines

Entry Action
Name Point Taken
1. ADD $E7C1 v (MFAC) < (SFAC) + (MFAC)
MFAC and SFAC already loaded; do the ADDition.
2. LADD $E7BE (MFAC) < [Y,A] + (MFAC)

MFAC is already loaded; (Y,A) points to the memory location of the packed number to be ADDed to
(MFAQC). :

3. SUB SE7AA . (MFAC) « (SFAC) — [MFAC)
MFAC and SFAC already loaded; (SFAC will have (MFAC) SUBtracted from it.
4, LSUB $E7A7 (MFAC) < [Y,A] — (MFAQC)

MFAC is already loaded; (Y,A) points to the memory location of the packed number that will have
(MFAC) SUBtracted from it.

5. MULT $E982 (MFAC) « (SFAC) * (MFAQ)
MFAC and SFAC already loaded; do the MULTiplication.
6. LMULT $E97F (MFAQC) < [Y,A] * (MFAC)

MFAC is already loaded; (Y,A) points to the memory location of the packed number to be MULTiplied
by (MFAC). ‘

7. DIV - $EA69 (MFAC) < (SFAC) / (MFAC)

MFAC and SFAC already loaded; DIVidé (SFAC) by (MFAC)
8. LDIV $EAB6 (MFAC) < [YA] / (MFAC)

MFAC is already loaded; (Y,A) points to the memory location of the packed number that will be DIVided
by (MFAC).

9. POWER $EE97 (MFAC) « (SFAQC)
MFAC and SFAC already loaded; (SFAC) is raised to the (MFAC) power.

339

Assembly Language for the Applesoft Programmer

TABLE 8.2 One-Operand Subroutines

Entry Action

1. SIN $EFF1

(

. - (MFAC) < SIN(MFAC)
12 (MFAC) « TAN(MFAC)
(

MFAC) < ATN(MFAC)

TAN $F03A

13. ATN $FOSE

Name Point Taken
L LOG $E941 (MFAC) « LOG(MFAC)
2 SGNA $EB82 (A) < SGN(MFAQ)
3 SGN $EB90 . (MFAQC) « SGN(MFAC)
4 ABS $EBAF (MFAC) « ABS(MFAC)
5 INT $EC23 (MFAC) « INT(MFAC)
6 SQR $EE8D . (MFAQC) < SQR(MFAC),
7 MMFAC $EEDO (MFAC) « (MFAQC)
8. EXP $$EF09 : (MFAC) <« EXP(MFAC)
9. RND $EFAE (3G9 — $CD) <« a random number
10. Ccos SEFEA MFAC) « COS(MFAQ)

)

)

)

—

340

Appendix D Applesoft Entry Points Notation

TABLE 8.3 Conversion Subroutines

Entry
Name Point - Action Taken
1. CPMIL $EBF2 (Ext—=MFAC} — ($85,$86)

The extension byte is rounded into MFAC and then MFAC is converted to a two-byte integer in $85,$86.
See Table 8.4 for rounding only.

2. CLIM $DEE9 [$A0,$A1] — MFAC
$A0,$A1 contain the starting address of a two-byte integer that is converted to excess $80 notation in
MFAC. :

3. CPMI $E108 (MFAC) — ($A0,3A1)
MFAG must be positive and less than 32,768; the two-byte integer is formed in $A0,$A1.
4. CMI $E10C (MFAC) — ($A0,5A1)

MFAC must be between — 32,768 and 32,768; the two-byte integer is formed in (A0,A1). If integer is
negative, it is in 2’s-complement notation.

5. CIAYM $E2F2 (A,Y) — (MFAC)
The integer in A and Y is converted to excess $80 notation in MFAC.

6. CIYM $E301 (Y)— (MFAC)
The integer in Y is converted to excess $80 notation in MFAC.

7. CMIX $E6FB (MFAC) — (X)
MFAC is converted to a one-byte integer in X.

8. CMIL $E752 (MFAC) — ($50,%51)
MFAC is converted to a two-byte integer in locations $50,$51.

9. CIAM - $EB93 (A)— (MFAC)
The integer in A is converted to excess $80 notation in MFAC.

10. CMIE $EBF2 (MFAC) — ($9E,$9E$A0,$A1)

MFAC is converted to a four-byte integer in locations $9E through $A1.

341

Assembly Language for the Applesoft Programmer

Table 8.4 Odds and Ends

Entry
Name Point Action Taken
1. NOT $DE98 {MFAC) «<— NOT(MFAC)
2. OR $DF4F {MFAC) « (SFAC) OR (MFAQ)
3. AND $DF55 {MFAC) < (SFAC) AND (MFAC)
4. COMP $DF6A (SFAC) is compared to (MFAQC)
MFAC is set to 1, if the result of the comparison is true. MFAC is set to 0 if the comparison is false.
The contents of location $16 determines the type of comparison to be done according to:
Contents Comparison '
of $16 ~ to be done
1 (SFAC) > (MFAC)
2 (SFAC) = (MFAC)
3 (SFAC) < (MFAC) -~
4 (SFAC) > or = (MFAQ)
5 (SFAC) not = (MFAQ)
6 (SFAC) < or = (MFAC)
5. MULTI $E2B6 » (Y. X) < ($AE,$AD) * (accum,$64)
The hex integer in $AE,$AD is multiplied by the hex integer in A and $64. '
6. ADDH $E7A0 (MFAC) < (MFAC) + 1/2
p
7. NORM $E82E (MFAC) < normalized(MFAC)
8. MULTT $EA39 (MFAC) < (MFAC) * 10
9. DIVT $EA55 (MFAC) < (MFAC)/10
10. ROUND $EB72 (MFAC) « (ext)
- The extension byte, $AC, is rounded into MFAC. v
11. COMPA $E3B2 [Y,A] — (MFAQ)

(A) = $01, if the subtraction is negative; (A) =

subtraction is positive.

