i

Chapter 8

Interrupt-Handler
Firmware

169




This chapter describes how the Apple 1IGS handles interrupts from the available
interrupt sources. You can find additional information about interrupts in

Appendix D, "Vectors," This chapter describes interrupts in general and the

Apple 1IGS built-in interrupt-handler firmware in particular and how to manage
environment variables during interrupt handling. It also summarizes all interrupt
sources, discussing how often each source interrupts the system and the relative
priority assigned by the system [o each source, and provides some delails about Break
instructions, the AppleMouse™, and serial-port interrupt handling,

As a user's program runs, it may get interrupted by various sources Lo process
important external inputs. The system assigns priorities to each of these interrupt
sources and handles them in a defined sequence. When the user’s program is
interrupted, the stale of the system at the time of the interrupt is saved. On completion
of interrupt processing, the program can continue as though nothing had happened.

There are many reasons for the system to interrupt the execution of a program, For
example, if the user moves the mouse, the system should read the mouse location wo
keep the pointer location current. If the system handles the interrupt promptly, the
mouse pointer'’s movement on the screen will be smoeoth instead of jerky and uneven.
Or your program may be performing another operation while characters are being
received in a serial input buffer, and you do not want to lose any characters from the
input stream. These conditions, and many others, can cause your program to be
interrupted to handle an error or some other special condition that requires
immediate attention,

The Apple 1IGS interrupt-handler firmware suppaorts interrupts in any memory
configuration. To do this, the system saves the machine’s staie at the time of the
interrupt, placing the Apple 1IGS in a standard memory configuration before ealling
your program's interrupt handler, and then restores the original state when your
program’s interrupt handler is finished,

If you write your own interrupt-processing routines, you can attach them to the system
by modifying the interrupt vector locations specified in Appendix D, “Vectors.”
However, you must abey all of the conventions specified in this chapter regarding
interrupt processing and make sure (o restore the environment to the state in which
you found it on entry to your interrupt-processing routine, This will allow the system to
restore the environment 1o its original state.

170 Chapter 8: Inferrupt-Handler Fimware




What is an interrupt?

An interrupt is most often caused by an external signal that tells the computer to stop
what it is currently doing and devote its attention to a more important task. Besides
this external hardware-related signal, software interrupts are possible as well,

Hardware interrupt priorities are established through a daisy-chain arrangement using
two pins, INT IN and INT OQUT, on each peripheral-card slot. Each peripheral card
breaks the chain when it issues an interrupt request. On peripheral cards that don't use
interrupts, the designer of the peripheral card should connect these pins 1o one
another, thereby passing the interrupt signal directly through the card slot,

When the Iaterript Request (IRQ) line 6 the Apple 1168 micraprocessar is activated
or when a software interrupt occurs, the microprocessor transfers control to the
interrupt-processing routines by jumping through vectors stored in ROM. The built-in
interrupt handler processes the interrupt il the application has not provided its own
interrupt handler.

|
!'
|
3
I. ‘
|
|

What s an interrupt? 171




The built-in interrupt handler

The Apple 1IGS built-in interrupt handler performs a sequence of steps to handle
system interrupts. Figure 8-1 shows the structure of the built-in interrupt handler.

EABORT
Save
MNABORT IRe | Bank SE1 >
some state
\ |—| vector Infarmation
NIRG p| Set fiogs fo
idenfify source |COP| Bonk 5E1
Calé L 2? kit Simulat
A5 2 1_& T mulate
interrupt  |[ECOP SC071-8CO7F e Broak
bbb IRGY G e vag::ur
(Bark SFF) [NIR Switch
o
IRSIBRK nigh
NM! NMI vactor > Enter spead
> in bank §03 Meonitor
Mo Yes
Break handler
J5L AppleTalk Yes
J5L serial Infarupt ¢
Mo
No Restore
JSL SroxX — state
JSL SreVY —— F‘?"j' ai ‘
JSL SreZZ (and so on) ——— oirees o
J5L other — Exit
Intarmupt
(53FM
Bank S00
{S3FE)
Bank 500

Figure 8-1
Bullt-ln Interrupt handler

172 Chapter 8: Interrupt-Handler Firmware




If /O shadowing is on, then the system ROM in bank SFF is shadowed (and readable)
in bank $00. The system jumps indirectly through the interrupt vector located either at
FIRQ ($FFFE, $FFFF) if it was running in emulation mode when the interrupt pccurred
or at NIRQ ($FFE4, $FFES) if it was running in native mode.

Important

If IO shadowing is off. RAM will be addressed in the memory space of bank 500 in
the area of SFFEC-SFFFF, the location at which the Interrupt vectors are stored.
When an Interrupt occurs, the 45C816 uses the Interrupt vector located in the
RAM vector table If /O shadowing Is off and uses the vector located In the ROM
vector table if /O shadowing is on. If you have not correctly set up the RAM
vectors and you tum off I/O shadowing. the system will fall.

Both EIRQ and NIRQ jump to ROM located within the soft-switch area at
$C071-$CO7F. This special ROM code sets status flags that identify the type of interrupt
that has just occurred.

At this point, the system tests to see whether the interrupt was a result of a software
Break instruction. If it was, the system vectors to the break handler (normally the
system Monitor) through the user interrupt-handler vector in bank S3E1. An
application will patch this vector only if it wants to be responsible for handling or to be
informed about all interrupts that occur. If the application simply wants information,
it must save the vector value that the application finds in this location and then jump
through this vector as the user-interrupt code is completed. Saving and using the
vector allows the system to proceed as though the application had never gotten in the
way in the first place. If the application wants to handle all interrupt processing on ils
own, it must be responsible for restoring any environment variables that it changes
and must execute an RTI instruction directly from its own code, returning to the
application that was interrupted.

If the interrupt source was not a Break instruction, the interrupt handler saves the
absolute minimum amount of information about the machine state. The interrupt
source might have been AppleTalk (tested first) or the serial port (tested next). If you
are running at high baud rates and if interrupt processing takes too long, you might
begin to miss characters. To save the minimum machine state, save only the
environment variables that have to be used in the routine that saves an incoming serial
character in a buffer and points the buffer pointer (o its next location. To see whether
the interrupt was from a serial port, the 5CC is tested. If it is a serial interrupt, the
firmware performs a JSL instruction through a patch address in bank $E1 to the port
handler (see Appendix D, “Vectors,” for more information).

The bullt-in Interrupt handler

173




If the port handler returns with the carry bit set, the system does not have an internal
serial-port handler installed. The interrupt handler now proceeds to save the rest of
the machine state and establish a specific interrupt memory configuration as
described in the section “Saving the Current Environment” later in this chapter. (You
must poll each of the possible interrupt sources to determine which requires service.)

At this point, the interrupt system begins a polling loop, testing each of the possible
interrupt sources in turn. If no internal interrupt handler is installed, then (and only
then) the firmware jumps through the user interrupt vector routine to handle the
interrupt. The address of the user interrupt routine is found in bank $00, addresses
$3FE (low byte) and $3FF (high byte).

The $3FE interrupt handler {user interrupt vector routine) must do the following:
0 verify that the interrupt came from the expected source

o handle the interrupt appropriately

0 clear the appropriate interrupt soft switch

O restore everything to the state it was in when the Interrupt Request routine was
entered, if your routine has made any changes to the state of the machine

O return to the built-in interrupt handler by executing an RTI instruction

Afier the user interrupt vector routine completes its action, the buili-in interrupt
handler restores the memory configuration and then executes another RTI to return to
where it was when the interrupt occurred.

Here are some factors 1o remember when you are dealing with programs that run in an
interrupt environment:

O There is no guaranteed maximum response time for interrupts because the system
may be performing a disk operation that lasts for several seconds when the interrupt
OCCUrs.,

O Interrupt overhead will be greater if your interrupt handler is installed through an

operaling system's interrupt dispatcher. The length of delay depends on the
operaling system and on whether the operating system dispatches the interrupt to

other routines before calling yours,

174 Chapter 8: Interrupt-Handler Firmware

—




Summary of system interrupts
Table 8-1 lists the source and type of each interrupt and describes each one.

Table 8-1

summary of systemn Interrupts

Interrupt source Type Description

Power up RESET Generated by powering up Apple 1IG5.

Reset key RESET Generated by the ADB microcontroller when
Control-Resel is pressed.

External card RESET Available.

External card NMI Used only for debugging.

Abort signal ABORT Activated by memory card slot.

COP instruction COP/native In native mode, the user executed a COP
instruction.

COFP COP/emulation  In emulation mode, the user executed a COP
instruction.

Break instruction BREK/native In native mode, the user executed a Break
{BRK) instruction.

Break BRE/emulation In emulation mode, the user executed a Break
(BRK) instruction.

AppleTalk IRQ Interrupts upon address recognition or an
error,

Serial input #1 o] Interrupts when transmitter is empty,

(SCC channel A) transmission is received, or an error
occurs.

Serial input #2 IRQ) Same as serial input #1.

(SCC channel B)

Scan line IRQ Interrupts at end of requested scan lines.

(continued)

Summary of system Interrupts

175




Table 8-1
Surnmary of system Interrupts (continued)

Interrupt source Type Description

Ensaniq chip IRQ Interrupts when an oscillator completes a
waveform table (32 possible interrupts from
here).

VBL signal IRQ Interrupts when vertical blanking (VBL) is
requested.

Mouse IRQ Interrupts as requested at mouse button press
or movement or at a VBL signal.

Quarter-second  IRQ Interrupts system every 0.26667 second for

timer AppleTalk use.

Keyboard IRQ) Interrupts upon keypress,

Response IRQ) Generated when data is ready for the system

from the Apple DeskTop Bus (ADB)
microcontroller; initiated as a result of a
system-generated command.

SRQ IRQ) Generated when an ADB device requires
servicing.

Desk Manager IRQ Generated by the ADB microcontroller when
Control-3-Esc is pressed.

Flush command [RQ O-Control Delete was pressed.

Micro abor IR Generated il the ADB microcontroller detects
a fatal error within itself.

Clock chip IRQ) A l-second timer interrupt is generated by
the 1-hertz signal from the clock chip through
the VGC chip.

External card IRQ The card wanis the attention of the 65C816.

EXTINT IRQ Available from the VGC, but not to hook an
external interrupting device; hardware is not
available.

174 Chapter 8: Interrupt-Handler Firmware

—



Interrupt vectors

Table 8-1 described the sources of interrupt and named the interrupt vector that
contains the address of the routine that processes each interrupt. Table 8-2 defines the
locations at which each of the named interrupt vectors resides.

Table 8-2

Interrupt vectors

Address Name Description

$FFFE-3FFFF IRQVECT Emulation-mode IRQ/BRK vector
$FFFC-SFFFD RESET Emulation- or native-mode RESET vector
SFFFA-5FFFB NMI Emulation-mode NMI vector
S{FFFB-3FFF9 EABORT Emulation-mode ABORT vector
$FFF4—$FFFS ECOP Emulation-mode COP vector
SFFEE-SFFEF NIRQ) Native-mode IRQ vector
$FFEA-$FFEB NNMI Native-mode NMI vector
$FFEB-SFFED NABORT Native-mode ABORT vector
SFFE6-$FFE7 NBREAK Native-mode BRK vector
$FFE4-3FFES NCOP Native-mode COP vector

If I/O shadowing is on, the vectors contained in ROM are always used by the 65C816,
regardless of the language-card seitings. This allows you to run native-mode code with
interrupts enabled in old applications.

If the application program or operating system disables 1/O shadowing in bank $00 or
$01, then either the application program or the operating system must copy the ROM '
vectors from $FFEE to $FFFF and the code from $C071 to $CO7F into RAM al the same
locations belore enabling interrupts. If the code is not copied from ROM to RAM, the
Monitor's interrupt code cannot be used.

Interrupt priorities

The 65C816 processes each type of interrupt on a priority basis. For instance, if several
of the many IRQ interrupts should occur at the same time, the B5CE16 will process all
AppleTalk IRQs before any keyboard interrupts. Priorities for each type of interrupt
are indicated by their relative position in the following paragraphs. In other words,
the highest-priprity interrupts appear closest to the beginning of these descriptions.
Lower-priority interrupts appear later in the descriptions.

Summary of system Interrupts 177




RESET

RESET forces emulation mode. The interrupt is processed by the firmware and then
vectors to the user link. A cold start attempts to boot a disk, A cold start can be
perdormed in two ways:

o by turning the power off and on

O by pressing O-Control-Reset

RESET cold-start functions are as follows:

sels up video

sets video as output device

sets keyboard as input device

reads clock chip and places system configuration in firmware RAM

O oo o

sets up system to match configuration in firmware RAM

sets up the power-up byte so the next RESET performs a warm start

o 0O

scans slots for Disk 1T devices and sets motor-on detect bit (motor-on detect causes
the FPI chip to slow the system down to 1 MHz when the motor-on scft switch is
enabled, and it restores the system speed when the motor is turned off)

O goes to, or scans, for boot device (if boot device is found, jumps to it; if no boot
device is detected, switches in Applesoft BASIC and jumps to it)

A warm start vectors to user links. If user did not alter links, then a BASIC cold start is
executed. A warm start can be performed in two ways:

O by pressing Control-Reset
O by using peripheral cards (pulling RESET line low)

The system executes the following reset warm-start functions:
sets up video

sets video as output device

sets keyboard as input device

reads image of system configuration in firmware RAM

sets up system to match configuration

generates tone (beep replaced with tone)

O OO0OO0OD0O0O I ma0o

jumps to user reset vector
NMI

NMI vectors to user link. No NMI interrupts are used by the Monitor, Peripheral cards
pull NMI line low.

178 Chapter 8; Interrupt-Handler Firmware

—




ABORT

ABORT vectors to the user link. If no user link exists, it vectors to the break handler that
displays the address and opcode of the code being executed at the time the abort pin
on the 65C816 was pulled low (see BRK). The ABORT interrupt can be activated only
by hardware installed in the memory-expansion slol.

cop

COP vectors to the COP {coprocessor opcode) manager vector in RAM, which points
to the firmware. If the COP manager is not installed, the firmware displays the COP
message via a software COP instruction,

In emulation mode, COP prints the following; |

bohfaddr: 00 ec COP ecc
A=aaaa X=xxuxx Y=yyyy S=ss55s D=dddd P=pp
B=bb K=kk M=mm Q=gg L=1 m=m X=X e=l

In native mode, COP prints the following:

bb/addr : 00 ce COP cc
A=2aaa X=xxxxX Y=yyyy S5S=5s535 D=dddd P=pp
B=bb K=kk M=mm Q=gg L=1 m=m X=X e=0

% MNote: The preceding formats are for a 40-column screen. On an 80-column screen,
the second two lines become one line. The ec appearing in both modes is the
operand of the COP instruction and indicates to the user where the COP occurred
{300 through $FF are valid COP operands).

BRK

In emulation mode, the interrupt vectors to the interrupt (IRQ) handler and then to
the break handler. In native mode, the interrupt vectors directly to a break handler,
This occurs via a software BRK instruction only. The break handler saves as much data

a5 the interrupt handler. This allows you to invoke the Monitor Resume command (R)
to continue program execulion.

In emulation mode, the Break instruction prints the following;

bbfaddr: 00 be BRK cc
=aaaa X=xxxx Y=yyyy S5=5555 D=dddd P=pp |
B=bb K=kk M=mm Q=gg L=1 m=m x=x e=1l

In native mode, the Break instruction prints the following:

bb/addr: 00 be BRE cc

A=aaaa X=xXXxXx Y=yvyy S=s5535 D=dddd P=pp

B=bb K=kk M=mm Q=gg L=1 m=m x=x e=0

% Note: The preceding formats are for a 40-column screen. On an 80-column screen,
the second two lines become one line. The cc appearing in both modes is the
operand of the BRK instruction and indicates to the user where the BRK ocourred
(300 through $FF are valid BRK operands),

Summary of system inferrupts 179




IRQ

IRQ) interrupts are as [ollows:

AppleTalk: This interrupt has the highest priority because its code is very time
inlensive; data can be lost if the SCC is not read within 104.167 microseconds
(baud = 230,400) after an AppleTalk SCC interrupt occurs.

Serlal ports: In interrupt mode, data will be lost if the SCC is not read within 1.094
milliseconds (baud = 19,200) after the interrupt occurs,

Scan line: The scan-line interrupt can occur every 63.694 microseconds., When the
video counters count down to zerg, the interrupt occurs, The video counters reach
zero when the scanning beam reaches the right side of the scan line.

Ensoniq chip: The Ensoniq chip interrupts when the waveform buffer is completed.
Because the chip contains 32 oscillators, there are 32 possible interrupts from the
chip.

VBL: The VBL interrupts every 16.6667 milliseconds. The interrupt occurs when the

scanning beam is retracing from the bottom-right corner to the upper-left corner of
the screen. (Note: Using the heartbeat interrupt handler is the approved method of
executing VBL interrupt tasks.)

Mouse: The mouse interrupts only if the interrupt option is specified. The interrupt
options are mouse movement, mouse button press, and VBL signal.

Quarter-second fimer: This timer interrupts every 0.26667 second. The timer is used
by AppleTalk to trigger event processing.

Keyboard: The keyboard interrupts if a key is pressed.

Response: If a command is sent to the ADB microcontroller, the interrupt occurs
when the "done" flag is set. The microcontroller interrupts the system when the
response data is ready for the system to read, If this interrupt occurs, control is passed
to the response manager.

SRQ: If an ADB device requires servicing, an SRQ (service request) is issued, This
event can interrupt the system. When this interrupt occurs, control is passed to the
SRQ manager.

Desk Manager: The ADB microcontroller causes this interrupt if Control-G-Esc is
pressed. Control is then passed to the Desk Manager.

Flush: If 3-Control-Backspace (Delete) is pressed, the ADB microcontroller clears its
internal type-ahead buffer, issues a Flush command to external keyboards, and causes
an interrupt. If this interrupt occurs, control is passed to the Scrap Manager.

Micro abort: If the ADB microcontroller detects a fatal error and the fatal-error
interrupt occurs, the system is interrupted. If this interrupt occurs, control is passed to
the ADB Tool Set.

Clock chip: The clock chip interrupts once each second.

External cards: External cards cause interrupts as defined by the card manufacturer,
180 Chapter 8: Interrupt-Handler Firmware




Environment hundllngmfor interrupt processing

For each interrupt discussed in the previous section, the processor can be in either
emulation or native mode. Each mode has its own interrupt vector; therefore, there
are two different entry points to the interrupt handler. To process interrupts correctly,
the system interrupt handler must save the current environment, set the interrupt
environment, and process the interrupt through the appropriate interrupt handler,
(You can find more information about saving and restoring the environment in
Chapter 2, "Notes for Programmers.” That chapter contains sample assembly-
language code that saves a part of your environment and sets the system into the
correct mode for interrupt processing.)

Saving the current environﬁ'lenl

On entry to each interrupt, the system interrupt handler saves the current
environment and sets the program bank, data bank, and direct-page register contents
o zero.

The state of the machine upon entry into each interrupt handler is indicated by the
contents of the following registers:

O program bank
O data bank

O direct register
O processor status
O A register

O X register

O Y register

The RAM or ROM state, including emulation or native mode, is indicated by the
following:

O language-card state (bank 1 or 2, ROM or RAM)

O main or alternate memory (and main and alternate zero page)
5 S03TORE swih

O 40- or 80-column video

o mahstadcufmeropagemuse

(m}
(m}

speed register
Shadow register

Environment handling for interrupt processing 181




Going to the interrupt environment

If the interrupt can be processed by the firmware or a tool set, the processor vectors [0
the appropriate handler in native mode, 8-bit m/x, in high speed. IF the interrupt
cannat be processed by the firmware, the processor performs the following steps:

1. Switches to emulation mode

Switches speed 10 1 MHz

Switches in text page 1 lo make main screen holes available
Switches in main memory for reading and wriling

Maps $D000-$FFFF ROM into bank $00

. Switches in main stack and zero page

Saves the auxiliary stack pointer and restores the main stack pointer

After the environment is saved and the new environment is set, the interrupt handler
checks for the source of the interrupt. If the interrrupt is a firmware interrupt only (a
BRK or COP instruction), the firmware jumps (using a JSL) to the appropriate firmware
routine. If it is an interrupt that is passed directly to the user, then the firmware passes
the interrupt to the user via the appropriate links, An interrupt can be both processed
by the firmware and passed to the user. If both occur, the preceding rules listed still
hold, except that the particular firmware interrupt handler will return to the main
interrupt handler with carry set (C = 1) instead of clear (C = 0), which indicates that the
firmware processed the interrupt and the user does not need to know about it.

Restoring the original environment

After the interrupt has been processed, the system interrupt handler restores the
environment and registers to their preinterrupt state and performs an RTI, returning to
the executing program,

# Note: The peripheral card (or equivalent internal card) in use is responsible for
saving its slot number in the form $Cn (n = slot number) at MSLOT ($0007F8).
MSLOT is used in the interrupt handler to restore the currently executing slot
number's $C800 space afler an interrupt has been processed.

Emulation-mode interrupts are supported in bank $00 only. Native-mode
interrupts are supported everywhere in memory. Therefore, code running
anywhere ‘except in bank $00 must be native-mode code.

182 Chapter 8: Interrupt-Handler Firmware

—




Huncjling Break instructions

In emulation mode, the Apple 1IGS detects a software Break (BRK) instruction as an
IRQ and jumps through the emulation-mode IRQ vector. In that code, the firmware
determines that a Break instruction was issued and so jumps through the emulation-
mode BRK vector. In native mode, the 65C816 can tell the difference between BRK
and IRQ), so it jumps directly through the native-mode BRK vector.

Apple liGs mouse interrupts

The Apple DeskTop Bus (ADB) microcontroller periodically polls the ADB mouse to
check for activity. If the mouse has moved or the mouse button has been pushed, the
mouse firmware will respond to the microcontroller by returning 2 bytes of data. The
microcontroller returns this data to the system by writing both mouse data bytes to the
GLU chip (mouse byte Y followed by byte X—this enables the interrupt). Data bytes
are read only if the Event Manager (if active) or the application program issues the
mouse firmware call or the tool call ReadMouse. The GLU chip is the general logic unit
that provides logic elements enabling the 65C816 to communicate with the ADB
microcontroller,

The Apple 1IGS mouse firmware causes interrupts for the 65C816 microprocessor only
if the interrupt mode has been selecied via firmware. The Apple 1IGS mouse interrupts
in synchronization with the Apple 11GS vertical blanking signal (VBL). The mouse can
interrupt the 65C816 a maximum of 60 times per second. This cuts down on the burden
the mouse puts on the 65C816.

Al power-up or reset, the GLU chip turns the mouse interrupt off and enters the mouse
into a noninterrupt state.

Serial-port interrupt notification

When a channel has buffering enabled, the firmware services all interrupts that occur
on that channel. If an application wishes to service interrupts for a given channel
itself, the application should disable buffering using the BD command in the output
flow. If the buffering mode is off, the serial-port firmware will not process any
interrupts. The system interrupt handler will transfer control to the user's interrupt
vector as 503FE in bank 300 (this is the ProDOS user interrupt vector). The user's
interrupt service handler is then completely responsible for all serial-port interrupt
service, You can find further details about the serial-port firmware and its commands
in Chapter 5, "Serial-Port Firmware."

Serlal-port Interrupt notification




If the application does not want to disable buffering, but does wish to be notified that a
certain type of serial-port interrupt has occurred, the application can instruct the
firmware to pass control to an application-installed routine afier the system has
serviced the interrupt. The application tells the firmware when it wishes to be notified
and establishes the address of the application’s completion routine by using the
SetIntInfo routine. This call guarantees that the completion routine will get control
when a specific type of interrupt occurs, but only after the serial-port firmware has
processed and cleared the interrupt. The application then uses the GetlntInfo routine
to determine which interrupt condition occurred.

A terminal emulator offers a typical example of when interrupt notification might be
desirable. The emulator usually should perform input and output character buffering,
handshaking, and other such operations, The terminal emulator can be designed to
allow the firmware to handle all character-buffering details. The designer of the
emulator can have the firmware signal this emulator program when the firmware
receives a break character. To enable this special-condition notification, the emulator
application sets the break interrupt enable function by using the Setintinfo routine.
When the firmware receives a break character, the firmware SCC interrupt handler
then records and clears the interrupt and finally passes control to the emulator's
completion routine. This routine calls Getlntinfo, and if the break bit is set, the
completion routine knows that a break character has been received.

Note that all interrupt sources (except receive and transmit) cause an interrupt on a
fransifion in a given signal. This means that the user's interrupt handler will get
control passed to it on both positive and negative transitions in the signals of interest.
For example, a break-character sequence causes two interrupts: one at the beginning
of the sequence and one at the end. The user's interrupt handler should take this into
account. A routine can always determine the current state of the bits of interest by
using the GetPortStat routine.

The interrupt completion routine executes as parnt of the firmware interrupt handler
and must run in that environment. In addition, the following environment variables
must be preserved at their entry to your routine:

DBR = $00, e=0, m=1, x=1
Registers A, X, and Y need not be preserved.

184 Chapter 8: Interrupt-Handler Firmware




Chapter 9

Apple DeskTop Bus
Microcontroller

185



This chapter describes the Apple DeskTop Bus (ADB) microcontroller. This hardware
device collects information from the ADB peripheral devices. In association with the |
ADB Toal Set, the data that is collected is available to the user. Typical data includes
key-down and key-up sequences, mouse moves, and button clicks. The firmware that
performs these operations is not documented here. See the ADB Tool Set

documentation for information about the ADB firmware. This chapter is for reference |
only, providing a developer's view of the complete ADB system.

The ADB device is an [/O port with its own microcontroller. The microcontroller
accepts commands from the 65C816, manages the internal keyboard, and acts as a
host processor for ADB peripheral devices such as the mouse, the detachable
keyboard, and other devices that follow the ADB protocol.

The ADB system has four components and three distinct software interfaces.
Figure 9-1 shows the ADB system from a hardware perspective.

ADB
&5CAL
rlErODIOC oMl GLU = Microcontrolier (uC) _—

Mouse Keyboard

Figure 9-1
Apple DeskTop Bus components

The four hardware components are the 65C816, the GLU (general logic unit) chip, the
ADD microcontroller, and the components attached to the Apple DeskTop Bus
device. The application accesses the ADD components through the ADB Tool Set
The ADB Tool Set talks to the hardware by sending commands through the GLU chip
to the microcontroller, Some of these commands require data transfer over the ADB,
and others terminate in the microcontroller.

The GLU chip is actually a set of hardware registers (sometimes called mailbox
registers) that the 65CB16 uses to transmit commands and data to the microcontroller
from the 65C816 and that the microcontroller uses to pass data to the 65C816. Both the
65C816 and the mierocontroller are independent processors, each running at its own
pace. They exchange data through the GLU chip.

The microcontroller translates the commands it receives into data streams that it
sends along the Apple DeskTop Bus device itsell. All peripheral devices attached to
the bus listen to the data stream being transmitted. If the command is intended for a
specific peripheral device, it responds and possibly transmits data and status
information back to the microcontroller, The microcontroller, in turn, translates the
data and sends the translated data to the 65C816.

1886 Chapter 9: Apple DeskTop Bus Microcontroller

T e o O i




There is actually one more software interface: the program running independently in
the microcontroller itself. But that is immaterial here. It is sufficient to note that this is
an intelligent peripheral device that manages communication.

The Apiple ITGS Hardware Reference provides details about the hardware interface
between the ADB microcontroller and its attached peripheral devices and how the
microcontroller manages the internal and external keyboard and the mouse, the reset
sequence and the & key, key buffering (type-ahead), and so on.

The Apple I1GS Toolbox Reference provides details about the high-level commands
that allow access to the items attached to the ADB.

Although most applications do not require the information in this chapter, there are a

few exceptions:

O applications that allow the user to temporarily change Control Panel options

0 alternative input devices such as a graphics tablet thowever, an application may not
need to worry about this because a device driver can be transparently hooked into
the Event Manager)

0 multiplayer or multidevice applications |

If an application needs to temporarily change some Control Panel options, use the
ADB Tool Set. Note, however, that changing certain options can cause the system (o
fail.

An application should not call the ADB Tool Set to change Control Panel options
permanently. If a permanent change in certain system characteristics, such as the
aulp-repeat rate or bulfer-mode options, is necessary, the application should make
the changes by changing the Battery RAM (using the Miscellaneous Tool Set). Then
the application should call the routine TOBRAMSETUP to update the system with the
new Battery RAM values,

If you are writing a user program that uses the mouse and the keyboard, you will
probably not need the information in the rest of this chapter. For that level of
information, see the Apple [IGS Toolbox Reference. If you are a hardware developer
developing a new peripheral device for the Apple DeskTop Bus, you will need the
information given here as well as the information about the bus protocol itself and
interface specifications for ADB devices. This latter information is in the Apple IIGS
Hardware Reference.

The discussion in this chapter focuses on the ADB microcontroller and its

commands. The rest of this chapter is for reference only; it shows the application

designer the kinds of commands the ADB Tool Set issues to the microcontraller, You |
should not attempt to send any of these command streams to the microcontroller '
yvourself,

Important
Microcontraller communication is exclusively the job of the Apple liss Tool Set.

Chapter 9: Apple DeskTop Bus Microcontroller 187




ADB microcontroller commands

The microcontroller uses two types of commands: default and mode commands and
ADB commands. The default and mode commands are used by the Control Panel to
change system settings. The ADB commands are used to communicate with ADB
devices other than the detachable keyboard and the mouse (these are handled
automatically).

Caution

An application prograom must Issue microcontroller commands only through the
ADB Tool Set. If you attempt to use these commands directly, bypassing the tool
sat, you could cause a system fallure. (For more Information about the tool sat,
sea the Apple lics Toolbox Reference.)

This section provides a detailed description of each ADB microcontroller command.
The command values are given in binary format where the most significant bit is the
leftmost bit. A percent sign (%) preceding a string of zeroes and ones indicates a
binary value. The notation xy substituted for a binary digit pair in a command byte
stands for 2 bits that select one of four possible registers. The notation abed substituted
for four binary digits in a command byte, stands for 4 bits that select one of 16 possible
device addresses. The ADB can support up to 16 different device addresses, each of
which may have four hardware registers,

Abort, 501

This command synchronizes the microcontroller with the 65C816 microprocessor
when a command error occurs. Abort is a 1-byte command with a value of 00000001,

Reset Keyboard Microcontroller, $02

This command returns the keyboard microcontroller to its power-up state. It is a 1-
byte command with a value of %00000010.

Flush Keyboard Buffer, $03

This command clears the keyvboard buffer. Any keystrokes that were pending are
forgotten, It is a 1-byte command with a value of 900000011,

188 Chapter 9. Apple DeskTop Bus Microcontroller

—




set Modes, $04

This command sets modes. It is a 2-byte command, the first byte value is %00000100,
For each bit set in the byte that follows the Set Modes command, the corresponding
mode bit is set.

Clear Modes, 505

This command clears modes. 1t is a 2-byte command; the first byte value is
800000101, For each bit set in the byte that follows the Clear Modes command, the
corresponding mode bit is cleared,

Table 9-1 lists command bit functions,

Table 9-1
Bit functions

Bit Function

7 Resets from the ADB detachable keyboard alone when the Reset key alone is
pressed (Control not needed); works only with the detachable keyboard.

& Sets the exclusive-OR/Lock-Shift mode. (With the Eaps Lock i-ceyr down, you type
lowercase characters when you press the Shift key.)

5 Reserved.

4 Buffer keyboard mode.

3 Enables 4X repeat instead of dual (2X) repeat. (When the Control key is
pressed, the repeat speed for arrows is four times the normal speed.)

2 Includes the Space bar and Delete key on dual repeat, (When the Control key is
pressed, the repeat speed for Space bar, Delete key, and arrows is doubled.)

1 Disables ADB mouse autopoll (disables the mouse),
0 Disables ADB keyboard autopoll (disables the keyboard),

ADB microcontroller commands 182




Set Configuration Bytes, $06

This command sets configuration bytes. This is a 4-byte command (%00000110) that
uses the 3 bytes following the command as follows:

Byte 1 |
High nibble ADB mouse address
Low nibble ADE keyboard address
Byte 2

High nibble Sets character set (needed for certain languages) most significant bit if

keypad "." swapped with ""
Lo nibhle Sets kevhoard lavant languapges fess Takla 023
Byte 3
High nibble  Sets delay to repeat rate (3 bits)
0 1/4 sec
1 1/2 sec
2 3/4 sec
G 1 sec
4 No repeat
Low nibble Sels auto-repeat rate (3 bits)

]

40 keys/sec
30 keys/sec
24 keys/sec
20 keys/sec
15 keys/sec
11 keys/sec

8 keys/sec

4 keys/sec

=l O WM b L R e

Table 9-2 lists the keyboard language codes used for byte 2 of the Set Configuration
Bytes command.

