SINGLE DRIVE FLOPPY DISK
USER'S MANUAL

(= commodore

COMPUTER

INFORMATION TO USER

“WARNING: THIS EQUIPMENT HAS BEEN CERTIFIED TO COMPLY WITH
THE LIMITS FOR A CLASS B COMPUTING DEVICE, PURSUANT TO SUB-
PART J OF PART 15 OF FCC RULES. ONLY PERIPHERALS (COMPUTER
INPUT/OQUTPUT DEVICES, TERMINALS, PRINTERS, ETC.) CERTIFIED TO
COMPLY WITH THE CLASS B LIMITS MAY BE ATTACHED TO THIS
COMPUTER. OPERATION WITH NON-CERTIFIED PERIPHERALS IS LIKELY
TO RESULT IN INTERFERENCE TO RADIO AND TV RECEPTION."”

“THIS EQUIPMENT GENERATES AND USES RADIO FREQUENCY ENERGY
AND IF NOT INSTALLED PROPERLY, THAT IS, IN STRICT ACCORDANCE
WITH THE MANUFACTURER'S INSTRUCTIONS, MAY CAUSE INTER-
FERENCE TO RADIO AND TELEVISION RECEPTION. IT HAS BEEN TYPE
TESTED AND FOUND TO COMPLY WITH THE LIMITS FOR A CLASS B
COMPUTING DEVICE IN ACCORDANCE WITH THE SPECIFICATIONS IN
SUBPART J OF PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH INTERFERENCE
IN A RESIDENTIAL INSTALLATION. HOWEVER, THERE IS NO GUAR-
ANTEE THAT INTERFERENCE WILL NOT OCCUR IN A PARTICULAR
INSTALLATION. IF THIS EQUIPMENT DOES CAUSE INTERFERENCE TO
RADIO OR TELEVISION RECEPTION, WHICH CAN BE DETERMINED BY
TURNING THE EQUIPMENT OFF AND ON, THE USER IS ENCOURAGED TO
TRY TO CORRECT THE INTERFERENCE BY ONE OR MORE OF THE
FOLLOWING MEASURES:

e REORIENT THE RECEIVING ANTENNA

e RELOCATE THE COMPUTER WITH RESPECT TO
THE RECEIVER

¢ MOVE THE COMPUTER AWAY FROM THE RECEIVER

® PLUG THE COMPUTER INTO A DIFFERENT OUTLET
SO THAT COMPUTER AND RECEIVER ARE ON DIFFERENT
BRANCH CIRCUITS

“IF NECESSARY, THE USER SHOULD CONSULT THE DEALER OR AN
EXPERIENCED RADIO/TELEVISION TECHNICIAN FOR ADDITIONAL
SUGGESTIONS. THE USER MAY FIND THE FOLLOWING BOOKLET PRE-
PARED BY THE FEDERAL COMMUNICATIONS COMMISSION HELPFUL:
'HOW TO IDENTIFY AND RESOLVE RADIO-TV INTERFERENCE
PROBLEMS.” THIS BOOKLET IS AVAILABLE FROM THE U.S. GOVERN-
MENT PRINTING OFFICE, WASHINGTON, D.C. 20402, STOCK NO. 004-
000-003454.”

PART NO: 320970

VIC1541

SINGLE DRIVE FLOPPY DISK
USER'S MANUAL

PN 1540031-02

(= commodore
COMPUTER

The information in this manual has been reviewed and is believed to be entirely
reliable. No responsibility, however, is assumed for inaccuracies. The material in

this manual is for information purposes only, and is subject to change without
niotice.

Second edition
© Commodore Business Machines, Inc., December 1982
“All rights reserved.”

" Table of Contents Page

1.

2.

5.

6.

General Description, 3
UnpackingandConnecting 6
Contentsof Box 6
Connectionof Cables 7
PoweringOn i, 7
Insertionof Diskette 8
Using with VIC 20 or Commodore 64 8
UsingPrograms 9
Loading Pre-packaged Software 9
LOAD 9
Directoryof Disk 9
Pattern Matching & WildCards 11
SAVE. .. 12
SAVEandreplace 13
VERIFY . .. e e 13
DOS Support Program 14
DiskCommandst iiinnnn.. 14
OPENANDPRINT # 14
NEW . e 15
COPY . . e 16
RENAME e i 16
SCRATCH ittt 17
INITIALIZE 17
VALIDATE i 17
DUPLICATE it 18
Reading the ErrorChannel 18
CLOSE i e 18
Sequential Files 19
OPEN e e 19
PRINT #and INPUT # 20
GETH. ... 22
Reading the Directory 23
RandomFiles 26
Opening a channel for random accessdata 27
BLOCK-READ. i, 27
BLOCK-WRITE 0., 28
BLOCK-ALLOCATE e, 29
BLOCK-FREE i, 29
BUFFERPOINTER 31
USER1andUSER2c..... 32

7. RelativeFiles o 33

Creatingarelativefile 34

Usingrelativefiles. 35

8. Programming the Disk Controller 37

BLOCK-EXECUTE 37

MEMORY-READ i 37

MEMORY-WRITE 38

MEMORY-EXECUTE 38

USERCommandsccoivniinunen ., 39

9. Changing the Disk Device Number 39

Software Method, 39

HardwareMethod 40
Appendices

A. DiskCommand Summary 41

B. ErrorMessages i, 42

C. Demonstration DiskPrograms 47

D. DiskFormatsTables 54

I. GENERAL DESCRIPTION

Introduction

Welcome to the fastest, easiest, and most efficient filing system available
for your Commodore 64 or VIC 20 computer, your 1541 DISK DRIVE. This
manual has been designed to show you how to get the most from your drive,
whether you're a beginner or an advanced professional.

If you are a beginner, the first few chapters will help you through the
basics of disk drive installation and operation. As your skill and programming
knowledge improves. you will find more uses for your disk drive and the more
advanced chapters of this manual will become much more valuable.

If you're a professional, this reference guide will show you how to put the
1541 through its paces to perform just about all the disk drive jobs you can
think of.

No matter what level of expertise you have, your 1541 disk drive will
dramatically improve the overall capabilities of your computer system.

Before you get to the details of 1541 operation, you should be aware of a
few important points. This manual isa REFERENCE GUIDE. which means that
unless the information you seek directly pertains to the disk or disk drive you
will have to use your Commodore 64 or VIC 20 User’s Guides and Programmer’s
Reference Guides to find programming information. In addition, even though we
give you step-by-step instructions for each operation, you should become
familiar with BASIC and the instructions (called commands) that help you
operate your disks and drives. However, if you just want to use your disk drive
unit to load and save prepackaged software, we've included an easy and brief
section on doing just that.

Now . . .let's get on with the general information.

The commands for the disk drive come in several levels of sophisication.
Starting in chapter three, you can learn how the commands that allow you to
save and load programs with the disk work. Chapter four teaches you how
commands are sent to the disk, and introduces the disk maintenance commands.

Chapter five tells you how to work with sequential data files. These are
very similar to their counterparts on tape (but much faster). Chapter six
introduces the commands that allow you to work with random files, access any
piece of data on the disk, and how you organize the diskette into tracks and
blocks. Chapter seven describes the special relative files. Relative files are the
best method of storing data bases, especially when they are used along with
sequential files.

Chapter eight describes methods for programming the disk controller
circuits at the machine language level. And the final chapter shows you how to

3

change the disk device number, by “cutting” a line inside the drive unit or
through software.

Remember, you don’t really need to learn everything in this book all at
once. The first four chapters are enough to get you going, and the next couple
are enough for most operations. Getting to know your disk drive will reward you
in many ways—speed of operation, reliability, and much more flexibility in your
data processing capabilities.

Specifications

This disk drive allows you to store up to 144 different programs and/or
data files on a single mini-floppy diskette, for a maximum of over 174,000 by tes
worth of information storage.

Included in the drive is circuitry for both the disk controller and a
complete disk operating system, a total of 16K of ROM and 2K of RAM
memory. This circuitry makes your Commodore 1541 disk drive an “intelligent”
device. This means it does its own processing without taking any memory away
from your Commodore 64 or VIC 20 computer. The disk uses a “pipeline”
software system. The “pipeline” makes the disk able to process commands while
the computer is performing other jobs. This dramatically improves the overall
throughput (input and output) of the system.

Diskettes that you create in this disk drive are read and write compatible
with Commodore 4040 and 2031 disk drives. Therefore, diskettes can be used
interchangeably on any of these systems. In addition, this drive can read
programs created on the older Commodore 2040 drives.

The 1541 disk drive contains a dual “serial bus” interface. This bus was
specially created by Commodore. The signals of this bus resemble the parallel
IEEE-488 interface used on Commodore PET computers, except that only one
wire is used to communicate data instead of eight. The two ports at the rear of
the drive allows more than one device to share the serial bus at the same time.
This is accomplished by “daisy-chaining” the devices together, each plugged into
the next. Up to five disk drives and one printer can share the bus simultaneously.