$00, if the subtraction is zero; {A) =

$FE if the

342

Appendix D Applesoft Entry Points Notation

TABLE 8.5 Moves

Entry
Name Point Action Tuken
1. MOVSI $E9E3 - [¥A] — (SFAC)
2. MOV5S $E9E7 [$5E$5E] — (SFAC)
3. MOVMI $EAF9 [YA] — (MFAC)
4. MOV5M $EAFD [$5E$5E] — (MFAC)
5. MOVM98 $EB1E , (MFAC) — ($98,$99,$9A,$9B, $9C]
6. MOVM93 $EB21 (MFAC) — ($93,$94,$95,$96,$97)
7. MOVMZ $EB23 (MFAC) — [X].
Move (MFAQ) to the zero page location pointed to by X.
8. MOVMs8 $EB27 (MFAC) — [$86,$85]
9. MOVMO $EB2B (MFAC) — [Y.X]
10. MOVSM $EB53 (SFAC) - — (MFAQ)
11. MOVMS $EB63 (MFAC) — (SFAC)

TABLE 8.6 Stack Moves

Entry
Names Point Action Taken
1. MSTAK $DE10 (ext=MFAC) then PUSH (MFAC)

onto the stack. This takes six bytes.
This subroutine ends with a JMP instead of an RTS. The JMP address is stored in ($5E,$5F) by the
subroutine itself. When used with STAKS, put the return address on the stack, page part first, before
calling MSTAK.

2. STAKS $DE47 PULL stack, six bytes, into SFAC.
This subroutine must be called with a JMP and not with a JSR. (You do see why don’t you? The stack
is used to store the return address for a JSR.) It concludes with an RTS, so there must be a proper
return address on the stack before STAKS is called.

343

R
I;
I
i

|

Assembly Language for the Applesoft Programmer

TABLE 8.7 Floating-Point Numbers in ROM

Starting

Base Ten Contents
Value Address '
1. 1/4 $F070 7F 00 00 00 00
2. 1/2 $EE64 81 00 00 00 00
3. -1/2 $E937 80 80 00 00 00
4, SQR(1/2) $E920 80 35 04 F3 34
5. SQR(2) " $E932 81 35 04 F3 34
6. 1 $E913 81 00 00 00 00
7. 10 $EAS50 84 20 -00 00 00
8. 2*PI $F06B 83 49 OF DA A2
g. PI/2 $F066 81 49 OF DA A2
10. NAT LOG(2) $E93C 80 31 72 17 F8
11. 1 BILLION $ED14 9E 6E 6B 28 00
12. —32,768 $EOFE 90 80 00 00 20
13. 0.434255942 $E919 _.7F. 5E 56 CB 79
14, 0.576584541 $E91E 80 13 9B OB 64
15. 0.961800759 $E923 80 76 38 93 16
16. 1.442695041 $EEDB 81 38 AA 3B 29
17. 2.885390074 $E928 82 38 AA 3B 20
18. —42.78203928 $EA46 86 AB 20 CE E7
18. 2.980232E—8 $EE84 9C 00 00 00 OA
20. 1.014753E-37 $EE69 FA 0A 1F 00 00
',/

e n

APPENDIX

/

SUMMARY OF
ASSEMBLY
LANGUAGE

MNEMONICS

~

345

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BVC
BVS

cLc
cLD
cul
cLv
cMp
cPx
cPY
DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

B TOIE x>

346

Assembly Language for the Applesoft Programmer

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Lett One Bit (Memory or
Accumulator)

Branch on Carry Clear
Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow Flag

Compare Memaory and Accurnulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One
“Exclusive-Or” Memory with -
Accumulator ’
Increment Memory by One
increment index X by One
incve/(nenl Index Y by One
Jump/lo New Location

Jump 'to New Location Saving
Return Address

6502 MICROPROCESSOR INSTRUCTIONS

LDA Load Accumutator with Memory

LDX Load Index X with Memory

LDY Load index Y with Memory

LSR Shift Right one Bit (Memory or
Accumulator)

NOP No Operation

ORA "OR" Memory with Accumulator

PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator trom Stack

PLP Pull Processor Status trom Stack

ROL Rotate One Bit Lett (Memory or
Accumulator)

ROR Rotate Onre Bit Right (Memory or
Accumulator!

RTI Refurn from Interrupt

RTS Return from Subroutine

SBC Subtract Memory from Accumutatar
"with Borrow

SEC Set Carry Fiag

SED Set Decimal Mode

SEI Set Interrupt Disable Status

STA Store Accumulator in Memory

STX Store Index X in Memory

sSTY Store Index Y in Memory

A TAX Transfer Accumulator to index X

TAY Transfer Accumulator to Index ¥

TSX Transfer Stack Pointerto Index X

TXA Transfer Index X 1o Accumulator

TXS Transter Index X to Slack Pointer

TYA Transfer index Y to Accumulator

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator

Index Registers
Memory

Borrow

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To

Transfer To

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Immediate Addressing Mode

FIG})RE 1. ASL-SHIFT LEFT ONE BIT OPERATION
[eHTesTel=T=T To]

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

I IODOHEE

FIGURE 3

N A nnnRnN.

NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transterred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

Appendix E Summary of Assembly Language Mnemonics .

PROGRAMMING MODEL

o

o

I

H

o

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

15 7 0
PCH T PCL] PROGRAM COUNTER
7 0
[0] s] sTAck POINTER
7 0
N|viBlD|1]|Z}C PROCESSOR STATUS REGISTER, "P"
[—-—— CARRY
ZERO
INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND
OVERFLOW
NEGATIVE
Assembly NEX
Name Operation Addreszing Language or No. | “P" Status Rep.
Description Mode Form Code | Bytes| NZCIDV
ADC .
Add memory to A-M-C —AC | Immediate ADC #0per 69 2 VIV
accumulator with carry Zero Page ADC Oper 65 2
Zero Page.X | ADC Oper.X 75 2
Absolute ADC Oper 6D 3
Absolute X ADC Oper.X 0 3
Absolute Y ADC Oper.Y 79 3
(indirect.X) ADC (Oper.X) 61 2
(ingirect).Y ADC ({Open.Y m 2
AND
“AND" memory with AAM —A Immediale AND nOper 29 2 VvV -
accumulator Zero Page AND Oper 25 2
Zero Page X AND Oper.X 35 2
Absolute AND Oper 20 3
Absolute X AND Oper X kD)) 3
Absoluate Y AND Oper.Y 39 3
{Indirect.X) AND {Oper,X) 21 2
(Indirect).¥ AND (Oper).Y k]l 2
ASL
Shift left one bit (See Figure 1) | Accumulator { ASL A 0A 1 VVV-——
(Memory or Accumulator} Zero Page ASL Oper 06 2
Zero Page.X ASL Oper.X 16 2
Absolote ASL Oper OF 3
Absolute. X ASL Oper.X 1E 3
BCC
Branch on carry clear Branch on C=0 | Relative BCC Oper 90 2 ———