Table 9-2

Keyboard language codes

Language Abbreviation Code Language Abbreviation Code

English (UJ.58.) US 0 Italian IT 5

English (UK) UK 1 German GR 6

French FR 2 Swedish 5W 7

Danish DN 3 Dwvorak DV 8

Spanish 5P 4 Canadian CN 9

190 Chapter 9: Apple DeskTop Bus Microcontroller |

_ |



Sync, $07

This command performs three of the preceding commands in sequence. It sets the
mode byte (see “Set Modes, $04" and “Clear Modes, $05") followed by the Set ,
Configuration Bytes (see “Set Configuration Bytes, $06"). This command is issued by
the system after a reset operation. After receiving the command, the microcontroller
resets itself to its internal power-up state and then resets all ADB devices. Sync is a
1-byte command with a value of %00000111.

Write Microcontroller Memory, $08

This command writes a value into the ADB microcontroller RAM. It is a 3-byte
command. The first byte has a value of %00001000. The second byte is the address 1o .
write into, The third byte is the value to be written, ’

Read Microcontroller Memory, $09

This command reads a byte from the ADB microcontroller memory. The command
reads ROM or RAM locations, depending on the value of the high byte of the address
sent for reading. This is a 3-byte command. The value of the first byte is %00001001.
The second byte is the low byte of the microcontroller address. The third byte is the
high byte of the microcontroller address. If the third byte is 0, RAM is read; otherwise,
ROM is read. This command returns 1 byte,

Read Modes Byte, $0A

This command reads the modes byte (see "Set Modes, $04" or "Clear Modes, $05").
Itis a 1-byte command with a value of %00001010. It returns 1 byte.

ADB microcontroller cormmands 191




Read Configuration Bﬁes, $0B

This command reads configuration bytes, It is a 1-byte command with a value of
1600001011, This command returns to the 65C816 (through the data latch in the GLUD a
total of 3 bytes (presented one at a time for reading by the 65C816) representing the
most recently set configuration (from the most recent Set Configuration Bytes
command). The 3 bytes are returned in the following sequence:

Byle 1
High nibble ADB mouse address

Low nibble ADB keyboard address

Byte 2

High nibble Sets character set (needed for certain languages)
Low nibble Sets keyboard layout language (see Table 9-2)
Byte 3

High nibble Sets delay to repeat rate (3 bits)

0 1/4 sec

1 1/2 sec

2 3/4 sec

3 1 sec

4 No repeat

Low nibble Sets auto-repeat rate (3 bits)
1 30 keys/sec
2 24 keys/sec
3 20 keys/sec
4 15 keys/sec
5 11 keys/sec
6 8 keys/sec
7 4 keys/sec

Eﬂd and Clear Error Byte, $0C

This command returns the ADB error byte to the data latch in the GLU. Tt clears the
ADB error byte to zero. It is a 1-byte command with a value of 2600001100, This
command is useful for hardware developers debugging new ADB devices.

Get Version Number, $0D

This command returns the device version number into the data latch in the GLU. It is a
1-byte command with a value of %00001101,

192 Chapter ¢: Apple DeskTop Bus Microcontroller

—




Read Available Character Sets, $0E

This instruction reads available character sets. It is a 1-byte command with a value of
500001110, The first byte value returned specifies how many character-set identifiers
follow this first byte. Subsequent bytes returned through the data latch identify the
character sets. This command is used by the Control Panel to determine which
character sets are available in the system. It is assumed that each microcontroller is
paired with a specific megachip. However; when the Apple 1IGS is manufactured, the
factory may install one type of megachip and a different type of microcontroller. This
command allows the system to correctly match the capabilities of the megachip with
the microcontroller that is actually installed in the system.

The order in which the character sets are returned is important. The first number
returned corresponds to character set 0 in the megachip; the next number
corresponds to character set 1, .

Read Available Keyboard Layouts, $OF

This command (%00001111) returns the number of keyboard layouts available. This
tommand is used by the Control Panel to determine which keyboard layouts are
available in the system. Like the Read Available Character Sets command, the order in
which the numbers are returned is important. The first number returned represents
layout 0 in the microcontroller,

Reset the System, $10

This command resets the system and pulls the reset line low for 4 milliseconds. It is a
1-byte command with a value of %00010000.

Send ADB Keycode, $11

This command is used to emulate an ADB keyboard by accepting ADB keycodes from
a device and then sending them to the microcontroller to be processed as keystrokes
This command does not process either reset-up or reset-down codes; these resel
keycodes must be processed separately. This command can be used to detect key-up
events or to emulate a keyboard with another device, such as might be used for the
handicapped. This is a 2-byte command. The first byte has a value of %00010001; the
second byte contains the keystroke to be processed. See the Apple IGS Hardware
Reference for details about the values that correspond to specific key-down, key-up
sequences.

ADB microcontroller comrmands 193




Reset ADB, $40

This command pulls the ADB low for 4 milliseconds. Care must be taken with this
command because resetting an ADB keyboard clears any pending commands,
including all key-up events. This means that if this command is issued as a result of a
key being pressed, when the key is released, the key-up code will be lost and the key will
autorepeat until another key is pressed. All keys should be up before this command is
executed, This is a 1-byte command with a value of %01000000.

Receive Bytes, $48

This command is used to receive data from an ADB device. This is a 2-byte
command, The first byte value is 301001000, The second byte value is a combination
of the ADB command (see the Apple IIGS Hardware Reference) in the high nibble
and the device address in the low nibble. The microcontroller sends this ADB
command byte on the ADB and then waits for the device 1o return data. The
microcontroller then returns the data bytes to the system in the opposite order that
they were received from the ADB, (The issuer of this command must know about ADB
commands and the values they return.)

Transmit num Bytes, $49-$4F

This command is used to transmit data to an ADB device. This is a 3- to 9-byte
command. The first byte value is the Transmit command itself and has a value of
%%01001num, where num is a set of 3 binary bits that represent a number. The value of
(num + 1) specifies how many data bytes will be transmitted as part of this command.
The second byte value is an actual ADB command. The third and subsequent bytes
{num + 1} are bytes that are transmitted directly to the devices on the ADB bus
immediately following the ADB command.

Enable Device SRQ, $50-$5F

This command enables an SRQ (service request) on the ADB device at address abed.
Itis a 1-byte command with a value of %0101abecd.

194 Chapter 9: Apple DeskTop Bus Microcontroller




Flush Device Buffer, $60-$6F

This command flushes the ADB device buffer at address abed. It is a 1-byte command
with a value of %0110abed.

Disable Device SRQ, $70-57F

This command disables the SRQ on an ADB device at address abed. It is a 1-byte
command with a value of %0111abed,

Caution
If data Is pending when this command s executed, the pending data could be

lost. For example, If SRG Is disabled on the ADB keyboard. then all key-up codes
could be lost. See “Reset ADB, 540.7

Transmit Two Bytes, $80-$BF

This command transfers 2 byles of data (data and status information) from a specific
device using the ADB Listen command (see the Apple lIGS Hardware Reference). 1t is
1 1-byte command with a value of %10xyabed, where xy is the register number and
abed is the device address.

Poll Device, $CO-$FF

This command is used to get data from a specific device. It uses the ADB Talk
command. After the Talk command is executed, the microcontroller waits for the
device to send back data or for timeout. The microcontroller waits until all data has
been received and then returns a status byte (see Table 9-3) to the system indicating
the number of bytes received and then returns the data. It returns the bytes in an order
opposite that in which they were received by the ADB. This is a 1-byte command with
avalue of %11xyabed, where xy is the register number and abed is the ADB device
address.

% Note: All commands (except the Sync command) that require more than a 1-byte
transfer automatically return timeout in 10 milliseconds if there is no response. The
Sync command may require 20 milliseconds to process the ADB address byte.

ADB microcontroller commands 195




Microcontroller status byte

The ADB microcontroller sends a status byte to the system when it detects one of the
conditions listed in Table 9-3. When the system receives the microcontroller status
byte, a system interrrupt occurs. The system then determines which of the conditions
caused the interrupt and jumps o the appropriate vector. The responses to these
interrupts are as follows:

® Response byte: Jumps to the response vector and processes incoming data from
the microcontroller,

B Abort/flush: Jumps to the abort vector and attempts to resynchronize the system
with the Apple DeskTop Bus; if this fails, a system error occurs.

m Desktop Manager key sequence: Jumps to the Deskiop Manager vector,

m Flush buffer key sequence: Jumps to the flush bulfer vector,

B SRQ: Jumps to the SRQ handler that is used to gather data from the ADB devices.
(This interrupt occurs if the device has some data that it wants to transmit. The
device generates a service request to catch the attention of the microcontroller.)

Table 9-3

Status byte returned by microcontroller

Bit Condition

7 Response byte if set; otherwise, status byte

6 Abort/flush

5 Desktop Manager key sequence pressed

4 Flush buffer key sequence pressed

3 SRQ wvalid

2-0 If all bits are clear, then no ADB data is valid; if data is available, then the bits

indicate the number of valid bytes received minus 1—between 2 and 8 bytes
total (001 means 2 bytes ready, 011 means 4 bytes, and so on).

194 Chapter : Apple DeskTop Bus Microcontroller




Chapter 10

Mouse
Firmware

167




This chapter describes the Apple 1IGS mouse firmware. You can read the mouse
position and the status of the mouse buttons using this firmware.

Impeortant

The material In this manual regarding soft switches and hardware reglsters for the
Apple llss mouse firmware Is provided for Information only. Appllcations must use
the firmware calls only if they wish to be compatible with the mouse device used
in all Apple |l systems,

The Apple I1GS mouse is an intelligent device that uses the Apple DeskTop Bus (ADB)
to communicate with the Apple 1IGS ADB microcontroller. This is a departure from
the AppleMouse™ card and the Apple Ilc mouse interface, each of which depends
extensively on firmware to support the mouse. The Apple 11GS mouse firmware has a
true passive mode like the AppleMouse, but it differs from the Apple llc mouse, which
requires interrupts to function

Cenain devices, o operate properly, must be the sole source of interrupls within a
system because they have critical times during which they require immediate service
by the microprocessor. An interrupting communications card is a good exa mple of a
device that has a critical service interval. If it is not serviced quickly, characters might
be lost. The true passive mode permits such devices to operate correctly, The passive
mode also prevents the 65C816 from being overburdened with interrupts from the
mouse firmware, as can occur in the Apple Tlc if the mouse is moved rapidly while an
application program is running,

The Apple IIGS mouse firmware can cause an interrupt only if all of the following
conditions are true;

0 The interrupt mode is selecied.

0 The mouse device is on.

O An interrupt condition has occurred,

O A vertical blanking signal (VBL) has occurred.

Unlike the Apple Ilc mouse, which interrupts whenever the mouse device is moved,
the Apple IIGS mouse device interrupts in synchronization with the VBL. This
automatically limits the total number of mouse firmware interru pts to 60 per second,
cutling down on the overhead the mouse device puts on the 65C816, If an interrupt

condition (determined by the mode byte setling) occurs, it will be passed to the
65C816 only when the next VBL occurs.

Warning

Because the mouse fimware information Is updated only once each vertical
blanking Interval, your program must be certain that at least one vertical
blanking interval has elapsed between mousa reads if it expacts to obtain new
information from the mouse device.

198 Chapter 10: Mouse Firmware




Mouse position data

When the mouse is moved, data is returned as a delta move as compared o its
previous position, where the change in X or Y direction can be as much as to + 63
counts, The maximum value of 63 in either direction represents approximately 0.8
inch of travel,

& Note: A delta move represents a number of counts change in position as compared
to the preceding position that the mouse occupied. The Apple TIGS mouse firmware
converts this relative-position data (called a delia) to an absolute position.

The mouse device also provides the following information to the mouse firmware:

O current button 0 and button 1 data (1 if down, 0 if up) |

0 delta position since last read

% Note: At power up or reset, the GLU chip enters a noninterrupt state and also turns
the mouse interrupts off,

The ADB microcontroller automatically processes mouse data. The microcontroller
periodically polls the mouse to check for activity. If the mouse device is moved or its
button is pushed, 2 bytes are sent to the microcontroller. The microcontroller sends
both mouse data bytes to the GLU chip (byte Y followed by byte X; this enables the
interrupt). The 65C816 then checks the status register to verify that a mouse interrupt
has occurred, the 2 data bytes have been read, and mouse byte Y was read [irst, The
GLU chip clears the interrupt when the second byte has been read. To prevent
overruns, the microcontroller writes mouse data only when the registers are empty
(after byte X has been read by the system). Table 10-1 shows the 16 bits returned by the
Apple 11GS mouse firmware.

Table 10-1
Apple llss mouse data bits
it Function

i
15 Button 0 status '
148 Y movement (negative = up, positive = down) l
7 Button 1 status

6-0 X movement {negative = left, positive = right)

Mouse position data 199




RTegister addresses—firmware only

Table 10-2 shows the contents of the register addresses that the ADB microcontroller
uses 1o transmit Apple [IGS mouse data and status information to the 65C816.

Table 10-2
Apple llss mouse reglster addresses

Address Function

$C027 GLU status register, defined as follows:

BitO=d  Must not be altered by mouse

Bit1=0 X position available (read only)
Bit1=1 Y position available (read only)
Bit2=k Must not be altered by mouse

Bitdi=k Must not be altered by mouse
Bit4=d  Must not be altered by mouse
Bit5=d  Must not be altered by mouse

Bit6=1  Mouse interrupt enable (read or write)
Bit7=1 Mouse register full (read only)

k Used by keyboard handlers
d Used by ADB handlers

5C024 Mouse data register:

First read yields X position data and button 1 data,
Second read yields Y position data and button 0 data.

To enable mouse interrupts, set bit 6 of location $C027 to 1. Recall, however, that only
this bit and no other should be changed. This entails reading the current contents,
changing only that single bit and then writing the modified value back into the register,

If mouse interrupts are enabled, the firmware determines whether the interrupt came

from the mouse by reading bits 6 and 7 of $C027; if both bits = 1, then a2 mouse
interrupt is pending.

Reading mouse position data—firmware only

The following sequence of steps must be taken, in this exact order, for accurate mouse
readings to be obtained. Failure to perform the steps in this order will necessitate
some correclive action because the data will be contaminated. Contaminated data is a
condition that occurs when the X and Y values that you are trying to read are from
different VBL reads of the mouse,

O Read bit 7 of $C027.

If bit 7 = 0, then X and Y data is not yet available,
If bit 7 = 1, then data is available, but could be contaminated.

200 Chapter 10: Mouse Firmware




0 Read bit 1 of $C027 only if bit 7 = 1.

Ifbit 1 = 0, then X and Y data are not contaminated and can be read. The first read
of $C024 returns X data and button 1 data; the second read of $C024 returns Y data
and button 0 data.

Use caution when using indexed instructions. The false read and write resulis of
some indexed instructions can cause X data to be lost and Y data to appear where X
data was expected.

If bit 1 = 1 and $C024 has not been read, then the data in $C024 is contaminated

and must be considered useless. If this condition occurs, perform the following
steps:

O Read $C024 one time only.

O Ignore the byte read in.
Exil the mouse read routine without updating the X, Y, or button data. This will not
harm the program; however, it guarantees that the next time the program reads mouse
positions, the positions will be accurate.
The data bytes read in contain the following information:
8 X data byte

If bit 7 = 0, then mouse button 1 is up. .
If bit 7 = 1, then mouse button 1 is down,

1 Bit 0-6 delta mouse move

If bit 6 = 0, then a positive move is made up to $3F (63).
If bit 6 = 1, then a negative move in two's complement is made up to $40 (64).
B Y data byte

If bit 7 = 0, then mouse button 0 is up.
If bit 7 = 1, then mouse button 0 is down.

B Bit 0-6 delta mouse move

If bit 6 = 0, then a positive move is made up to $3F (63).
If bit 6 = 1, then a negative move in two's complement is made up o $40 (64).

Position clamps

When the mouse moves the cursor across the screen, the cursor is allowed to move
only within specified boundaries on the screen. These boundaries are the maximum
cursor positions .on the screen in the X and Y directions, These maximum positions
are indicated to the firmware by clamps.

Clamps are data values that specify a maximum or minimum value for some other
variable. In this instance, the mouse clamps specify the minimum and maximum
positions of the cursor on the screen.

The mouse clamps reside in RAM locations reserved for the firmware. You should
only access these locations using the Apple 11GS tools,

Mouse position data 201




Using the mouse firmware

You can use the mouse firmware by way of assembly language or BASIC. There are
several procedures and rules to follow to be effective in either language. The following
paragraphs outline these procedures and rules and give examples of the use of the
mouse firmware from each of these languages.

Firmware entry example using assembly language

To use a mouse routine from assembly language, read the location corresponding to
the routine you want to call (see Table 104 at the end of this chapter). The value read
is the offset of the entry point to the routine to be called.

% Note: Interrupts must be disabled on every call to the mouse firmware.

The following assembly code example correctly sets up the entry point for the mouse
firmware. Note that n is the slot number of the mouse. To use the code, you must
decide which mouse firmware command you wish to use and then duplicate the code
for each of the routines you use. For example, to use SERVEMOUSE from assembly
code, you would replace the line SETMENTRY LDA SETMOUSE with a line that reads
SERVEMENTRY LDA SERVEMOUSE, where SERVEMOUSE is $Cn13. Table 10-4
defines all of the offset locations for the built-in mouse firmware routines.

SETMOUSE EQU
SETMENTRY LDA
5TA
LDX
LDY
BHP
SEI
LDA
JSR
BCS
ELP
RTS
ERROR FLP
JME
TOMOUSE JMP

sCnlz2
SETMOUSE
TOMOUSE+2
cn

nd

501
TOMOUSE
ERROR

ERRORMESSGE
5Cn0Q

;Offset te SETMOUSE offset (5C412 for Apple IIcs)
iGet offset into code

fModify operand

iWhere Cn = C4 in Apple IIcs

iWhere n = 40 in Apple IIgs

iSave interrupt status

sGuarantees no interrupts

;Turn mouse passive mode on

/J5R to a modified JMP instruction

IC =1 1if illegal-mode-entered error

iRestore Iinterrupt status

jExit

fRestore interrupt status

;Exit to error routine

iModified ocperand for correct entry point; $c4n0
Apple IIcs

202 Chapter 10: Mouse Firmware

for




Firmware entry exump!e:_ i.lsing BASIC

To turn the mouse on using BASIC, execute the following code:

PRINT ©CHRE {4) ;"FR&4" :REM Mouse ready for output
PRINT CHR [1) :REM 1 turns the mouse on from BASIC
PRINT CHRS {4) :"PR&D" tREM Restore screen output

& Noter Use PRINT CHRS (4); "PR#3" to return to 80-column mode,

To accept outputs from BASIC, the firmware changes the output links at 536 and $37 o
point 1o $C407 and performs an INITMOUSE routine (resets the mouse clamps to their
default values and positions the mouse Lo location 0,00,

To turn the mouse off, execute the following BASIC program:

PRINT ‘CHR5(4) ; "PR#4™ :REM Mouse ready [or outpul
PRINT CHR Q) :REM 0 turns the mouse off from BASIC
PRINT CHRS5(4) ; "PR&#0™ :REM Restore screen output

% Note: Use PRINT CHRS(4);"PR#3" to return to 80 columns.
To read mouse position and button statuses from BASIC, execute the following code:

PRINT CHRS(4); "IN#4" tREM Mouse ready for lnput

INPUT X, ¥, B tREM Input mouse position

PRINT CHRS(4); "IN&O™ :REM FReturn keyboard as the input device when mouse
positions have been read

When the mouse is wrned on from BASIC (for data entry), the firmware changes the
input links at 538 and $39 to point to $C405. When you execute an INPUT statement
while the input link is set for mouse input, the firmware performs a READMOUSE
operation before converting the screen-hole data to decimal ASCII and places the
converted input data in the input buffer at $200.

In BASIC, the mouse runs in passive mode or a noninterrupt mode, Clamps are set
automatically 1o 0000-1023 ($0000-803FF) in both the X and the Y direction, and
position data in the screen holes are set to 0.

During execution of a BASIC INPUT statement, the firmware reads the position
changes (deltas) from the ADB mouse and adds them to the absolute position in the
screen holes, clamping the positions if necessary, and converts the absolute positions
in the screen holes 1o ASCII format. The firmware then places that data, with the
button 0 status, in the input buffer, issues a carriage return, and returns to BASIC.

% Note: The term screen holes has absolutely nothing to do with the appearance of
anything on the actual display. Screen holes are simply unused bytes in the memory
area normally reserved for screen-display operations. Because screen holes are
unused by the display circuitry, they can be used by the firmware for other
purposes.

Using the mouse fiimware 203




Reading button 1 status

Button 1 status cannot be returned to a BASIC program, This would add another input
variable to the input buffer, and an error message that states ?EXTRA IGNORED
would be displayed.

If vou want to read button 1 status, you can use the BASIC Peek command to read the
screen hole that contains that data. The data returned to the input buffer is in the
following form:

5 x1 %2 x3 x4 x5, s ¥yl y2 y3 y4 y5, sb BO b5 er
where

s = Sign of absclute position
x1...x5 = Five ASCII characters indicating the decimal value of X
y1l...y5 = Five ASCII characters indicating the decimal value of ¥

sb = Minus sign (=) if key on keyboard was pressed during INPUT statement
entry and plus (+) if no key was pressed during INPUT statement entry

BO = ASCII space character

b5 = 1 if button 0 is pressed now and was also pressed during last INPUT
statement entry

2 if button 0 is pressed now but was not pressed during last INPUT
stalement entry

]

3 if button 0 is not pressed now but was pressed during last INPUT
statement entry

4 if button 0 is not pressed now and was not pressed during last INPUT
statement entry

cr = Carriage return (required as a terminator before control is passed from
firmware back to BASIC)

% Note: The BASIC program must reset the key strobe at $C010 if sb returns to a
negative state. POKE 49168,0 resets the strobe.

The mouse is resident in the Apple IIGS internal slot 4, When the mouse is in use, the
main memory screen holes for slot 4 hold X and ¥ absolute position data, the current
mode, bulton 0/1 status, and interrupt status. Fight additional bytes are used for
mouse information storage; they hold the maximum and minimum clamps for the
mouse's absolute position.

Table 10-3 shows the mouse’s screen-hole use when Apple 1IGS firmware is used.
Figures 10-1 and 10-2 show how the bits of the button interrupt status byte and the
mode byle are assigned.

204 Chapter 10: Mouse Firmware




Table 10-3
Position and status Information

Address Use

$47C Low byte of absolute X position

$4FC Low byte of absolute Y position

$57C High byte of absolute X position

§5FC High byte of absolute Y position

$67C Reserved and used by firmware

$6FC Reserved and used by firmware

$77C Buton 0/1 interrupt status byte (see Figure 10-1)
$7FC Mode byte (see Figure 10-2)

Tlaejs)1413j211]0 |

E— Praviously, button 1 was up/down (0/1)

Movement interrupt

Button 0/ interupt

VBL Interrupt |

Currently, button 1 is up/down (0/1)

XY moved since last READMOUSE

Previously, button 1 was up/down (0/1)

Currently, button 1 Is up/down (0/1)

Figure 10-1
Button Interrupt status byte, $77C
FlalE|]aja3ajzl1]a0 I
Mouse offfon (0/1)
Imnterrupt on next VBL if mouse s moved
Imterrupt on next VBL if button is pressed
Interrupt on VBL
Resarnved
Resarved '
Used by firmware only
Resarved
Reserved
Figure 10-2

Mede byta. STFC Using the melse fimwears 205

|
|
|




Mouse programs in BASIC

Two program examples are provided below. The first example, Mouse.Move, reads
and displays the mouse position information. The second example is called
Mouse.Draw and allows you to make simple drawings on the screen in low-resolution
graphics mode,

Mouse.Move program

13 HOME

£0 PRINT "MOUSE.MOVE DEMO"

30 PRINT CHRS(4) ;"PRA#4":PRINT CHRS (1)
40 PRINT CHRS(4) ; "PR#O"

30 PRINT CHRS({4) :"IN#q"

60 INPUT "":X,¥,5

10 VTAB 10:PRINT X:*» ey nhgn "
80 IF 5§ > 0 THEN 6D

90 PRINT CHRS(4);"IN4O"

100 PRINT CHRS (4) ;"PR#4":PRINT CHRS(0)
110 PRINT CHRS(4) ;"PR#O"

Comumenis

Line 10 clears the screen to black,

Line 20 prints a heading message.

Line 30 starts up the mouse's internal program.

Line 40 establishes that subsequent PRINT commands will send information to the monitor
screen,

Line 50 establishes that the subsequent INPUT command will read the mouse.

Line 60 transfers mouse position and button status readings to the numeric variables x Y,
and 5.

Line 70 displays the numeric variables X, Y, and § on the 10th line of the monitor sereen,
Line 80 returns the program for more mouse data if no keyboard key has been pressed. If a
key has been pressed, the program drops to line 90.

Line 90 reestablishes your keyboard as the input device.

Line 100 resets the mouse position data to zero,

Line 110 reestablishes the menitor screen as the output device,

Line 120 ends the program.

206 Chapter 10: Mouse Firmwara




Mouse.Draw program

10 REM MOUSE.DRAW Uses mouse to draw lo-res graphics
100 GOS5UBR 1000: REM TURN ON THE MOUSE
110 PRINT CHRS(4) ;"IN#4"

120 INPUT "";X,Y,S5:REM READ MOUSE DATA
130 IF 5=1 THEN 100:REM CLEAR THE SCREEN
140 IF S<0 THER 300;REM TIME TO QUIT?
150 REM SCALE MOUSE POSITIOCN

160 X=INT(X/25.575)

170 Y=IKT (¥/25.575)

180 PLOT X,Y

180 GOTO 120

300 REM CHECK IF TIME TO QUIT

3o PRINT CHR5(4) ;"IN#0"

320 VTAB 22:PRINT "PRESS RETURN TO CONT OR ESC TO QUIT™
3ae VTAB 22:HTAB 39:GET A%:FPOKE -16368,0
340 IF AS=CHRS({13) THEN HOME:GOTO 110
kL1 IF AS«<>CHRS({27) THEN 330

360 REM CLEAR SCREEN AND ZERO MOUSE

370 TEXT : HOME

380 PRINT CHRS(4);"PR#4":PRINT CHRS(1)
3an PRINT CHRS{4):"PR&O"

400 END

1000 REM Clear the screen and initialize the mouse
1010 HOME:GR

1020 COLOR = 15

1030 PRINT CHRS(4);"PR#4":PRINT CHRS5(1)

1040 PRINT CHRS(4) ;"PR&O"

1050 RETURN

Mouse programs in BASIC 207




Commenits

Line 10 reminds you what the program does.

Line 100 calls the subroutine at lines 1000 through 1050

Line 110 establishes that the subsequent INPUT command will read the mouse.

Line 120 transfers mouse position and button status data 1o the numeric variables X, Y, and S.
Line 130 reinitializes the mouse if its button is pressed.

Line 140 sends the program 1o its exit routine if a key on the Apple keyboard has been
pressed.

Line 150 reminds you what the next two lines do

Lines 160 and 170 convert the range of mouse position numbers (0 to 1023) to the range of
low-resolution graphics coordinates (0 to 400,

Line 180 plots a point on the monitor screen.

Line 190 sends the program back for more mouse data.

Line 300 reminds you what lines 310 through 400 do.

Line 310 tells the computer to accept input from its keyboard,

Line 320 prints prompting instructions on line 22 of the screen.

Line 330 fetches your answer to the prompt and changes the bulton status number back to
positive (it becomes negative whenever you press a key on the Apple keyboard).

Line 340 sends the program back to reporting mouse data if you pressed Return,

Line 350 fetches anather answer il you press any key except Esc,

Line 360 reminds you what happens next

Line 370 cancels graphics mode and clears the screen.

Line 380 resets the mouse position data to zero.

Line 390 recstablishes the monitor screen as the output device,

Line 400 ends the program,

Line 1000 reminds you what the following subroutine does.

Line 1010 clears the monitor screen and sets up Apple's low-resolution graphics mode,

Line 1020 establishes that the cursor will be white.

Line 1030 starts up the mouse's internal program.

Line 1040 establishes that subsequent PRINT commands will send information to the monitor
SCTEE.

Line 1050 returns to the main program (line 100).

208 Chapter 10: Mouse Firmware




Summary of mouse firmware calls

The firmware calls to enter mouse routines are listed in Table 10-4, These calls
conform to Pascal 1.1 protocol for peripheral cards.

Table 10-4 |
Mouse firmware calls

Location Routine Definition

Pascal firmware entry points for the mouse

SC40D PINIT Pascal INIT device (not implemented)
SC40E PREAD Pascal READ character (not implemented)
SC40F PWRITE Pascal WRITE character (not implemented)
3C410 PSTATUS Pascal get device status (not implemented)
SC411 = 300 Indicates that more routines follow

Routines Implemented on Apple IS, Apple Il, and AppleMouse card

$C412 SETMOUSE Sets mouse mode

$C413 SERVEMOUSE  Services mouse interrupt |

SC414 READMOUSE  Reads mouse position .

$C415 CLEARMOUSE  Clears mouse position to 0 (for delta mode)

$C416 POSMOUSE Sets mouse position to user-defined position

$C417 CLAMPMOUSE  Sets mouse bounds in a window

3C418 HOMEMOUSE  Sets mouse to upper-left corner of clamping window .

§C419 INITMOUSE Resets mouse clamps to default values; sets mouse |
position to 0,0 |

Entry points compalible with AppleMouse card; they do nothing in Apple lIGS

SC41A DIAGMOUSE Dummy routine; clears c and performs an RTS
SC41B COBYRIGHT  Dummy routine; clears ¢ and performs an RTS ;
3C41C TIMEDATA Dummy routine; clears ¢ and performs an RTS -
$C41D SETVBLCNTS Dummy routine; clears ¢ and performs an RTS
$C41E OPTMOUSE Dummy routine; clears ¢ and performs an RTS
SC41F STARTTIMER Dummy routing; clears ¢ and performs an RTS

Other significant locations

SC400 BINITENTRY Initial entry point when coming from BASIC

$C405 BASICINPUT BASIC input entry point (opcode SEC) Pascal 1D
byte

SC407 BASICOUTPUT BASIC output entry point (opcode CLC) Pascal 1D
byte

§C408 = 501 Pascal generic signature byte

$C40C = 520 Apple technical-support [D byte

SC4FB = $D6 Additional 1D byte

summary of mouse firmware calls 209




Pascal calls

Pascal recognizes the mouse as a valid device; however, Pascal is not supported by the
firmware. A Pascal driver for the mouse is available from Apple to interface programs
with the mouse. Pascal calls Plnit, PRead, PWrite, and PStatus return with the X
register set to 3 (Pascal illegal operation error) and the carry flag set to 1. Following is a
list of Pascal firmware calls.

Pinit

Function Not implemented (just an entry point in case user calls it by mistake),
Input All registers and status bits,
OQutput X = 303 (error 3 = bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged.

PRead

Function Not implemented (just an entry point in case user calls it by mistake),
Input All registers and status bits,

Output X = $03 (error 3 = bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged,

PWrite

Function Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status bits.

Output X = 803 (error 3 = bad mode: illegal operation). ¢ = 1 (always),

Screen holes: unchanged.

PStatus

Function  Not implemented (just an entry point in case user calls it by mistake).
Input All registers and status bits,

Output X = 303 (error 3 = Bad mode: illegal operation). ¢ = 1 (always).

Screen holes: unchanged.

210 Chaopter 10: Mouse Firmware




Assembly-language calls
This section describes the assembly-language firmware calls, When you use the mouse
from assembly language, you must keep several items in mind,
0 For built-in firmware, n = mouse slot number 4.
0 The following bits and registers are not changed by mouse firmware:

DemIx

O direct register

O data bank register

O program bank register

0 Mouse screen holes should not be changed by an application program, with one
exception: During execution of the POSMOUSE function, new mouse coordinates
are written by the application program directly into the screen holes. No other
mouse screen hole can be changed by an application program without adversely
affecting the mouse,

0 The 65C816 assumes that the mouse firmware is entered in the following machine
state:

O 65C816 is in emulation mode.