Figure 1.1 Specifications VIC 1540/1541 Single Drive Floppy Disk

STORAGE

Total capacity

Sequential
Relative

Directory entries
Sectors per track
Bytes per sector

Tracks
Blocks

IC’s:

6502
6522(2)

Buffer
2114 (4)

PHYSCIAL:
Dimensions
Height

Width
Depth

Electrical:

Power requirements

Voltage

Frequency

Power
MEDIA:

Diskettes

174848 bytes per diskette

168656 bytes per diskette

167132 bytes per diskette
720 £55 records per file

144 per diskette

17 to 21

256

35

683 (664 blocks free)

microprocessor
1/0. internal timers

2K RAM

97 mm
200 mm
374 mm

100, 120, 220, or 240 VAC
50 or 60 Herts
25 Watts

Standard mini 5%, single sided,
single density

2. UNPACKING AND CONNECTING

Contents of Box

Included with the 1541 disk drive unit, you should find a gray
power cable, black serial bus cable, this manual, and a demonstration diskette.
The power cable has a connection for the back of the disk drive on one end, and
for a grounded (three-prong) electrical outlet on the other. The serial bus cable is
exactly the same on both ends. It has a 6-pin DIN plug which attaches to the
VIC 20, Commodore 64 or another disk drive.

Please, don’t hook up anything until you've completed the following

section!

single drive
Fc: commodore T flggpy disk —— vm"Sﬁ

—

\E

(\[;\ T

<

[e—
\ DRIVE INDICATER (RED LED)

LIGHT: ACTIVE

POWER INDICATER FLASH: ERROR

Fig 1. Front Panel

Fig 2. Back Panel

(GREEN LED)
LIGHT: POWER ON

POWER SWITCH SERIAL BUS

ON

OFF

\

—
'AC INPUT FUSE/HOLDER.

Connection of Cables

Your first step is to take the power cable and insert it into the back of the
disk drive (see tigure 2.2). It won’t go in if you try to put in in upside down.
Once it's in the drive. plug the other end into the electrical outlet. if the disk
drive makes any sound at this time, please turn it off using the switch on the
back! Don't plug any other cables into the disk drive if the power is on,

Next, take the serial bus cable and attach it to either one of the serial bus
sockets in the rear of the drive. Turn off the computer, and plug the other end
of the cable into the back of the computer. That's all there is to it!

If you have a printer, or any additional disk drives, attach the cables into
the second serial bus port (see figure 2.3). For directions on using multiple drives
at one time, read chapter 9.1f you are a first-time user with more than one drive,
start working with only one drive until you're comfortable with the unit.

re S . . ~ —— [
VIC 1541
Commodore 64 or VIC20 Single Dnye
Personal Computer Floppy Disk

Fig 3. Floppy Disk Hookup

Powering On

When you have all the devices hooked together, it’s time to start turning
on the power. It is important that you tumn on the devices in the correct order.
The computer should always be turned on last. As long as the computer is the
last one to be turned on, everything will be OK.

First, make sure that you've removed all diskettes from the disk drives
before powering on.

After all the other devices have been turned on, only then is it safe to turn
on the computer. All the other devices will go through their starting sequences.
The printer’s motor goes on, with the print head mox&né halfway across the line
and back again. The 1541 disk drive will have its eright on, and then the

~geeai drive light will blink, while your TV screen forms the starting picture.

reL Neser (ASe T 08 remy Redis & ! red ["?“7("'7

Once all the lights have stopped flashing on the drive, it is safe to begin
working with it.

2 e ldj&ﬁ*_ o o‘(t)‘(Wtﬁl 7&2"([34#

WHEN COVERED, DISKETTE
CONTENTS CANNOT BE
AL TERED

IFOAOWWOD

z
2]
m
X
-
‘k zZ
WRITE a
PROTECT 5
NOTCH 2
cC 3 <
——/ m

——=3

Fig.4. Position for Diskette Insertion

Insertion of Diskette

To open the door on the drive, simply press the door catch lightly, and the
door will pop open. If there is a diskette in the drive, it is ejected by a small
spring. Take the diskette to be inserted, and place it in the drive face-up with the
large opening going in first and the write-protect notch to the left (covered with
tape in the demonstration disk) (see figure 2.4).

Press it in gently, and when the diskette is in all the way, you will feel a
click and the diskette will not spring out. Close the drive door by pulling
downward until the latch clicks into place. Now you are ready to begin working
with the diskette.

Remember to always remove the diskette before the drive is turned off or
on. Never remove the diskette when the green drive light is on! Data can be
destroyed by the drive at this time!

Using With a VIC 20 or Commodore 64

The 1541 Disk Drive can work with either the VIC 20 or Commodore 64

computers. However, each computer has different requirements for speed of
incoming data. Therefore, there is a software seitch for selecting which
computer’s speed to use. The drive starts out ready for a Commodore 64. To
switch to VIC 20 speed, the following command must be sent after the drive is
started (power-on or through software):

OPEN 15,8, 15,"Ul-": CLOSE 15
To return the disk drive to Commodore 64 speed, use this command:
OPEN 15, 8,15, *UI+": CLOSE 15

More about using this type of command is in chapter 4, with a detailed
explanation of the U (user) commands in chapter 8.

3. USING PROGRAMS
LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs available
on cartridges. cassette, or disk, here’s all you have to do:

Using your disk drive, carefully insert the preprogrammed disk so that the
label on the disk is facing up and is closest to you. Look for a little notch on the
disk (it might be covered with a little piece of tape). If you're inserting the disk
properly, the notch will be on the left side. Once the disk is inside, close the
protective gate by pushing in on the lever. Now type LOAD “PROGRAM
NAME", 8 and hit the key. The disk will make noise and your
screen will say:

SEARCHING FOR PROGRAM NAME
LOADING

READY
L]

When the READY comes on and theizlllfis on, just type RUN, and your
prepackaged software is ready to use.

LOAD

The BASIC commands used with programs on the disk drive are the same
as the commands used on the Commodore Datassette TM recorder. There are a
few extra commands available for use with disks, however. First of all, the
program name must be given with each command. On a Datassette, you could
omit the program name in order to just LOAD the firs program there. On disk,
since there are many different programs that are equally accessible, the program

9

name must be used to tell the disk drive what to do. In addition, the disk drive’s
device number must be specified. If no device number is listed, the computer
assumes the program is on tape.

FORMAT FOR THE LOAD COMMAND:
LOAD name$, device# , command #

The program name is a string, that is, either a name in quotes or the
contents of a given string variable. Some valid names are: “HELLO”,
“PROGRAM #17, A, NAMES.

The device# is preset on the circuit board to be #8. If you have more than
one drive, see chapterﬂon how to change the device number. This book assumes
that you're using device number 8 for the disk drive.

The command# is optional. If not given. or zero, the program is LOADed
normally, that is, beginning at the start of your available memory for BASIC
programs. If the number is 1, the program will be LOADed at exactly the same
memory locations from which it came. In the case of computers with different
memiory configurations, like VICs with 5K, 8K, or more memory, the start of
BASIC memory is in different places. The command# O permits BASIC
programs to LOAD normally. Command# 1 is used mainly for machine
language, character sets, and other memory dependent functions.

EXAMPLES
LOAD “TEST”, 8

LOAD “Program #17, 8 DEVICE#

LOAD AS$, J ’/K\—’/ﬁ

LOAD “Mach Lang”, 8, 1

PROGRAM NAME

NOTE: You can use variables to represent device numbers, commands, and
strings, as long as you’ve previously defined them in your program.

Directory of Diskette

Your Datassette™™ tape deck is a sequential device. It can only read from
the beginning of the tape to the end, without skipping around the tape and
without the capability of going backward or recording over old data.

Your disk drive is a random access device. The read/write head of the disk
can go to any spot on the disk and access a single block of data which holds up
to 256 bytes of information. There are a total of 683 blocks on a single diskette.

.Fortunately, you don’t really have to worry about individual blocks of
data. There is a program in the disk drive called the Disk Operating System, or
the DOS. This program keeps track of the blocks for you. It organizes them into
a Block Availability Map, or BAM, and a directory.

10

The Block Availability Map is simply a checklist of all 683 blocks on the
disk. It is stored in the middle of the diskette, halfway between the center hub
and the outer rim. Every time a program is SAVEd or a data file is CLOSEd, the
BAM is updated with the list of blocks used up.

The directory is a list of all programs and other files stored on the disk. It
is physically located right next to the BAM. There are 144 entries available in
the directory, consisting of information like file name and type, a list of blocks
used, and the starting block. The directory is automatically updated every time a
program is SAVEd or a file is OPENed for writing. Beware: the BAM isn’t
updated until the file is CLOSEd, even though the directory changes right away.
[f a file isn’t CLOSEd properly, all data in that file will probably be lost.

The directory can be LOADed into your memory just like a BASIC
program. Place the diskette in the drive, and type the following command:

LOAD *37, 8

The computer responds with:

SEARCHING FOR $

FOUND $

LOADING

READY.

Now the directory is in your computer’s memory. Type LIST, and you'll
see the directory displayed on the screen. To print the directory on your printer,
type the following command line (in this example your printer is plugged in as
device# 4):

OPEN 4, 8,4: CMD 4: LIST

NOTE: When using CMD, the file must be closed using the command
PRINT# 4. CLOSE 4. See the VIC 1525/1515 printer manual for detailed
explanation.