Note 1 Bits 6
AAM

Note 2 A BRK command cannot be masked by setting |

and 7 are transferred to the status register if the result of
is 0, Z = 1; otherwise Z = 0

347

Assembly Language for the Applesoft Programmer

Assemh‘lv HEX
Name Operalion Addressing Language opP No. | 'P" Stalus Reg
Description Mode v Form Coda | Bytes N2CiDV
BCS
Branch on carry set Branch on C=1{ Relative BCS Oper B0 2) ————
BEQ
Branch on result zero Branch on Z=1 | Relative BEQ Oper FO 2 | —
BIT
Test bits in memory AAM.M; —N{ Zero Page BIT* Oper 24 2 M M
with accumulator Mg -~V Absolute BIT* Oper 2C 3
BMI
Branch on result minus Branch on N=1| Relative BMI Oper 30 2 |\ ——
BNE
Branch on resull not zerof Branch on 2:0 | Relative BNE Oper [l] 2 | —
BPL
Branch on result plus Branch on N=0| Retative BPL oper 10 2 | ——
BRK _ -
Force Break Forcegd Implied BRK® 00 1 ——=1--
interrupt
PC-2 4 P4
BVC
Branch on overllow clear| Branch on V=0| Relative B8vC Oper 50 2 | -——
BVS - !
Branch on overflow set Branch on V=1| Relative BVS Oper 70 2 | ——
CLC ’
Clear carry tlag 0—=C Implied CLC . ! 18 1 ——0-==
CLD
Clear decimai mode 0—~D Implied CLD 08 1 -———0-
CLI
0 —I - Implied -CL! 58 1 ———0-=
CLV
Clear overflow tiag 0V Implied cLv B8 L 0
CMP
Compare memory and A—M Immediate CMP u0per o] 2 VVV———
accumulator Zero Page CMP Opery C5 2
Zero Page. X | CMP Oper X D5 2
Absolute CMP Dper o] 3
Absolute X CMP Oper.X bD 3
Absolute.Y CMP Oper.Y D9 3
(Indirect.X) CMP (Oper.X) c1 2
(Indirect).Y CMP (Oper).Y D1 2
CPX.
Compare memory and X—M immediate CPX aOper E0 2 VvV
index X Zero Page CPX Oper E4 2
Absoiute CPX Oper EC 3
cPY 7
Compare memory and Y—M Immediate CPY #Oper co 2 VVV———
index Y Zero Page CPY Oper C4 2
. Absolute CPY Oper cc 3
DEC
Decrement memory M—1-+M Zero Page DEC Oper [2 V=
by one Zero Page.X DEC Oper,X D6 2
Absolute DEC Oper CE 3
Absoiute, X DEC Oper.X DE 3
DEX
Decrement index X X—1—=X Imphed DEX CA 1 VV———o
by one .
DEY
Decrement index Y Y—1-=-Y Implied DEY 88 1 Vv
by one

348

Appendix E Summary of Assembly Language Mnemonics

Assembly HEX
Kame Operation Addressing Language oP No. | "P" Status Reg.
Description Made Form Code |Bylss| NZCiDV
EOR
“Exclusive-Or memary | AVM =A Immediate EOR #Oper 49 2 VN ==
with accumulator Zero Page EOR Oper 45 2
Zero Page.X EOR OperX 55 2
Absolute EOR Oper 40 3
Absolute X EOR Oper X 5D 3 .
Absolute ¥ EOR Oper.Y 59 3
(Indarect.X) EOR (Oper.X) 41 2
(Indirect).¥ EOR (Oper).Y 51 2
INC .
Increment memory M«1-=M Zero Page INC Oper E6 2 V/———
by one Zero Page X | INC Oper.X F6 2
Absolute INC Oper EE 3
Absolute.X INC Oper.X FE 3
INX
increment index X by one| X + 1 =X Implied INX E8 1 VN -
INY :
Increment index Y by one] Y + 1 =Y Implied INY ce 1 N
JMP
Jump to new location (PC+1) —PCL | Absolute JMP Oper 4C 3| —-
(PC+2) ~PCH | Indirect JMP (Oper) 6C- 3
JSR
Jump to new location PC+2+¢ Absolute JSR Oper 20 3| —-
saving return address (PC+1) —PCL
(PC+2) ~PCH
LDA
Load accumulator M —~A Immediate LDA #Oper A9 2 Vv
with memory Zero Page LDA Oper A5 2
Zero PageX | LDA OperX 85 2
Absolute LDA Oper AD 3
Absolute.X LDA Oper X 8D 3
Absolute.Y LDA OperY 8¢ 3
(Indirect.X) LDA (Oper.X) Al 2
(Indirect).Y LDA (Oper).Y B1 2
LDX
Load index X M =X Immediate LDX #Oper A2 2 V==
with memory Zero Page LDX Oper A6 2
Zero Page.Y | LDX OperY B6 2
Absolute LDX Oper AE 3
Absolute.Y LDX Oper.Y BE 3
Loy
Load index Y M —Y immediate LDY #Oper A 2 VY-
with memory Zero Page LDY Oper Ad 2
Zero Page,X | LDY OperX B4 2
Absolute LDY Oper AC 3
Absolute X LDY OperX BC 3
LSR .
Shift nght one bit (See Figure 1) | Accumulator | LSR A 4A 1 0vVvV-——~
(memory or accumulator) Zero Page LSR Oper 46 2
Zero Page X | LSR Oper.X 56 2
Absotute LSR Oper 4E 3
Absolute.X LSRA Oper.X SE 3
NOP
No operation No Operatiori | Imphed NOP EA 1] ——
ORA
“OR" memory with AVM—A Immediate ORA HOper 09 2 VV————
accumulalor Zero Page ORA Oper 05 2
Zero Page.X | ORA Oper.X 15 2
Absolute ORA Oper (1] 3
Absolule. X ORA Oper.X 10 3
Absolute Y ORA OperY 19 3
{Indirect. X} ORA (Oper.X) [1]] 2
(tndirect).Y ORA_ (Oper).Y 11 2