O Direct register = $0000.

O Data bank register = $00.

O System speed = fast or slow (does not matter which),

O Text page 1 shadowing is on to allow access to screen-hole data,

Here are the actual firmware routines. Notice that each is specified by its offset entry
address. Recall that the offset entry point is a value at a given location (for example,
$C412) 1o which you add the value of the main entry point (for example, SC400) to
obtain the actual address to which the processor must jump to execute the routine.

SETMOUSE, $C412

Function Sets mouse operation mode.,

Input A = mode (500 to 30F are the only valid modes).
X = Cn for standard interface (Apple 11GS mouse not used).
Y = n0 for standard interface (Apple 11GS mouse not used).

Output A = mode if illegal mode entered; otherwise, A is scrambled.
X, Y, V, N, Z = scrambled.
¢ = 0 if legal mode entered (mode is <= $0F).
¢ = 1 if illegal mode entered (mode is > $0F).
Screen holes: Only mode bytes are updated.

Assembly-longuage calls

2n




SERVEMOUSE, $C413

Functon  Tests for interrupt from mouse and resets mouse’s interrupt line.

Input X = Cn for standard interface (Apple 11GS mouse not used).
Y = n0 for standard interface (Apple [IGS mouse not used).
Output XY, V, N, Z=scrambled.

¢ = 0 if mouse interrupt occurred.
¢ = 1 if mouse interrupt did not occur.
Screen holes: Interrupt status bits updated to show current status.

READMOUSE, $C414

Function  Reads delta (X/Y) positions, updates absolute X/Y positions, and reads
button statuses from ADB mouse.

Input A = not affected.
X = Cn for standard interface (Apple 11GS mouse not used).
Y = n0 for standard interface (Apple IIGS mouse not used).

Output AX Y,V N, Z=scambled
¢ = 0 (always).
Screen holes: SLO, XHI, YLO, YHI buttons and movement status bits
updated,; interrupt status bits are cleared,

CLEARMOUSE, $C415

Function Resets buttons, movement, and interrupt status to 0, X, and Y. (This
mode is intended for delta mouse positioning instead of the normal
absolute positioning.)

Input A = not affected.

X = Cn for standard interface (Apple 11G5 mouse not used).
Y = n0 for standard interface (Apple 11GS mouse not used).

Output A XY, V, N, Z = scrambled,
c = 0 (always).
Screen holes: SLO, XHI, YLO, YHI buttons and movement status bits
updated; interrupt status bits are cleared.

212 Chapter 10: Mouse Firmware




POSMOUSE, $C416

Function Allows user to change current mouse position.

Input User places new absolute X/Y positions cirectly in appropriate screen
holes,
X = Cn for standard interface (Apple 1IGS mouse not used),
Y = n0 for standard interface (Apple 11GS mouse not used).

Output A XY, V, N, Z=scrambled,
¢ =0 (always).
Screen holes: User changed X and Y absolute positions only; bytes
changed.

CLAMPMOUSE, $C417

Function Sets up clamping window for mouse use, Power-up default values are 0
to 1023 ($0000 to $03FF).

Input A = 0 if entering X clamps,
A =1 if entering Y clamps.

Clamps are entered in slot 0 screen holes by the user as follows:

$478 = low byte of low clamp,
$4F8 = low byte of high clamp.
3578 = high byte of low clamp.
$5F8 = high byte of high clamp.

X = Cn for standard interface (Apple 11GS mouse not used).
Y = n0 for standard interface (Apple 11GS mouse not used).

Output A X Y, V, N, Z=scrambled.
c =0 (always).
Screen holes: X/Y absolute position is set to upper-left corner of
clamping window. Clamping RAM values in bank $EO are updated.

@ Note: The Apple TIGS mouse firmware performs an automatic HOMEMOUSE
operation after a CLAMPMOUSE. HOMEMOUSE execution is required because the
delta information is being fed to the firmware instead of +1's, as in the case of the
Apple I mouse and the 6805 AppleMouse microprocessar card. The delta
information from the Apple I1GS ADB mouse alters the ahsolute position of the
screen pointer, using clamping techniques not used by the other two mouse
devices.

Assembly-language calls

213




HOMEMOUSE, $C418

Function Sets X/Y absolule position to upper-leflt corner of clamping window.

Input A = not affected.
X = Cn for standard interface (Apple 11G5 mouse not used).
Y = n) for standard interface (Apple IIGS mouse not used).

Output A X Y, V, N, Z=scrambled.
¢ = 0 (always)
Screen holes: User changed X and Y absolute positions only; bytes
changed

INITMOUSE, $C419

Function Sets screen holes o default values and sets clamping window to default
value of 0000 to 1023 (30000, $03FF) in both the X and Y directions;
resets GLU mouse interrupt capabilities

Input A = not affected.
X = Cn for standard interface (Apple 11GS mouse not used)
Y = n0 for standard interface (Apple 1IGS mouse not used).

Output A XY, V, N, Z = scrambled.
c = 0 Calways)
Screen holes: X/Y positions, button statuses, and interrupt status are
reset.

% Note: Button and movement statuses are valid only after a READMOUSE operation
Interrupt status bits are valid only after a SERVEMOUSE operation. Interrupt status
bits are reset after READMOUSE. Read and use or read and save the appropriate
mouse screen-hole data before enabling or reenabling 65C816 interrupts.

214 Chapter 10: Mouse Firmware




Appendix A

Roadmap to
the Apple llcs
Technical Manuals

The Apple IIGS personal computer has many advanced features, making it more
complex than earlier models of the Apple I1. To describe it fully, Apple has produced
a suite of technical manuals. Depending on the way you intend to use the Apple 1IGS,
you may need to refer to a select few of the manuals, or you may need to refer to most
of them,

The technical manuals are listed in Table A-1. Figure A-1 is a diagram showing the
relationships among the different manuals.

215




Table A-1
Apple llss technical manuals

Title

Subject

Technical mtroduction to the Apple IIGS

Apple IIGS Hardware Reference
Apple 1IGS Firmware Reference

Programmer's Introduction
lo the Apple IGS

Apple 11GS Toolbox Reference,
Volume 1

Apple IS Toolbox Reference,
Volume 2

Apple 1G5 Programmer's Workshop
Reference

Apple [IGS Programmer's Workshop
Assembler Reference

Apple [IGS Programmer's Workshop
' Reference

Prof30S 8 Technical Reference Manual
Apple IIGs ProDOS 16 Reference

Human Interface Guidelines:
The Apple Desktop Interface

Apple Numerics Manual

What the Apple 1IGS is
Machine internals—hardware
Machine internals—firmware

Concepts and a sample program
How the tools work and some toolbox
specifications

More toolbox specifications

The development environment

Using the APW assembler

Using C on the Apple 11GS

Standard Apple Il operating system

Apple 1IGS operating system and System
Loader

Guidelines for the deskiop interface

Numerics for all Apple computers

214 Appendix A: Roadmap to the Apple lles Technical Manuals

—




Figure A-1
Roadmap to the technical manuals

To start finding out
about the Apple IG5

lo learn how
the Apple IGS works

To start leaming
to program the Apple IG5

To use the toolbox

To use the development
environment

To operate on files

To use C

1o use
assembly language

Appendix A: Roadmap to the Apple lies Technical Manuals 217




The introduc’m'rv manuals

These books are introductory manuals for developers, computer enthusiasts, and
other Apple 1IGS owners who need technical information. As introductory manuals,
their purpose is to help the technical reader understand the features of the Apple 11G5,
particularly the features that are different from other Apple computers. Having read
the introductory manuals, the reader will refer to specific reference manuals for details
about a particular aspect of the Apple IIGS.

The technical lniraducilﬁn

The Technical ntroduction to the Apple [IGS is the first book in the suite of technical
manuals about the Apple 1IGS. It describes all aspects of the Apple 1G5, including its
features and general design, the program environments, the toolbox, and the
development environment.

Where the Apple ITGS Owner’s Guide is an introduction from the point of view of the
user, the technical introduction manual describes the Apple 11GS from the point of
view of the program. In other words, it describes the things the programmer has to
consider while designing a program, such as the operating features the program uses
and the environment in which the program runs.

The programmer’s introduction

When you start writing Apple 1IGS programs, the Programmer's Introduction 1o the
Apple TGS provides the concepts and guidelines you need. It is not a complete course
in programming, only a starting point for programmers writing applications that use
the Apple desktop interface (with windows, menus, and the mouse). It introduces the
routines in the Apple IIGS Toolbox and the program environment they run under. It
includes a sample event-driven program that demonstrates how a program uses the
toolbox and the operating system. (An event-driven program waits in a loop until il
detects an event such as a click of the mouse button.}

218 P\F}p@ﬂdik A ﬁﬂﬂdl“l‘!ﬂp to the ﬁ-._p_ple llzs Technical Manuals




— e M e T

The machine reference manuals

There are two reference manuals for the machine itsell: the Apple llGs Hardware
Reference and the Apple IIGS Firmware Reference. These books contain detailed
specifications for people who want to know exactly what's inside the machine.

The hardware reference manual

The Apple lIGS Hardware Reference is required reading for hardware developers,
and it will also be of interest to anyone else who wants 1o know how the machine works.
Information for developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware, which provide a better understanding of the
machine’s features,

The firmware reference manual

The Apple IIGS Firmware Reference describes the programs and subroutines that are
stored in the machine's read-only memory (ROM), with two significant exceptions:
Applesolt BASIC and the toolbox, which have their own manuals. The firmware
reference manual includes information about interrupt routines and low-level 1/O
subroutines for the serial ports, the disk port, and the Apple DeskTop Bus interface,
which controls the keyboard and the mouse. The manual also describes the Monitor, a
low-level programming and debugging aid for assembly-language programs.

The toolbox reference manuals

Like the Macintosh, the Apple 11GS has a built-in toolbox. The Apple llcs Toolbax
Keference, Volume 1, introduces concepts and terminology and tells how to use some
of the tools. The Apple IIGS Toolbox Reference, Volume 2, contains information
about the rest of the tools and also tells how to write and install your own tool set..

Of course, you don't have 1o use the toolbox at all. If you only want to write simple
programs that don't use the mouse, or windows, or menus, or other parts of the
desktop user interface, then you can get along without the toolbox. However, if you are
developing an application that uses the desktop interface or if you want to use the Super
Hi-Res graphics display, you'll find the toolbox to be indispensable.

In applications that use the desktop user interface, commands appear as oplions in
pull-down menus, and material being worked on appears in rectangular areas of the
screen called windotws. The user selects commands or other material by using the
mouse o move a pointer around on the screen,

The toolbox reference manuals

219



The programmer’s workshop reference manual

The Apple 11GS Programmer’s Workshop (APW) is the development environment for
the Apple IIGS computer. APW is a set of programs that enables developers to create
and debug application programs on the Apple IIGS. The Apple [IGS Programmer's
Workshopy Reference includes information about the APW Shell, Editor, Linker,
Debugger, and utility programs; these are the parts of the workshop that all developers
need, regardless of which programming language they use.

The APW reference manual describes the way you use the workshop to create an
application and includes examples and illustrations to show how this is done. In
addition, this manual documents the APW Shell to provide the information necessary
to write an APW utility or a language compiler for the workshop.

Included in the APW reference manual are complete descriptions of two standard
Apple 11GS file formats: the text file format and the object module format. The text file
format is used for all files written or read as “standard ASCII files” by Apple 11GS
programs running under ProDOS 16. The object module format is used for the ouptut
of all APW compilers and for all files loadable by the Apple 11GS System Loader.

The programming-language reference manuals

Apple currently provides a 65C816 assembler and a C compiler. Other compilers can
be used with the workshop, provided that they follow the standards defined in the
Apple HIGS Programmer'’s Workshop Reference.

There is a separate reference manual for each programming language on the
Apple 11G5. Each manual includes the specifications of the language and of the
Apple 11GS libraries for the language, and describes how 1o use the assembler or
compiler for that language. The manuals for the languages Apple provides are the
Apple 1165 Programmer’s Workshop Assembler Reference and the Apple IIGS
Programmer's Workshop C© Reference.,

The Apple IIGS Programmer’s Workshop Reference and the two programming-
language manuals are available through the Apple Programmer's and Developer's
Association.

220 Appendix A: Roadmap to the Apple liss Technical Manuals




The operating-system reference manuals

There are two operaling systems that run on the Apple 1IGS: ProDOS 16 and

ProDOS 8. Each operating system is described in its own manual: ProDOS 8 Technical
Reference Manual and Apple I1GS ProDOS 16 Reference. ProDOS 16 uses the full
power of the Apple 1G5, The ProDOS 16 manual describes its features and includes
information about the System Loader, which works closely with ProDOS 16. If you are
writing programs for the Apple IG5, whether as an application programmer or a
system programmer, you are almost certain to need the ProDOS 16 reference manual.

ProDOS 8, previously just called ProDOS, is the standard operating system for most
Apple 1T computers with 8-bit CPUs (Apple ¢, Ile, and 64K 11 Plus), It also runs on the
Apple 11GS. As a developer of Apple 11GS programs, you need the ProDOS 8 Technical
Reference Manual only if you are developing programs to run on 8-bit Apple IT's as
well as on the Apple 11GS.

ﬁ;e all-Apple manuals

In addition to the Apple 11GS manuals mentioned above, there are two manuals that
apply to all Apple compulers: Human Interface Guidelines: The Apple Desklop
Interface and Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about those manuals.

The Human Interface Guidelines manual describes Apple's standards for the desktop
interface of any program that runs on an Apple computer. If you are writing a
commercial application for the Apple IIGS, you should be fully familiar with the
contents of this manual.

The Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE™), a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE Std 754-1985). The functions of the Apple IIGS SANE
tool set match those of the Macintosh SANE package and of the 6502 assembly-
language SANE software. If your application requires accurate or robust arithmetic,
you'll probably want to use the SANE routines in the Apple 11G5. The Apple IIGS
Tholbox Reference tells how to use the SANE routines in your programs. The Apple
Numerics Manual is the comprehensive reference for the SANE numerics routines.

The dll-Apple manuals 227




Appendix B

Firmware ID Bytes

The firmware ID bytes are used to identify the particular hardware system on which you
are currently working. Table B-1 lists the locations from which you can read ID
information. Each system maintains three separate ID byte locations, as indicated in
the table. If all three ID bytes match for a given system type, you will know that your
software is running on that particular system,

Table B-1
ID Information locations

Main ID Sub D] Sub ID2

System ($FBBY) (FBCD) (4FBBF)
Apple 11 538 860 $2F
Apple 11 Plus SEA SEA SEA
Apple lle 506 SEA $C1
Apple Tle Plus 806 $EO 500
Apple 1IGS 506 $E0 00
Apple Ilc 506 500 $FF
Apple llc Plus 506 500 500

To distinguish the Apple 1IGS from an Apple Ile Plus (the 1D bytes are identical), run
the following short routine with the ROM enabled in the language card.

5EC ic = 1 as a starting point
JSR SFELF iRT5 for Apple I] computers
iprior to the Apple IIcs
BCS ITSAPPLEIIE iIf ¢ =1, then the system is an old Apple 11
BCC  ITSApplellcs ;If ¢ = 0, then the system is a Apple IIGs or later and the

registers are returned with the infeormation in Table B-2.

222




Table B-2
Reglster bit information

Register Bit Infermation

A Reserved

1, if system has a memory expansion slot
1, if system has an ['WM port

1, if system has a built-in clock

1, if system has Apple DeskTop Bus

1, if system has SCC

1, if system has external slots

1, if system has internal ports

e L Y o e
T
]

L

Machine ID:
00 Apple 11GS
1-FF Future machines

X 70 ROM version number

The Y register contains the machine ID; the X register contains the ROM version
number.

& Note: If the ID call was made in emulation mode, only the low 8 bits of X, A, and Y
are returned correctly; however, the ¢ bit is accurate. If the call was made in native
mode, the ¢ bit as well as register information is accurate as shown in Table B-2 and
is returned in full 16-bit native mode. The c bit is the carry bit in the processor status
register, If the value returned in Y is $00, the value in A should be considered to be
$7F.

Appendlx B: Firmware ID Bytes 223




Appen}:ﬁx e

Firmware Entry Points
in Bank $00

Apple Computer, Inc. will maintain the entry points described within this document
in any future Apple 1IGS or Apple Il-compatible machine that Apple produces. No
other entry points will be maintained. Use of the entry points in this document will
ensure compatibility with Apple IGS and future Apple Il-compatible machines. Note
that these entry points are specific to Apple TGS and Apple IIGS—compatible machines
and do not necessarily apply to Apple lle or Apple Ilc machines.

As an aliernative 1o using these entry points, note that you can also use the
Miscellaneous Tool Set FWENTRY firmware function.

For all of the routines defined in this chapter, the following definitions apply:
O A represents the lower 8 bits of the accumulator,

O B represents the upper 8 bits of the accumulator,

0 X and Y represent 8-bit index registers.

0 DER represents the data bank register.
O K represents the program bank register,
O P represents the processor status register,

0O 5 represents the processor stack register,

m]

D represents the direct-page register,

(]

e represents the emulation-mode bit,

O ¢ represents the carry flag.

O

? represents a value that is undefined.

224




Warning

For all of the routines In this appendix, the following ernvironmeant variables must
be set with the values shown here:

o The e bit must be set to 1.

0 The declmal mode must be set to 0.
o K must be set to $00.

0 D must be set to $0000.

0 DBR must be set to $00.

Following are descriptions of the firmware routines supported as entry points in
current and future models of the Apple 11 family, starting with the Apple TIGS.

§F800  PLOT Plot on the low-resolution screen only,

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen,

Input A = Block’s vertical position (0-52F)
Xm?
Y = Block's horizontal position (0-527)

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

SFROE PLOT1 Modify block on the low-resolution screen only.

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block is plotted at current settings of
GBASL/GBASH with current COLOR and MASK settings,

Input  A=?
X=7
Y = Block's horizontal position (0-527)

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

Appendix C: Firmware Entry Points in Bank 500 225




3F819 HLINE Draw a horizontal line of blocks on low-resolution screen
only.

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display.
Input A = Block's vertical position (0-§2F)
X=7
Y = Block's leftmost horizontal position (0-$27)
H2 = (Address = $2C); block’s rightmost horizontal position
(0-527)

Qutput  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

$F828 VLINE Draw a vertical line of blocks on the low-resolution screen
only.

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display.

Input A = Block's top vertical position (0-$2F)
Xe=?
Y = Block's horizontal position (0-$27)

V2 = (Address = $2D); block's bottom vertical position (0-$2F)
Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
§F832 CLRSCR Clear the low-resolution screen only,

CLRSCR clears the low-resolution graphics display to black. If CLRSCR is
called while the video display is in text mode, it fills the screen with inverse
at sign (&) characters.

Il
w1 wd

Input 7

A
X
Y

]
w7

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

226 Appendix C: Firmware Entry Polnts In Bank $00




$F836

§FB47

SFB5F

CLRTOP Clear the top 40 lines of the low-resolution screen only.

CLRTOP clears the top 40 lines of the low-resolution graphics display (in
mixed mode, clears the graphics portion of the screen to black).

]
w TR

Input

A
X
Y

]
w1

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

GBASCALC  Calculate base address for low-resolution graphics only,

GBASCALC calculates the base address of the line on which a particular
pixel is to be plotted.

Input A = Vertical line to lind address for (0-§2F)
X=?
Y=7?

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = GBASL

NXTCOL Increment color by 3.

NXTCOL adds 3 to the current color (set by SETCOL) used for low-resolution
graphics.

Input Am?
X=7
Y=?

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = New color in high or low nibble

Appendlx C: Firmmware Entry Points in Bank $00 227




SFB64 SETCOL Set low-resolution graphics color,

SETCOL sets the color used for plotting in low-resolution graphics. The
colors are as follows:

50 = Black

$1 = Deep red '
$2 = Dark blue

$3 = Purple

$4 = Dark green
§5 = Dark gray
56 = Medium blue

7 = Light blue

$8 = Brown

&9 = Orange

5A = Light gray

$B = Pink

§C = Light green

3D = Yellow

3E = Aquamarine

5F = White

Input A = Low nibble = new color to use; high nibble doesn't matier
X=7?
Y=72

OQutput  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = New color in high or low nibble

3F871 SCRN Read the low-resclution graphics screen only,

SCRN returns the color value of a single block on the low-resolution graphics
display, Call it with the vertical position of the block in the accumulator and
horizontal position in the Y register.

Input A = Vertical line to find addr for (0-52F)
X=7?
Y=}
Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = Color of block specified in low nibble;
high nibble = 0

228 Appendix C: Firmware Entry Polnts In Bank 500




SFBEC

$FBBE

INSDS1.2 Perform LDA (PCLX): then fall into INSDS2,

INSDS51.2 gets the opcode to determine the instruction length of with an LDA
(PCL.X) and falls into INSDS2,

Input A=1{
X = Offset into buffer at pointer PCL/PCH
Y =7

PCH = (Address $3B) high byte of buffer address to get opcode
from in bank $00

PCL = (Address = 33A) low byte of buffer address to get opcode
from in bank $00

Output Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = §00
LENGTH (address = §2F); contains instruction length 1
of 6502 instructions or = $00 if not a 6502 opcode

INSDS2 Calculate length of 6502 instruction.

INSD52 determines the length 1 of the 6502 instruction denoted by the
opcode appearing in the A register.

INSDS2 returns correct instruction length 1 of 6502 opeodes only. All non-
6502 opcodes return a length of $00. For compatibility reasons, the BRK
opcode returns a length of $00, not $01 as one would expect it to.

Input A = Opcode for which length is 1o be determined
X=2?
Y=?

OQutput  Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = $00
LENGTH (address = $2F); contains instruction length 1
of 6502 instructions or = $00 if not a 6502 opcode

Appendix C: Firmware Entry Polnts in Bank 500

229



$FBO0  GETB16LEN Calculate length of 65C816 instruction,

GETBI16LEN determines the length of the 65816 instruction denoted by the
opcode appearing in the A register. The BRK opcode returns a length of $01
as one would expect it to.

Input A = Opcode for which length is 1o be determined
X =7
Y=7?
Output  Unchanged = DBR/K/D/e
Scrambled = A/X/B/P
Special = Y = 300
LENGTH (address = $§2F); contains instruction length 1
of 65C816 instructions

SFED0  INSTDSP Display disassembled instruction.

INSTDSP disassembles and displays one instruction pointed to by the
program counter PCL/PCH (addresses $3A/531) in bank %00,

Input

I
iRy el

A
X
Y=1

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

3FO40  PRNTYX Print contents of ¥ and X registers in hex format,

PRNTYX prints the contents of the Y and X registers as four-digit
hexadecimal values,

Input A=?
X = Low hex byte to print
Y = High hex byte to print

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
5T941 PRNTAX Print contents of A and X registers in hex format.

PRNTYX prints the contents of the A and X registers as four-digit
hexadecimal values.

Input A = High hex byte to print
X = Low hex byte to print
=7

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

230 Appendix C: Firmware Entry Polnts in Bank $00

e e e T e e T o




§Fo44  PRNTX Print contents of X register in hex format,

PENTYX prints the contents of the X register as a two-digit hexadecimal
value.

Input e
X = Hex byie to print
Y=2?

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

§F948  PRBLNK Print 3 spaces.
PRBLNK outputs 3 blank spaces to the standard output device.

Input Aw=?
X=?
Y m?

Qutput  Unchanged = Y/DBR/K/D/e
Scrambled = B/P
Special = X = $00
A = $AD (space ASCII code)

§F944  PRBL2 Print X number of blank spaces.

PRBL2 outputs from 1 to 256 blanks to the standard output device.

Input A=?
X = Number of blanks to print ($00 = 256 blanks)
Y=7?

Output  Unchanged = Y/DBR/K/D/e
Scrambled = B/P
Special = X = $00
A = $A0 (space ASCII code)

Appendlx C: Firmware Entry Points In Bank 500 231




5F953 PCAD]) Adjust Monitor program counter,

PCAD] increments the program counter by 1, 2, 3, or 4, depending on the
LENGTH (address $2F) byte; 0 = add 1 byte, 1 = add 2 bytes, 2 = add 3 bytes,
3 = add 4 bytes.

Note: PCL/PCH (addresses $3A/%3B) are not changed by this call. The
ASY registers contained the new program counter at the end of this call.

Input A=y
=7
Y =7
PCL = (Address $3A) program counter low byte
PCH = (Address $3B) program counter high byte
LENGTH = (Address $2F) length 1 to add to program counter

Output  Unchanged = DBR/K/D/e
Scrambled = ¥X/B/P
Special = A = New PCL
Y = New PCH
PCL/PCH not changed

5F962  TEXT2COPY Enable or Disable text Page 2 software-shadowing,

TEXT2COPY 1oggles the text Page 2 software-shadowing function on and
off. The first access to TEXT2COPY enables shadowing, and the next access
disables shadowing, When TEXT2COPY is enabled, a heartbeat task is
enabled that, on every VBL, copies the information from bank $00
locations $0400-$07FF to bank $E0 locations $0400-807FF. It then enables
VBL interrupts. VBEL interrupts remain on until Control-Reset is pressed or
until the system is restarted. TEXT2COPY can disable the copy function,
but cannot disable VBL interrupts once they are enabled.

Input A=7
X=7
Y=2?

OQutput  Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

232 Appendix C: Firmware Entry Points in Bank $00

—




§FA40

§FA4C

§FASO

OLDIRQ Go to emulation-mode interrupt-handling routines.

Jumps to the interrupt-handling routines that handle emulation-mode BRKs
and IRQs. All registers are restored after the application performs an RTI at
the end of its installed interrupt routines. Location $45 is not destroyed as in
the Apple 11, Apple II Plus, and original Apple Ile computers.

Input A=?
X=7?
Y=7?

Output  Unchanged = A/X/Y/DBR/P/B/K/D/e
Scrambled = Nothing

BREAK Old 6502 break handler.

BREAK saves the 6502 registers and the program counter and then jumps
indirectly through the user hooks at $03F0/303F1. Note that this call affects
the 6502 registers, not the 65C816 registers. This entry point is obsolete
except in very rare circumstances.

Input A = Assumes A was stored at address 545
X=7?
Y =1

Output  Unchanged = DBR/K/D/e
Special = ASH (address $45) = A value
XREG (address $46) = X value
YREG (address $47) = Y value
STATUS (address $48) = P value
SPNT (address $49) = S stack
Pointer value

OLDBRK New 65C816 break handler,

OLDBRK prints the address of the BRK instruction, disassembles the BRK
instruction, and prints the contents of the 65C816 registers and memory
configuration at the time the BRK instruction was executed.

Input All 65C816 registers and memory configuration saved by
interrupt handler

Output  Returns to Monitor after displaying information

Appendix C: Firmware Entry Points in Bank 500 233




FFAG2

SFAAG

SFABA

234

RESET Hardware reset handler.

RESET sets up all necessary warm-start parameters for the Apple IIGS. It is
called by the 65C816 reset vector stored in ROM in locations SFFFC/SFFFD.
If normal warm start occurs, it then exits through user vectors at
$03F2/503F3. If cold start occurs, it then exits by attempting to start a startup
device such as a disk drive or AppleTalk, depending on Control Panel
settings. If a program JMPs here, it must enter in emulation mode with the
direct-page register set to $0000, the data bank register set to $00, and the
program bank register set to $00, or RESET will not work.

Input K/DBR/D/e = $00

Output  Doesn't return to calling program

PWRLP System cold-stan routine,

PWRUP performs a partial system reset and then attempts to start the sysiem
via a disk drive or AppleTalk. PWRUP also zeros out memory in bank 00
from address $0B00-$BFFF. If a program JMPs here, it must enter in
emulation mode, with the direct-page register set to $0000, the data bank
register set to $00, and the program bank register set to $00, or RESET will
not work. If no startup device is available, the message Check Startup
Device appears on the screen.

Input K/DBR/D/e = $00

Output Doesn't return to calling program

SLOOP Disk controller slot search loop.

SLOOP is the disk controller search loop. It searches for a disk controller
beginning at the peripheral ROM space (if RAM disk, ROM disk, or
AppleTalk has not been selected via the Control Panel as the startup
device) pointed to by LOCO and LOCI (addresses $00/801). If a startup
device is found, it JMPs to that card's ROM space, If no startup device is
found, the message Check Startup Dewvice appears on the screen. If
RAM disk or ROM disk has been selected, then the firmware JMPs to the
SmartPort code that handles those startup devices. If slot 7 was selected and
AppleTalk is enabled in port 7, the firmware JMPs to the AppleTalk boot
code in slot 7,

Input Am?
X=7
Y=17
LOCO = (Address $00); must be 500, or startup will not occur
LOC1 = (Address $01); contains $Cn, where n = next slot
number to test for a startup device

Output Doesn't return to calling program

Appendix C: Firmware Eniry Polnts in Bank $S00




SFAD7

5FB19

SFB1E

§FB21

REGDSP Display contents of registers.

REGDSP displays all 65C816 register contents stored by the firmware and
Apple IIGS memory-state information, including shadowing and system
speed. Displayed values include A/X/Y/E/DBR/S/D/P/M/Q/m/x/e/L.
A/X/Y/S are always saved and displayed as 16-bit values, even if emulation
mode or B-bit native mode is selected.

Input A=7
X=7
Y=7?

Output  Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P
RTBL Register names table for 6502 registers only,

This is not a callable routine. It is a fixed ASCII string. The fixed string is
‘AXYPS'. Some routines require this string here, or they will not execute
properly. The most significant bit of each ASCII character is set to 1.

Input No input (not a callable routine)

Output  No output (not a callable routine)

PREAD Read a hand controller,

PREAD returns a number that represents the position of the specified hand
controller.

?

A
X=0,1, 2, or 3 only = Paddle to read
Y="?

Input

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special = Y = Paddle count

PREAD4 Check timeout paddle; then read the hand controller.

PREAD¢ verifies that the paddle (hand controller) is in timeout mode and
then reads the paddle the same as PREAD does, returning a number that
represents the position of the specified hand controller.

Input A=?
X=0,1, 2 or3 only = Paddle to read
Y =7

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special = Y = Paddle count

Appendix C: Firmware Entry Points In Bank $00 235




SFB2F INIT Initialize text screen.

INIT sets up the screen for full window display and text Page 1.

Input A=7
X=1
Y =?

Output  Unchanged = DBR/K/D/e
Scrambled = X/Y/B/P
Special = A = BASL

$FB39 SETTXT Sel lext mode.
SETTXT sets screen for full text window, but does not force text Page 1.

Input A=

?
!
)

X
Y
Unchanged = DBR/K/D/e

Scrambled = X/Y/B/P
Special = A = BASL

Output

5FB40 SETGR Set graphics mode.

SETGR sets screen for mixed graphics mode and clears the graphics portion
of the screen. It then sets the top of the window to line 20 for four lines of text
space below the graphics screen

Input

Al omag e

A
=
Y

Ouiput Unchanged = DBR/K/D/e

Scrambled = X/Y/B/P
Special = A = BASL
$FB4B SETWND Sel text window size.

SETWND sets window to the following:

WINDLFT (address = $20) = $00

WNDWDTH (address = §21) = $28/$50 (40/80 columns)
WNDTOP (address $22) = A on entry

WNDBTM (address $23) = §18

Input A = New WNDTOP
X=7?
Y=2

Output Unchanged = X/DBR/K/D/e
Scrambled = ¥Y/B/P
Special = A = BASL

236 Appendix C: Firmware Entry Peints in Bank $00

T mme— vegww—




3FB51 SETWND2 Set text window width and bottom size.
SETWND2 sets window to the following;

WNDWDTH (address = $21) = $28/350 (40/80 columns)
WNDBTM (address $23) = $18

Input A=7
X=7
Y =7
Output Unchanged = X/DBR/K/D/e

Secrambled = Y/B/P
Special = A = BASL

iFBSE TABY Vertical tab.

TABYV stores the value in A in CV (address $25) and then calculates a new
base address for storing data to the screen.

Input A = New vertical position (line number}
X=7
Y=7?

Output  Unchanged = X/DBR/K/D/e

Scrambled = Y/B/P
Special = A = BASL

$FB60 APPLEN Clears screen and displays Apple 1IGS logo.