To read the directory without LOADing it into your memory, see the
section later in this chapter on the DOS Support Program. In addition, to
examine the directory from inside a BASIC program, see the section in chapter 5
that deals with the GET# statement.

Pattern Matching and Wild Cards

When using the tape deck, you can LOAD any program starting with
certain letters just by leaving off any following letters. Thus, the command

11

LOAD “T” will find the first program on the tape beginning with the letter T.
And LOAD “HELLO” will find the first program beginning with the letters
HELLO, like “HELLO THERE.”

When using the disk, this option is called pattern matching, and there is a
special character in the file name used to designate this. The asterisk (*)
character following any program name tells the drive you want to find any
program starting with that name.

FORMAT FOR PATTERN MATCHING:

Can Be A String
Varjable Or The

LOAD name$ + “*” 8 Name Inside Quotes

In other words, if you want to LOAD the first program on the disk
starting with the letter T, use the command LOAD “T*”, 8.

If only the “* is used for the name, the last program accessed on the disk
is the one LOADed. If no program has yet been LOADed, the first one listed in
the directory is the one used.

You are probably familiar with the concept of wild cards in poker where
one card can replace any other card needed. On your 1541, the question mark
(?) can be used as a wild card on the disk. The program name on the disk is
compared to the name in the LOAD command, but any characters where there is
a question mark in the name aren’t checked.

For instance, when the command LOAD “T?NT”, 8 is given, programs
that match include TINT, TENT, etc.

When LOADing the directory of the disk, pattern matching and wild cards
can be used to check for a list of specific programs. If you gave the command
LOAD “S0:TEST”, only the program TEST would appear in the directory (if
present on the disk). The command LOAD “$0:t*”" would give you a directory
of all programs beginning with the letter T. And LOAD “$0:T?ST" would give
you all the programs with 4-letter names having the first letter of T and the third
and fourth letters ST. LOAD “$0:T?ST*” would give names of any length with

the correct first, third, and fourth letters. /
Sg/\ﬁe/‘\(Cherwncter after a a& (5 (5=

To SAVE a program to the diskette, all that is needed is to add the device
number after the program name. Just like the SAVE command for the tape
deck, the device number can be followed by a command number, to prevent the
automatic re-location on LOADing (see the section on the LOAD command,
above).

FORMAT FOR THE SAVE COMMAND:
SAVE name$, device #, command# 1+
e omman b y A< p{r

k [9(/\0"'{"(

12

See the LOAD command (page 10) for an explanation of the parameters
device # and command #.

When you tell the disk drive to SAVE a program. the DOS mwust take
several steps. First. it looks at the directory to see if a program with that name
already exists. Next it checks to see that there is a directory entry available for
the name. Then it checks the BAM to see if there are enough blocks in which to
store the program. If everything is OK up to this point, the program is stored. If
not. the error light will flash.

SAVE and Replace

It a program already exists on the disk, it is often necessary to make a
change and re-SAVE it onto the disk. In this case, it would be inconvenient to
have to erase the old version of the program and then SAVE it.

It the first characters of the program name are the “@” sign followed by a
0 and a colon (:). the DOS knows to replace any old program that has that name
with the program that is now in the computer’s memory. The drive checks the
directory to find the old program. then it marks that entry as deleted, and it
next creates a new entry with the same name. Finally, the program is stored
normally.
FORMAT FOR SAVE WITH REPLACE:

SAVE “@0:”+ nameS, device#, command#

For example. it a file was called TEST, the SAVE and replace command
would be SAVE “@Q: TEST" 8.
No 5°8(< e (4}5 ’+ o é éer‘ﬂq"‘f eﬂp ‘(:[P '"‘"‘\-P
The reason for the 0: is to keep compatibility with other Commodore disk
drive units which have more than one drive built in. In that case, the number 0
or | is used to specify which drive is being used.

VERIFY

The VERIFY command works to check the program currently in memory
against the program on disk. You must include a device# with the VERIFY
command. The computer does a byte-by-byte comparison of the program,
including line links—which may be different for different memory configura-
tions. For instance, if a program was SAVEd to disk from a 5K VIC 20, and
re-LOADed on an 8K machine. it wouldn't VERIFY properly because the links
point to different memory locations.

FORMAT FOR VERIFY COMMAND:

VERIFY name$, device#

13

DOS Support Program

On your demonstration disk, there may be a program called DOS
SUPPORT. This program, also called a wedge, allows you to use many disk
commands more easily (different wedges are used for the VIC 20 and the
Commodore 64). Just LOAD the program and RUN it. It automatically sets
itself up and erases itself when it’s finished. You’ll have a few hundred less bytes
to work with when this program is running, but you’ll also have a handy way to
send the disk commands.

As a result of the DOS Support, the “/”" key now takes the place of the
LOAD command. Just hit the slash followed by the program name, and the
program is LOADed. When you use this method, you don’t need to use the
LOAD command or the comma 8.

The*“@” and “>" keys are used to send commands to the disk drive. If you
type @3 (or >8), the directory of the disk is displayed on the screen, without
LOADing into your memory! These keys also take the place of the PRINT# (see
chapter 4) to send commands listed in the next chapter.

To read the error channel of the disk (when the red error light is blinking),
just hit either the @ or the > and hit RETURN. The complete error message is
displayed to you: message number, text, and track and block numbers

< SAVE T2 Disec >"&'GI

N
4: DISK COMMANDS P Lo TR ,") [dﬁu«e
c770 Lo#0 9/ ;;1:7

OPEN and PRINT# S2 e T toaln

Up ‘til now, you have explored the simple ways of dealing with the disk
drive. In order to communicate with the disk drive more fully, you have to
touch on the OPEN and PRINT# statements in BASIC (more details of these
commands are available in your VIC 20 or Commodore 64 User’s Guide or
Programmer’s Reference Guide). You may be familiar with their use with data
files on cassette tape, where the OPEN statement creates the file and the
PRINT# statement fills the file with data. They can be used the same way with
the disk, as you will see in the next chapter. But they can also be used to set up
a command channel. The command channel lets you exchange information
between the computer and the disk drive.

FORMAT FOR THE OPEN STATEMENT:

OPEN file #, device #, channel #. text §

The file# can be any number from 1 to 255. This number is used
throughout the program to identify which file is being accessed. But numbers
greater than 127 should be avoided, because they cause the PRINT# statement
to generate a linefeed after the return character. These numbers are really meant
to be used with non-standard printers.

14

N igl
ot 3l
The device# of the disk is usually 8. _

The channel# can be any number from 2 to 15. These refer to a channel
used to communicate with the disk, and channels numbered 0 and 1 are reserved
for the operating system to use for LOADing and SAVEing. Channels 2 through
14 can be used for data to files. and 15 is the command channel.

The text$ is a string that is PRINTed to the file, as if with a PRINT#
statement. This is handy for sending a single command to the channel.

EXAMPLES OF OPEN STATEMENTS:

OPEN 15.8.15 “DEVICE# fue o

A
OPEN>.8 2 COMMAND CHANNEL# 0w Wb 9791 u’,ﬂ}”@
L A “ gt
OPEN A. B. C, Z$ COMMANDS (te519) s Pv; —~
W CL\ . 9

The PRINT# command works exactly like a PRINT statement, except
that the data goes to a device other than the screen, in this case to the disk drive.
When used with a data channel, the PRINT# sends information into a buffer in
the disk drive, from which it goes to the diskette. When PRINT# is used with
the command channel, it sends commands to the disk drive.

FORMAT FOR SENDING DISK COMMANDS:

OPEN 15, 8. 15. command$
or

PRINT# 15, command$
NEW

This command is necessary when using a diskette for the first time. The
NEW command erases the entire diskette, it puts timing and block markers on
the diskette and creates the directory and BAM. The NEW command can also be
used to clear out the directory of an already-formatted diskette. This is faster
than re-formatting the whole disk.

FORMAT FOR THE NEW COMMAND TO FORMAT DISK: 0(0’0//,4

PRINT#I5, “NEW¢W
or abbreviated as ‘{"D ?

" b
PRINT#15, “N¢:name,id” "‘“/a,ﬁw—"j—

FORMAT FOR THE NEW COMMAND TO CLEAR DIRECTORY:
PRINT# 15, “N@:name”

The name goes in the directory as the name of the entire disk. This only
appears when the directory is listed. The ID code is any 2 characters, and they
are placed not only on the directory but on every block throughout the diskette.

15

That way, if you carelessly replace diskettes while writing data, the drive will
know by checking the 1D that something is wrong.

COPY
This command allows you to make a copy of any program or file on the
disk drive. It won’t copy from one drive to a different one (except in the case of

dual drives like the 4040), but it can duplicate a program under another name on
the drive.

FORMAT FOR THE COPY COMMAND:

PRINT# 15, “COPYf:newfile=/cldfile” (DRIVE#)

or abbreviated as
PRINT# 15, “cf:newfile=@: oldfile”

The COPY command can also be used to combine two through four files
on the disk.