349

L

Assembly Language for the Applesoft Programmer

350

Assembly HEX
Name Operalion Addressing Language 0P | No. | “P” Status Reg.
Description Mode ' Form Code |Bytes NZCIDV
PHA
Push accumulator Ay Implied PHA 48 L it
on stack
PHP
Push processor status Py implied PHP 08 1| —
on stack
PLA
Pull accumutator At Implted PLA 68 1 V=
from stack
PLP :
Pull processor status P4 Implied PLP 28 1 From Stack
from stack
ROL
Rotate one bit feft {See Figure 2) | Accumulator | ROL A 2A 1 YV
(memory or accumulalor) Zero Page ROL Oper 26 2 '
Zero Page.X | ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute, X ROL Oper.X 3E 3
ROR
Rotate one bit right (See Figure 3) | Accumulator | ROR A 6A 1 VVV———
fmemory or accumulator) Zero Page AQR Oper 66 2
Zero Page.X | ROR Oper.X 7% | 2
Absolute ROR Qper 6F 3
Absolute X ROR Oper.X 7€ . 3
RTI ,
Return trom interrupt P4PCH Implied RTI 40 1 From Stack
ATS .
Return from subroutine PCt. PC-1 —PC| Imphed RTS 0 1) ——————
SBC
Subtract memory from A-M-CT—2 | Immediate SBC #Oper E9 2 VVV—
accumulator with borrow Zero Page SBC Oper £5 2
Zero Page.X SBC Oper X F5 2
Absolute SBC Oper ED 3
Absolute. X SBC Oper.X FD 3
Absolute,Y SBC Oper.Y F9 3
: {Indirect.X) SBC (Oper.X) E1 2
(Indirect}).Y SBC. (Opef).Y F1 2
SEC
Set carry llag 1-+C Implied SEC 38 1 it
SED
Set decimal mode 1D implied SED F8 1 ————1—
SEl
Set interrupt disable 1l Implied SEI 78 1 ===
status
STA 7
Slore accumulator A =M Zero Page STA Oper 85 2 | -
in memory Zero Page X | STA Oper.X 95 2
Absolute STA Oper 8D 3
Absalute, X STA Oper.X o] 3
Absolute Y STA Oper.Y) 3
(Indirect.X) STA (Oper.X) 81 2
{(indirect). ¥ STA (Oper).Y 91 2
STX
Store index X in memory | X —M Zero Page STX Oper 86 2 | —— N
Zero Page Y STX Oper.Y 96 2
Absolute STX Oper 8 3
STY .
Store index Y in memory | Y ~~M Zero Page STY Oper 84 2| -
Zerc Page X STY Oper.X 94 2
Absolute STY Oper 8C 3
TAX
Transfer accumulator A =X Implied TAX AA 1 D

1o index X

Appendix E Summary of Assembly Language Mnemonics '
il
Asgembly HEX
Name Operation Addressing Language op No. |"P" Status Reg.
Description Mode Form Code |Bytesf NZCIiDYV
TAY
Transter accumulator A =Y Implied TAY A8 1 ViV
10 index Y
TSX :
Transfer stack pointer S =X Implied T8X BA 1 Vv—— .
to index X
TXA :
Transfer index X XA Implied TXA 8A 1| v i
to accumulator h
TXS . ;
Transfer index X to X8 Implied XS 9A 1] e— !
stack pointer , ‘
TYA
Transfer index Y Y -A Implied TYA 98 1 VV——— i
to accumutator

HEX OPERATION CODES i

00 — BRK 2F — NOP 5E — LSR — Absolute, X

01 — ORA — (Indirect, X! 30 — BM! 5F — NOP

02 — NOP 31 — AND — (Indirect), Y 60 — RTS

03 — NOP 32 — NoOP 61 — ADC — tindirect, X)

04 — NOP 33 — NOP 62 — NOP

05 — ORA — Zero Page 34 — NOP 63 — NOP

06 — ASL -— Zero Page 35 — AND — Zero Page. X 684 — NOP

07 — NOP 36 — ROL — Zero Page, X 65 — ADC — Zero Page

08 — PHP 37 — NOP 66 — ROR — Zero Page

09 — ORA — Immediate 38 — SEC 67 — NOP | .

O0A — ASL — Accumulator 39 — AND — Absolute, Y 68 — PLA

0B — NOFP 3A — NOP 69 — ADC — Immediate

0C — NOP 38 — NOP 6A — ROR — Accumulator

0D — ORA — Absolute 3C — NOP 68 — NOP

OE — ASL — Absoiute 3D — AND — Absoiute. X 6C — JMP — Indirect '

0F — NOP 3E — ROL — Absolute, X 6D — ADC — Absolute
.10 — BPL 3F — NOP 6E — ROR — Absolute

11 — ORA — {Indirect), ¥ 40 — RTI 6F — NOP

12 — NOP 41 — EOR — (ndirect, X! 70 — BvVS

13 — NOP 42 — NOP 71 — ADC — (ndirect), Y

14 — NOP 43 — NOP 72 — NOP

15 — ORA — Zero Page, X 44 — NOP 73 — NOP

16 — ASL — Zero Pags, X 45 — EOR — Zero Page 74 — NOP

17 —~ NOP 46 — LSR — Zero Page 75 — ADC — Zero Page. X

18 ~ CLC 47 — NOP 76 — ROR — Zero Page. X

18 — ORA — Absolute, Y 48 — PHA 77 — NOP

1A — NOP 49 — EOR — Immediate 78 — SEI

1B — NOP 4A — LSR — Accumulator 79 — ADC — Absolute, Y

1C — NOP 4B — NOP 7A — NOP

1D — ORA — Absolute, X 4C — JMP — Absolute 78 — NOP

1E — ASL — Absolute. X 4D — EOR — Absolute 7C — NOP

1F — NOP 4E — LSR — Absolute 7D — ADC — Absolute, X NOP

20 — JUSR 4F — NOP 7E — ROR — Absolute, X NOP

21 — AND — {Indirect, X! 50 — BVC 7F — NOP

22 — NOP 51 — EOR (Indirect), Y 80 — NOP

23 — NOP 52 — NOP 81 — STA — {ndirect, X)