APPLEII clears the screen and displays the startup ASCII string 'Apple 11GS'
on the first line of the screen.

Input A
X
Y

P
?
?

Output Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P
SFB6F SETPWRC Create power-up byte.

SETPWRC calculates the "funny” complement of the high byte of the RESET
vector and stores it at PWREDUP (address $03F4).

Input Am=?
X=7
Y =%
Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = PWREDUP

Appendlx C: Firmware Entry Points in Bank $00 237

IR N 2 O B O



SFB78 VIDWAIT Check for a pause (Control-5) request.

VIDWAIT checks the keyboard for a Control-5 if it is called with an $8D
(carriage return) in the accumulator, If a Control-S is found, the system falls
through to KBDWAIT. If it is not, control is sent to VIDOUT, where the
character is printed and the cursor advanced.

Input A = Output character
X=1?
Y=7
Output Unchanged = X/DBR/K/D/e

Scrambled = A/Y/B/P

FrEsE KBDWAIT Wait for a keypress.

KBDWAIT waits [or a keypress. The keyboard is cleared (unless the keypress
is a Control-C), and then control is sent to VIDOUT, where the character is
printed and the cursor advanced,

Input A=7
X=1
Y =7

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

SFBB3 VERSION One of the monitor ROM’s main identification bytes.

This is not a callable routine. It is a fixed hex value. The fixed value is $06.
This is the identification byte that indicates whether this is an Apple Ile or a
later system. This byte is the same in the Apple llc, the enhanced Apple Ilc,
the Apple 1e, the enhanced Apple ITe, and the Apple 1IGS.

Input No input {not a callable routine)

Output No output (not a callable routine)

SFBRBF ZIDBYTE2Z  One of the monitor ROM's main identification bytes,

This is not a callable routine, It is a fixed hex value, The fixed value is $00,
This is the identification byte that indicates this is an enhanced Apple Ile or
a later system,

Input No input {not a callable routine)

Output No output {not a callable routing)

238 Appendix C: Firmware Entry Points in Bank $00

—




$FRCO  ZIDBYTE One of the Monitor ROM's main identification bytes.

This is not a callable routine. It is a fixed hex value, The fixed value is SEO.
This is the identification byte that indicates this is an enhanced Apple Ile or
a later system.

Input No input (not a callable routine)

Output  No output (not a callable routine)

SFBC1 BASCALC Text base-address calculator.

BASCALC calculates the base address of the line for the next text character
on the 40-column screen. The values calculated are stored at BASL/BASH
(addresses $0028/30029),

Input A = Line number to calculate base for
Xw=?
Y=1?

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = BASL

SFEDD BELL1 Generate user-selected bell tone.

BELL1 generates the user-selected (via the Control Panel) bell tone. There
is a delay prior to the tone being generated to prevent rapid calls to BELL]
from causing distorted bell sounds.

Input A=7
X =72
Y =?
Output  Unchanged = X/DBR/K/D/e

Scrambled = A/B/P
Special = Y = 500

SFBEZ BELL1.2 Generate user-selected bell tone.

BELL1.2 generates the user-selected (via the Control Panel) bell tone.
There is a delay prior to the tone being generated to prevent rapid calls 1o
BELL1.2 from causing distorted bell sounds.

Input A=?
X=17
Y =7
Output Unchanged = X/DBR/K/D/e

Scrambled = A/B/P
Special = Y = 500

Appandix C: Frmware Entry Polnfs In Bank 500 239

—




$FBE4 BELL2 Generate user-selected bell tone.

BELLZ generates the user-selected (via the Control Panel) bell tone, There
is a delay prior to the tone being generated to prevent rapid calls to BELL2
from causing distorted bell sounds.

Input A
X
Y

?
?
?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/B/P
Special = Y = §00

SFBF0  STORADV Place a printable character on the screen.

STORADYV stores the value in the accumulator at the next position in the text
buffer (screen location) and advances to the next screen location position.

Input A = Character to display in line
X=7
Y =?

Output Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

5FBF4 ADVANCE Increment the cursor position,

ADVANCE advances the cursor by one position. If the cursor is at the

window limit, this call issues a carriage return to go to the next line on the
screen,

i fwd

Input A=]
X=?
Y

]
w

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P

SFEFD vIDOUT Place a character on the screen,

VIDOUT sends printable characters to STORADV, Return, line feed,
forward, reverse space, and so on are sent to the vector of appropriate
special routines.

Input A = Character to output
X=7
¥ =7

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Output character

240 Appendix C: Firmmware Entry Polnts in Bank $00

—




IR oo e T SO

$FC10

$FC1A

3FC22

FFC24

BS Backspace.

BS decrements the cursor one position. If the cursor is at the beginning of
the window, the horizontal cursor position is set to the right edge of the
window, and the routine goes to the UP subroutine.

Input A
X
Y

Output Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P

?
?
?

P Move up a line,

UP decrements the cursor vertical location by one line unless the cursor is
currently on the first line.

I
S N

Input

A
X
o=

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

VTAB Vertical tab,

VTAB loads the value at CV (address $25) into the accumulator and goes to
VTABZ,

Input A=7
X=7
Y=7°
Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = BASL
BASL/BASH (addresses §28/529) = New base address

VTABZ Vertical tab (alternate entry),

VTABZ uses the value in the accumulator to update the base address used for
storing values in the text screen buffer,

Input A = Line to calculate base address for
X=2
Y =7

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = BASL
BASL/BASH (addresses 528/%29) = New base address

Appeandix C: Firmware Entry Points in Bank $00 241



$FC42  CLREOP Clear to end of page.

CLREOP clears the text window from the cursor position to the bottom of the
window,

]
W oema vad

Input ;

A
x
Y

[ ]

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
SFCS8  HOME Home cursor and clear to end of page

HOME moves the cursor to the top of screen column 0 and then clears from
there to the bottom of the screen window.

Input A=?
Xm?
Y=1?

Output  Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P
$FC62  CR Begin a new line.

CR sets the cursor horizontal position at the left edge of the window and then
goes 1o LF to move 1o the next line on the screen,

Input A=?
X=2?
Y=

Output  Unchanged = X/DBR/K/D/e
Scrambled = A/Y/B/P
$FC66  LF Line feed.

LF increments the vertical position of the cursor. If the cursor vertical
position is not past the bottom line, the base address is updated; otherwise,
the routine goes to SCROLL to scroll the screen,

Input A=
X
Y

?
4
?

Output Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P

242 Appendix C: Firmware Enfry Points In Bank $00

—




$FCT0

$FCOC

$FCOE

IFCA8

SCROLL Scroll the screen up one line,

SCROLL moves all characters up one line within the current text window.
The cursor postion is maintained

Input A
X
Y

?
?
?

Output Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P
CLREOL Clear to end of line.

CLREOL clears a text line from the cursor position to the right edge of the
window,

Input A=?
X =7
Y =7

Output Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P

CLREQLZ Clear to end of line.

CLREOLZ clears from ¥ on the current line to the right edge of the text
window.,

Input A=7
X=7
¥ = Horizontal position Lo start clearing from

Qutput Unchanged = X/DBR/K/D/e
Scrambled = ASY/B/P

WAIT Delay loop (system-speed independent).

WAIT delays for a specific amount of time and then returns to the program
that called it. The length of the delay is specified by the contents of the
accumulator, With A the contents of the accumulator, the delay is
1/2(26+27A+5A02)*14/14.31818 microseconds. WAIT should be used as a
minimum delay time, not as the absolute delay time,

Input A=7
W=7
¥o=3

Output Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = 500

Appendix C: Frmware Entry Points in Bank 500

243



SFCB4 NXTA4 Increment pointer at A4L/A4H (addresses $42/$43).
NXTA4 increments the 16-bit pointer at A4L/A4H and then goes to NXTAL,

]
]

Input

Il
Worwd

A
X
Y
Qutput  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
SFCBA NXTA1 Compare AIL/AIH (addresses $3C/$3D) with A2L/AZH

(addresses $3E/33F) and then increment AIL/ATH, J

NXTA1 performs a 16-bit comparison of A1L/A1H with A2L/A2H and
increments the 16-bit pointer A1L/ATH,

Input A=7?
X=? |
Y=1?

Output  Unchanged = X/Y/DBR/K/D/e |

Scrambled = A/B/P

5FCC9 HEADR Write a header to cassette tape (obsolete).

HEADR is an obsolete entry point for the Apple 1IGS. It does nothing except
perform an RTS back to the calling routine,

Input A=7?
X=7?
Y=1¢

Output  Unchanged = A/X/Y/P/B/DBR/K/D/e

SFDOC RDKEY Get an input character and display old inverse ashing
Cursor.

RDKEY is a character-input subroutine. It places the old Apple II inverse
character flashing cursor on the display at the current cursor position and
jumps to subroutine §FD10.

Input A
X
Y

?
4
?

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

244 Appendix C: Firmware Entry Polnts In Bank $00

—




§FD10

§FD18

§FD1B

FD10 Get an input character and don't display inverse flashing
character cursor.

FD10 is a character-input subroutine. It jumps to the subroutine whose
address is stored in KSWL/KSWH (addresses $38/$39), usually the standard
input subroutine KEYIN, which displays the normal cursor and returns with a
character in the accumulator. $FD10 returns only after a key has been
pressed or an input character has been placed in the accumulator,

Input A=7?
X=?
¥ =1

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

RDKEY1 Get an input character,

RDKEY1 jumps to the subroutine whose address is stored in KSWL/KSWH
(addresses $38/539), usually the standard input subroutine KEYIN, which
returns with a character in the accumulator. RDKEY1 returns only after a key
has been pressed or an input character has been placed in the accumulator.

Input A=7?
X=1
Y =7

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

KEYIN Read the keyboard.

KEYIN is a keyboard-input subroutine. It tests the Event Manager to see if it
is active. If it is active, KEYIN reads the key pressed from the Event
Manager; otherwise, it reads the Apple keyboard directly. In any case, it
randomizes the random-number seed RNDL/RNDH (addresses $4E/$54F).
When a key is pressed, KEYIN removes the cursor from the display and
returns with the keycode in the accumulator,

Input A = Character below cursor
X=7
¥o=3

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

Appendix C: Firmware Entry Points in Bank $00 245




SFDAa5

$FD67

SFDAA

244

RDCHAR Get an input character and process escape codes.

RDKEY is a character-input subroutine; it also interprets the standard
Apple escape sequences. It places an appropriate cursor on the display at
the cursor position and jumps to the subroutine whose address is stored in
KSWL/KSWH (addresses $38/$39), usually the standard input subroutine
KEYIN, which returns with a character in the accumulator, RDCHAR returns
only after a non-e escape-sequence key has been pressed or an inpul
character has been placed in the accumulator,

Input A
X
¥

?
?
4

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = Key pressed (entered character)

GETLNZ Get an input line after issuing a carriage retumn,

GETLNZ is an alternate entry point for GETLN that sends a carriage return to
the standard output and then continues in GETLN. The calling program
must call GETLN with the prompt character at PROMPT (address $33).

Input A=7
X=1
Y=2?
FROMPT = (Address $33) = Prompt character

Output Unchanged = DBR/K/D/e
Scrambled = A/Y/B/P
Special = $200-$2xx contains input line
X = Length of input line

GETLN Get an input line with a prompt.

GETLN is a standard input subroutine for entire lines of characters. The
calling program must call GETLN with the prompt character at PROMPT
(address $33).

Input A=?

X =1

Y =1

PROMPT = (Address $33) = Prompt character
Output  Unchanged = DBR/K/D/e

Scrambled = A/Y/B/F

Special = $200-$2xx contains input line
X = Length of input line

Appendix C: Firmware Entry Polnts In Bank 500




SFD6C  GETLNO Get an input line with a prompt (alternate entry),

SFDOF

SFD8B

GETLNO ocutputs the contents of the accumulator as the prompt. If the user
cancels the input line with Control-X or by entering too many backspaces,
the contents of PROMPT (address $33) will be issued as the prompt when it
gets another line.

Input A = prompt character
Xm=?
T =]
PROMPT = (Address $33) = Prompt character

Output Unchanged = DBR/K/D/e
Scrambled = A/Y/B/P
Special = $200-82xx contains input line
X = Length of input line

GETLN1 Get an input line with no prompt (alternate entry),

GETLN1 is an alternate entry point for GETLN that does not issue a prompt
before it accepts the input line. If the user cancels the input line with
Control-X or by entering too many backspaces, the contents of PROMPT
(address $33) will be issued as the prompt when it gets another line.

Input A=?

X=7

Y =7

PROMPT = (Address $33) = Prompt character
Output  Unchanged = DBR/K/D/e

Scrambled = A/Y/B/P

Special = $3200-$2xx contains input line

X = Length of input line

CROUT1 Clear to end on line; then issue a carriage return,

CROUT] clears the current line from the current cursor position to the right
edge of the text window. It then goes to CROUT to issue a carriage return,

Input A
X
Y

4
?
?

Output  Unchanged = X/DBR/K/D/e
Scrambled = Y/B/P
Special = A = $8D (carriage return)

Appendix C: Firmware Entry Points in Bank 500 247




SFDBE CROUT Issue a carriage retum.

CROUT issues a carriage return to the output device pointed to by
CSWL/CSWH (addresses $36/837).

Input

W Tha

A
X
Y

1
3

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = $8D (carriage retrn)

$FD92 PRAL Print a carriage return and A1L/A1H (addresses $3C/$3D).

PRA1 sends a carrage return character ($8D) to the current output device,
followed by the contents of the 16-bit pointer A1L/A1H (addresses
($3C/$3D) in hex, followed by a colon (:).

Input A
X
b §

Qutput  Unchanged= DBR/K/D/e
Scrambled = X/B/P
Special = A = $BA (colon)
Y =500

?
?
7

SFDDA PRBYTE Print a hexadecimal byte.

PRBYTE outputs the contents of the accumulator in hexadecimal format to
the current output device.

Input A = Hex byte to print
X=7
Y=y

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
$FDE3 PRHEX Print a hexadecimal digit.

PRHEX outputs the lower nibble of the accumulator as a single hexadecimal
digit to the current outpul device,

Input A = Lower nibble is digil to outputl
X=7?
¥=7

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P

248 Appendix C: Firmware Entry Polnts in Bank 500

#




§FDED COUT Output a character,

$FDFO

SFDF6

COUT calls the current output subroutine. The character to output should be
in the accumulator. COUT calls the subroutine whose address is stored in
CSWL/CSWH (addresses $36/$37), which is usually the standard character-
output routine COUT1.

Input A = Character to print
X=2?
Y=2?

Output  Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P

CcOouT1 Output a character to the screen.

COUT1 displays the character in the accumulator on the Apple screen at the
current output cursor position and advances the output cursor. It places the
character using the settings of the normal/inverse location INVFLG (address
$32). It handles the control characters for return ($8D), line feed ($80C),
Backspace/Left Arrow (388), Right Arrow ($95), and bell ($87) and the
Change Cursor command (Control-A = $9E).

Input A = Character to print
X=7
Y =7

Output  Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P
COUTZ Output a character 1o the screen without masking it with the
inverse flag,

COUTZ outputs the character in the accumulator without masking it with the
inverse flag INVFLG (address $32). Qutput goes to the screen.

Input A = Character to print
X=7?
Y=7

Output  Unchanged = A/X/Y/DBR/K/D/e
Scrambled = B/P

Appendix C: Firmware Entry Polnts in Bank $00 249




$FE1F IDROUTINE Returns identification information about the system.

IDROUTINE is called with ¢ (carry) set. If it returns with ¢ (carry) clear, then
the system is an Apple [IGS or a later system, and the registers A/X/Y
contain identification information about the system.

Input A=1
X=7
Y =7
Output Unchanged = DBR/K/D/e
Scrambled = B/P I

Special = ¢ (carry) = 0 if Apple 11GS or later. If ¢ = 0, then A/XSY
contain identification information_ If ¢ = 1, then
A/X/Y are unchanged.

$FE2ZC MOVE Original Monitor Move routine,

MOVE copies the contents of memory from one range of locations to
another. This subroutine is not the same as the Monitor Move (M)
command. The destination address must be in A4L/A4H (addresses
$42/$43), the starling source address in A1L/ATH (addresses $3C/330),
and the ending source address in A2L/AZH (addresses 53E/583F) when
MOVE is called. Y must contain the starting offset into the
source/destination buffers.

Input A=7
X=?
Y = Starting offset into source/destination buffers (normally
$00)

AIL/ATH = (Addresses $3C/53D) = Stant of source buffer

A2L/AZH = (Addresses $3E/$3F) = End of source buffer

AdL/AGH = (Addresses $42/$43) = Start of destination
buffer

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = A/B/P
Special = A1L/ATH = (Addresses $3C/$3D) = End of source

buffer + 1
AZL/AZH = (Addresses $3E/$3F) = End of source
buffer
A4L/A4GH = (Addresses $342/%43) = End of destination
buffer + 1

SFESE *LIST" Old list entry point (not supported under Apple 11GS),

250 Appendix C: Firmware Enfry Points in Bank 500

—



SFESD SETINY Set inverse text mode.

SETINV sets INVFLG (address $32) so that subsequent text output to the
screen will appear in inverse mode,

Input

A=7?
X=7
¥=?

Output Unchanged = A/X/DBR/K/D/e
Scrambled = Y/B/P
Special = INVFLG (address §32) = $3F
Y = $3F

$FE84 SETNORM Set normal text mode.

SETNORM sets INVFLG (address $32) so that subsequent text output to the
screen will appear in normal mode,

Input

A
X
¥

2
]
?

Output Unchanged = A/X/DBR/K/D/e
Scrambled = Y/B/P
Special = INVFLG (address $32) = §FF
Y = §FF

SFERY  SETKBD Reset input to keyboard.

SETKBD resets input hooks KSWL/KSWH (addresses $38/539) to point to
the keyboard.

Input

]
LR

A
X
Y

]
w

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

SFEBE INPORT Resel input to a slot.

INPORT resets input hooks KSWL/KSWH (addresses §38/539) to point to the
ROM space reserved for a peripheral card (or port) in the slot (or port)
designated by the value in the accumulator,

Input A = Slot number to set hooks to
X=7
Y=?

Output  Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

Appendix C: Firmware Entry Points In Bank 500 251



SFE93  SETVID Resel output (o screen,

SETVID resets output hooks CSWL/CSWH (addresses $36/337) to the screen
display routines.

Input A
X
Y

?
f
?

Output  Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

$FE95S  OUTPORT Reset output to a slot.

OUTPORT resets output hooks CSWL/CSWH (addresses $36/837) to point to
the ROM space reserved for a peripheral card (or port) in the slot (or port)
designated by the value in the accumulator,

Input A = Slot number to reset hooks
X=7
Y=?

Output  Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

SFEB6 GO Original Apple II Go entry point.
GO begins execution of the code pointed to by AIL/AZL (addresses
53C/53D).
Input A=7?
X = $01 (required)
Y =1
AIL/AIH (addresses $3C/$3D) = Start address of program to

run

ASH (address $45) = A value to set up before running program

XREG (address $46) = X value to set up before running program

YREG (address $47) = ¥ value to set up before running program

STATUS (address $48) = P status to set up before running
program

Output Unchanged = DBR/K/D/e
Scrambled = A/X/Y/B/P

252 Appendix C: Firmware Entry Points in Bank 500

—




SFECD

$FEFD

SFF2D

$FF3A

WRITE Write a record to casselle tape (obsolete).

WRITE is an obsolete entry point under Apple 1IGS. It does nothing except
perform an RTS back to the calling routine,

Input A=?
X=7?
Y =7

Output  Unchanged = A/X/Y/P/BDBR/K/D/e

READ Read data from a cassette tape (obsclete).

READ is an obsolete entry point under Apple 1IGS. It does nothing except
perform an RTS back to the calling routine.

Input A

?
X=7
Y =17
Output  Unchanged = A/X/Y/P/B/DBR/K/D/e
PRERR Print ERE on cutput device,

PRERR sends ERR lo the output device and goes to BELL,

Input

Il
s tad

A
X =
Y

]
w

Output  Unchanged = X/Y/DBR/K/D/e
Scrambled = B/P
Special = A = $87 (bell character)

BELL Send a bell character to the output device.

BELL writes a bell (Control-G) character to the current output device.

Input A=7?
X =7
Y =2
Output  Unchanged = X/Y/DBR/K/D/e

Scrambled = B/P
Special = A = §87 (bell character)

Appendix C: Firmware Entry Polnts In Bank 500 253




$FF3F RESTORE Restore A/X/Y/P registers.
Restore 6502 register information from locations $45-$48.

Input A=7?
X=7?
¥ =7
ASH (address $45) = New value for A
XREG (address §46) = New value for X
YREG (address $47) = New value for Y
STATUS (address $48) = New value for P

Output  Unchanged = DBER/K/D/e
Scrambled = B
Special = A = New value
X = New value
Y = New value
P = New value

§FF4A  SAVE Save ASX/Y/P/S registers and clear decimal mode.

SAVE saves 6502 register information in locations $45-%$49 and clears
decimal mode,

Input A=7?
X=7
Y =]

OQutput  Unchanged = Y/DBR/K/D/e

Scrambled = A/X/B/P

Special = ASH (address $45) = Value of A
XREG (address $46) = Value of X
YREG (address $47) = Value of Y
STATUS (address $48) = Value of P
SPNT (address 549 = Value of stack pointer 2
Decimal mode is cleared.

JFF58 IORTS Known RTS instruction,

IORTS is used by peripheral cards to determine which slot 2 card is in. This
RTS is fixed and will never be changed.

Input A=?
X=7
Y=?

Output Unchanged = A/X/Y/DBR/K/D/e
Scrambled = Nothing

254 Appendix C: Firmmware Entry Points in Bank $00




$FF59

§FFGS

$FFG9

$FFOC

OLDRST Old Monitor entry point,

OLDRST sets up the video display and keyboard as output and input devices.
It sets hex mode, does not beep, and enters the Monitor at MONZ2. It does
not return to caller. All Monitor 65C816 register storage locations are resel
to standard values,

Input A=?
X=1
b

Output  Does not rewrn to caller

MON Standard Monitor entry point, with beep.

MON clears decimal mode, beeps bell, and enters the Monitor at MONZ,
All Monitor 65816 register storage locations are reset o standard values.
Input A=7

X = ?

Y=7

Output Does not return to caller

MONZ Standard Monitor entry point (Call -151),

All Monitor 65816 register storage locations are resel lo standard values.
MONZ displays the * prompt and sends control to the Monitor input
parser.

Input A=Y
Xm?
Y=

Output  Does not return to caller

MONZ2 Standard Monitor entry point (alternate).

MONZ2 does not change Monitor 65816 register storage locations. MONZ2
displays the * prompt and sends control to the Monitor input parser

Input A=7
X=?
No=7

Output  Does not return to caller

Appendix C: Firmware Entry Points in Bank 500

255



SFF70  MONZ4 No prompt Monitor entry point.

MONZ4 does not change Monitor 65816 register storage locations. No
prompt is displayed. Control is sent to the Monitor input parser,

Input A=7?

X =7
Y =7
Output Does not return to caller
$FFBA  DIG Shift hex digit into A21/A2H (addresses $3E/$3F).

DIG shifts an ASCII representation of 2 hex digit in the accumulator into
AZ2L/A2H (addresses $3E/$3F) and the exits into NXTCHR.

Input A = ASCII character EORed with $B0
X=?
Y = Entry point in input buffer $2xx at which to continue
decoding characters

Output  Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special = Y = Poinis to next character in input buffer at $2xx

$FFA7 GETNUM Transfer hex input into A2I/AZH (addresses $3E/83F),

GETNUM scans the input buffer ($2xx) starting at position Y. It shifts hex
digits into A2L/A2H (addresses $3E/$3F) until it encounters a nonhex digit
It then exits into NXTCHR.

Input A=?
K=7
Y = Entry point in input buffer $2xx at which to start decoding
characters

Output  Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special = Y = Points 1o next character in input buffer at $2xx

2564 Appendix C: Firmware Entry Points in Bank $00




SFFAD NXTCHR Translate next character,

NXTCHR is the loop used by GETNUM to parse each character in the input
buffer and convert it to a value in A2L/A2H (address $3E/$3F), It also
upshifts any lowercase ASCII values that appear in the input buffer (addresses

$2xx).
Input A=?
X=7?
Y = Entry point in input buffer $2xx at which to start decoding
characters

Output  Unchanged = DBR/K/D/e
Scrambled = A/B/P/X
Special = Y = Points to next character in input buffer at $2xx

SFFBE TOSUB Transfer control to a Monitor function.

TOSUB pushes an execution address onto the stack and then performs an
RTS to the routine. It is of very limited use to any program.

Input A=?
X=7?
Y = Offset into subroutine table

Output  Unchanged = DBR/K/D/e
Scrambled = A/B/P/X/SY
$FFC7 ZMODE Zero out Monitor's mode byte MONMODE (address $31).
ZMODE zeroes out MONMODE (address $31)

Input A=7
Xx=1
Y=7?
Output  Unchanged = A/X/DBR/K/D/e
Scrambled = P/B
Special = ¥ = 500

Appendlx & Frmware Entry Points in Bank 500 357

_



B

_p_npendix D

Vectors

This appendix lists the Apple [IGS vectors. A vector is usually either a 2-byte address in
page $00 or (possibly) a 4-byte jump instruction in a different bank of memory.
Vectors are used to ensure a common interface point between externally developed
programs and system-resident routines. External software jumps directly or indirectly
through these vectors instead of attempting to locate and jump directly to the routines
themselves. When a new version of the system is released, the vector contents change,
thereby maintaining system integrity.

For all of the vectors defined in this chapter, the following definitions apply:

A represents the lower 8 bits of the accumulator.

B represents the upper 8 bits of the accumulator.

X and Y represent 8-bit index registers,

DBR represents the data bank register.

K represents the program bank register,

P represents the processor status register.

5 represents the processor stack register,

D represents the direct-page register,

e represents the emulation-mode bit,

1 ¢ represents the carry flag,

I v represents the overflow flag.

? represents a value that is undefined.

258




Bank $00 page 3 vectors

$03FD-503F1

$03F2-503F3

§03F4

$03F5-$03F6-$3F7

$03F8-S03F9-$3FA

$03FB-$03FC-$3FD

S03FE-S03FF

BRKY User BRK vector.

Address of subroutine that handles BRK interrupts. Normally
points to OLDBRK (address $FA59) in Monitor ROM.

SOFTEV User soft-entry vector for RESET.

Address of subroutine that handles warm start (RESET
pressed). Normally points to BASIC or operating system.

PWREDUP EOR of high byte of SOFTEV address,

PWREDUP = SOFTEV + 1 EORed with constant $AS. If
PWREDUP does not equal SOFTEV + 1 EORed with constant
$AS5, system performs cold start. If PWREDUP equals
SOFTEV + 1 EORed with constant $A5, system performs warm
starl.

AMPERY Applesoft & JMP vector.

Address of subroutine that handles Applesoft & (ampersand)
commands. Normally points to IORTS (address $FASB) in
Monitor. Address $03F5 contains a JMP ($4C) opcode.

USRADR User Control-Y and Applesoft.
USR function JMP vector,

Address of subroutine that handles user Control-Y and
Applesoft USR function commands. Normally points to MON
{address $FF65) in Monitor; points to BASIC.SYSTEM warm-
start address if ProDOS 8 is loaded. Address $03F8 contains a
IJMP (84C) opcode.

NMI User NMI vector.

Address of subroutine that operating systems or applications
can change to gain access to NMI interrupts. Normally points
to OLDRST (address $FF59) in Monitor ROM or to operating
system il one is loaded. Address $03FB contains a JMP ($4C)
opcode,

IRQLOC User 1R} vector.

Address of subroutine that operating systems or applications
can change to gain access to IRQ interrupts. Normally points
to MON (address $FF65) in Monitor ROM or to operaling
system if one is loaded.

Bank 500 page 3 vectors 259




Bank $00 puga_ca routines

$C311 AUXMOVE Mowve data blocks between main and
auxiliary 48K memory.

AUXMOVE is used by the Apple Ile and Apple llc to move
data blocks between main and auxiliary memory, For
compatibility reasons, Apple 1G5 also supports this entry
point if the 80-column firmware is enabled via the Control
Panel,

Input

?
?
?
=1 = Move from main to auxiliary memory
0 = Move from auxiliary to main memory
1L = (Address $3C); source starting address,
low-order byte
AlH = (Address $3D); source starting address,
high-order byte
AZL = (Address $3E); source ending address,
low-order byte
AZH = (Address $3F); source ending address,
high-order byte
AdL = (Address §42); destination starting
address, low-order byte
A4H = (Address $43); destination starting
address, high-order byte

Output Unchanged = A/X/Y/DBR/K/D/e

Changed = B/P

AlL/ATH = (Addresses $3C/$3D)=16-bit source
ending address +1

AZL/AZH = (Addresses $3E/$3F)=16-bit source
ending address

A4L/A4H = (Addresses $42/$43)=16-bit original
destination address + number of
bytes moved + 1

260 Appendix D: Vectors

st




SC314

XFER Transfer program control between main
and auxiliary 48K memory.

XFER is used by the Apple Ile and Apple Ilc to transfer control
between main and auxiliary memory. For compatibility
reasons, the Apple 11G5 also supports this entry point if the
80-column firmware is enabled via the Control Panel. XFER
assumes that the programmer has saved the current stack
pointer at $0100 in auxiliary memory and the alternate stack
pointer at $0101 in auxiliary memory before calling XFER and
restores them after regaining control. Failure to restore these
pointers causes program errors and incorrect interrupt
handling.

Input A=Y
X=7
Y=2
¢ =1 = Transfer control from main to auxiliary
memory
¢ = 0 = Transfer control from auxiliary to main
memory
v =1 = Use page zero and stack in auxiliary
memaory
v =0 = Use page zero and stack in main memory
S03ED = Program starting address, low-order
byte
SD3EE = Program starting address, high-order
byte

Output  Unchanged = A/X/Y/DBR/K/D/e
Changed = B/P

Bank $00 page C3 routines 261




Bank $00 page Fx vectors
$FFE4-$FFES NCOP Native-maode COP vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release, Its value is not guaranteed. No
program should use this value, This vector is pulled from

the ROM and used whenever a native-mode COP is executed,

$FFEG-SFFE7 NBREAK Native-mode BRK vector,

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode BRK is executed.

$FIFEB-$FFE9 NABORT Native-mode ABORT vector,

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No

program should use this value. This vector is pulled from the
ROM and used whenever a native-mode ABORT is executed,

SFFEA-SFFER NNMI Native-mode NMI vector,

This is not a callable routine. It is a 16-bit value that changes
with each ROM release, Its value is not guaranteed. No

program should use this value. This vector is pulled from the
ROM and used whenever a native-mode NMI is executed. I

3FFEE-SFFEF NIRQ Mative-mode IRQ vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a native-mode IRQ is executed.

262 Appendlx D¢ Vectors

—




$FFF4—3$FFFS ECOP Emulation-mode COP vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode COP is
executed.

SFFFB-$FFF9 EABORT Emulation-mode ABORT vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release, Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode ABORT is
execuled.

SFFFA-3FFFB ENMI Emulation-mode NMI vector,

This is not a callable routine. It is a 16-bit value that changes
with cach ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode NMI is
execuled.

$FFFC-$FFFD ERESET RESET wvector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever a RESET is executed.

SFFFE-SFFFF EBRKIR(Q Emulation-mode BRK/IRQ vector.

This is not a callable routine. It is a 16-bit value that changes
with each ROM release. Its value is not guaranteed. No
program should use this value. This vector is pulled from the
ROM and used whenever an emulation-mode BRK or IRQ is
executed.

Bank 500 page Fx vectors 263




Bank -$El vectors

The vectors DISPATCH]1 through SYSMGRV are guaranteed to be in the given
locations in this and all future Apple [IGS—compatible machines.

SE1/0000-0003

$E1/0004-0007

$E1/0008-000B

SE1/000C-000F

$E1/0010-0013

DISPATCH1 Jump to tool locator entry type 1.

Unconditional jump to tool locator entry type 1. JSL from
user's code directly to the tool locator with this entry point.
The form of the call in memory is as follows:

JMP abslong (§5C/low byte/high byte/bank byte)

DISPATCH2 Jump 1o tool locator entry type 2.