FORMAT FOR COPY TO COMBINE FILES:
PRINT#15, “CO:newfile=0:oldfile ,0:0ldfile2,0: oldfile3,0: oldfile4™
EXAMPLES OF COPY COMMAND:

PRINT# 15, “C0O:BACKUP=0:ORIGINAL”
PRINT#15, ““CO:MASTERFILE=0:NAME,0: ADDRESS,0:PHONES”

RENAME

This command allows you to change the name of a file once it is in the
disk directory. This is a fast operation, since only the name in the directory must
be changed.
FORMAT FOR RENAME COMMAND:

«

PRINT# 15, “RENAME¢:newname=oldna
or abbreviated as

PRINT# 15, “R@:newname=oldname”
EXAMPLE OF RENAME COMMAND:

PRINT# 15, “RO:MYRA=MYRON”

The RENAME command will not work on any files that are currently
OPEN.

16

SCRATCH

This command allows you to erase unwanted files and programs from the
disk. which then makes the blocks available for new information. You can erase
programs one at a time or in groups by using pattern matching and/or wild cards.

FORMAT FOR SCRATCH COMMAND

PRINT# 15, “SCRATCH(b:

or abbreviated as
PRINT# 15, “S@:name™

If you check the error channel after a scratch operation (see below), the
number usually reserved for the track number now tells you how many files
were scratched. For example. if your directory contains the programs KNOW
and GNAW, and you use the command PRINT# 15, “S0:?N?W”, you will
scratch both programs. If the directory contains TEST, TRAIN, TRUCK, and
TAIL. and you command the disk to PRINT# 15, “SO:T*", you will erase ail

f f th . .
our of these programs 5¢,: //'CIM(/ Nt i o (Sd s
INITIALIZE

At times, an error condition on the disk will prevent you from performing
some operation you want to do. The INITIALIZE command returns the disk
drive to the same state as when powered up. You must be careful to re-match
the drive to the computer (see chapter 2).

FORMAT FOR INITIALIZE COMMAND:

PRINT# 15. “INITIALIZE™
or abbreviated as
PRINT# 15, “I"”

VALIDATE

After a diskette has been in use for some time, the directory can become
disorganized. When programs have been repeatedly SAVEd and SCRATCHed,
they may leave numerous small gaps on the disk, a block here and a few blocks
there. These blocks never get used because they are too small to be useful. The
VALIDATE command will go in and re-organize your diskette so that you can
get the most from the available space.

Also, there may be data files that were OPENed but never properly
CLOSEd. This command will collect all blocks taken by such files and make
them available to the drive, since the files are unusable at that point.

There is a danger in using this command. When using random files (see

chapter 6), blocks allocated will be de-allocated by this command. Therefore,
this command should never be used with a diskette that uses random files.

17

FORMAT FOR VALIDATE COMMAND:

PRINT# 15, “VALIDATE”
or abbreviated as
PRINT# 15, “V”

DUPLICATE

This command is a hangover from the operating systems that were
contained on the dual drives like the 4040. It was used to copy entire diskettes
from one drive to another, but has no function on a single disk drive.

Reading the Error Channel

Without the DOS Support Program, there is no way to read the disk error
channel without a program, since you need to use the INPUT# command which
won't work outside a program. Here is a simple BASIC routine to read the error

channel: -
ERROR#

RROR NAME
20 INPUT# 15, AS, BS, C$, DS m

30 PRINT AS, BS. CS, D$

Whenever you perform an INPUT# operation from the command channel,
you read up to 4 variables that describe the error condition. The first, third, and
fourth variables come in as numbers, and can be INPUT into numeric variables if
you like. The first variable describes the error #, where 0 is no error. The second
variable is the error description. The third variable is the track number on which
the error occurred, and the fourth and final is the block number inside that
track. (A block is also known as a sector)

10 OPEN 15, 8,15

Errors on track 18 have to do with the BAM and directory. For example, a
READ ERROR on track 18 block 0 may indicate that the disk was never
formatted.

CLOSE
It is extremely important that you properly CLOSE files once you are
finished using them. Closing the file causes the DOS to properly allocate blocks

in the BAM and to finish the entry in the directory. If you don’t CLOSE the file,
all your data will be lost!

FORMAT FOR CLOSE STATEMENT:
CLOSE file#

You should also be careful not to CLOSE the error channel (channel# 15)
18

before CLOSEing your data channels. The error channel should be OPENed first
and CLOSEd last of all your files! That will keep your programs out of trouble.

If you close the error channel while other files are OPEN, the disk drive
will CLOSE them for you, but BASIC will stilf think they are open (unless you
CLOSE them properly), and let you to try to write to them.

NOTE: If your BASIC program leads you into an error condition, all files

are CLOSEd in BASIC, without CLOSEing them on your disk drive! This

is a very dangerous condition. You should immediately type the statement
OPEN 15, 8, 15, “I". This will re-initialize your drive and make all your files
safe.

5. SEQUENTIAL FILES
OPEN

Sequential files on the disk drive work exactly like they do on cassette
tape. only much faster. They are limited by their sequential nature, which means
they must be read from beginning to end. Data is transferred byte by byte,
through a buffer, onto the magnetic media. To the disk drive all files are created
equal. That is, sequential files, program files, and user files all work the same on
the disk. Only program files can be LOADed, but that’s really the only
difference. Even the directory works like this, except that it is read-only. The
only difference is with relative files.

FORMAT FOR OPENING A SEQUENTIAL FILE:
OPEN file#, device#, channel #, “0:name,type direction”

The file number is the same as in all your other applications of the OPEN
statement, and it is used throughout the program to refer to this particular file.
The device# is usually 8. The channel# is a data channel, number 2 through 14.
It is convenient to use the same number for both the channel# and file#, to
keep them straight. The name is the file name (no wild cards or pattern matching
if you're creating a write file). The type can be any of the ones from the chart
below, at least the first letter of each type. The direction must be READ or
WRITE, or at least the first letter of each.

FILE TYPE MEANING
PRG Program
SEQ Sequential
USR User
REL Relative (not implemented in BASIC 2.0)

19

EXAMPLES OF OPENING SEQUENTIAL FILES:

OPEN 2,8,2(“0: DATA,S, W™

OPEN 8, 8, 8, “OIProgram
OPEN A, B, C, “0:” + AS + “U, W” READ/WRITE

If the file already exists, you can use the replace option in the OPEN
statement, similar to the SAVE-and-replace described in chapter 3. Simply add
the @0: before the file’s name in the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION:

C) M V\m:(,wf/(

OPEN 2, 8, 2, “@0:DATA,S,W”
PRINT # and INPUT # 2 {{,df fab

The PRINT# command works exactly like the PRINT statement, except
that output is re-directed to the disk drive. The reason for the special emphasis
on the word exactly is that all the formatting capabilities of the PRINT
statement, as applies to punctuation and data types, applies here too. It just
means that you have to be careful when putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINT #:
PRINT # file #, data list
The file# is the one from the OPEN statement when the file was created.

The data list is the same as the regular PRINT statement—a list of variables
and/or text inside quote marks. However, you must be especially careful when
writing data that it is as easy as possible to read back again later.

When using the PRINT# statement, if you use commas (,) to separate
items on the line, the items will be separated by some blank spaces, as if it were
being formatted for the screen. Semicolons (;) don’t result in any extra spaces.

In order to more fully understand what’s happening, here is a diagram of a
sequential file created by the statement OPEN 5, 8, 5, “0: TEST,S, W™

char%e?f}2}3l4[5|6|7|8|9]10|llll2ll3|14l15‘..4

The eof stands for the end-of-file marker. String data entering the file goes
in byte by byte, including spaces.

For instance, let’s set up some variables with the statement A$=
“HELLO”; B$= “ALL”™: C$= “BYE”. Here is a picture of a file after the

20

statement PRINT# 5. AS: BS. C$:

CR stands for the CHRS code of 13, the carriage return, which is PRINTed
at the end of every PRINT or PRINT# statement unless there is a comma or
semicolon at the end of the line.

NOTE: Do not leave a space between PRINT and #, and do not try to
abbreviate the command as ?#. See the appendixes in the user manual for
the correct abbreviation.

FORMAT FOR INPUT# STATEMENT:
INPUT # file #, variable list

When using the INPUT# to read this data in, there is no way to tell that
it's not supposed to be one long string. You need something in the file to act as a
separator. Characters to use as separators include the CR, a comma or a
semicolon. The CR can be added easily by just using one variable per line on the
PRINT# statement, and the system puts one there automatically. The statement
PRINT# S5, A$: PRINT# 5, BS: PRINT# 5, C3 puts a CR after every variable
being written, providing the proper separation for a statement like INPUT#S5,
AS, BS, CS. Or else a line like Z$= """ PRINT# 5, A$ Z$ B$ Z$ C$ will do the
job as well, and in less space. The file after that line looks like this:

|ulelcfifol. Jalul
charr1[2[3f4{5[6|7| {

Putting commas between variables results in lots of extra space on the disk
being used. A statement like PRINT# 5. A$, B$ makes a file that looks like:

clo]. |sly e |cr]eof]
8 9[10'11[12!13114[15[

lr:]]

T

You can see that much of the space in the file is wasted.

E L
2 3

The moral of all this is: take care when using PRINT# so your data will be
in order for reading back in.