24 — BIT — Zero Page 53 — NOP 82 — NOP

25 — AND — Zero Page 54 — NOP 83 — NOP

26 — ROL ~ Zero Page 55 — EOR — Zero Page, X 84 —STY — Zero Page

27 — NOP 56 — LSR — Zero Page, X 85 — STA — Zero Page

28 — PLP 57 — NOP 86 — STX — Zero Page

29 — AND — Immediate 58 — CLI 87 — NOP

2A — ROL — Accumulator 59 — EOR — Absolute, Y 88 — DEY

28 — NOP 5A — NOP 89 — NOP

2C — BIT — Absolute 58 — NOP BA — TXA

20 — AND — Absolute 5C — NOP 88 — NOP

2E — AOL — Absolute 5D — EDR — Absolute, X 8C — STY — Absolute

351

352

8D — STA — Absolute
8E — STX — Absolute

8F — NOP
90 — BCC
81 — STA — (Indirect. Y
92 — NOP
93 — NOP

94 — STY — Zero Page. X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y
97 — NOP

98 — TYA
99 — STA — Absolute, Y
9A — TXS
9B — NOP
9C — NOP
8D — STA — Absofute, X
9E — NOP
8F — NOP

A0 — LDY — Immediate
A1 — LDA — lindirect, X)
A2 — LDX — Immediate
A3 — NOP

A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 — NOP

AB — TAY
A9 — LDA — immediate
AA — TAX
AB — NOP

AC —LDY — Absolute
AD — LDA — Absolute
AE'— LDX — Absolule
AF — NOP

BO — BCS
B1 — LDA — Undirect), Y
B2 — NOP
B3 — NOP

|
|
Assembly Language for the Applesoft Programmer

B4 — LDY — Zero Page. X
B5 — LDA — Zero Page. X
B6 — LDX — Zero Page, Y +
B? — NOP)

B8 — CLV
B9 — LDA — Absolute, Y
BA — TSX
BB — NOP
BC —LDY — Absolute. X
BD — LDA — Absolute, X
BE — LDX — Absolute, ¥

BF — NOP

C0 — CPY — Immediate
C1 — CMP — {Indirecl. X)
C2 — NOP '

C3 — NOP

C4 — CPY — Zero Page
C5 — CMP — Zero Page
Cé — DEC — Zero Page
C7 — NOP

C8 — INY
C9 — CMP — immediate
CA —DEX
CB —NOP .

CC —CPY — Absolute
CD ~-CMP — Absolute
CE — DEC — Absolute

CF —NOP
DO — BNE
D1 — CMP — (indirect), Y
D2 — NOP
D3 — NOP
D4 — NOP

D5 — CMP — Zero Page. X
D6 — DEC — Zero Page. X
D7 — NOP

D8 — CLD

D$ — CMP — Absolute. Y
DA —NOP '

DB — NOP

DC —NOP

DD —CMP — Absolute X
DE — DEC — Absolute. X
DF — NOP

E0 — CPX — immediale
E1 — SBC — Indirect, X)
€2 — NOP

E3 — NOP

€4 — CPX — Zero Page
ES — SBC — Zero Page
E6 — INC — Zero Page
E7 — NOP

E8 — INX
ES — SBC — Immediate
EA — NOP
EB — NOP

EC — CPX -— Absolute
ED — SBC — Absolute
EE — INC — Absolute

EF — NOP

FO — BEQ

F1 — SBC — (indirect), Y
F2 — NOP "

F3 — NOP

F4 — NOP

F5 — SBC — Zero Page. X
F6 — INC — Zero Page. X
F7 — NOP

.F8 — SED

<F9 — SBC — Absolute. Y.
hA — NOP :

FB — NOP

FC — NOP

FD — SBC — Absolute, X
FE — INC — Absolute, X
FF — NOP

Apple II Reference Manual, copyright 1979, Apple Computer, Inc. 20525 Mariani,
Cupertino, CA 95014.

TEXT AND
GRAPHICS NOTES

TABLE 7.2

Location Effect

$C050 Display graphics
$Co51 Display text
$Cos2 Full screen
$C053 Mixed screen
$C054 Page 1

$C055 Page 2

$C056 Lo-res graphics
$Co057 Hi-res graphics

Assembly Language for the Applesoft Programmer

TABLE 10.1 Text-Page Addressing

Ot O~Ro<LCOOOLW W —aAMSWON~OoMCLMmOOW O — QN < WD WO
Pagi Pagl Pag2 Pag2 ERRRRRBRRRRRREBBrrerrrnrshhrnnhk SASSAASY
L# Hex Dec Hex Dec (. oros2rdPIeere2RaiRIRENRRSHNR3S8533
0 $400 1204 $800 2048
1 $480 1152 $880 2176
2 $500 1280 $900 2304
3 $580 1408 $980 2432
4 $600 1536 $A00 2560
5 $680 1664 $A80 2688
6 $700 1792 $BOO 2816
7 $780 1920 $B80 2944
8 $428 1064 $828 2088
9 $4A8 1192 $8A8 2216
10 $528 1320 $928 2344
11 $5A8 1448 $9A8 2472 i
12 $628 1576 $A28 2600
13 $6A8 1704 $AA8 2728
14 $728 1832 $B28 2856
15 $7A8 1960 $BA8 2984
16 $450 1104 $850 2128
17 $4D0 1232 $850 2128
18 $550 1360 $950 2384
19 $5D0 1488 $9D0 2512
20 $650 1616 $A50 2640
21 $6D0 1744 $ADO. 2768
22 $750 1872 $B50 2896
23 $7D0 2000 $BDO 3024

354

TABLE 10.2 Lo-Res Colors

Appendix F Text and Graphics Notes ’

Hex Dec Color Hex Dec Color

$0 o0 Black $8 8 Brown

$1 1 Magenta $9 9 Orange

$2 2 Daﬂ(blue $A 10 Gray2

$3 3 Purple $B 11 Pink

$4 4 Dark green $C 12 Light green
$5 5 Gray 1 $D 13 Yellow

$6 6 Medium blue $E 14 Aquamarine
$7 7 Light blue $F 15 White

TABLE 10.3 Lo-Res Subroutines

Name Entry Point Action Taken

1. CLRSCR $F832 Clears the entire (full screen) low-res screen.

2. CLRTOP $F836 Clears the top (mixed screen) low-res screen.

3. SETCOL $F864 Set color to use for plotting. Color number ($0—$F) is found
in X.

4. PLOT $F800 Plots a block whose vertical position is found in A and whose
horizontal position is found in Y.

5. HLINE $F819 Draws a horizontal line of blocks at vertical position given in
A, from horizontal position given in Y rightward to horizontal
position given in $2C.