Unconditional jump to tool locator entry type 2. JSL to a JSL
from user’s code to the tool locator with this entry point. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

UDISPATCH1 Jump 1o tool locator entry type 1.

Unconditional jump to user-installed tool locator entry type
1. J5L from user’s code directly to the user-installed tool
locator with this entry point. The form of the call in memaory
is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

UDISPATCH2 Jump to tool locator entry type 2.

Unconditional jump to user-installed tool locator entry type
2. J5L to a JSL from user’s code 1o the user-installed ool
locator with this entry point. The form of the call in memory
is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

INTMGRY Jump to system interrupt manager.

Unconditional jump to the main system interrupt manager.
If the application patches out this vector, the application
must be able to handle all interrupts in the same fashion

as the built-in ROM interrupt manager. Otherwise, the system
will not, in most circumstances, run. The form of the call

in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

264 Appendix D: Yectors




SE1/0014-0017

$E1/0018-001B

FE1/001C-001F

COPMGRYV Jump to COP manager.

Unconditional jump to COP (coprocessor) manager,
Currently points to code that causes the Monitor to print a
COP instruction disassembly, similar to the BRK
disassembly. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

ABORTMGRYV Jump to abort manager.

Unconditional jump to abort manager. Currently points to

code that causes the Monitor to print the disassembly of the
instruction being executed, similar to the BRK disassembly.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SYSDMGRYV Jump o system failure manager.

Unconditional jump to the system failure manager. This
call assumes the following:

O Entry is in 16-bit pative mode,

o ¢ {carry) = 0 if user-defined message is pointed to on stack;
c = 1 if the default value is used.

O The stack is set up as follows:

9.5 = Error high byte

8,5 = Error low byte

7.5 = Null byte of message address
6,5 = Bank byte of message address
5,5 = High byte of message address
4,5 = Low byte of message address
3,5 = Unused return address

2,5 = Unused return address

1,5 = Unused return address

The form of the call in memory is as follows:
JMP abslong ($5C/low byte/high byte/bank byte)

Bank SE1 vectors 245




IRQ.APTALK and IRQ.SERIAL vectors

Vectors IRQAPTALK and IRQ.SERIAL are normally set up to point 1o the internal
interrupt handler or to code that sets carry and then performs an RTL back to the
interrupt manager, All the routines are called in 8-bit native mode and at high speed.
The data bank register, the direct register, MSLOT (§7F8), and the stack pointer are
not preset or set as for other interrupt vectors. The called routine must return carry
clear if the routine handled the interrupt and carry set if it did not handle the interrupt.
Carry clear tells the interrupt manager not to call the application or operating system.
Carry set tells the interrupt manager that the application or the operating system must
be notified of the current interrupt. The called routines must preserve the DBR, speed,
B-bit native mode, D register, stack pointer {or just use current stack), and MSLOT for
proper operation. A/X/Y need not be preserved. Interrupts are disabled on entry to
all interrupt handlers. The user’s interrupt handler must not reenable interrupts from
within the handler. AppleTalk and the Desk Manager are allowable exceptions. These
vectors should be accessed only via the Miscellaneous Tool Set. Their location in
memory is not guaranteed,

SE1/0020-0023 IRQ.APTALK Jump to AppleTalk interrupt handler.

Uncenditional jump to the AppleTalk LAP (link access
protocol) interrupt handler. Handles SCC interrupts
intended for AppleTalk. The form of the call in memory is
as follows:

JMP abslong (35C/low byte/high byte/bank byte)

SE1/0024-0027 IRQ.SERIAL Jump to serial-port interrupt handler.

Unconditional jump to serial-port interrupt handler.
Handles interrupts intended for serial ports. The form of the
call in memory is as follows:

IMP abslong ($5C/low byte/high byte/bank byte)

266 Appendix D: Vectors




IRQ.SCAN through IRQ.OTHER vectors

Vectors TRQ.SCAN through IRQ.OTHER are normally set up to point to the internal
interrupt handler or to code that sets carry and then performs an RTL back (o the
interrupt manager. All the routines are called in 8-bit native mode and with the high
speed at data bank register set to 300 and the direct register set to $0000. The called
routine must return carry clear if it handled the interrupt and carry set if it did not
handle the interrupt. Carry clear tells the interrupt manager not to call the application
or operating system. Carry set tells the interrupt manager that the application or the
operating system must be notified of the current interrupt. The called routines must
preserve the DBR, speed, 8-bit native mode, and D register for proper operation,
A/K/Y need not be preserved. Interrupts are disabled on entry to all interrupt
handlers. The handler must not reenable interrupts from within the interrupt handler.
AppleTalk and the Desk Manager are allowable exceptions. These vectors should be
accessed only via the Miscellaneous Tool Set. Their location in memory is not
guaranteed.

$E1/0028-002B IRQ.SCAN Jump to scan-line interrupt handler.

Unconditional jump to the scan-line interrupt handler,
Used by the Cursor Update routine. The form of the call
in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SE1/002C-002F IRQ.SOUND Jurmnp to sound interrupt handler.

Unconditional jump to the sound interrupt handler.
Handles all interrupts from the Ensoniq sound chip. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0030-0033 IRQ.VBL Jump to VBL handler.

Unconditional jump to the vertical blanking (VBL) interrupt
handler, The form of the call in memory is as follows;

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0034-0037 IRQ.MOUSE Jump to mouse interrrupt handler,

Unconditional jump to the mouse interrupt handler. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.5CAN through IRQ OTHER vectors 247




SE1/0038-0038B IRQ.QTR Jump to quarter-second interrupt
handler,

Unconditional jump to the quarter-second interrupt handler.
Used by AppleTalk. The form of the call in memory is as
follows:

IMP abslong ($5C/low byte/high byte/bank byte)

$E1/003C-003F IRQ.KBD Jump to keyboard interrupt handler.

Unconditional jump to the keyboard interrupt handler,
Currently the keyboard has no hardware interrupt. Keyboard
interrupts are still available by making a call o the
Miscellaneous Tool Set, telling it to install a heartbeat task
that interrupts every time VBL polls the keyboard. If a key is
pressed, the heartbeat task will J5L through this vector. This
forms a quasi-keyboard interrupt. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
$E1/0040-0043 IRQ.RESPONSE  Jump to ADB response interrupt
handler.

Unconditional jump to the ADB (Apple DeskTop Bus)
response interrupt handler, The form of the call in memory is
as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SE1/0044-0047 IRQ.SRQ Jump to SRQ interrupt handler.

Unconditional jump to the ADB (Apple DeskTop Bus) SRQ
(service request) interrupt handler, The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
$E1/0048-004B IRQ.DSKACC Jump to Desk Manager interrupt
handler,

Unconditional jump to the Desk Manager interrupt
handler. Invoked by the user pressing Control-C-Esc. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

268 Appendlx D: Vectors

—




SE1/004C-004F

$E1/0050-0053

$E1/0054-0057

$E1/0058-005B

SE1/005C-005F

$E1/0060-0063

IRQ.FLUSH Jump to keyboard FLUSH interrupt
handler,

Unconditional jump to the keyboard FLUSH interrupt
handler. Invoked by the user pressing Control-C+-Backspace.
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.MICRO Jump to keyboard micro abort interrupt
handler.

Unconditional jump to the keyboard micro abort recovery
routine. This interrupt occurs only when the keyboard micro
has a catastrophic failure. If such a failure does occur, the
firmware will try to resynchronize up to the keyboard micro
and initialize. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.1SEC Jump to 1-second interrupt handler.

Unconditional jump to the 1-second interrupt handler, The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.EXT Jump to VGC external interrupt handler.

Unconditional jump to the VGC (video graphics chip)
external interrupt handler. Currently, the pin that generates
this interrupt is forced high so that no interrupt can be
generated. This interrupt handler is for future system
expansion and currently cannot be used. The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRQ.OTHER Jump to other interrupt handler.

Unconditional jump to an installed interrupt handler that
handles interrupts other than the ones handled by the
internal firmware. This is a general-purpose vector, The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

CUPDATE Cursor Update vector,

Unconditional jump to the Cursor Update routine in
QuickDraw II. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)
IRE.SCAN through IRQ.OTHER vectors 2649



$E1/0064-0067 INCBUSYFLG Increment busy flag vector,

Unconditional jump to the increment busy flag routine. The
form of the call in memory is as follows:

IMP abslong (85C/low byte/high byte/bank byte)

SE1/0068-006B DECBUSYFLG Decrement busy flag vector.

Unconditional jump to the decrement busy flag routine. The
form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SE1/006C-D06F BELLVECTOR Monitor bell vector intercept routine.

Unconditional jump to a user-installed BELL routine. The
Monitor calls this routine whenever a BELL character ($87)
is output through the output hooks (CSWL/CSWH $36/$37)
and whenever BELL], BELL1.2, and BELL2 are called. The
routine is called in 8-bit native mode and must return to the
Monitor in 8-bit native mode. The data bank register and
direct register must be preserved. Carry must be returned
clear, or the Monitor will generate its own bell sound. For
compatibility with existing programs, the X register must be
preserved during this call, and Y must be = $00 on exit from
this call. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SE1/0070-0073 BREAKVECTOR  Break vector,

Unconditional jump to a user-installed break vector, The
user's routine is called in 8-bit native mode at high speed,
with the data bank register set to $00 and the direct register

sel o $0000. The user’s routine must preserve the data bank
register, direct register, and speed and return in 8-bit native
mode with an RTL. The user's routine must also clear carry, or
the normal break routine pointed to by the vector at
$00/03FD.03F1 will be called. If carry comes back clear, the

break interrupt is processed and the application program is_
resumed £ bytes past the BRK opcode. This vector is set up for

use by debuggers such as the Apple 11GS debugger. The form
of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

270 Appendix D: Vectors

—




$E1/0074-0077

$E1/0078-007B

$E1/007C-007F

TRACEVECTOR  Trace veclor.

Unconditional jump to a trace vector. The user's routine is
called in B-bit native mode at high speed, with the data bank
register set to $00 and the direct register set to $0000. The
user's routine must preserve the data bank register, direct
register, and speed and return in 8-bit native mode with an
RTL. If the user's routine clears carry, the Monitor firmware
resumes where it left off. If the user sets carry, the Monitor
firmware currently will print Trace on the screen and continue
where it left off. This vector is set up for use by future system
firmware and by current debuggers. The form of the call in
memory is as follows:

JMP abslong ($5C/low byle/high byte/bank byte)

STEPYVECTOR Step vector.

Unconditional jump to a step vector. The user's routine is
called in 8-bit native mode at high speed, with the data bank
register set to $00 and the direct register set to $0000. The
user's routine must preserve the data bank register, direct
register, and speed and return in 8-bit native mode with an
RTL. If the user clears carry, the Monitor firmware resumes
where it left off. If the user’s routine sets carry, the Monitor
firmware currently will print Step on the screen and continue
where it left off. This vector is set up for use by [uture system
firmware and by current debuggers. The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

Reserved for future expansion.

This vector is reserved [or future system expansion and is not
available to the user. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

IRE.SCTAN through IRS.OTHER vectors 27




TOWRITEBR through MSGPOINTER vectors

Vectors TOWRITEBR through MSGPOINTER are guaranteed to stay in the same
memory locations in all Apple IIGS—compatible systems. These vectors are for
convenience and are not to be altered by any application.

SE1/0080-0083 TOWRITEBR Write BATTERYRAM routine.

This vector points to a routine that copies the
BATTERYRAM buffer in bank $E1 to the clock chip
BATTERYRAM with proper checksums. This routine is
called by the Miscellaneous Tool Set and by the Control
Panel. The form of the call in memory is as [ollows:

JMP abslong ($5C/low byte/high byte/bank byte)

$E1/0084-0087 TOREADER Read BATTERYRAM routine,

This vector points to a routine that copies the clock chip
BATTERYRAM to the BATTERYRAM buffer in bank §E1,
compares the checksums, and if the checksums maich,
returns to the caller, If the checksums do not match or if one
of the values in the BATTERYRAM is out of limits, the system
default parameters are written into the BATTERYRAM buffer
in bank 3E1 and then into the clock chip BATTERYRAM
with proper checksums. This routine is called by the
Miscellaneous Tool Set and by the Control Panel. The form
of the call in memory is as follows:

IMP abslong (§5C/low byte/high byte/bank byte)

SE1/0088-008B TOWRITETIME Wrile time routine.

This vector points (o a routine that writes to the seconds
registers in the clock chip. It ransfers the values in the
CLEKWDATA buffer in bank $E1 to the clock chip. This routine
is called by the Miscellaneous Tool Set only, It returns carry
clear if the write operation was successful and carry set if it
was unsuccessful. The form of the call in memory is as
follows:

JMP abslong ($5C/low byte/high byte/bank byte)

272 Appendix D: vectors

—




$E1/00BC-008F

SE1/0090-0093

SE1/0094-0097

SE1/0098-009B

TOREADTIME Read time routine.

This vector points to a routine that reads from the seconds
registers in the clock chip. It transfers the values to the
CLKRDATA buffer in bank $E1 to the clock chip. This routine
is called by the Miscellaneous Tool Set only. It refurns carry
clear if the read operation was successful and carry set if it was
unsuccessful. The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOCTRL.PANEL Show Control Panel

This vector points to the Control Panel program. It assumes
it was called from the Desk Manager. It uses most of zero
page. It RTLs back to the Desk Manager when Quit is chosen,
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOBRAMSETUP  Sct up system to BATTERYRAM
parameters routine.

This vector poinls o a routine that sets up the system
parameters (o match the values in the BATTERYRAM buffer.
In addition, if it is called with carry clear, it sets up the slot
configuration (internal versus external), If it is called with
carry set, it does not set up the slot configuration (internal
versus exiernal). BATTERYRAM buffer $E1 values can be set
via the Miscellaneous Tool Set only, The form of the call in
memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byie)

TOPRINTMSGE  Print ASCII string designated by the
8-bit accumulator.

This vector points to a routine that displays ASCII strings
pointed to by multiplying the 8-bit accumulator times 2
(shifting it left 1 bit) and then indexing into the address
pointer table pointed to by MSGPOINTER (address
$E1/00C0; 3-byte pointer). It then uses that address to get
the string to display. This routine is used by the built-in
Control Panel, by any text-based RAM Control Panel,
and by the Monitor (to display messages), The form of the
call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

TOWRITEBR through MSGPOINTER vectors 273




SE1/009C-009F TOPRINTMSG16 Print ASCII string designated by the
16-bit accumulator.

This vector points to a routine that displays ASCII strings
pointed to by the 16-bit A register, The accumulator is used
to index into the address pointer table pointed to by
MSGPOINTER (address $E1/00C0; 3-byte pointer). It then
uses that address to get the string to display. This routine is
used by the built-in Control Panel, by any text-based RAM
Control Panel, and by the Monitor (to display messages).
The form of the call in memory is as follows:

JMP abslong ($5C/low byte/high byte/bank byte)

SE1/00A0-00A3 CTRLYVECTOR User Control-Y vector.

Unconditional jump to a user-defined Control-Y vector. The

user's routine is called in 8-bit native mode, with the data

bank register set to $00 and the direct register set to $0000.

The user’s routine must preserve the data bank register, direct

register, and speed and return in emulation mode with an RTS |
from bank $00. If no debugger vector is installed, the Monitar i
firmware will go to the user’s routine via the normal |
Control-Y vector in bank $00 (USRADR 00/03F8.03F2.03FA).

This vector is set up to be used by debuggers. The form of the

call in memory is as follows:

JMP abslong (35C/low byte/high byte/bank byte)
SE1/00A4-00A7 TOTEXTPG2DA Point to Alternate Display Mode desk
accessory.

This vector points lo the Alternate Display Mode program. It
assumes it was called from the Desk Manager, It RTLs back to
the Desk Manager when a key is pressed. The form of the call

in memor i§ 45 follows:
IMP abslong ($5C/low byte/high byte/bank byte)

SE1/00A8-00BF PRO16MLI ProDOS 16 MLI vectors.

This vector points to the ProDOS 16 routines. Consult
ProDOS 16 documents for information about these calls,

274 Appendix D: Vectors

—




$E1/00C0-00C2 MSGPOINTER Pointer to all strings used in Control
Panel, Alternate Display Mode, and
Monitor system messages,

This 3-byte vector points o the address pointer table that
points to ASCII strings used by the Control Panel, Alternate
Display Mode, and Monitor system messages. It is not
useful for users. The form of the call in memory is as
follows:

low byte/high byte/bank byte

TOWRITEBR through MSGPOINTER vectors 275




Il

Appendix E

Soft Switches

This appendix contains a list of the Apple 11GS soft switches—the locations at which
various program-definable system control options may be accessed and changed.
Note that this listing of soft switches is provided for reference only. You should change
the contents of a soft switch only by using the appropriate tool from the toolbox. Refer
to the Apple IIGS Toolbox Reference for more information.

Important

If you choose to change the contents of any of the soft switches (not
recommended other than by using the toolbox routines) for any blt that is listed
herein as undefined, you should mask that bit. In other words, read the curent
confents of the data byte, medify only the bits that are defined. and write the
contents back to the switch location,

Tables E-1 and E-2 are symbol tables sorted by symbol and address.

cooo: <C000 20 IOMADR EQU *  ;All I/0 is at S$Cxxx
coo0: CO000 21 KBD EQU =* ;Bit 7 = 1 if keystroke
;Bits 6-0 = Key pressed
Cc000:00 22 CLRB0COL DFB ;Disable 80-column store
c001:00 23 SETBHQCOL DFB 0 ;Enable B0-column store
coD2:00 24 RDMATINRAM DFE 0 :Bead from main 48K RAM
c003:00 25 RDCARDEAM DFE 0 sRead from alternate 48K RAM
co04a:00 26 WERMAINRAM DFB 0 ;Write to main 48K RAM
CO005:00 27 WRCARDERAM DFB 0 ;Write to alternate 48K RAM
Co06:00 28 SETSLOTCHROM DFB 0 ;Use ROM on cards
COf7«00 20 CRTIMNTCHOOM oo Q fUSE Llileriial mom
CO0B:00 30 SETSTDZP DEFB 0 iUse main zero page/stack
co0g:00 31 SETALTZP DFB 0 iUse alternate zero page/stack
276




cCO0A:00 32 SETINTC3ROM DFB 0 ;Enable internal slot 3 ROM

CO0B:00 33 SETSLOTC3ROM DFB 0 ;Enable external slot 3 ROM

co0c:00 34 CLRBOVID DFB 0 ;Disable BO0-column hardware

CO00D:00 35 SETBOVID DFE 0 ;Enable 80-column hardware

CO0E:00 36 CLRALTCHAR DFB 0 ;Normal LC, flashing UC

CO0F:00 37 SETALTCHAR DFE 0 fNormal inverse, LC; no flash

c010:00 38 KBDSTRR DFB O iTurn off keypressed flag

C011:00 39 RDLCBNK2 DFBE 0 ;Bit 7 = 1 if LC bank 2 is enabled

C012:00 40 RDLCRAM DFB 0 :Bit 7 = 1 if LC RAM read enabled

C013:00 41 RDRAMRD DFB 0 fBit 7 = 1 if reading alternate 48K

c0l4:00 42 RDRAMWRT DFB 0 tBit 7 = 1 if writing alternate 48K

C015:00 43 RDCXRCM DFB 0O ;Bit 7 = 1 if using internal ROM

C016:00 44 RDALTZP DFB 0 iBit 7 = 1 if slot zp enabled

c017:00 45 RDC3ROM DFE O ¢Bit 7 = 1 if slot c3 space enabled

C018:00 46 RDBOCOL DFB 0 ;Bit 7 = 1 if B0-column store

C019:00 47 RDVBLBAR DFB 0 ;Bit 7 = 1 if not VBL

CO01A:00 48 RDTEXT DFB 0 iBit 7 = 1 if text (not graphics)

c01B:00 49 RDMIX DFBE 0 ;Bit 7 1 if mixed mode on

co1c:00 50 RDPAGEZ DFB 0 ;Bit 7 = 1 if TXTPAGE2 switched in

C01D; Q0 51 RDHIRES DFB 0 ;Bit 7 = 1 if HIRES is on

COlE: Q0 52 ALTCHARSET DFB 0 ;Bit 7 = 1 if alternate character
set in use

CO1F:00 53 RDAOVID DFE 0O :Bit 7 = 1 if 80-column hardware on

co20:00 54 DFB 0 iReserved for future system
expansion

CD21: 56 = 7 [ 5 g 3 2 1 0

Co021: 57 *| | | I | I | | |

co21: 58 *|Enable | | | | | | I |

co21: 59 *|colox/ | O | 0 [- @ | © | 0 | 0 | 0 |

Cco21: 60 *|mono | | | | | | [ |

co21; 61 *| I | I | | | I I

c021: 62 * asnsns MONOCOLOR status byte ~onas

co021: 64 = MONOCOLOR bits defined as follows:

co21: 65 * Bit 7 = 0 enables color, 1 disables color

co21: 66 * Bits 6, 5, 4, 3, 2, 1, 0 must be 0

c021:00 1] MONOCOLCOR DFB 0 ;Monochrome/color selection register

co22: 70 % 7 6 5 4 3 2 1 0

coz2; 71 *| | | | | | | | |

co22: 72 *| | I

COZ22: 73 % Text color bits | Background color bits |

c022: 74 *| I |

co22: T3 *| I | I | | | | I

co22: Te * annnn TBCOLOR byte ~anaas

Appendlx E: Soft Switches 277




|
C022: T8 * TBCOLOR bits defined as follows:
coz22: 79 * Bits 7, 6, 5, 4 = Text coclor bits
C022: B0 * Bita 3, 2, 1, 0 = Background coclor bits
co22: g1 =
co22: B2 = Color bits =
c022; 83 % 50 = Black
co22; Bq = 51 = Deep red
cCo22: 8 * 52 = Dark blue
co22: Beg * 53 = Purple
co22; a7 = 54 = Dark green
ciz22: gy =* 55 = Dark gray
C0z22: BS % 56 = Medium blue
co22; g9p = §7 = Light blue
C022: 91 * 58 = Brown
co22: 92 * 59 = QOrange
cp22: g3 = 8A = Light gray
ci22: 94 =* 5B = Pink
coz2z: 95 * 5C = Green
cn22: 96 * $D = Yellow
co22: g3 = SE = Aguamarine
co22: 9 =« SF = White
CO022:00 100 TBCOLOR DFE 0 ;Text /background color selection
register
C023: 102 =* 1 & 5 4 3 2 1 o
cp23: 103 =*| | | | | | | | |
c023: 104 *|VGEC |1sec |Scan |Ext | |lsec |Scan |Ext |
c023: 105 *|int |int |int | int | O | int |int |int |
ci23: 106 *|active |active|active| | |enable |enable |enable |
c023: 107 = _ ] | | | | | | |
Ccn23: 108 =* Amass VGCINT status byte ~nonn
co23: 110 = VGCINT bits defined as follows:
c023: 111 = Bit 7 = 1 if interrupt generated by VGC
c023; 112 * Bit 6 = 1 if l-second timer interrupt
c023: 113 =* Bit & = 1 if scan-line interrupt
c023: 114 * Bit 4 = 1 if external interrupt (forced low in
Apple IIGs)
Cco23: 115 = Bit 3 must be 0
c023: 116 * Bit 2 = l-second timer interrupt enable
Cc023: 11T * it 1 = scan-line interrupt enable
coz23; 118 * Bit 0 = ext int enable (can't cause an int in
Apple IIGs)
C023:00 120 VGCINT DFB 0 IVGEC interrupt register
278 Appendix E: Soft Switches




r

co24:
c0z24:
Cc024:
C024:
Cc024:
C024:
Cc024:

coz4:
coz24:
Cco24:
c024;
c024:
c024:00

co25:
CD25:
Cc025:
C025:
C025:
C025:
CO25:

cCo25:
Co025:
C025:
Cc025:
Co25:
C025:
C025:;
co25:
c025:
C025:00

C026:
C026:
C026:
C0Z26:
Co26:
C026:
co2e6:

122
123
124
125
126
127
128

130
131
132
133
134
136

138
139
140
141
142
143
144

146
147
148
149
150
151
152
153
154
156

158
159
160
161
162
163
164

* 7 & 5 4 = P 2 1 ]
%] [ | | | I I |

* |Butteon | |

*|astatus |Delta | Delta movement

* | now |laign

*| | | | | | |

* AAsns MOUSEDATA byte ~~~nn

MOUSEDATA bits defined as follows:

Bit 7 = button 1 status if reading X data
butten 0 status if reading Y data

Bit 6 = sign of delta 0 = "+' — 1 = 11

Bits 5, 4, 3, 2, 1, 0 = Delta movement

MOUSEDATA DFB 0 ;X or Y mouse data register

+ % * & #

* T 3 5 4 3 2 1 o

*q [ |Update | I | | I |
* | Open |Closed|mod |Keypad | Repeat [Caps  |Ctrl |Shift |
*|Apple |Apple |no keylkey lactive|lock |key | key |
* | key | key Ipress |active | lactive |active|active|
L | [ | | I | | | |
* Annns  KEYMODREG status byte ~/~~nns

=

KEYMODREG bits defined as follows:

Bit 7 = O key active

Bit 6 = ® key active

Bit = Updated modifier latch without keypress
Bit = Keypad key active

Bit Repeat active

Bit = Caps lock actiwve

Bit = Control key active

Bit 0 = 5hift key active

KEYMODREG DFB 0 ;Key modifier register

»

ol o I P T
1l

= % % ¥ % ¥ %

o 7 6 5

-
A
P
-
= ]

*| | | I | | | I
A |

*| Data to/from keyboard micro

L

| | | | | | I

Appendix E: Soft Switches 279



c026:
c026:

C026:
c026:

C026:
CO26:
C026:
co26:
cl26:
Cc026:

c026:
C026:
Cc026:00

cO27:
co27:
c027:
co27:
co27:
C027:
CO27:

co27:
CO27:
c027:
c027:
co27:
c027;
co27:

co27:
c027:
c027:
c027:00
CO28:00

280

lé6
167

168
169

170
171
172
173
174
175

176
177
179

181
182
183
184
185
186
187

189
190
151
192
183
194
185

196
187
198
200
201

Appendix E: Soft Switches

—

* W ¥ ¥ ¥ W ¥

»

£

|

DATAREG
Bita 7,

Data at

follows:

Bat
Bit
Bit
Bit
Bit

7

L oI LN

.

Bits 2,

valid;

otherwise the
bytes received minus 1

DATAREG

4

* |Mouse
* | reg
* | full

3

bits defined as follows:
6, 5, 4, 3, 2, 1, 0 = Data to/from keyboard
micro

interrupt time in this register defined as

Response byte if set; otherwise,
ABORT walid if set,

status byte
and all other bits reset

= Desktop Manager key sequence pressed
= Flush buffer key sequence pressed

SRQ walid if
1, 0; if all

set

bits clear, then no FDB data

bits indicate the number of walid
(2-8 bytes total)

DFB 0 ;Data register in GLU chip

|Mouse
|int
|enable | full

L | | | |
|Data |Pata | Key |Key |Mouse |Cmd
| reg |int |data |int |X/Yreg|reg
|enable |full |enable|data |full
| | | | | |

&

% % ¥ ¥ * %

AR R

EMSTATUS byte ~"no7

KEMSTATUS bits defined as follows:

Bit
Bit
Bit
Bit
Bit
Bit

Bit

Bit

EM3TATUS

7

B L = LA h

=t

0

RCOMBANE

1l if mouse register full
mouse interrupt disable/enable
1 if data register full
data interrupt enable
1 if key data full (newver use, won‘t work)
key data interrupt enable (never use, won't
work)
0 = mouse 'X¥' register data available
1 = mouse 'Y' register data available
Command register full
DFB 0 ;Keyboard/mouse status register
DFB 0 ;ROM bank select toggle (not used in
Apple IIGs)




c029;:
c029:
C029;
C029:
co29:
C029:
co29:

C029:
co29:

C029:
c02%:
c029:
Cc029:

c029:
C029:00

CO0Z2A:00

C02B:
C02B:
CO2B:
co2e:
COZ2B:
c02B:
CO2R:

CO2B:
coze:
CO2B:
C02B:
co28:
C0Z2B:
coz2B:
co2B:
CO2B:
C02B:
co2B:
coz2B:
CO02B:

C028:
CO0Z2B:00
coz2C:00

203
204
205
206
207
208
209

211
212

213
214
215
216

217
219

220

222
223
224
225
226
227
228

230
231
232
233
234
235
236
237
238
2389
240
241
242

243
245
2486

ad 7 ] 5 q 3 2 1 o

*| | | | | | | I I
* |Enable |Linear|B/W | | | | |Enable |
* |guper |video |Color| 0 | 0 | 0 | 0 |bank 1|
* | hi-res | |DHires| | | I |bateh |
*| | I | | | I I |
* manns  NEWVIDEQ byte ~+~~=

* NEWVIDEO bits defined as follows:

* Bit 7 = 1 = Disable Apple Ile wvideo (enables super

hi-res)
Bit 6 1 to linearize for super hi-res
Bit 5 = 0 for color double hi-res; 1 for B/W hi-res
Bits 4, 3, 2, 1 mast be 0
Bit 0 = Enable bank 1 latch to allow long instructions
to access bank 1 directly; set by Monitor
* only; a programmer must nct change this bit.
NEWVIDEO DFE 0 ;Video/enable read alternate mem
with long instructions

* o * W

DFE 0 ;Reserved for future system
expansion
x 7 G 5 4 3 2 1 0

il | I | I | I | | I
*| Character Generator | NTSC/|Lang | | |

| PAL |select| 0 I 0 | 0O I

I | I I

| | I

*| language select

*| [bit |

*| I I | I |

* Annar  LANGEEL byka ~0Asa

* LANGSEL bits defined as follows:

& Bits 7, €, 5 = Character-generator language selector
* Primary language Secondary language

* 50 = English (USa) Dwvorak

o $1 = English (UE) UsA

* 52 = French USA

* $3 = Danish UsA

" $4 = Spanish Usa

o 55 = Italian UshA

* $6 = German USA

* 57 = Swedish Usa

* Bit 4 = 0 if NTSC video mode, 1 if PAL video mode
* Bit 3 = LANGUAGE switch bit 0 if primary lang set

selected
* Bits 2, 1, 0 must be 0
LANGSEL DFE 0 ; Language/PAL/NTSC select register
CHARRCM DFB O ;Aaddr for tst mode read of character
ROM

Appendix E: Soft Switches 281




CO02D: 248 * 7 & 5 4 3 2 1 0

CO2D: 249 *| | I | | | | | |

CO0Z2D: 250 *|51lot? |5loté [S51lot5 |Slotd | [§1lot2 |Sletl | |

CQzZD: 251 *|intext |intext|intext|intext| O |intext |intext| 0 |

CO2D: 252 *|gnable |enable|enable|enable| |enable |enable| |

Cc02D: 253 * | I [ I I |_ 9

CO0ZD: 254 * Andnd BLTRCMSEL byte ~nnnn

c02D: 256 SLTROMSEL bits defined as follows:

CO02D: 257 * Bit 7 = 0 enables internal slot 7, 1 enables slot ROM

CO02D: 258 * Bit & = 0 enables internal slot &, 1 enables slot ROM

cO2D: 259 * Bit 5§ = 0 enables internal slot 5, 1 enables slot ROM

C02D: 260 * Bit 4 = 0 enables internal slot 4, 1 enables slot ROM

C02D: 261 » Bit 3 must be 0

C02D: 262 * Bit 2 = 0 enables internal slot 2, 1 enables slot ROM

C02D: 263 Bit 1 = 0 enables internal slot 1, 1 enables slot ROM

COZ2D: 264 = Bit 0 must be 0

CO2D:00 266 SLTRCMSEL DFB 0 ;8lot ROM select

CO02E:00 287 VERTCNT DFB 0 jAaddr for read of wvideo cntr bits
V5=yR

CO0Z2F:00 268 HORIZCNT OFB 0 ;Addr for read of wvideo cntr bits
VA-HO

C030:00 269 SPER DFB 0 ;Clicks the speaker

co3l; 271 % 7 [ 5 4 3 _2 1 o

C031: 272 *| | [ | | | | |

C03t: 273, %] 3.5" |2:5" | | | | | | |

Cc031: 274 *|head |deive | O | © | 0 | O | O | 0 [

co31: 275 *|Select |enable| [ | I I I |

c031: 276 *| | | | | | [

c031: 277 * fanan  DISKREG status byte ~ntnn

C031: 279 = DISKREG bhits defined as follows:

Cc031: 2B0 =* Bit 7 1 to select head on 3.5" drive to use

C031;: 281 * Bit 6 = 1 to enable 3.5" drive

CO31: 282 * Bits 5, 4, 3, 2, 1, 0 must be 0

c031:00 284 DISKREG DFB 0 tUsed for 3.5" disk drives

co32: 286 * 7 B - ..__=h 4 3 2 1 o

c032: 287 *| | [ | [ I [ [ |

co32: 2BB *| |Clear |Clear | | | | | |

c032; 289 *| Q@ |1l sec |scan | O 0 | 0O | 0 | 0 |

c032: 280 *| |int |1ln int | | | | |

c032: 291 *| | | | | | | | |

co32: 292 = anass  SCENTNT byte ~~nns

282 Appendix E: Soft Switches




c032:
co3z2;
Coaz:
co32:
C032:
cl3z:
C032;:
e
co32:
C032:00

C033:
c033:
Cco33:
C033:
C033:
c033:
c033:

c033:
ch33;

C033:00

C034:
C034;
C034:
Cc034:
Cch34:
c034:
c034:

c034:
c034:
co34:
c034:
ch34:

cD34;
CcD34:

C034:00

294
285
296
297
298
299
300
301
302
304

306
307
308
308
310
311
312

314
315

317

3189
320
321
322
323
324
325

az27
328
329
330
331

332
333

33s

* SCANINT bits defined as follows:
* Bit 7 must be 0
" Bit & = Write (0 here to reset l-second interrupt
* Bit 5 = Write 0 here to clear scan-line interrupt
* Bit 4 must be 0
* Bit 3 must be 0
* Bit 2 must be 0
* Bit 1 must be 0
* Bit 0 must be 0
SCANINT DFB 0 iScan-line interrupt reglster
x 7 & 5 4 3 2 1 o
* | | | | | | | |
*| |
i | Clock data register |
*| |
*| | | I | |
* annsn OTOCKDATA byta ~osas
* CLOCEDATA bits defined as follows:

% Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data passed to/from clock
chip

CLOCKDATA DFB 0 ;Clock data register
* 1 5 5 ] q 3 2 1 4]
*1 | I [ I I |
*|Clock |Read/ |Chip |

|
|

* | xfar |Write |enable| O | Border color
I

*] lchip |assert|

*| | I I I [ I |

* anana OLOCKCTL byte #ases

* CLOCKECTL bits defined as follows:

* Bit 7 = Set = 1 to start transfer to clock

* Read = 0 when transfer to clock is complete

* Bit 6 = 0 = Write to clock chip, 1 = Read from clock
chip

* Bit 5 = Clk chip enable asserted after transfer

0 = no/l = yes
bod Bit 4 must be 0
* Bits 3, 2, 1, 0 = Select border coler (see TBCOLOR for
values)
CLOCKCTL DFB 0 ;Clock control register

Appendix E: Soft Switchas 283




Cc035: 337 = 7 & 5 4 3 2 ! o

C035; 338 *| | | | | I I | |

C035: 339 *| |Stop | IStop |[Stop |[Stop |Stop |Step |

C035; 340 *| 0 |T/0/LC| O |auxh-r|suprhr|hires2 |hiresl|txpg |

C035: 341 =) | shadeaw| | shadow | shadow | shadow | shadow| shadow|

c035: 342 *| | | | | | | | |

C035: 343 +* Anansn SHADOW byte ~nana

C035: 345 = SHADOW bits defined as followsa:

C035: 346 * Bit 7 must write 0

C035: 347 * Bit € = 1 to inhibit I/0 and language-card operation

C035: 348 * Bit 5 must write 0

C035: 349 =» Bit 4 = 1 to inhibit shadowing aux hi-res page

Cc035: 350 = Bit 3 = 1 to inhibit shadowing 32K videco buffer

C03s; 351 * Bit 2 = 1 to inhibit shadowing hi-res page 2

C035: 352 * Bit 1 = 1 to inhibit shadowing hi-res page 1

c035: 353 = Bit 0 = 1 to inhibit shadowing text pages

C035:00 355 SHADOW DEB 0 ;Shadow register

C036: 357 1 & 5 q 3 R i

C036: 358 *| | | | | | | | |

Co36: 359 *|Slow/ | | | Shadow|Slot 7|5lot 6]S5lot 515lot 4|

C036: 360 *|fast | 0 | O lin all|motor |[motor |motor |motor |

C036: 361 *|speed | | | BLAM |detect |detect |detect |detect |

c036: 362 *| | | | | | | | I

C036: 363 ~ ahaAs CYRREG byta Andnad

C036: 365 * CYARREG bits defined as follows:

C036: 366 * Bit 7 = 0 = S5low system speed, 1 = Fast system speed

C036: 367 * Bit 6 must write 0

CO36: 368 * Bit 5 must write 0

C036: 369 * Bit 4 = Shadow in all RAM banks (never use)

C036: 370 * Bit 3 = S5lot 7 disk motor on detect (set by Monitor
only)

C036: 371 * Bit 2 = Slot 6 disk motor on detect (=zet by Monitor
only)

C036: 372 = Bit 1 = Slot 5 disk motor on detect (set by Monitor
only)

C036: 373 * Bit 0 = Slot 4 disk motor on detect (set by Monitor
only)

C036:00 375 CYAREG DFB 0 ;Speed and motor on detect

Cc037:00 376 CMAREG DFB 0 ;jUsed during DMA as bank address

c038:00 377 SCCBREG DFB 0 ;5CC channel B cmd register

Cc039:00 378 SCCAREG DFE 0 :5CC channel A cmd register

cO03a:00 379 SCCBDATA DFB 0 ;5CC channel B data register

C03B:00 380 SCCADATA DFB 0 ;SCC channel A data register

284 Appendix E; Soft Switches

e e ]



c03C;
co3c:
CO3cC:
c03c:
co3ac:
co3c:
Cco3cC:

ci3c:
c03cC:
c03c:
co3c:

CO3C:
CO3C:
co3c:

Cc03C:00

CO3D:
CO3D:
CO03D:
co3p:
CO3D:
cO3D:
C03D:

CO3D:
CO03D:

C03D:00

CO3E:
CO3E:
CO3E:
CO3E:
CO3E:
CO3E:
CO3E:

CO3E:
CO3E:

CO3E: 00

382 * 1 6 5 4 a _2 1 0l .

383 #| | | I I I | I |

3B4 *|Busy |Auto |Access| I |

385 *|flag ldoe/ |inec | 0 | Volume DAC |

386 *| | RAM ladrptre| | |

387 *| I | | | I | | |

388 * pasas SOUNDCTL byte ~~~n~

350 * SOUNDCTL bits defined as follows:

351 = Bit 7 = 0 if not busy, 1 if busy

382 * Bit 6 = 0 = Access doc, 1 = Access RAM

393 = Bit 5 = 0 = Disable auto incrementing of address

pointer

394 * 1l = Enable autc incrementing of address pointer

395 = Bit 4 must be 0

396 * Bits 3, 2, 1, 0 = Volume DAC-50/5F = Low/full volume
{write only)

398 SOUNDCTL DFE 0 ;Sound control register

400 = 7 6 5 4 3 2 1_ Q

401 *| | I I I | I | |

402 *| I

403 *| Sound data read/written |

404 *| |

405 *| | | | I | |

406 * aasns SOUNDDATA byte ~nnnn

408 SOUNDDATA bits defined as follows:

409 = Bits 7, 6, 5, 4, 3, 2, 1, 0 = Data read from/written to

sound BAM

411 SOUNDDATA DFE 0 ;Sound data register

413 * 7 & 5 4 3 2 1 ]

414 *| | I | | I | I I

415 *| |

416 *| Low byte of sound address pointer |

417 *| |

418 *| | I | | I |

419 AnAAS SOUNDADRL byte ~~ans

421 * SOQUNDADRL bits defined as follows:

422 * Bits 7, 6, 5, 4, 3, 2, 1, 0 = Address into sound RAM

low byte
424 SOUNDADRL DFB 0 ;Scund address pointer, low byte

Appendix E: Soft Switches 285




CO3F: 426 * 7 6 5 1 3 2 1 0

CO3F: 427 *| I | I | | | |

CO3F: 428 *| |

co3r: 429 *| High byte of sound address pointer |

CO3F; 430 *| |

CO3F: 431 *| | | | I | | |

CO3F: 432 * ~Aannn SOUNDRADRH byte ~nnss

CO3F; 434 =* SOUNDADRH bits defined as follows:

CO3F: 435 = Bits 7, 6, 5, 4, 3, 2, 1, 0 = Address into sound RAM
high byte

CO3F:00 437 SOUNDADRH DFB 0 ;Sound address pointer, high byte

co40:00 438 DEE 0 ;Reserved for future system

expansion

¢ Note: The Mega II mouse is not used under Apple IIcs as a mouse, but the
soft switches and functions are used. Therefore, the programmer may not
use the Mega II mouse soft switches.

C041: 440 * 7 & 5 4 3 | i o

c041: 441 *| | | | | | | | |

co41: q442 *| | | |Enable |Enable |Enable |Enable |Enable|

c041: 443 *| 0 I 0 | O 11/4sec|VBL |switch|move |mouse |

co41: 444 *| | | lints |ints |ints |ints | |

co4l1; 445 *| | | I | I | |__ I

co41: 44 * mansss  INTEN byte ~nnns

co41: 448 =* INTEN bits defined as follows:

c041: 449 * Bit 7 must be 0

c041: 450 = Bit 6 must be 0

co41; 451 = Bit 5 must be 0

co41: 452 * Bit 4 = 1 to enable gquarter-second interrupts

co41: 453 =+ Bit 3 = 1 to enable VBL interrupts

CcD41: 454 * Bit 2 = 1 to enable Mega II mouse switch interrupts

co41; 455 =* Bit 1 = 1 to enable Mega II mouse movement interrupts

co41: 456 * Bit 0 = 1 to enable Mega II mouse operation

c041:00 458 INTEN DFB 0  Interrupt-enable register (firmware
use conly)

Cc042:00 459 DFB 0 ;Reserved for future system
expansion

C043:00 460 DFB 0 sReserved for future system
expansion

284 Appendix E: Soft Switches




co4q4:
co44:
co44:
Co4a4:
Cod4:
Cch44:
Co44:;

c044:
co44:

c044:00

C045;
c045;
c045:
co45:
Cc045;
c045;
C045:

C045:
Ccoa5:

C045:00

Co46:
Cc046:
C046:
C046:
Clo46:
CO46:

cg46:

C046:
Co46;

Co46:

Cl46:

462 * 7 & 5 ] 3 2 1 0

463 *| | I | | | | I |

464 *| |

465 *| Mega II Mouse delta movement byte |

466 *| |

467 *| | I | | | I |

468 = faner MMDELTAX byte “nnns

470 * MMOELTAX bits defined as follows:

471 = Bits 7, 6, 5, 4, 3, 2, 1, 0 = Delta movement in 2's
complement notation

473 MMDELTAX  DFB 0 iMega II mouse delta X register

475 * 7 —8 5 4 3 2 1 o

476 *| I | | [ | I | |

477 * | |

478 *| Mega II Mouse delta movement byte |

479 *| |

480 *| | I | | | |

481 = aasss  MMDELTAY byte ~%nns

483% MMDELTAY bits defined as follows:

484 = Bits 7, 6, 5, 4, 3, 2, 1, 0 = Delta movement in 2's
complement notation

486 MMDELTAY DFE 0 /Mega II mouse delta Y register

488 = 7 (3 5 L] a 2 1 0

489 *| | I | I I | | |

490 *|3elf/ |MMouse|Status|Status|Status|Status|Status|Status|

491 *|burnin |last |AN3 |1/4sec |VBL |switch|move |system|

492 *|diags |button]| |int |int [int |int | |

493 *| | I | I I | [ I

434 “S8n% DIAGTYBE byte ~nnnn

496 * DIAGTYPE bits defined as follows;

497 * Bit 7 = 0 if self-diagnostics get used if BUTNO =

1/BUTN]1 = 1
498 = Bit 7 = 1 if burn-in diagnostics get used if BUTN(O =
1/BUTN1 = 1
499 * Bits 6-0 = Same as INTFLAG

Appendix E: Soff Switches 287




CO46: 501 *__ 7 I R - 4 3 Fiooo o

C046: 502 *| | | | | | I I I

C046: 5303 *|MMouse |MMouse|Status|Status|Status|Status|Status|Status|

c046: 504 *|now |last |AN3 |1/4sec|VBL |switch|move |system|

Co46: 5053 *|butten |button| |int |int | int | int | IRQ |

co46: 506 *|__ | |- | | | | | [

CO046; 507 = sasas  INTFLAG byte ~nnns

Cl46: 509 =* INTFLAG bits defined as follows:

Cl46: 510 = Bit 7 = 1 if mouse button currently down

C046: 511 =* Bit 6 = 1 if mouse button was down on last read

CD46: 512 =* Bit 5 = Status of AN3

CO46: 513 = Bit 4 = 1 if guarter-second interrupted

co46: 514 = Bit 3 = 1 if VBL interrupted

CO46: 515 % Bit 2 = 1 if Mega II mouse switch interrupted

Ccl46: 516 =* Bit 1 = 1 if Mega II mouse movement interrupted

Cl46: 517 = Bit 0 = 1 if system IRQ line is asserted I

Ccl46: C046 519 DIAGTYPE EQU * 70/1 Self/burn=-in diaonmnstiea

C046:00 520 INTFLAG DFE 0 iInterrupt flag register

c047:00 521 CoRVBLINT DFBE 0O ;Clear the VBL/3.75Hz interrupt
flags

C04B:00 522 CLRXYINT DFE 0 iClear Mega II mouse interr&Ft flags

C049:00 523 DFB 0 iReserved for future system™ ¥
expansion

CO4A:00 524 DFB 0 iReserved for future system
expansion

CO04B:00 525 DFE 0 ;Reserved for future system
expansion

co4c:00 526 DFB 0 Reserved for future asystem
expansion

C04D:00 527 DFB 0O ;Reserved for future system
expansion

CO4E: 00 528 DFRE 0 ;Reserved for future system
expansion

CO4F: 00 529 DFB 0 ;Reserved for future system
expansion

C050:00 530 TXTCLR DFB 0 iSwitch in graphics (not text)

C051:00 531 TXTSET DFB 0 iSwitch in text (not graphicg)

c052:00 532 MIXCLR DFB 0 ;Clear mixed mode EOs

C053:00 533 MIXSET DFB 0 ;Set mixed mode (4 lines text)

C054:00 534 THTPAGEL DFB 0 iSwitch in text page 1

C055:00 535 THTPAGEZ DFB 0 iSwitch in text page 2

C056:00 536 LORES DFB 0 ;Low-resolution graphics

co57:00 237 HIRES DFB 0 iHigh-resolution graphics

C058:00 538 SETANO DFB 0 ;Clear annunciator 0

288 Appendix E: Soft Switches

T e



Cc059:00
CO5a:00
CO05B:00
cosC:00
COSD: 00
COSE: 00
COSF:00
C060:00
C061:00
Co062:00
Cc0e3:00
c0e4:00
C065:00
C0e6:00
c067:00

coe68:
COE8:
Co68:
COER:
COEB:
coeg: _ =
COEA;

C068 :
C068:;
coel:
COB8:
COeB:
CO06&B:
C068:
CO0g68:
CO68:
C068:
C068:
C068:
Cc068:
C068:00. - -
CO0E9:00" ™

CO6R:00

539
540
541
542
543
244
545
546
247
548
549
550
531
552
553

555
558
357
558
558
560
561

563
564
565
566
567
568
570
571
572
573
575
576
577
579
SBO

581

CLRAND DFE 0 ;Set annunciator 0
SETAN1 DFE 0 ;Clear annunciatorl
CLEAN1 DFB 0 ;Set annunciator 1
SETANZ DFB 0 ;Clear annunciateor 2
CLRAN DFB 0 ;5et annunciator 2
SETAN3 DFB 0 ;jClear annunciator 3
CLRAN3 DFE 0 ;Set annunciator 3
BUTN3 DFB O ;Read switch 3
BUTNO DFB 0 ;Read switch 0 (3 key)
BUTHN1 DFB 0 ;Read switch 1 (# key)
BUTHNZ DFBE 0 ;Read switch 2
PADDLO DFB 0 ;Read paddle 0
DFB 0 iRead paddle 1
DFB 0 ;Read paddle 2
DFB 0 ;Read paddle 3
* ? [ 5 4 3 2 1 0
*| | | | | | | | I
* | ALTZP |PAGE2 |RAMRD |RAMWRT |BRDROM |LCBNEZ |ROMB | INTCX |
*|status |status|status|status|status|status|status|status|
¥ | | | I | | I I
*| | | | | | | I |
L fassns  STATEREG status byte ~~~~*
* STATEREG bits defined as follows:
* Bit 7 = ALTZP status
* Bit & = PAGEZ2 status
*® Bit 5 = RAMRD status
* Bit 4 = RAMWRT status
* Bit 3 = RDROM status (read only RAM/ROM (0/1))
% Important note: Perform two reads to $COB3; then change
* STATEREG to change LCRAM/ROM banks (0/1); keep the
* language card write enabled.
&
* Bit 2 = LCBNK2 status 0 = LC bank 0, 1 = LC bank 1
* Bit 1 = ROMBANK status
® Bit 0 = INTCXROM status
STATEREG DFB 0 ;State register
DFB 0 ;Reserved for future system
expansion
DFB 0 ;Reserved for future system
expansion

Appendix E: Soft Switches 289




CO06B:00
cO0eC:00
COo6eD:00
COBE:00
CO&F:00
c070:00
Cc071:

cCo80:00
c0B1:00

CO0B2:00
CO083:00

c084:00

COBS5:00

CO086:00
CO0B87:00

coag:00

COB9:00

COBA:0Q0Q
cO0BB:00

cO8C:00
CO8D:00
CO3E:00

CO8F:00

0000:610
0000:612

250

582

SB3

S84 TESTREG
285 CLRTM
586 ENTHM
587 PTRIG
588

530

591 ROMIN

592
593 LCBANKZ

585

596

587
598

600

601

602
603 LCBANK1

605
606
607

608

DEND

CLEROM EQU

Appendix E: Soft Switches

DFB 0O
DFB 0

DFB
DFBE
DFB
DFB 0
Ds 15,0
DFB 0

Lo O o A o |

DFB 0

DFB
DFB 0

o

CFB 0

DFE 0

DFB 0
DFB 0

DFE 0

DFB 0

DFB 0
DFB 0

DFB 0

DFB 0

DFB 0
DFB 0

SCFFF

;Reserved

expansion

iReserved

expansion
;Test mode bit register
;Clear test mode
;Enable test mode
;Trigger the paddles

;ROM interrupt code jump table

RAM bank2 rd, wrt protect LC

:8el LC
RAM
;Enable
RAM
;Enable
:5el LC
EAM
15el LC
FLAM
;Enable
RAM
;Enable
;Sel LC
BAM
i8el LC
RAM
;Enable
RAM
;Enable
;Sel LC
RAM
;5el LC
RAM
;Enable
RAM
;Enable
;5el LC
FAM

;Switch

ROM

ROM
RAM

RAM

ROM

ROM

ROM

ROM

ROM

ROM

out

read,

read,
bank2,

bank2
read,

read,
bankZz,

bankl
read,

read,
bankl,

bankl
read,

read,
bankl,

for future system

for future system

2 reads wrt enb LC

wrt protect LC RAM
2 rds wrt enb LC

rd, wrt protect LC
2 reads wrt enb LC

wrt protect LC RAM
2 rds wrt enb LC

rd, wrt protect LC
2 reads wrt enb LC

wrt protect LC RAM
2 rds wrt enb LC

rd, wrt protect LC
2 reads wrt enb LC

wrt protect LC RAM
2 rds wrt enb LC

S5CBE ROMs




Table E-1
Symbol table sorted by symbol

CO1E
Co60
Coo0
COsB
COGE
C026
CO6F
C046
Cco25
C083
C044
029
CO1F
Co15
C002
C014
C081
C03A
COOF
CosC
CO0B
Co2D
C03D
Co6D
Cos1
CO04

ALTCHARSET
BUTN3
CLRBOCOL
CLRANI
CLRTM
DATAREG
ENTM
INTFLAG
KEYMODREG
LCBANK2
MMDELTAX
NEWVIDEO
RDEOVID
RDCXROM
RDMAINRAM
RDRAMWRT
ROMIN
SCCBDATA
SETALTCHAR
SETAN2
SETSLOTC3ROM
SLTROMSEL
SOUNDDATA
TESTREG
TXTSET
WERMAINRAM

Co61
co2C
Cooc
CosD
Co47
C046
cos7
COooo
cozy
Cos6
CO045
Co64
C016
Co1D
CoO1B
COI1A
Co32
C038
coon9
COSE
CO06
CO3F
C030
C0os50
COZE

BUTNO
CHARROM
CLRBOVID
CLRAN2
CLRVBLINT
DIAGTYPE
HIRES
IOADR
KMSTATUS
LORES
MMDELTAY
PADDLO
RDALTZP
RDHIRES
RDMIX
RDTEXT
SCANINT
SCCBREG
SETALTZP
SETAN3
SETSLOTCXROM
SOUNDADRH
SPKR
TXTCLR
VERTCNT

Co62
C034
COOE
COSF
C048
C031

BUTNI1
CLOCKCTL
CLRALTCHAR
CLRAN3
CLEXYINT
DISKREG
CO2F HORIZCNT
C010 KBDSTRB
CO2B LANGSEL
C052 MIXCLR
C021 MONOCOLOR
CO70 PTRIG

C017 RDC3ROM
C011 RDLCBNEKZ2
C01C RDPAGEZ
€019 RDVBLBAR
CO03B SCCADATA
C001 SETBOCOL
CO058 SETANOD
CO0OA SETINTC3ROM
C008 SETSTDZFP
CO3E SOUNDADRL
C0O68 STATEREG
C054 TXTPAGEI
C023 VGCINT

Appendix E: Soft Switches

C063
C033
Cos9
CFFF
C036
Co37
Co41
CO00
CO8R
CO53
CO24
C018
C003
Co12
Co13
co28
Co39

BUTN2
CLOCKDATA
CLRANQ
CLRROM
CYAREG
DMAREG
INTEN

KBD
LCBANKI1
MIXSET
MOUSEDATA
RDBOCOL
RDCARDRAM
RDLCRAM
RDRAMRD
ROMBANK
SCCAREG

COOD SETBOVID

CO5A
coo7
co3s
C03C
coz22
C055
CO05

SETAN1
SETINTCXROM
SHADOW
SOUNDCTL
TBCOLOR CO06
TXTPAGE2
WRCARDRAM

291




Table E-2
Symbol table sorted by address

C000 IOADR C000 KBD C000 CLRBOCOL C001 SETBOCOL
C002 RDMAINRAM C003 RDCARDRAM C004 WRMAINRAM  C005 WRCARDRAM
C006 SETSLOTCXROM C007 SETINTCXROM CO08 SETSTDZP C009 SETALTZP
CO0A SETINTC3IROM C00B SETSLOTC3ROM COOC CLRBOVID CO0D SET8OVID
COOE CLRALTCHAR COOF SETALTCHAR C010 KBDSTRE C011 RDLCBNEKZ2
C012 RDLCRAM C013 RDRAMRD C014 RDRAMWRT C015 RDCXROM
C016 RDALTZP C017 RDC3ROM C018 RDBOCOL C019 RDVELBAR
CO1A RDTEXT CO01B RDMIX C01C RDPAGE2Z CO01D RDHIRES
CO1E ALTCHARSET CO1F RDSBOVID C021 MONOCOLOR C022 TBCOLOR
C023 VGCINT C024 MOUSEDATA C025 KEYMODREG  C026 DATAREG
C027 KMSTATUS C028 ROMBANK C029 NEWVIDEO CO2B LANGSEL
C02C CHARROM C02D SLTROMSEL CO2E VERTCNT COZF HORIZCNT
C030 SPKR C031 DISKREG C032 SCANINT C033 CLOCKDATA
C034 CLOCKCTL C035 SHADOW C036 CYAREG C037 DMAREG
C038 SCCBREG C032 SCCAREG CO3A SCCBDATA CO3B SCCADATA
C03C SOUNDCTL C03D SOUNDDATA CO3E SOUNDADRI CO3F SOUNDADRH
C041 INTEN C044 MMDELTAX C045 MMDELTAY C046 DIAGTYPE
C046 INTFLAG C047 CLRVBLINT C048 CLEXYINT C050 TXTCLR
C051 TXTSET C052 MIXCLR C053 MIXSET C054 TXTPAGE1
C055 TXTPAGEZ C056 LORES CO057 HIRES CO058 SETANO
C0592 CLRAND CO5A SETANI1 C05B CLRANI CO0SC SETANZ
CO5D CLRAN2 COSE SETAN3 CO5F CLRAN3 C060 BUTN3

C061 BUTNOD €062 BUTNI C063 BUTN2Z C064 PADDLO
C068 STATEREG CO6D TESTREG CO6E CLRTM CO6F ENTM

CO70 PTRIG C081 ROMIN C083 LCBANK2 C0BB LCBANKI

CFFF CLRROM

292 Appendix E: Soff Switches

ﬁ




Appendix F

Disassembler/
Mini-Assembler
Opcodes

This appendix lists all of the 65C816 instructions and the instruction formats that the
disassembler uses to define the contents of the disassembly. You may wish to hand-
assemble various short routines. This listing provides you with a ready reference for
the 65C816 instructions and addressing modes. Sometimes as the table begins a new
alphabetic item in the name field, a line break is inserted for readability. For cases
where the instructions are closely related o each other (such as branch instructions,
push instructions, and pull instructions), the line break is omitted.

In the table that follows, the addressing modes of the processor are abbreviated as
shown on the following page.




|
Abbreviation for Actual addressing
addressing mode  mode represented
# Immediate
(a) Absolute indirect
{a,x) Absolute indexed indirect
(d) Direct indirect
(d),y Direct indirect indexed
{d,x) Direct indexed indirect
(r,s)y Stack relative indirect indexed
a Absolute
ax Absolute indexed (with x)
a,y Absolute indexed (with v)
Acc Accumulator
al Absolute long
al x Absolute indexed long
d Direct
d,x Direct indexed (with x)
d,y Direct indexed (with )
i Implied
r Program counter relative
r,s Stack relative
rl Program counter relative long
5 Stack
xya Block move
[d] Direct indirect long
[d]l,y Direct indirect indexed long
294 Appendix F: Disassermbler/Minl-Assembler Opcodes




Cpcode Opcode

Name Mode Bytes number MName Mode Bytes number
ADC ({d) 2 T2 BIT d 2 24
ADC  (d),y 2 71 BIT d,x 2 34
ADC (d,x) 2 61 BIT = 23 89
ADC (rs)y 2 73 BIT a 3 2C
ADC d 2 05 BIT a,x 3 3C
ADC d.x 2 75
ADC r,s 2 63 E:I}]: : § ?f[,
ADC  ld 2 67 BPL  r 2 10
ADC [d],v 2 77 BRA ; 2 20
ADC # 23 69
ADC a 3 6D BRK L 2 00
ADC a,x 3 7D BRL rl 3 82
ADC a,y 3 79 BVC r 2 50
ADC al 4 6F BVS r 2 0
ADC al,x 4 7F

CLC i 1 18
AND (d) 2 32 CLD i 1 D8
AND (d),y 2 3 CLI i 1 58
AND (d,x) 2 21 CLV i 1 BR
AND r
= 0 o o3z

N ¥
prbs fl,': = .312 CMP  (dx) 2 c
AND [d] 2 27 CMP (r,s),y 2 I?ﬁ
AND  [dly 2 37 Cmp  d 2 €5
AND # 2 :3) 20 CMP d,?: 2 D5
AND 5 3 D CMP r,s 2 C:S
AND a,x 3 D CMP [d] 2 o7
AND  ay 3 29 CMP  [dly 2 D7
AND al 4 2F CMP # 2 3 E’:E)
1 CMP a 3

AND al,x 4 3F CMP % 3 DD
ASL Acc 1 0A CMP a,y 3 Do
ASL d 2 06 CMP  al 4 CF
ASL d,x 2 16 CMP  alx 4 DF
ASL a 3 OE i
ASL a.x 3 1E COP i p. 02

CPX d 2 E4
E?E : g ?ﬁ; CPX # 2 (3 E0
BEQ  r 2 FO CPX a 3 EC

Appendix F: Disassembler/Minl-Assembler Opcodes 205




T

Opcode Opcode
Name Mode Bytes number Name Mode Bytes number
CPY d 2 C4 JSL al 4 22
CPY # 2(3 «Co ISR (a,x) 3 FC
CPY a 3 CC ISR a 3 20
DEC Acc 1 3A LDA (d) 2 B2
DEC d 2 Cé LDA  (dy 2 B1
DEC d,x 2 DG LDA (d,x) 2 Al
DEC a 3 CE LDA (r,5),y 2 B3
DEC a,x 3 DE LDA d 2 AS
DEX i 1 CA LDA d,x 2 B5
DEY i 1 88 LDA r,5 2 A3
EOR  (d) 2 52 LDA — [d] 4 ik
FOR  (d)y 2 7 LDA  [dly 2 B7
EOR  (d,x) 2 41 LA 23 A9
EOR GOy 2 53 LDA a 3 AD o
FOR d 2 45 LDA a,x 3 BD el %
EOR  dx 2 55 IDA &y 3 B9
EOR s 2 43 LDha - al 4 i
EOR [d] 2 47 LDA al,x 4 BF
EOR [dl,v 2 57 LDX d 2 Af
EOR # 203 49 LDX d,y 2 BA
EOR a 3 4D LDX # 203 A2
EOR a,x 3 5D LDX a 3 AE
EOR ay 3 59 LDX a,y 3 BE
- - A T
= L i o= IR
g - - LDY d,x 2 B4
INC Acc 1 1A LDY # 2 (3 AD
INC d 2 EG LDY a 3 AC
INC d.x 2 F& LDY a,x 3 BC
} ;‘E : ) ; :: LSR Acc ! 4A
e o ; FE; LSR d 2 46
INY i I c8 o dx 2 5
; : LSR a 3 4E
JML (a) 3 DC LSR ax 3 SE
M2 (2) 3 6C MVN  xya 3 54
P Gx) 3 £ MVP  xya 3 44
IMP a 3 4C '
IMP al 4 5C NOP i 1 EA
294 Appendix F: Disassembler/Mini-Assembler Opcodes

I L A Tt



Opcode Opcode
Hame Mode Bytes number Name Mode Bytas numbear
ORA (D 2 12 ROR  Acc 1 6A
ORA  .‘(d)yy 2 11 ROR d 2 66
ORA (dx) 2 01 ROR d,x 2 76
ORA (r,8),y 2 13 ROR a 3 6E
ORA d 2 05 ROR ax 3 7E
ORA d,x 2 15 RTI . 1 40
ORA s 2 03 RTL s 1 6B
ORA [d] 2 07 RTS < 1 60
ORA [dl,y 2 17
ORA # 203 o0 SBC (d) 2 F2
ORA a 3 oD SBC (dy 2 F2
ORA a,x 3 1D SBC dx) 2 El
ORA a,y 3 19 SBC (rs)yy 2 F3
ORA al 4 OF SBC d 2 E5
ORA +iglx 4 IF SBC d,x 2 F5
it : SBC r,s 2 E3
FEA. ™18 3 F4 SBC  [d] 2 E7
5 s 2 D4 SBC  [dly 2 7
i 8 3 62 SBC  # 23 B
PHL 8 1 48 SBC  a 3 ED
PHB s 1 8B s
SBC a,x 3 FD
PHD s 1 OB SBC i 3 F9
PHK . s ! 4B SBC al 4 EF
PHP. % ; 08 SBC  alx 4 FF
PHX s 1 DA
FHY 5 1 SA SEC i 1 38
SED i 1 F8
= 2 1 B w17
PLD s 1 2B SER.  # * ke
PLP 5 1 28 STA (d) 2 92
PLX 5 1 FA 5TA (dy 2 o1
PLY 5 1 TA STA (d,x) 2 81
= STA {rs)y 2 o3
REP # 2 Cc2 STA d 5 85
ROL Acec 1 2A STA d,x 2 o5
ROL d 2 26 STA r,s 2 83
ROL d,x 2 36 STA Id] 2 87
ROL a 3 2E STA [d],y 2 o7
ROL ax 3 3E STA a 3 8D
STA a,x 3 9
STA a,y 3 99
STA al 4 8F
S5TA al,x 4 oF
STP i 1 DB

Apeendix f: Bisassembler/Mini-Assembler Speedes 297




Name
STX
STX
STX
STY
STY
5TY
STZ
S5TZ
STEL
STZ
TAX
TAY
TCD
TCS
TDC

298

Cpcode
Mode Bytes number

d 2 BO

d,y 2 96

a 3 8E
d 2 84

d,x 2z 04

a 3 8C
d 2 a4

d,x 2 7

g 2 aC
a,x ] oE

1 AA
i 1 AB
i 1 sk
i 1 1B
i 1 7B

Appendx F: Disassembler; Mini-Assembler Opcodes




Appendrxz

The Control Panel

The Control Panel firmware allows you to experiment with different system
configurations and change the system time. You can also permanently store any
changes in the battery-powered RAM (called Baitery RAM). The Battery RAM is a
Macintosh clock chip that has 256 bytes of battery-powered RAM for system-
parameter storage.