Numeric data written in the file takes the form of a string, as if the STRS
function had been performed on it before writing it out. The first character will
be a blank space if the number is positive, and a minus sign (-) if the number is
negative. Then comes the number,and the last character is the cursorright
character. This format provides enough information for the INPUT# statement
to read them in as separate numbers if several are written with no other special
separators. It is somewhat wasteful of space, since there can be two unused

21

ol Ll b L Jalule] [er]ef

!61718'9[10[11[12[13!14|,..|23[24‘

SPace

characters if the numbers are positive.

Here is a picture of the file after the statement PRINT# S, 1; 3; 5; 7 is
performed:

LB 515 1515 | 1S
charlll2!3|fl§|6|718|?]lOlllllle3|l4llS‘q
‘Tb emt Sfd@sﬂaﬁv‘#\ PRWITH 2, SméCfL)]

Appendix B contains a program demonstrating the use of a sequential disk
file. o

o omt spuce Setpre F g MID[GDU(«),Z);

GET#
The GET # retrieves data from the disk, one character at a time.
FORMAT FOR THE GET# STATEMENT:
GET# file #, variable list
Data comes in byte by byte, including the CR, comma, and other
separating characters. It is much safer to use string variables when using the

GET# statement. You will get a BASIC error message if string data is received
where a number was requested, but not vice-versa.

EXAMPLES OF GET# STATEMENT:

GET# 5, AS
GET# A, BS,CS, DS You can get more than | character at a time
GET$ 5, A

The GET# statement is extremely useful when examining files with
unknown contents, like a file that may have been damaged by an experimental
program. It is safer than INPUT# because there is a limit to the number of
characters allowed between separators of INPUT variables. With GET#, you
receive every character, and you can examine separators as well as other data.

Here is a sample program that will allow you to examine any file on the
disk:

10 INPUT “FILE NAME™; F$

20 INPUT “FILE TYPE™;T$

30 TS=LEFTS(TS$,1)

40 IF T$ <>“S” THEN IF T$ <> “P” THEN IF T$ <> “U” THEN 20
45 OPEN 15, 8, 15

50 OPEN S, 8, 5, “0:” + F§+ “ "+ T$+ “ R”

60 GOSUB 200

22

70 GET#5. AS

80 IF ST <>0 THEN PRINT ST: STOP

90 PRINT ASC(A$+CHRS$(0));

100 GOTO 70
200 INPUT# 15. AS, BS, C$, D$
210 IF VAL (A$) >0 THEN PRINT A$,B$ C5:DS$:STOP
220 RETURN

In Case Of Null
Character Being
Read In — Causes
Error With ASC

Function Otherwise!

Reading the Directory

The directory of the diskette may be read just like a sequential file. Just
use $ for the file name, and OPEN 5, 8, 5, “$”. Now the GET# statement works
to examine the directory. The format here is identical to the format of a
program file: the file sizes are the line numbers, and names are stored as
characters within quote marks.

Here’s a program that lets you read the directory of the diskette:

10 OPENT1,8,2,“ 5%
20 GET#1,A$,A$,A5,A$
30 T$(0) = “Del”:T$(1) = “SEQ™:T$(2) = “PRG”:T$(3) = “USR”:T$(4) = “REL”

40 J=17:GOSUBS00 e\~
50 NS=BS (DISK NAME)
o

70 GOSUBS00

80 1$=B$

100 GOSUBS500

110 0$=B$

120 FORL=1TO73
130 GET#1.AS.AS.A$

140 NEXT

150 GET#1,A$,A5,A$,A8,A$

160 PRINTCHRS$(147) “Disk name: “N$,“ID: “I$,“0S: “0O$
161 PRINT*Length”,“Type” “Name”

165 FORP=1TO8

170 GET#1,T$,A$,AS

175 IFSTTHENCLOSE1: END

180 IFTS="“THENT$=CHR$(128)

200 GOSUBS00

210 N3=BS
220 GET#1,A5,A5,A5,A5,A5.AS AS.AS.AS,AS.L$ HS

225 L=ASC(L$+CHRS$(0))+256* ASC(H$+CHR$(0):IFL=0THEN250
230 PRINTL, T$(ASC(T$)—128),N$

250 IFP < STHENGET#1,A83,A$

260 NEXTP:GOTO165

23

500 B$=""
510 FORL=0TOJ
520 GET#1,A$ STRING
530 IFA$ <> CHR$(96)THENIFAS$ <> CHR$(160)THENBS=B$+A

540 NEXT (96) (160) S=BS+AS SUBROUTINE

550 RETURN

Table 5.1: 1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE | CONTENTS DEFINITION

0,1 18,01 Track and sector of first directory block

2 65 ASCII character A indicating 4040 format.
3 0 Null flag for future DOS use.

4-143 *Bit map of available blocks for trace 1--35.

*1 = available block
0 = block not available
(each bit represents one block)

Table 5.2: 1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE | CONTENTS DEFINITION
144—161 Disk name padded with shifted spaces.
162—-163 Disk ID.
164 160 Shifted space.
165,166 50,65 ASCII representation for 2A whicn is DOS version
and format type.
166—167 160 Shifted spaces.
171-255 0 Nulls, not used.

Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.

24

Table 5.3: DIRECTORY FORMAT

Track 18. Sector | for 4040
Track 39, Sector 1 for 8050
BYTE DEFINITION
0.1 Track and sector of next directory block.
2-31 *File entry 1
34-63 *File entry 2
66—95 *File entry 3
98—127 *File entry 4
130-159 *File entry 5
162—-191 *File entry 6
194-223 *File entry 7
226255 *File entry 8
*STRUCTURE OF SINGLE DIRECTORY ENTRY
BYTE | CONTENTS DEFINITION
0 128+type | File type OR’ed with $80 to indicate properly closed
tile.
TYPES: 0 =DELeted
1 = SEQential
2 =PROGram
3=USER
4 = RELative
1.2 Track and sector of st data block.
3-18 File name padded with shifted spaces.
19.20 Relative file only: track and sector for first side sector
block.
21 Relative file only: Record size.
22-25 Unused.
26,27 Track and sector of replacement file when OPEN@'is in
effect.
28,29 Number of blocks in file: low byte, high byte.

25

Table 5.4: SEQUENTIAL FORMAT

BYTE DEFINITION

0.1 Track and sector of next sequential data block.

2-25&" | 254 bytes of data with carriage returns as record terminators.

Table 5.5: PROGRAM FILE FORMAT

BYTE DEFINITION

0,1 Track and sector of next block in program file.

2—255 254 bytes of program info stored in CBM memory format (with
key words tokenized). End of file is marked by three zero bytes.

o £ b be 0 =0 = (a5t Gloct<
‘ Z\,R i = iy lo}#éy‘[e

6. RANDOM FILES

Sequential files are fine when you’re just working with a continuous
stream of data, but some jobs require more than that. For example, with a large
mailing list, you would not want to have to scan through the entire list to find a
person’s record. For this you need some kind of random access method, some
way to get to any record inside a file without having to read through the entire
file first.

There are actually two different types of random access files on the
Commodore disk drive. The relative files discussed in the next chapter are more
convenient for data handling operations, although the random files in this
chapter have uses of their own, especially when working with machine language.

Random files on the Commodore disk drive reach the individual 256-byte
blocks of data stored on the disk. As was mentioned in the first chapter, there
are a total of 683 blocks on the diskette, of which 664 are free on a blank
diskette. Each block of data really means | Track and sector of the same name.

The diskette is divided into tracks, which are laid out as ¢oncentric circles
on the surface of the diskette. There are 35 different tracks, starting with track 1
at the outside of the diskette to track 35 at the center. Track 18 is used for the
directory, and the DOS fills up the diskette from the center outward.

Each track is subdivided into sectors. Because there is more room on the
outer tracks, there are more sectors there The outer tracks contain 21 sectors
each, while the inner ones only have 17 blocks each. The table below shows the
number of sectors per track.

26

Table 6.1: TRACK AND BLOCK FORMAT

TRACK NUMBER SECTOR RANGE TOTAL SECTORS
l1tol7 0to 20 21
18 to 24 Oto 18 19
25t0 30 Oto17 18
31 to 35 Otol6 17

The DOS contains commands for reading and writing directly to any track
and sector on the diskette. There are also commands for checking to see which
blocks (tracks & sectors) are available, and for marking off used blocks.

These commands are transmitted through the command channel
(channel# 15). and tell the disk what to do with the data. The data must be read
later through one of the open data channels.

Opening a Data Channel for Random Access

When working with random access files, you need to have 2 channels open
to the disk: one for the commands. and the other for the data. The command
channel is OPENed to channel 15. just like other disk commands you've

encountered so far. The data channel for random access files is OPENed by
selecting the pound sign (#) as the file name.

FORMAT FOR OPEN STATEMENT FOR RANDOM ACCESS DATA:
OPEN file #. device#, channel #, “#"
or optionally

OPEN file #, device#. channel#, “# buffer#”

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL.:

OPENS.8.5. “#" DON'T CARE WHICH BUFFER
OPEN A.B.C."#2" PICK BUFFER #2

BLOCK-READ

i

FORMAT FOR BLOCK-READ COMMAND:

PRINT# file#. “BLOCK-READ:™ channel, drive, track, block
or abbreviated as
PRINT# file#, ““B-R:™ channel, drive, track, block

This command will move one block of data from the diskette into the
selected channel. Once this operation has been performed, the INPUT# and
GET# statements can read the information.