6. VLINE $F828 Draws a vertical line of blocks at horizontal position given in Y,
from vertical position given in A downward to vertical position
given in $2C.

7. SCRN $F871 Reads the color of the block whose vertical position is given in

A and whose horizontal position is given in Y. The color is

returned in A.

355

Assembly Language for the Applesoft Programmer

TABLE 10.4 Hi-Res Page Addresses

Pagl Pagl Pag2 Pag2 835883588533

20
21
22
23
24
25
26

L# Hex Dec Hex Dec

39 $27

32
33
34
35
36
37
38

0 $2000 8192 $4000 16384

8 $2080 8320 $4080 16512

16 $2100 8448 $4100 16640

24 $2180 8576 $4180 16767

32 $2200 8704 $4200 16896

40 $2280 8832 $4280 17024

48 $2300 8960 $4300 17152

56 $2380 9088 $4380 17280

64 $2028 8232 $4028 16424

72 $20A8 8360 $40A8 16552

80 $2128 8488 $4128 16680

88 $21A8 8616 $41A8 16808 !

96 $2228 8744 $4228 16936

104 $22A8 8872 $42A8 17064

112 $2328 9000 $4328 17192

120 $23A8 9128 $43A8 17320

128 $2050 8272 $4050 16464

136 $20D0 8400 $40D0 16592

144 $2150 852§ $4150 16720

152 $21D0 8656 $41D0 16848

160 $2250 8784 $4250 16976

168 $22D0 8912 $42D0 17104

176 = $2350 9040 $4350 17232

184 $23D0 9168 $43D0 17360

356

B B
Appendix F Text and Graphics Notes
TABLE 10.5 Seeing the pixels
Byteaddress — <$423C> h
Bitnumber — 0123456 i
Placevalue — 1248124 b
Color hi-bit=0 — VGVGVGV i
Color hi-bit=1 — BOBOBOB t . What you see
Keypress Contents Hex in color
1 1000000 0 — 01 Violet dot
2 0100000 0o - 02 Green dot
3 1100000 0 — 03 White fat dot
4 0010000 0 — 04 Violet dot .
5 1010000 0o — 05 Violet bar
6 0110000 0 — 06 White fat dot
7 1110000 0. - 07 VWG smear
8 0001000 0 — 08 . Green dot
. 9 1001000 0 — 09 V G dots
| 10 0101000 0 - 0A Green bar
11 1101000 0 - 0B WG bar
12 0011000 0 — oC White fat dot
13 1011000 0 - oD VW smear
14 0111000 0 — OE White bar
15 1111000 0 — oF White bar
16-- 0000100 0 —> 10 Violet dot
17 1000100 0 - 11 V dot blk bar V dot
You can see the
. pattern now.
| . The next
interesting
patterns occur
when the hi-bit
comes on and
the colors |
change. . : J
127 . 1111111 0 — 7F V dot blk bar V dot
128 00o000O0O 1 — 80 All black!
129 1000000 1 - 81 Blue dot
130 6100000 1 — 82 Orange dot
131 1100000 1 — 83 White fat dot
Got the
picture?

357

358

TABLE 10.6 Hi-Res Screen Line Numbers, and the Addresses

of the Left Edge of the Screen

e~
*

®NO U WN O

Top Third
Hex Pag1
$00 $2000
$01 $2400
$02 $2800
$03 $2C00
$04 $3000
$05 $3400
$06 $3800
$07 $3C00
$08 $2080
$09 $2480
$0A $2880
$0B $2C80
$0C $3080
$0D $3480
$0E $3880
$OF $3C80
$10 $2100
$11 $2500
$12 $2900
$13 $2D00
$14 $3100
$15 $3500
$16 $3900
$17 $3D00
$18 $2180
$19 $2580
$1A $2980
$1B $2D80
$1C $3180
$1D $3580
$1E $3980
$1F $3D80
$20 $2200
$21 $2600
$22 $2A00
$23 $2E00
$24 $3200
$25 $3600
$26 $3A00
$27 $3E00
$28 $2280
$29 $2680
$2A $2A80
$2B $2E80
$2C $3280
$2D $3680
$2E $3A80
$2F $3E80
$30 $2300
$31 $2700
$32 $2B00
$33 $2F00
$34 $3300
$35 $3700
$36 $3B00
$37 $3F00
$38 $2380
$39 $2780
$3A $2B80
$3B $2F80

" $3C $3300
$3D $3780
$3E $3B80
$3F $3F80

Pag2

$4000
$4400
$4800
$4Co0
$5000
$5400
$5800
$5C00
$4080
$4480
$4880
$4C80
$5080
$5480
$5800
$5C80
$4100
$4500
$4900
$4D00
$5100
$5500
$5900
$5D00
$4180
$4580
$4980
$4D80
$5180
$5580
$5980
$5D80
$4200
$4600
$4A00
$4E00
$5200
$5600
$5A00
$5E00
$4280
$4680
$4A80
$4E80
$5280
$5680
$5A80
$5E80
$4300
$4700

$4B00 -

$4F00
$5300
$5700
$5B00
$5F00
$4380
$4780
$4B80
$4F80
$5300
$5780
$5880
$5F80

L#

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Middle Third

Hex

$40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$4A

$4B

$4C
$4D
$4E
$4F
$50

$51 .