The Control Panel program is a ROM-resident hardware configuration program. It is
invoked when the system is powered up if you press the Option key. An allemate means
of invoking the Control Panel is to perform a cold start by pressing Control and the
Option key at the same time and then Reset. The Desk Manager can also call the
Control Panel and affect the values specified in this appendix.

Control Panel parameters

The following are the selections and options available for each Control Panel menu. A
checkmark () indicates the default value for each option.

299




Printer port
Sets up all related functions for the printer port (slot 1), Options are as [ollows:
Option Cholces Cption Cholces
Device connect v Printer Data bits v B
Modem 7
Line length v Unlimited 2
40 5
72 Stop bits ¥ 2
80 1
132 Parity Odd
Delete first LF after CR v No Even
Yes v None
Add LF afier CR v Yes DCD handshake v Yes
No No
Echo v No DSR/DTR handshake v Yes
Yes N
Buffering v No XON/XOFF handshake Yes
Yes v No
Baud 50
75
110
134.5
150
300
600
1200
1800
2400
3600
4800
7200
v D600
19,200

300 Appendix : The Control Panel




Eﬂodem' port

Sets up all related functions for the modem port (slot 2). Options are as follows:

Option
Device connected

Line length

Delete first LF after CR
Add LF after CR

Echo

Buffering

Baud

Cholces Option Cholces
Y Modem Data bits V8
Printer 7
v Unlimited 6
40 5
72 Stop bits V2
80 1
134 Parity Odd
Y No Even
Yes Y None
v Yes DCD handshake No
No Y Yes
v No DSR/DTR handshake v Yes
Yes No
v No XON/XOFF handshake  Yes
Yes V¥ No
50
75
110
134.5
150
300
600
V1200
1800
2400
3600
4800
7200
19,200

Control Panel parameters am




Display

Selects all video-specific options. Choosing Tyvpe automatically causes color or
selections o appear on the rest of the screen Options are as follows:

monochrome

Line option

Type i

Columns v
]

Hertz |

Colorf

monochrome

oplions

Text

color

Text

background

Cholces

Color
Mono

40
a0
&0
50

Cholces

{Color name is displayed.)

Black

Dark blue
Purple

Dark green
Dark gray
Medium blue
Light blue
Brown

Orange
Light gray
Pink
Light green
Yellow
Aquamarine

J White

({Color name is displayed)

Black

Deep red
Dark blue
Purple

Dark green
Dark gray
Medium blue

Light blue

Brown
Orange
Light gray
Pink

Light green
Yellow
Aguamarine
White

302 Appendlx G: The Confral Panel

Color/
monochrome
optlons
Border
color

Standard
colors

Cheolces
{Color name is displayed)

Black Brown
Deep red Qrange
Dark blue Light gray
Purple Pink
Dark green Light green
Dark gray Yellow

Y Medium blue  Aquamarine
Light blue White
No

v Yes

The Standard colors option indicates whether
your chosen colors match the Apple standard
values. If you select Yes, the current colors are
swiltched to Apple standard colors,




Sound

Allows system volume and pitch to be altered via an indicator bar. The default value is
in the middle of each range.

Speed

Allows default system speed of either normal speed (1 MHz) or fast speeds (2.6/2.8
RAM/ROM MHz). Available options are as follows:

Optlon Choices
System speed v Fast
Normal
RAM disk o

Allows default amount of free RAM to be used for RAM disk. Options are as [ollows:

Minimum free RAM for RAM disk: (minimum)
Maximum free RAM for RAM disk: (maximum)

Graduations between minimum and maximum are determined by adding or
subtracting 32K from the RAM size that is displayed. Limited to zero or the largest
selectable size, Default RAM disk size is 0 bytes minimum, 0 bytes maximum. RAM disk
size ranges from O bytes to largest selectable RAM disk size,

The amount of free RAM {in kilobytes) for the RAM disk is displayed on the screen in
the format xxxxxK. Free RAM equals the total system RAM minus 256K.

The current RAM disk size is also displayed on the screen. The current RAM disk size
can be determined by one of the RAM disk driver commands.

The following message will be displayed on the screen:
Tetal RAM in use: xxxxxK
Total RAM in use equals total system RAM minus total free RAM,

The total free RAM disk space will be displayed on the screen. You can determine the
amount of total free RAM by calling the Memory Manager,

Contral Panel parameters

303




Slots

Allows you to select either built-in device or peripheral card for slots 1, 2, 3, 4, 5, 6,
and 7. Also allows you to select startup slot or to scan slots at startup time. Oplions
available are as follows:

Option Cholces Option Cholces
Slot 1 v Printer port Slot 7 Built-in AppleTalk
Your card v Your card
Slot 2 v Modem port Startup slot ¥ Scan
Your card 1
Slot 3 vV Built-in text display A
Your card :
Slot 4 v Mouse port 5
Your card 6
Slot 5 v SmartPort 7
Yonar cavd RAM disk
PR ROM disk
Slot 6 v Disk pont
Your card

Options
Allows you to select the keyboard layout, text display language, key repeat speed, and
delay to key repeat to use advanced features. Layouts and languages are displayed that
correspond to the hardware. Layouts and languages not available with your hardware
(keyboard micro and Mega 11) are not displayed. The information about the layouts
and languages that are available comes from the keyboard micro at power-up time,
Options are as follows:

Option Cholces Option Choices
Display Chosen from Table G-1 Repeat 4 char/sec
language speed 8 char/sec
Keyboard Chosen from Table G-1 i char{ e
lavout : 15 cha r/sec
¥ 20 char/sec
Keyboard v No 24 char/sec
buffering Yes 30 char/sec
40 char/sec
Repeat 25 sec
delay .50 sec
v .75 sec
1.00 sec
NO repeal
304 Appendix G: The Control Panel

ety i)



Oplion Choices Advanced features

Double-click 1 tick = 1/60 sec Shift caps/ Y No
time 50 ticks (slow) lowercase Yes
40 ticks Fast space/ Vv No
v 30 ticks delete keys Yes
20 ticks
; Dual speed v Normal
10 ticks (fasy) keys st
Critect ek 1 tick = 1450 sec High-speed v No
site 0 ticks (no Mash) mouse Yes
60 ticks
v 30 ticks
15 ticks
10 ticks (fast)
Table G-1
Language optlons
Number ASCII Number ASCIHl
0 English (L.5.A.) 10 Finnish
1 English (UL.K.) 11 Portuguese
2 French 12 Tamil
- Danish 13 Hindi
4 Spanish 14 Tl
5 Italian 15 T2
f German 16 T3
7 Swedish 17 T4
8 Dwvorak 18 TS
9 French Canadian 19 TG
A Flemish 1A L1
B Hebrew 1B L2
C Japanese 1C L3
3] Arahbic 1D L4
E Greek 1E L5
F Turkish 1F LG

For the language options, items 0-7 are available to control the display language.
Items 8 and 9 control the kevboard layout.

(The keyboard microprocessor provides the pointer for the appropriate ASCII value
listed in Table G-1.)

Control Panel parameters 305




Clock

Allows you (o set the time and date and time/date formats. Options are as lollows:

Option Cholces Option Cholces
Month 1-12 Hour 1-12 or (—23
Day 1-31 (depends on

Format selected)

Year 19042044
Format ¥ MM/DD/YY

Minute 0-59

DD/MM/YY Second  0-59
e £o Format ¥ AM-PM
24-hour

Quit

Returns to calling application or, if called from keyboard, performs a startup function,

Baﬂéry_— powered RAM

The Battery RAM is a Macintosh clock chip that has 256 bytes of battery-powered RAM
used for sysiem-parameter storage. The AppleTalk node number is stored in the
Battery RAM, set by the AppleTalk firmware.

< Nole: The Battery RAM is not for application program use.

The Battery RAM must include encoded bytes for all options that can be selected from
the Control Panel. Standard setup values are placed into Battery RAM during
manufacturing. However, the keyboard layout and display language are determined by
the keyboard used.

Items that can be changed by manufacturing and the Control Panel program can also
be changed by your application program; however, only the Miscellaneous Tool Set
Battery RAM routines or another Apple-approved utility program can make changes
to Battery RAM. If the changing program is not an Apple-approved utility, Battery
RAM will be severely damaged and the system will become inoperative. If Battery RAM
is damaged and inoperative (or the battery dies), the firmware will automatically use
the Apple standard values to bring up the system. The battery can be replaced, and
you can enter the Control Panel program to restore the system to its prior
configuration.

304 Appendix G: The Control Panel

—




Control Panel at power-up

| At power-up, the Battery RAM is checksummed. If the Battery RAM fails its checksum
test, the system assumes a U.5. keyboard configuration and English language. Further,
U.5. standard parameters are checksummed and moved to the Battery RAM storage
buffer in bank $E1. The system continues running using U.S, standard parameters.

Control Panel ot power-up an7y




I

Appendix

|

I

Banks $EO and $E1

A special section of Apple I1GS memory is dedicated to the Mega II chip. The Mega 11,
also called the Apple-Il-on-a-chip, is a separate coprocessor that runs at 1 MHz and
provides the display that the Apple 1IGS produces on the video screen.

To communicate with the Mega 11, the Apple IIGS either writes directly into bank $F0
or $E1 or enables a special soft switch, named shadowing, When shadowing is
enabled, whenever the Apple IIGS writes into bank $00 (or bank $01), the system
automatically synchronizes with the Mega 11 and writes the same data into bank $E0 (or
bank $E1),

Figure H-1 depicts the layout of the memory in these banks of memory. Some of this
memory is dedicated to display areas, some of it is reserved for firmware use, and
some of it is declared as free space and is managed by the Memory Manager,

Figure H-1 shows the location of the various functions of Apple 11GS banks $E0 and
SEL In the figure, the notation K means a decimal value of 1024 bytes, and the
notation page means hex $100 bytes.

@ Note: In Figure H-1, the memory segments called free Space are available through
the Memory Manager only,

J08




SFFFF
SEQ main longuage card SE1 aux languoge card
520 pages 520 poges
(8K reserved) (BK reserved)
SEOOD
Bank 500 Bank 501 Bank 500 Bank $01
510 pages 510 pages 510 pages 510 pages
(4K reserved) (4K reserved) (4K reserved) (4K reserved)
s$D000
YO (olways active) IO (olways active)
$Cooo
520 pages
(8K free space)
SADDOD
540 poges
[ 58000 ——— Super Hi-Res
24K fr ca
i - (58000-59FFF)
$7000 = Graphics
$6000
Double Hi-Res page two Doubie HI--Q_gs page two
(54000-55FFF) $5000 (54000-55FFF)
Graphics Graphics
54000
Couble Hi-Res poge one Double Hi-Res page one
($2000-53FFF) — 53000 — ] (52000-53FFF)
Graphics Graphics
§2000
514 pages 514 pages
(5K reserved) (5K reserved)
50C00
Text Page 2 Text Page 2
50800
Text Page 1 Text Page 1
50400
54 pages 54 pages
(1K reserved) (1 resarved)
S0000

Figure H-1
Memory map of banks SE0 and S$E1

Appendix H: Banks 5E0 and SE] 309




Using banks $E0 and $E1

You can use graphics memory located in memory banks $E0 and SE1 or the free space
via the Memory Manager; however, you must exercise caution to ensure that you don't
use areas that are reserved for machine use.

Free space

Eighty hexadecimal pages, or 32K bytes, in the area labeled free space can be used,
however, this area must be accessed through the Memory Manager. (The Memory
Manager can be called through the Apple IG5 Toolbox.) If you try to use this space
without first calling the Memory Manager, you will cause a system [ailure,

Video buffers not needed for screen display may be used for your applications.

& Note: Video buffers are used by firmware only for video displays because there is no
way to determine which video modes are needed by your applications.

Language-card area

The language-card area is switched by the same soft switches used to switch Apple 1
simulation language cards in banks $00 and $01. Before switching language-card banks
{or ROM for RAM or RAM for ROM), the current configuration must be saved. The
confliguration must be restored after your subroutine is finished accessing the switched
anca.

Shadowing

The shadowing ability of the Apple 11G5 can be used by applications to display overlay
data on the screen. Normally, if an application wants to display an overlay on an
existing screen, it must save the data in the area that is overwritten. Because of the
shadowing capabilities of the Apple 11G5, this task is simplified.

When shadowing is turned on, you draw your criginal screen display into banks S00
and $01. To display the overlay, turn shadowing off and write directly into banks $SEO
and SE1, This affecis only the display and not the criginal screen data that is also
present in banks 500 and 501, When you are finished with the overlay, enable
shadowing again and simply read and write the screen data (use MVN or MVP for
speed) into the current screen area using banks $00 and $01. This will have no effect on
banks $00 or $01, but it will restore the display (o its appearance before the overlay
data was written,

310 Appendix H: Banks $E0 and SE1

—




|

|

Glossary

accumulator: The register in a computer's central
processor or microprocessor where most
computations are performed.

ACIA: Abbreviation for Asynchronous
Communications Interface Adapter, a type of
communications IC used in some Apple
computers. An ACIA converts data from parallel
to serial form and vice versa. It handles serial
transmission and reception and RS-232-C signals
under the control of its internal registers, which
can be set and changed by firmware or software.
Compare SCC.

ADB: See Apple DeskTop Bus.

address: A number that specifies the location of a
single byte of memory, Addresses can be given as
decimal or hexadecimal integers. The Apple 11GS
has addresses ranging from 0 to 16,777,215
(decimal) or from $00 00 00 to $FF FF FF
(hexadecimal). A complete address consists of a
4-bit bank number ($00 to $FF) followed by a 16-
bit address within that bank ($00 00 to $FF FF).

Apple DeskTop Bus (ADB): A low-speed serial
input port that supports the keyboard, the ADB
mouse, and additional input devices, such as hand
contrels and graphics tablets,

Apple key: A modifier key on the Apple 11GS
keyboard, marked with both an Apple icon and a
spinner, the icon used on the equivalent key on
some Macintosh keyboards. It performs the same
functions as the & key on standard Apple II
computers,

AppleTalk: Apple's local-area network for
Apple IT and Macintosh personal computers and
the LaserWriter and ImageWriter 11 printers, Like
the Macintosh, the Apple 11G5 has the AppleTalk
interface built in,

AppleTalk connector: A piece of equipment
consisting of a connection box, a short cable, and
an &-pin miniature DIN connector that enables an
Apple 1IGS 1o be part of an AppleTalk network.

Apple II: A family of computers, including the
original Apple II, the Apple II Plus, the Apple Ile,
the Apple Ilc, and the Apple I1GS. Compare
standard Apple II.

Apple IIGS Programmer's Workshop (APW):
The development environment for the Apple 11GS
computer. It consists of a set of programs that
facilitate the writing, compiling, and debugging of
Apple 1IGS applications.

APW: See Apple IIGS Programmer’s
Workshop.

assembler: A program that produces object
files (programs that contain machine-language
code) from source files written in assembly
language. The opposite of disassembler.

background printing: Printing from one
application while another application is running.
bank: A 64K (65,536-byte) portion of the

Apple 1IGS internal memory. An individual bank js

specified by the value of one of the 65C816
microprocessor's bank registers.

an




bank-switched memory: On Apple 11
computers, that part of the language-card
memory in which two 4K portions of memory
share the same address range (3D000 to $DFFF).

BASICOUT: The routine that outputs a character
when the 80-column firmware is active.

Battery RAM: RAM memory on the Apple T1GS
clock chip, A battery preserves the clock settings
and the RAM contents when the power is off,
Control Panel settings are kept in the Battery RAM,

baud rate: The rate at which serial data is
transferred, measured in signal transitions per
second. It takes approximately 10 signal
transitions to transmit a single character,

bit: A contraction of binary digit. The smallest
unit of information a computer can hold. The
value of a bit (1 or ) represents a simple two-way
choice, such as on or off,

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous, page-aligned
region of computer memory of arbitrary size,
allocated by the Memory Manager. Also called a
memory block.

block device: A device that transfers data to or
from a computer in multiples of one block (512
bytes) of characters at a time. Disk drives are block
devices. Also called block VO device.

boot: Another way to say start up. A computer
boots by loading a program into memory from an
external storage medium such as a disk, The word
boot is short for bootstrap load. Starting up is
often accomplished by first loading a small
program, which then reads a larger program into
memory. The program is said to “pull itself up by
its own bootstraps.”

buffer: A holding area in the computer's memory
(for example, a print buffer) where information
can be stored by one program or device and then
read at a different rate by another,

a1z Glossary

byte: A unit of information consisting of a
sequence of B bits. A byte can take any value
between 0 and 255 (30 and $FF hexadecimal). The
value can represent an instruction, a number, a
character, or a logical siate.

carry flag: A status bit in the microprocessor,
used as an additonal high-order bit with the
accumulator bits in addition, subtraction,
rotation, and shift operations.

central processing unit (CPU): The part of the
computer that performs the actual computations
in machine language. See also microprocessor.

character: Any symbol that has a widely
understood meaning and thus can convey
information. Some characters, such as letters,
numbers, and punctuation, can be displayed on
the monitor screen and printed on a printer. Most
characters are represented in the computer as 1-
byte values,

clamp: A memory location that contains the
maximum and minimum excursion positions of
the mouse cursor when the desktop is in use,

CMOS: Acronym for complementary metal oxide
semiconducior, one of several methods of making
integrated circuits out of silicon. CMOS devices
are characterized by low power consumption.

controller card: A peripheral card that connects
a device such as a printer or disk drive 10 a
compuler's main logic board and controls the
operation of the device.

Control Panel: A desk accessory that lets the
user change certain system parameters, such as
speaker volume, display colors, and configuration
of slots and ports.

control register: A special register that programs
can read and write, similar to a soft switch. The
control registers are specific locations in the 1/0
space ($Cxxx) in bank $EO, they are accessible
from bank 500 if I/O shadowing is on.

—




Control-Reset: A combination keystroke on
Apple IT computers that usually causes an
Applesoft BASIC program or command to stop
immediately,

COUT: The firmware entry point for the Apple 1

character-output subroutine. COUT is actually an
1/O link located in RAM rather than in ROM, and
so can be modified to contain the address of the

presently active character-oulput subroutine.

COUT1: An entry point within the Apple 11
character-output subroutine.

C3COUT1: Also called BASICOUT, this is the
routine that COUT jumps to when the 80-column
firmware is active,

data: Information transferred to or from, or
stored in, a computer or other mechanical
communications or storage device,

DCD: Abbreviation for Data Carrier Detect, a
modem signal indicating that a communication
connection has been established.

Delete key: A key on the upper-right comer of
the Apple Ile, Apple Ilc, and Apple 1IGS
keyboards that erases the character immediately
preceding (o the left of) the cursor. Similar to the
Macintosh Backspace key.

delta: The difference from something the
program already knows. For example, mouse
moves are represented as deltas compared to
previous mouse locations, The name comes from
the way mathematicians use the Greek letter delta
(A) to represent a difference,

desk accessory: A small, special-purpose
program available to the user regardless of which
application is running. The Control Panel is an
example of a desk accessary.

desktop: The visual interface between the
computer and the user—the menu bar and the gray
area on the screen,

device: A piece of hardware used in conjunction
with a computer and under the computer's
control. Also called a peripheral device because
such equipment is often physically separate from
(but attached to) the computer,

device driver: A program that manages the
transfer of information between the computer and
a peripheral device.

Digital Oscillator Chip (DOC) An integrated
circuit in the Apple TIGS that contains 32 digital
oscillators, each of which can generate a sound
from stored digital waveform data.

DIN: Acronym for Deutsche industrie Normal, a
European standards organization.

DIN connector: A type of connector with
multiple pins inside a round outer shield.

direct page: A page (256 bytes) of bank $00 of
Apple IG5 memory, any part of which can be
addressed with a short (1-byte) address because its
high-order byte of the address is always $00 and its
middle byte of the address is the value of the
65C816 direct register. Coresident programs or
routines can have their own direct pages at
different locations, The direct page corresponds
to the 6502 processor's zero page. The term direct
page is often used informally to refer to any part of
the lower portion of the direct-page/stack space.

direct-page/stack space: A portion of bank $00
of Apple 11GS memory reserved for a program's
direct page and stack. Initially, the 65C816
processor's direct register contains the base
address of the space, and its stack register
contains the highest address. In use, the stack
grows downward from the top of the direct-
page/stack space, and the lower part of the space
contains direcl-page data.

direct register: A hardware register in the 65C816
processor that specifies the start of the direct page.

Glossary 313



disassembler: A program that examines data in
memory and interprets it as a set of assembly-
language instructions, Assuming the data is object
code, a disassembler gives the user the source
code that could have generated that object code.

disk operating system: An operaling system
whose principal function is to manage files and
communication with one or more disk drives.
DOS and ProDOS are two families of Apple II disk
operating systems.

Disk II drive: A type of disk drive made and sold
by Apple Computer for use with the Apple IT,
Apple 11 Plus, and Apple Ile computers. It uses
5.25-inch disks.

DOC: See Digital Oscillator Chip.

DOS: An Apple 11 disk operating system. Acronym
for Disk Operating System.

Double Hi-Res: A high-resolution graphics
display mode on Apple 11 computers with at least
128K of RAM, consisting of an array of points 560
wide by 192 high with 16 colors,

DSR: Abbreviation for Data Set Ready, a signal
indicating that a modem has established a
connection.

DTR: Abbreviation for Data Terminal Ready, a
signal indicating that a terminal is ready to
transmil or receive data.

e flag: One of three [lag bits in the 65C816
processor that programs use to control the
processor's operating modes. The setting of the e
flag determines whether the processor is in native
mode or emulation mode, See also m flag and

x flag,

B-bit Apple I: Another way of saying standard
Apple I0; that is, any Apple 1T with an 8-bit
microprocessor (6502 or 65C02).

80-column text card: A peripheral card that
allows the Apple I, Apple 1T Plus, and Apple lle
computers to display text in 80 columns (in
addition o the standard 40 columns).

314 Glossary

emulate: To operate in a way identical to a
different system. For example, the 65C816
microprocessor in the Apple 11GS can carry out all
the instructions in a program originally written for
an Apple II that uses a 6502 microprocessor, thus
emulating the 63502,

emulation mode: The 8-bit configuration of the
65C816 processor in which the processor functions
like a 6502 processor in all respects except clock
speed.

environment: The complete set of machine
registers associated with a running program.
Saving the environment allows a program 1o be
restored to its original operating mode with all of
its registers intact as though nothing had
happened. Saving and restoring an environment
is most often associated with calling system
functions or processing interrupts.

error: The state of a computer after it has detected
a fault in one or more commands sent o it. Also
called error condidon.

escape code: A key sequence formed by pressing
the Esc (Escape) key, followed by pressing another
key. Escape codes are used to control the video
firmware.

escape mode: The mode of video-firmware
operation activated by pressing the Esc (Escape)
key. It allows for moving the cursor, picking up
characters from the screen, and performing other
special operations.

extended SmartPort call: A SmanPort call that
allows data transfer 1o or from anywhere in the
Apple 1IGS system memory space. Compare
standard SmartPort call.

fleld: A string of ASCII characters or a value that
has a specific meaning to some program. Fields
may be of fixed length or may be separated from
other fields by field delimiters. For example, each
parameter in a segment header constitutes a field.

e e RO




ry

firmware: Programs stored permanently in
ROM; most provide an interface to system
hardware. Such programs (for example, the
Monitor program) are built into the computer at
the factory. They can be executed at any time, but
cannol be modified or erased from main
memaory.

format: (n) The form in which information is
organized or presented. (v) To divide a disk into
tracks and sectors where information can be
stored; synonymous with initialize, Blank disks
must be formatted before the user can save
information on them for the first time.

frequency: The rate at which a repetitive event
recurs. In alternating current (AC) signals, the
number of cycles per second. Frequency is usually
expressed in hertz (cycles per second),
kilohertz, or megahertz.

GETLN: The firmware routine that a program calls
lo obtain an entire line of characters from the
currently active input device,

GLU: Acronym for general logic wunit, a class of
custom integrated circuits used as interfaces
between different parts of the computer,

handshaking: The exchange of status
informaton between two data terminals used 1o

control the transfer of data between them. The
status information can be the state of a signal
connecting the two terminals, or it can be in the
form of a character transmitted with the rest of the
data.

hertz (Hz): The unit of frequency of vibration or
oscillation, defined as the number of cycles per
second. Named for the physicist Heinrich Hertz.
see also kilohertz and megahertz,

hexadecimal: The base-16 system of numbers,
using the ten digits 0 through 9 and the six letters A
through F. Hexadecimal numbers can be
converted easily and directly to binary form,
because each hexadecimal digit corresponds to a
sequence of 4 bits. In Apple manuals,
hexadecimal numbers are usually preceded by a
dollar sign ($).

high order: The most significant part of a
numerical quantity. In normal representation, the
high-order bit of a binary value is in the leftmost
position; likewise, the high-order byte of a binary
word or longword quantity consists of the
leftmost 8 bits,

Hi-Res: A high-resolution graphics display mode
on the Apple II family of computers, consisting of
an array of points 280 wide by 192 high with &
colors.

Human Interface Guidelines: A set of software
development guidelines designed by Apple
Computer to support the desktop concept and 1o
promote uniform user interfaces in Apple 11 and
Macintosh applications.

icon: An image that graphically represents an
object, a concept, or a message.

index register: A register in a computer
processor that holds an index for use in indexed
addressing. The 6502 and 65C814
microprocessors used in the Apple 11 family of
computers have two index registers, called the X
register and the ¥ register.

initialize: See format (V).

intelligent device: A device containing a
microprocessor and a program that allows the
device to interpret data sent to it as commands
that the device is to perform.

interpreter: A program that interprets its source
files on a statement-by-statement or character-
by-character basis.

315

Glossary




interrupt handler: A program, associated with 2
particular external device, that executes whenever
that device sends an interrupt signal to the
computer, The interrupt handler performs its tasks
during the interrupt, then returns control to the
computer 50 it may resume program execution.

IRQ: A 65CB16 signal line that, when activated,
causes an interrupt request 1o be generated.

IWM: Abbreviation for Mntegrated Woz Machine,
the custom chip used in built-in disk ports on
Apple computers,

KEYIN: The firmware entry point that a program
calls to obtain a keystroke from the currently active
input device (normally the keyboard).

kilobit: A unit of measurement, 1024 bits,
commonly used in specifying the capacity of
memory integrated circuits. Not to be confused
with kilobyte,

kilobyte: A unit of measurement, 1024 bytes,
commonly used in specifying the capacity of
memory or disk storage systems.

kilohertz (kHz): A unit of measurement of
frequency, equal to 1000 hertz. Compare
megahertz.

language-card memory: Memory with
addresses between $D000 and $FFFF on any
Apple [I-family computer. It includes two RAM
banks in the $Dxxx space, called bank-switched
memory. The language card was originally a
peripheral card for the 48K Apple I or Apple II
Plus computer that expanded the computer's
memory capacity to 64K and provided space for
an additional dialect of BASIC,

last-changeable location: The last location
whose value the user inquired about through the
Monitor.

314 Glossary

link: An area in memory that contains an address
and a jump instruction. Programs are wrillen 1o
jump to the link address. Other programs can
modify this address to make everything behave
differently. COUT and KEYIN are examples of
I/O links.

longword: A double-length word. For the
Apple TIGS, a long word is 32 bits (4 bytes) long.

Lo-Res: The lowest resolution graphics display
mode on the Apple 1T family of computers,
consisting of an array of blocks 48 high by 40 wide
with 16 colors.

low order: The least significant part of a
numerical quantity. In normal representation, the
low-order bit of a binary number is in the
rightmost position; likewise, the low-order byte of
a binary word or longword quantity consists of
the rightmost 8 bits.

megabit: A unit of measurement equal to
1,048,576 (216) bits, or 1024 kilobits. Megabits are
commonly used in specifying the capacity of
memory integrated circuits. Not to be confused
with megabyte.

megabyte: A unit of measurement equal to
1,048,576 (216) bytes, or 1024 kilobytes.
Megabytes are commonly used in specifying the
capacity of memory or disk storage systems.

megahertz (MHz): A unit of measurement of
frequency, equal to 1,000,000 hertz. Compare
kilohertz.

Mega II: A custom large-scale integrated circuit
that incorporates most of the timing and control
circuits of the standard Apple 11 It addresses 128K
of RAM organized as 64K main and auxiliary banks
and provides the standard Apple 11 video display
modes, both text (40-column and 80-column) and
graphics (Lo-Res, Hi-Res, and Double Hi-Res).

memory block: See block (2).

—




Memory Manager: A program in the Apple IG5
Toolbox that manages memory use. The Memory
Manager keeps track of how much memory is
available and allocates memory blocks to hold
program segments or data,

memory-mapped I/0: The method used for /O
operations in Apple Il computers. Certain
memory locations are attached to I/O devices,
and 1/O operations are just memory load and
store instructions,

m flag: One of three flag bits in the 65C816
processor that programs use to control the
processor's operating modes, In native mode,
the setting of the m flag determines whether the
accumulator is 8 or 16 bits wide. See also e flag

and x flag.

microprocessor: A central processing unit that is
contained in a single integrated circuit. The
Apple 1IGS uses a 65C816 microprocessor.

mini-assembler: A part of the Apple 1IGS
Monitor program that allows the user to create
small assembly-language test routines. See also
assembler.

Monitor program: A program built into the
firmware of Apple I computers, used for directly
inspecting or changing the contents of main
memory and for operating the computer at the
machine-language level.

MOS: Acronym for metal oxide semiconducior,
one of several methods of making integrated
circuits,

native mode: The 16-bit configuration of the
65C816 microprocessor,

fext-changeable location: The memory

location that is next to have its value changed,

NTSC: (1) Abbreviation for National Television
Standards Committee, which defined the standard
format used for transmitting broadcast video
signals in the United States. (2) The standard video
format defined by the NTSC; also called
composite because it combines all video
information, including color, into a single signal.

object file: The output from an assembler or a
compiler, and the input to a linker, It contains
machine-language intructions. Also called object
program or obfect code. Compare source file,

op code: See operation code,

T: A modifier key on some Apple 11 keyboards.
On the Apple 1IGS keyboard, the equivalent key is
called simply the Apple key; it is marked with
both an Apple icon and a spinner, the icon used
on some Macintosh keyboards.

operand: An item on which an gperator (such as +
or ANDY) acts,

operation code: The pant of a machine-language
instruction that specifies the operation to be
performed. Often called ap code.

page: (1) A portion of memory 256 bytes long and
beginning at an address that is an even multiple of
256. Memory blocks whose starting addresses are
an even multiple of 256 are said to be page
aligned. (2) (usually capitalized) An area of main
memory containing text or graphic information
being displayed on the screen.

palette: The set of colors from which the user can
choose a color to apply 1o a pixel on the screen.

parameter: A value passed o or from a function
or other routine,

parameter block: A set of contiguous memory
locations set up by a calling program to pass
parameters (o and receive results from an
operating-system function that the program calls.
Every call to SmartPort must include a pointer 1o a
properly constructed parameter block.