AR ;\Qa_,(s(qvf; ma*}-f) betes 1-255" oL g
_Liogbt (w(\"" QVk C 9w:»)+ke el Jf'ﬁt 27
Jass o be

SAMPLE PROGRAM TO READ BLOCK 2 FROM TRACK 18: (stores contents

"o (CnneLe)
10 OPEN 15,8, 15
OPEN £ s 5o //’.m
30 PRINT# 15, “B-R:” 5.0, 18. 2 SECTOR) | _ BLOCK
40 B§=""

50 FOR L=0TO 255
60 GET# 5, AS
70 IF ST=0 THEN B3= B$+ A$: NEXT L

SOPRINT "FINISHED” COLLECT ENTIRE BLOCK.
90 CLOSE 5: CLOSE 15 BYTE BY BYTE

BLOCK-WRITE

The BLOCK-WRITE command is the exact opposite of the BLOCK-READ
command. First you must fill up a data buffer with your information, then you
write that buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND:

PRINT# file #, “BLOCK-WRITE:" drive, channel, track, block
or abbreviated as
PRINT# file, “B-W:" drive, channel, track. block

When the data is being put into the buffer, a pointer in the DOS keeps
track of how many characters there are. When you perform the BLOCK-WRITE
operation, that pointer is recorded on the disk. That is the reason for the ST
check in line 70 of the program above: the ST will become non-zero when you
try to read past the end-of-file marker within the record.

SAMPLE PROGRAM TO WRITE DATA ON TRACK 1, SECTOR 1:

10 OPEN 15, 8,15

200PEN §, 8,5, “#”

30FOR L=1 to 50

40 PRINT#3, “TEST”

50 NEXT

60 PRINT# 15,“B-W:” 5,0, 1, 1
70 CLOSE 5: CLOSE 15

28

BLOCK-ALLOCATE

In order to safely use random files along with regular files, your programs
must check the BAM to find available blocks, and change the BAM to reflect
that you've used them. Once you update the BAM, your random ftiles will be
safe—at least unless you perform the VALIDATE command (see chapter 3).

FORMAT FOR THE BLOCK-ALLOCATE COMMAND:
PRINT# file#, “BLOCK-ALLOCATE:" drive, track, block

How do you know which blocks are available to use? If you try a block
that isn’t available, the DOS will set the error message to number 65, NO
BLOCK, and set the track and block numbers to the next available track and
block number. Therefore, any time you attempt to write a block to the disk,
you must first try to allocate that block. If that block isn’t available, read the
next block available from the error channel and then allocate that block.

EXAMPLE OF PROCEDURE TO ALLOCATE BLOCK:

10 OPEN 15,8, 15

200PEN'S, 8,5, " # (DRIVE)

30 PRINT# 5, “DATA” W
40 T=1: 8=1
50 PRINT#15, “B-A:" 0, T, s

60 INPUT#15, A, BS,C, D

70 [F A=65 THEN T=C: $=D: GOTO 50

80 PRINT#15,“B-W:" 5,0, T,S
BLOCK-FREE

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE, in
that it frees a block that you don’t want to use anymore for use by the system.
It is vaguely similar to the SCRATCH command for files, since it doesn’t really
erase any data from the disk—just frees the entry, in this case just in the BAM.

FORMAT FOR BLOCK-FREE COMMAND:
PRINT# file #, “BLOCK-FREE." drive, track, block

or abbreviated as
PRINT # file#, “B-F:” drive, track, block

Using Random Files

The only problem with what you've learned about random files so far is

29

that you have no way of keeping track of which blocks on the disk you used.
After all, you can’t tell one used block on the BAM from another. You can’t tell
whether it contains your random file, just part of a program, or even sequential
or relative files.

To keep track, the most common method is to build up a sequential file to
go with each random file. Use this file to keep just a list of record, track, and
block locations. This means that there are 3 channels open to the disk for each
random file: one for the command channel, one for the random data, and the
other for the sequential data. This also means that there are 2 buffers that you're
filling up at the same time'

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH
SEQUENTIAL FILE:
10 OPEN 15,8, 15
200PENS, 8,5,“#
30 OPEN 4, 8, 4, “@0:KEYS,S,W”
40 A$= “RECORD CONTENTS #”
S0 FORR=1TO 10
70 PRINT#5, A3 “,” R
90 T=1:B =1
100 PRINT# 15, “B-A:” 0, T, B
110 INPUT#15,A,BS$,C,D
120 IF A=65 THEN T=C:B =D: GOTO 100
130 PRINT#15, “B-W:” 5,0, T,B
140 PRINT#4, T B
150 NEXT R
160 CLOSE 4: CLOSE 5: CLOSE 15

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
SEQUENTIAL FILE:

10 OPEN 15, 8,15
200PENS, 8,5, “#”
30 OPEN 4, 8, 4, “KEYS,S,R”

40 FOR R=1 TO 10 :
S0 INPUT#4. T, S g‘gﬂztﬁf’;}sﬁ““
60 PRINT# 15, “B-R:" 5,0, T, S

30

80 INPUT#5, AS, X
90 IF A$ <> “Record Contents #” OR X <> R THEN STOP
110 PRINT# 15, “B-F:" 0, T, S \

120 NEXTR Checks To Make
130 CLOSE 4: CLOSE § Sure Data Is OK

140 PRINT# 15, “SO:KEYS”
150 CLOSE 15

BUFFER-POINTER

The buffer pointer keeps track of where the last piece of data was written.
It also is the pointer for where the next piece of data is to be read. By changing
the buffer pointer’s location within the buffer, you can get random access to the
individual bytes within a block. This way, you can subdivide each block into
records.

For example, let’s take a hypothetical mailing list. The information such as
name, address, etc., will take up a total of 64 characters maximum. We could
divide each block of the random access file into 4 separate records, and by
knowing the track, sector, and record numbers, we can access that individual
record.

FORMAT FOR BUFFER-POINTER COMMAND:

PRINT# file #, “BUFFER-POINTER:" channel, location
or abbreviated as
PRINT# file#, “B-P:” channel, location

EXAMPLE OF SETTING POINTER TO 64TH CHARACTER OF BUFFER:
PRINT# 15, “B-P:" 5, 64

Here are versions of the random access wwiting and reading programs
shown above, modified to work with records within blocks:

SAMPLE PROGRAM WRITING 10 RANDOM-ACCESS BLOCKS WITH 4
RECORDS EACH:

10 OPEN 15,8, 15

200PENS, 8,5, “#

30 OPEN 4, 8,4, “KEYS,S,.W”

40 A$=“RECORD CONTENTS #”

50 FORR=1TO 10

60 FOR L=1 TO 4

31

7O PRINT# 15, “B-P:” 51 (L-1)* 64 Position to 0, 64, 128, or 192
80 PRINT#5, AS “” L

90 NEXTL

100 T=1:B=1

110PRINT#15, “B-A:” O; T;B
120 INPUT# 15, A, B3, C, D
130 IF A=65 THEN T=C:B=D: GOTO 110
140 PRINT# 15,“B-W:" 5,0, T; B

150 PRINT#4,T B

160 NEXT R

170 CLOSE 4: CLOSE 5: CLOSE 15

Find Available
Track & Sector

SAMPLE PROGRAM READING BACK 10 RANDOM-ACCESS BLOCKS WITH
4 RECORDS EACH:
10 OPEN 15, 8,15
20 OPEN5,8,5,"#
30 OPEN4, 8,4, “KEYS,SR”
40 FORR=1 TO 10
50 INPUT#4,T,S
60 PRINT# 15,“B-R:” 5,0, T; S
70 FOR L=1 TO 4
80 PRINT# 15, “BP:” 5; (L-1)* 64
85 INPUT# 5, AS, X
90 IF A$ <> *“‘Record Contents #” OR X=L THEN STOP
100 NEXT L
110 PRINT# 15,“B-F:”0; T; S
120 NEXT R
130 CLOSE 4: CLOSE 5
140 PRINT# 15, “SO:KEYS”
150 CLOSE 15

USER1 and USER2

The user commands are generally designed to work with machine language
(see the next chapter for more on this). The USER1 and USER2 commands are
special versions of the BLOCK-READ and BLOCK-WRITE commands, but . ..

32

with an important difference: the way USERI and USER2 work with the
buffer-pointer.

The BLOCK-READ command reads up to 256 characters, but stops
reading when the buffer-pointer stored with the block says that block is finished.
The USERI command performs the BLOCK-READ operation, but first forces
the pointer to 255 in order to read the entire block of data from the disk.

FORMAT FOR USER! COMMAND:

PRINT# file #, “Ul:" channel, drive, track, block
or
PRINT# file #, “UA:" channel, drive, track, block

There is no difference between the Ul and UA designations for this
command.

The BLOCK-WRITE command writes the contents of the buffer to the
block on the disk along with the value of the buffer-pointer. The USER2
command writes the buffer without disturbing the buffer-pointer value already
stored on that block of the diskette. This is useful when a block is to be read in
with BLOCK-READ, updated through the BUFFER-POINTER and PRINT#
statements, and then written back to the diskette with USER2.