$52
$53
$54
$55
$56

$57

$58
$59
$5A

_$5B

$5C
$5D
$5E
$5F
$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$78
$7C
$7D
$7E
$7F

Pagi

$2028
$2428
$2828
$2C28
$3028
$3428
$3828
$3C28
$20A8
$24A8
$28A8
$2CA8
$30A8
$34A8
$38A8
$3CA8
$2128
$2528
$2928
$2D28
$a128
$3528
$3928
$3D28
$21A8
$25A8
$29A8
$2DAB
$31A8
$35A8
$39A8
$3DAS
$2228
$2628
$2A28
$2E28
$3228
$3628
$3A28
$3E28
$22A8
$26A8
$2AA8
$2EA8
$32A8
$36A8
$3AA8
$3EAS
$2328
$2728
$2B28
$2F28
$3328
$3728
$3B28
$3F28
$23A8
$27A8
$2BAB
$2FA8
$33A8
$37A8
$3BAS
$3FAS8

Pag2z

$4028
$4428
$4828
$4C28
$5028
$5428
$5828
$5C28
$40A8
$44A8
$48AB
$4CA8
$50A8
$54A8
$58A8
$5CA8
$4128
$4528
$4928
$4D28
$5128
$5528
$5928
1$5D28
$41A8
$45A8
$49A48
$4DAS
$51A8
$55A8
$59A8
$5DA8
$4228
$4628
$4A28
$4E28
$5228
$5628
$5A28
$5E28
$42A8
$46A8
$4AA8
$4EA8
$52A8
$56A8

$5EA8
$4328
$4728
$4B28
$4F28
$5328
$5728
$5B28
$5F28
$43A8
$47A8
$4BAS
$4FA8
$53A8
$57A8
$5BAS
$5FA8

L#

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

© 147

148
149
150
151
152
153
154
155
156
157
158
159
160
181
162
163
164
165
166
167
168
169
170
171
172

#1173
$5AA8-

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Bottom Third

Hex

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9G
$9D
$9E
$9F
3A0
$A1
$A2
$A3
$A4
$A5
$A6
$A7
$A8
$A9
3AA
$AB
$AC
$AD
$AE
$AF
$Bo
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
$BE
$BF

Pag1

$2050
$2450
$2850
$2C50
$3050
$3450
$3850
$3C50
$20D0
$24D0
$28D0
$2CDo
$30D0
$34D0
$38D0
$3CD0
$2150
$2550
$2950
$2D50

$3150

$3550
$3950
$3D50
$21D0
$25D0
$29D0
$2DDO
$31D0
$35D0
$39D0
$3DD0
$2250
$2650
$2A50
$2E50
$3250
$3650
$3A50
$3E50
$22D0
$26D0
$2AD0
$2EDO
$32D0
$36D0
$3ADO
$3EDO
$2350
$2750
$2B50
$2F50
$3350
$3750
$3B50
$3F50
$23D0
$27D0
$2BD0
$2FDO
$33D0
$37D0
$3BDO
$3FDO

Pag?2

$4050
$4450
$4850
$4C50
$5050
$5450
$5850
$5C50
$40D0
$44Do,
$48D0
$4CDo
$50D0
$54D0
$58D0
$5CD0
$4150
$4550
$4950
$4D50
$5150
$5550
$5950
$5D50
$41D0
$45D0
$49D0
$4DDO
$51D0
$55D0
$59D0
$5DD0
$4250
$4650
$4A50
$4E50
$5250
$5650
$5A50
$5F50
$42D0
$46D0
$4ADO
$4EDO
$52D0
$5600
$5AD0
$5EDO
$4350
$4750
$4B50
$4F50
$5350
$5750
$5B50
$5F50
$43D0
$47D0
$4BDO
$4FDo
$53D0
$57D0
$5BD0
$5FDO

_A—

* 68

&, 124, 156, 299, 312

Accumulator, 7, 18, 345

ADC, 39, 345

Addition, 39

Addressing, 61

Addressing modes —
Accumulator, 63, 64
Implied, 63, 64
(Indirect), 63, 64
Relative, 63, 66
Immediate, 63, 69.
Zero Page, 63, 69
Absolute, 63, 72
Zero Page, X, 63, 73
Zero Page, Y, 63, 75
Absolute, X, 63, 75
Absolute, Y, 63, 76
(Zero Page), Y, 64, 76 -
(Zero Page, X), 64, 78

ALU, 38

AND, 98, 345

Applesoft entry points, 335

Architecture, 37

Arrays, 143, 306

ASL, 103, 345

Assembler, 12, 13, 18, 22

Assembly Language, 5, 13 343

_B—

Base, 135

BCC, 57, 345

BCS, 57, 68, 346

BEQ, 57, 346

B-flag (Break Flag), 345
Binary, 319

Bit, 61, 62

BIT, 102, 346

Bit pattern animation, 224, 228
Bit pattern images, 211, 214
Bit manipulation, 97, 239
BLOAD, 121

INDEX

BMI, 57, 346

BNE, 29, 57, 82, 346

BPL, 20, 57, 346

Branch instructions, 81, 346
BRK, 56, 346

Bubble sort, 293

BVC, 57, 346

BVS, 57, 346

Byte, 62

_Cc—

C-flag (Carry bit), 104, 107, 110,
112, 346

CHARGET, 177

CHARGOT, 177

CLC, 39, 346

CLD, 42, 346

CLEAR, 93

CLI, 346

CLR, 346

CLV, 346

CMP 87, 346

COUT, 86

CPX, 87, 346

CPY, 87, 346

CTRL-Y, 130

—_D—

DEC, 346

DEX, 46, 346

DEY, 20, 29, 46, 346
Directives, 24
Disassembler, 18

EOR, 99, 346
Excess $80 notation, 134, 332

_F

Flags —
B, 38, 40, 345
C, 38, 40, 43, 45, 87, 345
"D, 38, 40, 345
I; 38, 40, 345
N, 38, 40, 345
V, 38, 40, 345
Z, 38, 40, 83, 87, 345
Floating-point —
accumulators, MFAC and SFAC 134
calculations, 145
subroutines, 133, 146, 152, 159, 163
FNFIND, 177

—C—

Game development, 255
Graphics ~

Hi-Res, 219

L.ow-Res, 184

—H_

HCOLOR, 221
Hexadecimal conversion, 159, 322
HGR and HGR2, 220
Hi-Res screen —
addresses, 202, 207
screen addresses, table 202; 207
colors, 206, 209, 222, 355
subroutines, 225
HPLOT, 222