317




parity bit: A bit that is sometimes transmitted
along with the other bits that define a serial
character. It is used o check the accuracy of the
transmission of the character, Even parity means
that the total number of 1 bits transmitted,
including the parity bit itself, is even. Odd parity
means that the total number is odd. The parity bit
is generated individually for each character and
checked, a character at a time, at the receiving
end.

peripheral device: Sce device,

pixel: Short for piciure element. The smallest dot
that can be drawn on the screen. Also a location in
video memory that corresponds to a point on the
graphics screen when the viewing window includes
that location. In the Macintosh display, each pixel
can be either black or while, so it can be
represented by a bit; thus, the display is said to be
a bit map. In the Super Hi-Res display on the
Apple 11GS, each pixel is represented by either 2 or
4 bits; the display is not a bit map, but rather a
pixel map.

pixel map: A set of values that represents the
positions and states of the set of pixels making up
an image.

ProDOS: Acronym for Professional Disk
Operating System, a family of disk operating
systems developed for the Apple II family of
computers. ProDOS includes both ProDOS 8 and
ProDOS 16.

ProDOS 8: A disk operating system developed for
standard Apple II computers. It runs on 6502-
series microprocessors and on the Apple 11GS
when the 65C816 processor is in 6502 emulation
mode,

ProDOS 16: A disk operating system developed
for 65C816 native-mode operation on the
Apple 1IGS. It is functionally similar to ProDOS 8,
but more powerful.

318 Glossary

prompt: A message on Lhe screen that a program
provides when it needs a response from the user. A
prompt is usually in the form of a symbol, a dialog
box, or a menu of choices,

Quagmire register: On the Apple 11G3, the
name given to the 8 bits comprising the speed-
control bit and the shadowing bits. From the
Monitor program, the user can read from or write
to the Quagmire register to access those bits, even
though they are actually in separate registers.

RAM: See random-access memory,

RAM disk: A portion of RAM that appears to the
operating system to be a disk volume. Files in a
RAM disk can be accessed much faster than the
same files on a disk. See also ROM disk.

random-access memory (RAM): Memory in
which information can be referred to in an
arbitrary or random order. RAM usually means
the part of memory available for programs from a
disk; the programs and other data are lost when
the computer is turned off. (Technically, the read-
only memory is also random access, and what's
called RAM should correctly be termed read-write
memory.) Compare read-only memory.

RDKEY: The firmware routine that a program uses
to read a single keystroke from the keyboard.

read-only memory (ROM): Memory whose
contents can be read, but not changed; used for
storing firmware, Information is placed into
read-only memory once, during manufacture; it
then remains there permanently, even when the
compuler'’s power is turned off, Compare
random-access memory.

recharge routine: The function that supplies
data to the output device when background
printing is taking place.




RGB: Abbreviation for red-green-blue. A method
of displaying color video by transmitting the three
primary colors as three separate signals. There are
two ways of using RGB with computers: 771 RGE,
which allows the color signals to take on only a few
discrete values; and analog RGB, which allows the
color signals to take on any values between their
upper and lower limits for a wide range of colors.

ROM: See read-only memory.

ROM disk: A feature of some operating systems
that permits the use of ROM as a disk volume.
Often used for making applications permanently
resident. See also RAM disk.

RS-232: A common standard for serial data
communication interfaces.

RS-422: A standard for serial data communication
interfaces, different from the R5-232 standard in
its electrical characteristics and in its use of
differential pairs for data signals. The serial ports
on the Apple 1IGS use R5-422 devices modified so
as to be compatible with R5-232 devices.

SCC: Abbreviation for Seriagl Communications
Coniroller, a type of communications IC used in
the Apple IIGS. The SCC can run synchronous data
transmission protocol and thus transmit data at
faster rates than the ACIA.

screen holes: Locations in the text display buffer
(text Page 1) used for temporary storage either by
I/O routines running in peripheral-card ROM or
by firmware routines addressed as if they were in
card ROM. Text Page 1 occupies memory from
50400 to 307FF; the screen holes are locations in
that area that are neither displayed nor modified
by the display firmware.

sector: See track,

shadowing: The process whereby any changes
made (o one part of the Apple 1IGS memory are
automatically and simultaneously copied into
another part. When shadowing is on, information
written to bank 800 or $01 is automatically copied
into equivalent locations in bank $E0 or $E1.
Likewise, any changes to bank $E0 or $E1 are
immediately reflected in bank $00 or $01,

64K Apple IT: Any standard Apple Il that has at
least 64K of RAM. This includes the Apple llc, the
Apple Tle, and an Apple II or Apple II Plus with
48K of RAM and the language card installed.

6502; The microprocessor used in the Apple II,
the Apple II Plus, and early models of the

Apple Ile. The 6502 is a MOS device with 8-bit data
registers and 16-bit address registers.

05C02: A CMOS version of the 6302, this is the
microprocessor used in the Apple IIe and the
enhanced Apple lle.

65CB16: The microprocessor used in the
Apple 1IGS, The 65CB16 is a CMOS device with 16-
bit data registers and 24-bit address registers.

SmartPort: A set of irmware routines supporting
multiple block devices connected to the

Apple 11Gs disk port. See also extended
SmartPort call and standard SmartPort call.

soft switch: A location in memory that produces
a specific effect whenever its contents are read or
wrillen.

source file: An ASCII file consisting of
instructions written in a particular language, such
as Pascal or assembly language. An assembler or a
compiler converts a source file into an object file.

SSC: Abbreviation for Super Serial Card, a
peripheral card that enables an Apple II o
communicale with serial devices.

Glossary 39




stack: A list in which entries are added (pushecd)
and removed (pulled) at one end only (the top of
the stack), causing them Lo be removed in last-in,
first-out (LIFO) order, The stack usually refers to
the particular stack pointed to by the 65C816's
stack register.

stack register: A hardware register in the 65C816
processor that contains the address of the top of
the processor's stack.

standard Apple II: Any computer in the Apple II
family except the Apple 11G5. This includes the
Apple 11, the Apple 11 Flus, the Apple Ile, and the
Apple Tlc.

standard SmartPort call: A SmariPort call that
allows data transfer to or from anywhere in
standard Apple II memory, or the lowest 64K of
Apple 11GS memory, Compare extended
SmartPort call.

start up: To get the sysiem minning. See boot.

Super Hi-Res: A high-resolution graphics display
mode on the Apple 11GS, consisting of an array of
points 320 wide by 200 high with 16 colors or 640

wide by 200 high with 16 colors (with restrictions),

synthesizer: A hardware device capable of
creating sound digitally and converting it into an
analog waveform that can be heard.

system disk: A disk that contains the operating
systemn and other system software needed to run
applications.

system software: The components of a
computer system that support application
programs by managing system resources such as
memory and [/O devices.

terminal mode: The mode of operation in which
the Apple 1IGS acts like an intelligent terminal.

text window: The portion of the Apple 11 screen
that is reserved for text. At startup, the firmware
initializes the entire display to text. However,
applications can restrict text 1o any rectangular
portion of the display.

320 Glossary

tool: See tool set.

toolbox: A collection of built-in routines on the
Apple TIGS that programs can call to perform
many commonly needed functions. Functions
within the toolbox are grouped into tool sets,

tool set: A group of related routines (usually in
firmware) that perform necessary functions or
provide programming convenience. They are
available to applications and system sofrware. The
Memory Manager, the System Loader, and
QuickDraw II are ool sets.

track: One of a series of concentric circles that are
magnetically drawn on the recording surface of a
disk when the disk is formatted. Tracks are further
divided into sectors,

vector: A location containing a value that, when
added to a base address value, provides the
address that is the entry point of a specific kind of
routine.

word: A group of bits that is treated as a unit. For
the Apple 1IGS, a word is 16 bits (2 bytes) long

x flag: One of three flag bits in the 65C816
processor that programs use to control the
processor's operating modes, In native mode,
the setting of the x flag determines whether the
index registers are B or 16 bits wide. See also e flag

and m flag.

XON: A special character (value $13) used for
controlling the transfer of data between two pieces
of equipment. 5ee also handshaking and XOFF.

XOFF: A special character (value $11) used for
controlling the transfer of data between two pieces
of equipment. When one piece of equipment
receives an XOFF character from the other, it
stops transmilting characters until it receives an
XON. See also handshaking and XON.

zero page: The [irst page (256 bytes) of memory
in a standard Apple I1 computer (or in the

Apple TIGS when running a standard Apple 11
program). Because the high-order byte of any
address in this part of memory is zero, only a
single byte is needed o specify a zero-page
address. Compare direct page.




-

A

ABORT 179
Abort command 188
ABORTMGRV 265
accumulater 35
accumulator mode 62
ADB microcontroller. See
Apple DeskTop Bus
microcontroller
addition 32-bit
ADVANCE 240
AMPERV 259
apostrophe ('} 40, 64
Apple DeskTop Bus connector 8
Apple DeskTop Bus input devices
10
Apple DeskTop Bus microcontroller
G, 183, 185-196
commands 128-195
status byte 196
Apple 3.5 disk drive 117, 133, 135
SmartPort calls 138-141
APFLEIl 237
Apple llc 11
Apple lle Plus 222
Apple IGS
bool/scan sequence 17
detached keyboard 10
80-column display 71
firmware 2-6
40-column display 71
interrupts 16
1/0 expansion slots 11
/O ports 11
memory addresses 21
memory space 9
microprocessor 8-9
Monitor. See system Monitor
program operation levels 4
sound system 10

startup 112
Super Hi-Res display 9-10
technical manuals 216-221
Toolbox 2, 218, 310
Apple 11GS Disk 11
firmware 5
I/O port characteristics 111
SmartPort interactions 158
support  109-112
Applesoft BASIC 2, 43, 74, 87,
112, 178
Apple Super Serial Card (35C) 82
AppleTalk 3, B, 15, 17, B2, 98,
173
interrupts 180
A register 18, 35
changing 60
systemn interrupt handler 181
arrow keys 72
ASCIl 25, 26, 29, 51, 67, B6,
123, 152
filters 31
flip 30, 64
input mode 30
literal 30, 64
assembly language
mouse routines 202, 211-213
Pascal protocol 93-94
at sign (@) 226
AUXMOVE 260

Back Arrow key 75
background printing 97-98
backslash (\3 75
Backspace key 70, 75
BADBLOCK 156
BADCMD 156

BADCTL 156
BADCTLPARM 156

BADPCNT 156
BADUNIT 156
bank $00 12, 15

firmware eniry points 224-257

page Fx vectors 262-263

page 3 routines 260-261

page 3 vectors 259

running a program in 49, 65
bank/address 21, 22, 26, 29, 32,

64

bank $EQ
bank $E1

308-310
308-310

vectors  264-265
BASCALC 239
BASIC 48, 51, 74, 75, 82, B3, 86,

87, 90, 112

command 43

interface 93

mouse programs 206-208

mouse routines 203
BASICIN 70-73
BASICINPUT 209
BASICOUT 70, 73, 76-78, 80
BASICOUTPUT 209
Battery RAM 299, 306
baud rate 88
BD command 96, 97, 183
BELL 253
BELL1 239
BELL1.2 239
BELLZ 240
BELLVECTOR 270
BINITENTRY 209
boot-failure screen 17
boot/scan sequence 17
BREAK 233
Break (BRK) 36, 183
BREAKVECTOR 270
B register 18, 35
BRK 179

321



BREKV 259

BS 241

Bullfering Enable 83
BUSERR 156

bus residents 157
button 1 status 204-205

-

Call statement 20
caret (=) 53, 55
carriage return 59, 75, 83
CLAMPMOUSE 209, 213
Clear Modes command 189
CLEARMOUSE 209, 212
CLEQLZ 79
clock 306
dock chip inl:crrup'ts 180
Close call S, 131-132
CLREOL 79, 243
CLREOLZ 243
CLREQP 79, 242
CLRSCR 79, 226
CLRTOP 79, 227
cold start 65, 112, 178, 234
colon (:} 28, 29, 40, 51, 52, 64
color graphics 10
command characters 87
communications mode 87
printer mode 87
terminal mode 91-92

command packets, SmariPort 159,

166-167
command strings 87
communications mode 83
command character 87
commands 9192
Continue BASIC command 43
Control-A 64
Controll 77
Control-\ 77
Control-] 77
Control-_ 77
Control-f 77
Control-A 87
Contral-B 43, 65
Control-C 43, 65
Control call 129-130

322 Index

control characters 73, 76-78
suppressing 90

Control-E 60, 77

Control-F 77

Control-G 77

Control-H 77

Control-1 87

Control-] 77

CARLEAH- O, T
Control-L. 77
Control-M 77
Control-N 77
Control-Q 77
Control-P 40, 64
Control Panel 3, 40, 75, B2, B3,
86, 90, 93, 97, 110, 112, 117,
130, 299-307
Control-QQ 77
Control-R 66, 77
Control-Reset 43, 46, 112
Control-5 77
Control-T 64
Control-U 77
Control-V 77
Control-W 77, 87
Control-X 58, 75, 77, 247
Control-Y 47, 65, 77
COP 36, 179
COPMGRV 255
copy-pratection engineer (CPE)
ools  144-145
COPYRIGHT 209
CcouT 70, 71, 75, 76, 79, 249
COUT1 64, 70, 74, 76-80, 249
COUT subroutine 39
COUTZ 249
CPE (copy-protection engineer)
tools  144-145
CR 242
C register 18, 35
CROUT 79, 248
CROUT1 247
C3COUT1 64, 70, 76-78
CTRLYVECTOR 274
CUPDATE 269
cursor 71
changing 41, 64
control 72
keys 10

D

data bank register 13, 16, 35, 92
changing 61
system interrupt handler 181
dawa buffer pointer 126-127
data byte encoding table 164
data carrier detect (DCD) 84

data format B8
data set ready (oK) Bi-83, Y2

data terminal ready (DTR) B4-85,
95
date
changing 64
displaying 40, 63
DBR register 11, 13, 35
DCE (device control block) 123,
130
DCD (data carrier detect) 84
debugging 48
DECBUSYFLG 270
decimal numbers, converting 41,
65
Delete key 75
delta 199
Desk Manager 180
device control block (DCB) 123,
130
device mapping 117-119
DEVSPEC 156
DIAGMOUSE 209
diagnostic routines 3
DIG 256
Digital Oscillator Chip (DOC)Y 10
direct page 12, 15
direct-page register 13
direct register, syslem interrupt
handler 181
Disable Device SR command 195
disassembler 55-56
opcodes 293-298
Disk II firmware 5
DISKSW 156
DISPATCH1 264
DISPATCHZ 264
dispatch address 115
display 302
division, 32-bit 42
DOC (Digital Oscillator Chip) 10
dollar sign ($) 54

—



DOSs 70, 110
DOS 3.3 43
Download 143
D register 11, 35
changing 60
DSR (data set ready) B4-85, 95
DTR (data terminal ready) 84-85,
95

DuoDisk 110

E

EABORT 177, 263
EBRKIRQ 263
echo 91

ECOP 177, 263

ED command 91
EE command 91
e flag 37
Eject 138, 142
emulation mode 9, 14, 37-38, 56,
120

accumulator 18

changing 62

code 15

stack 13
EMULSTACK 13
Enable Device SRQ) command 194
enable line formatting 89
ENMI 263
Ensoniq chip interrupts 180
environment 8, 36

firmware routines 11-16

resetting 60

restoring 14

system interrupt handler 181
equal sign (=) 37
ERESET 263
erfror codes, SmartPort
error status register 95
Esc A 73
Esc & 73
escape codes 72, 73
Escape key 72
escape mode 71, 72
Esc B 73
Ese C 73
Esc-Control-D 73
Esc-Control-E 73

156

Esc-Control-Q} 73
Esc D 73

Esc E 73

Esc 8 73
Esc F 73
Esc 4 73

Esc1 73

Esc] 73

Esc K 73

Ese M 73

Event Manager 75, 183

Examine instruction 37

exclamation point (1) 52
Exccute 142

F

FD command 90
FD10 245
Fill Memory command 59
filter mask, changing 63
firmware. See also specific
type
enlry points 224-257
ID bytes 222-223
/0 routines  11-16, 79
flag-modification commands 38
flags 8, 12, 14, 16, 35-38
examining and changing 36-38
restoring 66
flashing text 78
flip ASCII 30, 64
Flush command 6, 180
Flush Device Buffer command 195
FlushInQueue 102
Flush Keyboard Buffer command
188
FlushOutQueue 102
Format 5, 128, 139, 147
free space 308, 310

G

GBASCALC 227

GetDTR 105

GET816LEN 230

GetlnBuffer 101

Getlntinfo 96, 105, 184
GETLN 21, 71, 74-75, 79, 246

GETLNG 247
GETLN1 247
GETLNZ 246
GetMaodeBits
GETNUM 256
GetOutBuffer 97, 98, 101
GetPortStat 104

GetsCC 1M

Get Version Number command

95, 100

192
GLU chip 183, 186, 199
GO 252

Go command 36, 49
graphics display mades 10
graphics tablets 10

H

handshaking B84-85
protocal 89

HEADR 244

hexadecimal

115, 116

math 42
numbers, converting 41, 65

HLINE 79, 226

HOME 79, 242

HOMEMOUSE 209, 213

hook table 145

21, 25, 26, 32, 53,

IDROUTINE 250
immediate mode 56-57

INCBUSYFLG 270
index mode, changing 62
INIT 236

Init call 130
INITMOUSE 203, 209
INPORT 251

input buffer 46, 75, 91
input links, redirecting 64
input routines 71-75
InQStatus 96, 103
INSDS1.2 229

INSD52 229

INSTDSP 230

Integer BASIC 43, 74

J23

Index




Integrated Woz Machine (IWM) chip
5, 110-111
intelligent devices S
interrupt 15, 16, 95, 96-97, 171
priorities  177-180
processing 181-182
vectors 177
interrupt handler 16
built-in  172-174
firmware 6, 169-184
Interrupt Request (IRQ) line 171
INTMGRY 264
Inverse command 39, 63
inverse text 78
inverse video 39, 71
ICERROR 156
IO links 70
/O port 5 114
IORTS 254
IRQ 180
IRQ.APTALK 266
IRQ.DSKACC 268
IRQ.EXT 269
IRQ.FLUSH 269
IRD.KBD 268
IROQMICRD 269
IRQ.MOLUSE 267
IRQ.1SEC 269
IRQ.OTHER 269
IRQ.QTR 268
IRQ.RESPONSE 268
IRQ.SCAN 267
IRQ.SERIAL 266
IRQ.SOUND 267
IRO.SRO 268
IRQ.VBL 267
IRQLOC 259
IROVECT 177
WM (Integrated Woz Machine) chip
5, 110-111

J

IMP instruction 47, 50, 65, 66,
145

joystick 10

J5L. See jump to subroutine long

JSR. See jump o subroutine

jump to subroutine (JSR) 12, 14,
47, 49, 49, 50, 114

224 Index

jump to subroutine long (JSL) 12,
14, 50, 98, 152

K
KBDWAIT 238
keyboard 10, 40, 43, 71, 72
input bulfering 75
interrupts 180
language codes 190
Keyboard command 40
KEYIN 70, 71-72, 79, 245
K register 35

L
language card 16

area 310

bank 35, 56, 63
lanpuage options 305
last-opened location 25, 26
less-than character (<) 31, 34
LF 242
line feed 83

automatic 90

masking 91
line length 89
“LIST* 250
Listen 6
List instruction 53, 55, 66
literal ASCII 30, 64
local-area network. See

AppleTalk

M

machine-language programs 48-50
machine registers 12

machine state 36

changing 61
mailbox registers 186
mark table 144-145

Masking Enable 83
Mega 1l chip 308
memory 9
changing 28-31, 64
comparing data 33
maving data  31-32
searching for bytes 34

memory dump 27
memory locations
changing 28-30
displaying 58
examining 26-27
text window 80
Memory Manager 9, 15, 308, 310
memory range
display 27
filling 34
lerminating 58
m flag 37
microprocessor, See specific
type
mini-assembler 51-55, 74
instruction formats 54-55
opcodes  293-258
modem communications 84
modem port 301
MON 255
Monitor. See system Monitor
Monitor command 49
Monitor firmware 4
MONZ 255
MONZ2 255
MONZ4 256
mouse
interrupts 180, 183
position clamps 201
position data  199-201
mouse firmware 6, 197-213
calls 208
using 202-205
mouse programs, BASIC 206-208
MOVE 250
Move command  31-32, 45, 59
M register 36
MSGPOINTER 275
MSLOT 266
multiplication, 32-bit 42
music 10

N

NABORT 177, 262
native mode 9, 14, 56
accumulator 18
stack pointer 13, 14, 15
NBREAK 177, 262
NCOP 177, 262




=y

next-changeable location 25, 26
NIRQ 177, 262

NMI 177, 178, 259

NNMI 177, 262

NODRIVE 156

NOINT 156

NONFATAL 156

Normal command 39, 44, 63
normal video 39

NOWRITE 156

numeric keypad 10

NXTA1 244

WXTA4 244

NXTCHAR 257

NXTCOL 227

o

OFFLINE 156
OLDBRK 233

OLDIRD 233

OLDRST 255

opcodes  56-57, 293-298
Open call 5, 131
options  304-305
OPTMOUSE 209
OUTPORT 252

cutput links, redirecting 64
output routines 76-78
OutQStatus 96, 103

P

palettes 10

parity 89

Pascal 48, 82, 86, 97, 110, 210
Pascal 1.1 93

Pattern Search command 34, 59
PER register 11, 35

PCAD] 232

peried (.) 26, 27

Ajrtiire alomoent fate] njvn]
piclure element. §€.‘9 pixe

Plnit 209, 210

pixel 10

PLOT 79, 235

PLOT1 225

plus sign (+) 71,72

Poll Device command 195
POSMOUSE 209, 211, 213
PRA1 248

PEBLZ 79, 231
PRELNK 231
PRBYTE 79, 248
PRead 209, 210
PREAD 235
PREAD4 235
P register 35
PRERR 253
PRHEX 79, 248
Printer command 40
printer mode 83
command character 87
commands 88-90
printer port 300
PRNTAX 79, 230
PENTX 231
PRNTYX 230
processor stalus
changing 61
register 37
system interrupt handler 181
ProDO5 43, 70, 110, 114, 115,
130
ProDOS 8 117, 220
ProDOS5 16 117, 220
program bank register 17, 35
system interrupt handler 181
program counter 51
program operation levels 4
program register, changing 61
prompt 74
PROMPT 247
prompt character
() 20,26, 74
(1> 7
(r) 52, 74
() 74
() 74
PRO16MLI 274
pseudoregisters 8, 16
PStatus 209, 210

[ Ay Ak

PWREDLIF 259
PWrite 209, 210
FWRUP 234

=]

Q register 36

Quagmire register 16, 36
Quagmire state, changing 62

quarter-second timer interrupts
180

question mark (7} 74

quit 306

Quit Monitor command 43, 65

quotation mark (") 34, 52

R

RAM disk 17, 110, 114, 117, 234,
303

random-number generator 72

R command 90

RdAddr 146

RDCHAR 246

RDKEY 70, 71, 79, 244

RDKEY1 245

READ 253

Read Address Field 139

Read Available Character Scts
command 193

Read Available Keyboard Layouts
command 193

ReadBlock call 5, 126

Read call 132-133

Read and Clear Error Byte
command 192

Read Configuration Byles command
192

ReadData 146

Read Microcontroller Memory
command 191

Read Modes Byte command 191

READMOUSE 183, 203, 209, 212

read-only memory 20

Receive Bytes command 194

Recharge routine 97, 98

REGDSP 235

register addresses, mouse 200

register-display command 22

register-modification commands 38

registers 8, 12-18, 35-38
examining &0
examining and changing 36-38
restoring 66

RESERVED 156

RESET 177, 178, 234

Rezet ADB command 194

ResetHook 140

Index 325



Reset Keyboard Micracontroller
command 188
ResetMark 141
Reset the System command 193
RESTORE 254
Resume command 50, 179
return from subroutine (RTS) 49,
65
return from subroutine long (WTL)
14
Retype key 75
ROM (read-only memory) 20
ROM disk 17, 110, 114, 117, 234
driver 152-155
passing parameters 152-153
ROM for 154-155
RTBL 235
RTL (return from subroutine long)
14
RTS (return from subroutine) 49,

65

5

SAVE 254

scan-line interrupts 180

Scrap Manager 180

screen holes 203

SCRN 79, 228

SCROLL 243

SCS1 (Small Computer System

Interface) 115

Seek 139, 147

Send ADB Keycode command 193

Send command 97

SendQueue 97, 98, 103

SendReset 6

serial-port firmware 5, 81-108
background printing 97-98
buffering 95-94
compatibility 82
error handling 95
extended interface 99
handshaking 84-85
interrupt notification  96-97
operating commands 86-92
operating modes 83
programming 92-94

24 Index

serial-port interrupts 180, 183-184

SERVEMOUSE 202, 209, 212
SetAddress 143
SETCOL 79, 225, 226, 228

Set Configuration Bytes command

120
SetDTR 105
SETGR 236
SetHook 138-139
SetlnBulfer 95, 102
Setlnterleave 141
Setlntinfo 96, 106, 184
SETINV 251
SETKBD 251
SetMark  140-141
SetModeBits 95, 97, 100-101
S¢t Modes command 189
SETMOUSE 209, 211
SETNORM 251
SetOulBuffer 95, 97, 102
SETPWRC 237
Set5CC 105
SetSides 141
SETTXT 236
SETVBLCNTS 209
SETVID 252
SETWND 236
SETWND2 237
shadowing 308, 310
Shadow register 16

6805 AppleMouse microprocessor

card 213
6502 microprocessor 8
65C816 assembly language 54
65C816 microprocessor 8-9
Apple Deskiop Bus
microcontroller 186
emulation mode 14
execution speeds 9
indexed instructions 17
modes 9
slash (/2 22, 40
SLOOP 234
slots 304

Small Computer System Interface

(SCSI) 115

SmartPort 110
assignment of unit numbers
117-119, 157-158
call parameters 116
control flow 159-165
Disk 11 interactions 158
dispatch address 115
error codes 156
extended commands 137
issuing a call 120-121
locating 114-115
read protocol 161
standard commands 136
write protocol 162
SmartPort bus 133, 157-165
packel contents 164
packet format 163
SmartPort calls 121-137
device-specific 138
specific to Apple 3.5 disk drive
138-141
specific to UniDisk 3.5 142-143
SmariPort firmware 5, 17, 113-165
SOFTEY 259
soft switches 277-290
sound 303
Speed register 16
5 register 11, 35
SR 180
55C (Apple Super Serial Card) 82
stack 15
stack pointer 13-15, 35
changing 61
STARTTIME 209
Status calls 121-12%
status code error 122
status register 56
Step command 50, 66
STEPVECTOR 271
STORADV 240
Store command 44
subtraction, 32-bit 42
Super Hi-Res display 8, 9-10
symbol table 291, 292
Sync command 191
SYSDMGRV 265

syslem interrupts  175-130

—




system Monitor
command syntax 21
command types 21-24
creating commands 47
80-column mode 25-26
filling memory 45
firmware 4, 19-67
40-column mode 25
invoking 20
memory commands  25-34
miscellaneous commands 39-43
multiple commands 44
repeating commands 46

T
tabbing 92
TABY 237
Talk 6
terminal mode 83
command character 51-92
TEXTZCOPY 232
text display, changing 63
text window B0
time
changing 64
displaying 40, 63
TIMEDATA 209
TOBRAMSETUP 273
TOCTRL.PANEL 273
toolbox routines 43
| tool error number 67
\:l ! Tool Locator 43, 55, 67
TOPRINTMSGE 273
TOPRINTMSG16 274
TOREADBR 272
TOREADTIME 273
TOSUB 247
TOTEXTPG2ZDA 274
TOWRITEBR 272
TOWRITETIME 272
Tidie COoHiiand le [n_u]
TRACEVECTOR 271
Transmit num Bytes command
194
Transmit Two Bytes command 195

U

UDISPATCH1 264

UDISPATCH2 264

underscore () 41, 67, 83

UniDiskStat 143

UniDisk 3.5 110, 117, 133, 135
internal functions 144-145
internal routines  146-149
memeory allocation  150-151
SmartPort calls 142-143

UP 241

User command 47

user vector 65

USRADR 259
Ul
vectors 70, 149, 258-275

Verify 33, 45, 59, 140, 148
VERSION 238

vertical blanking signal
video firmware 5, 69-80
VIDOUT 240

VIDWAIT 238

VLINE 79, 226

VTAB 241

VTABZ 79, 241

180, 183

W

WAIT 243

warm start 65, 112, 178

windows 219

WRITE 253

WriteBlock call 5, 127

Write call 134-135

WriteData 147

Write Data Field 139

Write Microcontroller Memory
command 191

Write Track 139-140

Writelrk 148

X

XBA 18

X command 50

XFER 261

x flag 37

XOFF B85, 89, 95

XON 85, B9, 95

X register 35, 74, 98, 121
changing 60
system interrupt handler 181

Y

Y register 35, 98, 121
changing 60
system interrupt handler 181

Z

Zap command 34, 87

zero page 12, 15

ZIDBYTE 239

ZIDBYTEZ 238

Zilog Serial Communications
Controller chip 82

ZMODE 257

Index 327




THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system using
the Apple Macintosh™ Plus and
Microsoft Word. Proof and
final pages were created on the
Apple LaserWriter® Plus.
POSTSCRIPT™, the LaserWriter
page-description language, was
developed by Adobe Systems
Incorporated

Text type is ITC Garamond®

(a downloadable font distributed
by Adcbe Systems), Display type
is ITC Avant Garde Gothic®,
Bullets are ITC Zapf Dingbats®,
Program listings are set in Apple
Courier, 2 monospaced font,






The Apple Technical Library

The Official Publications from
Apple Computer, Inc.

The Apple Technical Library offers programmers,
developers, and enthusiasts the most complete
technical information available on Apple®
computers, peripherals, and software, The library
consists of technical manuals for the Apple I family
of computers, the Macintosh™ family of computers,
and their key peripherals and programming
environments.

Manuals for the Apple [l family include technical
references o the Apple lle, Apple ¢, and Apple
llGs™ computers, with detailed descriptions of the
hardware, firmware, ProDOS® operating svstems,
and built-in programming tools that programmers
and developers can draw upon. In addition o a
technical introduction and programmer’s guide o
the Apple llGs, there are tutorials and references for
Applesoft BASIC and Instant Pascal programmers.
Manuals for the Macintosh family, known collectively
as the Inside Macintosh Library, provide complete
technical references to the Macintosh 512K,
Macintosh 512K Enhanced, Macintosh Plus, Macintosh
SE, and Macintosh [T computers. Individual volumes
provide technical introductions and programmer’s
guides to the Macintosh, as well as detailed
information on hardware, firmware, system
software, and programming tools. The Inside
Macintash Library offers the most detailed and
complete source of information available for the
Macintosh family of computers.

In addition, titles in the Apple Technical Library offer
references to the wide range of important printers,
communications standards, and programming
environments—such as the Standard Apple
Numerics Environment (SANE™ )—to help
programmers and experienced users get the most
out of their computer systems.



eEr

.[:r £

2
-

The Official Publication from Apple Computer, Inc.

Now programmers and designers have a comprehensive guide 1o the inner
workings of the popular Apple llos™ computer.

With its impressive 256K base memory, expandable to well over 4 megabytes, and
its enhanced color graphics and sound capabilities, the Apple Tcs is destined to
become the new standard in the educational computer market, and the choice of
software developers. As the Apple Ilcs user base grows, more and more
programmers need the important technical information found only in this manual.

The Apple las Firmware Reference the companion volume to the Apple [es
Hardware Reference is Apple’s definitive guide for assembly-language programmers
and hardware developers working with the Apple Tlcs. In a single volume, it
provides an extensive description of the internal operations of the machine and
presents the latest information about the firmware facilities that the les provides.
The manual begins with an overview of Apple Ilas firmware. Then, in detail, it tells
how to use the firmware to access the system’s monitor, mini-assembler,
disassembler, keyboard, mouse, video display, serial ports, and disk drives.
Detailed appendixes contain summary tables and information about the firmware,
and tell how a user can include firmware calls within programs, thereby allowing
the user to really have control over the machine. The Apple [l Firmware
provides the most authoritative and comprehensive information available on this

amazingly versatile computer,

A . Inc,

Cuperting, California 95014

(408 596-10H0 (30-31214

TX 171576 Printed in LLSA

Addison"Wesley Publishing Company, Inc. ISBN 0-201-17744-7