FORMAT FOR USER2 COMMAND:

PRINT# file#, **U2:" channel, drive, track, block
or
PRINT# file #, “UB:” channel, drive, track, block

For a more complex sample program, see appendix B.

7. RELATIVE FILES

Relative files allow you to easily zero in on exactly the piece of data that
you want from the file. It is more convenient for data handling because it allows
you to structure your files into records, and into fields within those records.

The DOS keeps track of the tracks and sectors used, and even allows
records to overlap from one block to the next. It is able to do this because it
establishes side sectors, a series of pointers for the beginning of each record.
Each side sector can point to up to 120 records, and there may be 6 side sectors
in a file. There can be up to 720 records in a file, and each record can be up to
254 characters, so the file could be as large as the entire diskette.

© 33

Creating a Relative File

When a relative file is first to be used, the OPEN statement will create that
file; after that, that same file will be used. The replace option (with the @ sign)
does not erase and re-create the file. The file can be expanded, read, and written

into.

FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE:

OPEN file #, device #, channel #, “‘name,L,” + CHR$(record length)

EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES:

OPEN 2, 8, 2, “FILE,L,“+ CHR$(100)

OPENF, 8, F, A$+ “,L,“+ CHR$(Q) Record Length

OPEN A, B, C, “TEST,L,*“+ CHR$(33)

Table 7.1 RELATIVE FILE FORMAT

DATA BLOCK
BYTE DEFINITION
0,1 Track and sector of next data block.

2—256’

254 bytes of data. Empty records contain FF (all binary ones)
in the first byte followed by 00 (binary all zeros) to the end of
the record. Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK
BYTE DEFINITION
0,1 Track and sector of next side sector block.
2 Side sector number. (0-5)
3 Record length.
4,5 Track and sector of first side sector (number 0)
6,7 Track and sector of second side sector (number 1)
8,9 Track and sector of third side sector (number 2)
10,11 Track and sector of fourth side sector (number 3)
12,13 Track and sector of fifth side sector (number 4)
14,15 Track and sector of sicth side sector (number 5)
16256 | Track and sector pointers to 120 data blocks.

34

Upon execution, the DOS ftirst checks to see if the file exists. If it does,
then nothing happens. The only way to erase an old relative file is by using the
SCRATCH command (see chapter 4), but not by using the replace option.

Using Relative Files

In order to OPEN a relative file once it exists, the format is simpler.
FORMAT FOR OPENING AN EXISTING RELATIVE FILE:

OPEN file #, device #. channel #, “name”

In this case, the DOS automatically knows that it is a relative file. This

syntax, and the one shown in the above section, both allow either reading or
writing to the file.

In order to read or write, you must, before any operation, position the file
pointer to the correct record position.

FORMAT FOR POSITION COMMAND:
PRINT# file#. “P"" CHR3(channel#) CHRS$(rec# 10) CHRS(rec# hi)

or optionally as
PRINT # file #, “‘P” CHR$(channel#) CHR$(rec #lo) CHR $(rec#hi) CHR$(position)

EXAMPLES OF POSITION COMMAND:

PRINT# 15, “P” CHR$(2){CHR$(1) CHR$(0) Record#
PRINT# 15, “P” CHR$(CH)JCHR$(R1) CHR$(R2)

PRINT# 15, “P” CHR$(4) CHRS(R1) CHRS(R2) CHR$(P) vz, Record

The 2-byte format for the record number is needed because one byte can
only hold 256 different numbers, and we can have over 700 records in the file.
The rec# lo contains the least significant part of the address, and the rec# hi is
the most significant part. This could be translated to the actual record number
by the formula REC# = REC HI * 256 + REC LO.

Let’s assume we have a mailing list. The list consists of 8 pieces of data,
according to this chart:

Field Name Length

state 2
first name 12 zip code 9
last name 15 phone number 10
address line | 20
address line 2 2 T
city 12 TOTAL 100

35

This is how the record length is determined. We would probably want to
allow an extra character in length for each field, to allow for separations;
otherwise the INPUT# command would pick up a much longer piece of the file
than needed, just like in sequential files. Therefore, we’ll set up a file with a
length of 108 characters per record. In the first record, we’ll put the number 1,
representing the largest record# used so far. Here is the program as described so
far:

10OPEN 1, 8. 15
20 OPEN 2, 8, 3, “0:MAILING LIST,L,"+CHRS(108)
30 GOSUB 900
40 PRINT# I, “p” CHRS(3) (CHR$(1) CHRS(0) CHRS(1)
50 GOSUB 900
60 IF E=50 THEN PRINT#2. 1: GOTO 40
70 INPUT# 2, X
300 STOP
900 INPUT# 1, E, BS, C, D
910 IF (E=50) OR(E < 20) THEN RETURN
920 PRINT A: B: C; D: STOP: RETURN

Error #50 which is checked in line 60 of the program is the RECORD
NOT PRESENT error, which means that the record hadn’t been created yet.
Writing into the record will solve the proglem. This error condition must be
watched carefully within your programs.

So far, all it does is create the file and the first record, but doesn’t actually

put any data in it. Below is a greatly expanded version of the program, to
actually allow you to work with a mailing list where the records are coded by
numbers.

MAILING LIST READ AND WRITE PROGRAM:

5 A(1)=12:A(Q2)=15:A(3) = 20:A(4) = 20:A(5) = 12: A(6) = 2:A(7) = 9:A(8) = 10
10 OPEN1,8,15:0PEN2,8,3,0:Mailing List,1,"+CHR3(108):GOSUB9Q0
20 PRINT#!1,“p”CHR$(3)CHRS(1) CHRS$(0) CHRS(1):INPUT#2,X
30 INPUT*“Read, Write, or End”J$:IFJ§="¢"THENCLOSE2:CLOSE1:END
40 [FJ$="w"THEN200
50 PRINT:INPUT“Record #*:R:[FR <QORR >XTHENS50
60 IFR <2THEN30
70 RI=R:R2=0:lFR1>256THENR2=INT(R1/256):R1=R1-256*R2
80 RESTORE:DATI,FIRST NAME,14,LAST NAME,30,ADDRESS1,51 ADDRESS2
90 DATA72,CITY,85STATE 88.ZIP,98 PHONE#
100 FORL=1TO8:READA AS:PRINT#1,“p”CHRS(13) CHR$(R1) CHR$(R2) CHR$(A):GOSUBY0O
110 ONA/50GOTOS0:INPUT#2,Z$:PRINTAS,Z$:NEXT:GOTQS50
200 PRINT:INPUT"Record #";R:IFR <OORR > 5000THEN200
210 [IFR<2THEN30
215 IFR>XTHENR=X+1:PRINT:PRINT*Record# “R
220 RI1=R:R2=0:[FR1>256THENR2=INT(R1/256) :R1=R1 — 256*R2
230 RESTORE:FORL=1TO8:READA.A$:PRINT#1, “p”"CHR$(3) CHRS(R1) CHR$(R2) CHR3(A)
240 PRINTAS,.INPUTZS.IFLEN(Z$) > A(L)THENZS=LEFT$(Z$,A(L))
245 PRINT#2,Z$:NEXT:X=R:PRINT#1,“p”CHRS(3) CHR$(1) CHR$(0)
250 PRINT#2,X:GOTO200
900 INPUT#1,A,B$,C,.D:1IFA <20THENRETURN
910 IFA <> S0THENPRINTA;B$.C;D:STOP:RETURN
920 IFJ$="r"THENPRINTB$
930 RETURN

36

This program asks for record numbers when retrieving records. It won’t let
you retrieve from beyond the end of the file, and if you try to write beyond the
end it forces you to write on the next higher record.

A more advanced version than this would keep track of the items by
“keys”, to index the records. For example, you would probably want to search
for a record by name, or print out labels by zip code. For this you would need a
separate list of keys and record numbers, probably stored in sequential files.

When working with a new relative file that will soon be very large, it will
save much time to create a record at the projected end of the file. In other
words, if you expect the file to be 1000 records long, create a record# 1000 as
soon as the file is created. This will force the DOS to create all intermediate
records, making later use of those records much faster.

EXAMPLE OF CREATING LARGE FILE:

OPEN1, 8, 15: OPEN 2, 8,2, “REL,L,*+ CHR$(60)

PRINT# 1, “P” CHR$(2) CHR$(0) CHR$(4) CHRS$(1)
PRINT# 2, “END”
CLOSE 2: CLOSE 1

RECORD# 4*256+0
OR 1024

8. PROGRAMMING THE DISK CONTROLLER

The expert programmer can actually design routines that reside and
operate on the disk controller. DOS routines can be added that come from the
diskette. Routines can be added much the same way as the DOS Support
Program is “wedged™ into your memory.

BLOCK-EXECUTE

This command will load a block from the diskette containing a machine
language routine, and begin executing it at location O in the buffer until a RTS
(ReTurn from Subroutine) command is encountered.

FORMAT FOR BLOCK-EXECUTE:

PRINT# file #, “BLOCK-EXECUTE:” channel, drive, track, block
or abbreviated as

PRINT# file#, “BLOCK-EXECUTE:” channel, drive, track, block
MEMORY-READ

There is 16K of ROM in the disk drive as well as 2K of RAM. You can get
direct access to these, or to the buffers that the DOS has set up in the RAM, by

using the MEMORY commands. MEMORY-READ allows you to select which
byte to read, through the error channel.