I —

I-flag (Interrupt flag), 38, 345
Immediate addressing, (#), 51
INC, 347

INX, 20, 46, 347

Assembly Language for the Applesoft Programmer

INY, 46, 347 base 10 (decimal}, 319 RTI, 348
Index registers, 73 base 16 (hexadecimal}, 319 .RTS, 9, 20, 348
Indexed addressing, 73 excess $80, 134, 332 R
floating-point, 331
2’s-complement, 327 — S —
—J—
— 0 — / SBC, 42, 348
JMP, 64, 347 Screen formats —
JSR, 8, 347 TEXT, 198
O-flag {Overflow flag), 345 Hi-Res, 201
Operation codes, 41, 349 - Low-Res, 198
—K— ORA, 100, 347 i Soft switches, 8, 125, 221
Origin, 24, 93 Searching, 293, 301 -
SEC, 42, 348
Keyboard, 270 SED, 39, 348
Keycodes, 199 —P— : SEIL, 348

Soft switches, 8, 125, 221
Sorting, 293 -

—L— Paddle, 33 Sounds, use of speaker, 27
Palindrome, 13 . STA, 7, 19, 348
. PC-register, 53, 61 1 Stack, 49
LDA, 7, 19,4347 . PHA, 49, 348 ' Status _ﬂags, 38, 40, 345
LDX, 19, 347 PHP, 49, 348 , Status information, 38, 40
LDY, 18, 347 Pixel, 203, 219 - Strings, 304, 309
LIFO, 49 PLA, 49, 348 STX, 348
LISA, 22 Place values, 135, 319 STY, 348
Loops — ‘ PLE 49, 348) Subroutine linkage, 117, 133, 151
simple, 82 Program Counter, 20 Subtraction, 40
nested, 86 Pointer, 20, 48
Low Byte-High Byte (LBHB), 19 POKE, 20, 48
Low-Res colors, 199, 353 . — T —
Low-Res screen addresses, 190, 352 ’
LSR, 107, 347 —Q—
’ Table building, 90, 243, 244
TAX, 46, 348

— M= Quicksort, 294 TAY, 46, 349
‘ . Text screen addressing, 189
Text screen addresses, table, 190, 352

Machine language, 3, 5, 13 —R— TKNZ, 177
Memory dump, 4 . Toggte, 8
Memory moves, 162, 341 ’ TOKEN, 177
Memory organization, 61, 118 Radians, 169 TSX, 49, 349
Miniassembler, 12, 317 RAM, 63 2’s-complement, 327
Mnemonics, 5, 18, 345, 349 Random numbers, 170 TXA, 349
Registers — - TXS, 46, 349

] A, 18, 38, 345 TXTPTR, 126, 177

N — X, 18, 38, 73, 78, 345 TYA, 49, 349
Y, i8, 38, 73, 75, 76, 91, 345

: P, 38, 345 .
N-flag (Negative flag), 345 S, 48, 345 —U—
Nested loops, 86 PC, 20, 53, 345
NOP, 347 . ROL, 110, 348
Normalization, 135 ROM, 63, 133 Unpacked format, 139, 333
Notation — ROR, 112, 348 . USR; 130

base 2 (binary), 319

360

VvV —

VARFND, 155
V-flag (oVerflow flag), 345

X

X-register, 18, 38, 73, 345

Y —

Y-register, 18, 38, 73, 75, 76, 91, 345

7

Z-flag (Zero flag), 345
Zero page addressing, 70

361

Other books in the Microcomputer Book Series are
available from your local book or computer store
For more information, write:

Addison-Wesley Publishing Co., Inc
Microcomputer Books & Consumer '
Software

Reading, MA 01867

(617) 944-3700

13047 1-2-3 Go!
Julie Bingham

10924 Starting With UNIX
PJ. Brown

10355 CP/M and the Personal Computer
Thomas A. Dwyer and Margot Critchfield .

05092 Microcomhuter Graphics for the Apple Computer
Roy E. Myers . |)

14775 Applesoft BASIC Toolbox
Larry G. Wlntermeyer -

10341° Pascal: A Problem SOIvmg Approach
Elliot B. Koffman

10158 Pascal from BASIC
Peter Brown

06577 Pascal for BASIC Programmers
Charles Seiter and Robert Weiss !

12080 Looking at Lisp
Tony Hasemer

00105 Marketing Your Software
William Nisen, Allan Schmidt, and Ira Alterman

14276 The Integrated Software Book s
Jules Gilder

11507 Dr. C. Wacko Presents Applesoft BASIC and the Whiz-Bang

Miracle Machine
David Heller and John Johnson

> $1kL-95 FPT USA

C. W. Finley, Jr, and RO); E. Myers

At last, here is the one source you need to enhance your BASIC programs without having
to-wade through volumes of tedious assembly language manuals. If you are a dedicated
but frustrated BASIC programmer, ASSEMBLY LANGUAGE FOR THE APPLESOFT PRO-
GRAMMER will show you how to increase the speed of your BASIC programs, generate
elegant music and sound, communicate directly with external devices such as disk drives
and printers, and much more!

Now, you can use the language and techniques of professional software developers to
meet your specific programming needs. ASSEMBLY LANGUAGE FOR THE APPLESOFT
PROGRAMMER introduces a unique approach to harnessing the true power, speed, and
versatility of your Apple computer by showing you how to add assembly language sub-
routines to your BASIC programs.

Now you can:
« learn the “inner workings" of the Apple computer

« enhance existing programs with sophisticated subroutines

« learn to develop games, manipulate large databases, and create exciting and effi-
cient programs

« access the Apple’s graphics capabilities through assembly language

« become a better, more “professional” Applesoft programmer

Sample programs allow you to add immediate enhancements to BASIC and are easily
modified and improved to fit particular programming tasks. And as you continue to
enhance your programming skills, ASSEMBLY LANGUAGE FOR THE APPLESOFT PRO-
GRAMMER will continue to be an invaluable reference for future programming
projects.

C. W. Finley, Jr., is an assistant professor of chemistry at Pennsylvania State University.
Roy E. Myers is an associate professor at Pennsylvania State University and is the
author of the bestselling Microcomputer Graphics for the Apple Computer and Micro-
computer Graphics for the IBM PC.

Cover design by Marshall Henrichs

ISBN 0-201-05209-1

ADDISON-WESLEY PUBLISHING COMPANY