37

FORMAT FOR MEMORY-READ:

PRINT# file #, “M-Rg” CHRS(low byte of address) CHRS$(high byte)
(no abbreviation')

The next byte read using the GET# statement through channel# 15, the
error channel, will be from that address in the disk controller’s memory, and
successive bytes will be from successive memory locations.

Any INPUT# to the error channel will give peculiar results when you're
using this command. This can be cleared up by any other command to the disk
(besides a memory command).

PROGRAM TO READ THE DISK CONTROLLER’S MEMORY':

10 OPEN 15, 8, 15
20 INPUT “LOCATION PLEASE”; A
30 AI=INT(A/256): A2= A- A1*256
40 PRINT# 15, MRZ) CHRS$(A2) CHRS$(AI)
S50FORL=1TOS
60 GET# 15, A%
70 PRINT ASC(A$+ CHRS$(0)),
80 NEXT
90 INPUT “CONTINUE”;AS
100 IF LEFTS$(AS,1) =“Y” THEN 50
110GOTO 20

MEMORY-WRITE

The MEMORY-WRITE command allows you to write up to 34 bytes at a
time into the disk controller’s memory. The MEMORY-EXECUTE and USER
commands can be used to run this code.

FORMAT FOR MEMORY-WRITE:

PRINT# file #, “M-WS” CHR3(low address byte) CHRS$(high address byte)
#-ofcharacters; byte data

PROGRAM TO WRITE A “RTS” TO DISK:
I0 OPEN 15, 8,15, “M-Wt” CHR$(0) CHRS(5); 1: CHR$(96)
20 PRINT# 15, “M-E&” CHRS$(0) CHRS$(19): REM JUMPS TO BYTE, RETURNS
30CLOSE 15

MEMORY-EXECUTE

Any routine in the DOS memory, RAM or ROM, can be executed with the
MEMORY-EXECUTE command.

38

—

FORMAT FOR MEMORY-EXECUTE:
PRINT# file #, “M-E4” CHRS(low address byte) CHR$(high byte)
See line 20 above for an example.
USER Commands
Aside from the USERI and USER2 commands discussed in chapter 6, and

the Ul+ and Ul- commands in chapter 2, the USER commands are jumps to a
table of locations in the disk drive’s RAM memory.

USER COMMAND FUNCTION
Ul or UA BLOCK-READ without changing buffer-pointer
U2 or UB BLOCK-WRITE without changing buffer-pointer
U3 or UC jump to $0500

U4 or UD jump to $0503

U5 or UE jump to $0506

U6 or UF jump to $0509

U7 or UG jump to $050C

U8 or UH jump to $050F

U9 or Ul jump to SFFFA

U;or UJ power-up vector

Ul+ set Commodore 64 speed

Ul- set VIC 20 speed

By loading these locations with another jump command, like JMP $0520,
you can create longer routines that operate in the disk’s memory along with an
easy-to-use jump table—even from BASIC!

EXAMPLES OF USER COMMAMDS:

PRINT# 15, “U3”

PRINT# 15, “U"+ CHRS$(50+Q)

PRINT# 15, “UI"
9. CHANGING THE DISK DRIVE DEVICE NUMBER
Software Method

The device number is selected by the drive by looking at a hardware
jumper on the board and writing the number based on that jumper in a section
of its RAM. Once operation is underway, it is easy to write over the previous

device number with a new one.

FORMAT FOR CHANGING DEVICE NUMBER:

39

PRINT# file #, “M-W:* CHRS$(119) CHR$(0) CHR$(2) CHR $(address+32)
CHR $(addresst64)

EXAMPLE OF CHANGING DEVICE NUMBER:

PRINT# 15, “M-Wy” CHR$(119) CHR$(0) CHR$(2) CHR$(9+32) CHR$(9+64)
PRINT#Q, “M-Wi” CHRS$(119) CHR$(0) CHR$(2) CHR$(R+32) CHR3(R+64)

If you have more than one drive, it’s sensible to change the address
through hardware (see below). If you must, the procedure is easy. Just plug in
the drives one at a time, and change their numbers to the desired new values.
That way you won’t have any conflicts.

Hardware Method

It’s an easy job to permanently change the device number of your drive for
use in multiple drive systems. The tools needed is a phillips-head screwdriver and
a knife.

STEPS TO CHANGING DEVICE NUMBER ON HARDWARE:

Disconnect all cables from drive, including power.
Turn drive upside down on a flat, steady surface.
Remove 4 screws holding drive box together.

Carefully turn drive right side up, and remove case top.
Remove 2 screws on side of metal housing.

Remove housing.

Locate device number jumpers. If facing the front of the drive, it’s
on the left edge in the middle of the board.

Cut either or both of jumpers | and 2.
Replace housing and 2 screws, and case top and 4 screws.

10. Re-connect cables and power up.

The jumper number is added to the old device number (8) when cut. In
other words, jumper 1 adds 1, and jumper 2 adds 2, to the device number. If
none are cut, the number is 8, if 1 is cut it goes up to 9, and if only 2 is cut the
number is 10. If both ! and 2 are cut, the numberis 11.

40

Appendix A: Disk Command Summary

General Format: PRINT # file #, command

COMMAND

NEW

COPY

RENAME
SCRATCH
INITIALIZE
VALIDATE
DUPLICATE
BLOCK-READ
BLOCK-WRITE
BLOCK-ALLOCATE
BLOCK-FREE
BUFFER-POINTER
USERI and USER2
POSITION

BLOCK-EXECUTE
MEMORY-READ
MEMORY-WRITE

MEMORY-EXECUTE
USER Commands

COMMAND FORMAT

“N

“CO:new file=0:original file
“R0:new name=0:0ld name
“S0:file name

“I

“V

not for single drives

*“B-R:” channel; drive; track; block
“B-W.” channel; drive; track; block
“B-A:” drive; track; block

“B-F:” drive; track: block

“B-P:” channel; position

*“Un:" channel; drive; track; block

“P” CHR$(channel #) CHRS(rec# lo) CHRS$(rec# hi)

CHRS(position)
“B-E:” channel; drive: track; block
“M-R:”" CHR$(address lo) CHRS$(address hi)

“M-W:" CHR$(address lo) CHRS$(address hi) CHR$

(# chars) “data”
“M-E:" CHRS$(address lo) CHRS$(address hi)
“Un:,V

41

Appendix B: Summary of CBM Floppy Error Messages

42

OK, no error exists.

Files scratched response. Not an error condition.
Unused error messages: should be ignored.
Block header not found on disk.

Sync character not found.

Data block not present.

Checksum error in data.

Byte decoding error.

Write-verify error.

Attempt to write with write protect on.
Checksum error in header.

Data extends into next block.

Disk id mismatch.

General syntax error.

Invalid command.

Long line.

Invalid filename.

No file given.

Command file not found.

Record not present.

Overflow in record.

File too large.

File open for write.

File not open.

File not found.

File exists.

File type mismatch.

No block.

Illegal track or sector.

[llegal system track or sector.

No channels available.

Directory error.

Disk full or directory full.

Power up message, or write attempt with DOS Mismatch.
Drive not ready. (8050 only)

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the
exception of Q1 which gives information about the number of files scratched
with the SCRATCH command.

20:

-

23:

24:

25:

26:

27:

READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been
destroyed.

READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/write head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware
failure.

READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that
was not properly written. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector request.

READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, but the
checksum over the data is in error. This message may also indicate
grounding problems.

READ ERROR (byte decoding error)

The data or header has been read into the DOS memory, but a hardware
error has been created due to an invalid bit pattern in the data byte. This
message may also indicate grounding problems.

WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between the
written data and the data in the DOS memory.

WRITE PROTECT ON

This message is generated when the controller has been requested to write
a data block while the write protect switch is depressed. Typically, this is
caused by using a diskette with a write protect tab over the notch.

READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data
block. The block has not been read into the DOS memory. This message
may also indicate grounding problems.

43

28:

29:

30:

31:

32:

33:

34:

39:

50:

51:

WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a
pre-determined time, the error message is generated. The error is caused by
a bad diskette format (the data extends into the next block), or by
hardware failure.

DISK ID MISMATCH

This message is generated when the controller has been requested to access
a diskette which has not been initialized. The message can also occur if a
diskette has a bad header.

SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel.
Typically, this is caused by an illegal number of file names, or patterns are
illegally used. For example, two file names may appear on the left side of
the COPY command.

SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in
the first position.

SYNTAX ERROR (long line)
The command sent is longer than 58 characters.

SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it
as such. Typically, a colon (:) has been left out of the command.

SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel
(secondary address 15) is unrecognizable by the DOS.

RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#, or GET#
commands. This message will also occur after positioning to a record
beyond end of file in a relative file. If the intent is to expand the file by
adding the new record (with a PRINT# command), the error message may
be ignored. INPUT or GET should not be attempted after this error is
detected without first repositioning.

OVERFLOW IN RECORD

PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return which is sent as a record terminator is counted in
the record size, this message will occur if the total characters in the record
(including the final carriage return) exceeds the defined size.

60:

61:

64:

65:

66:

67:

70:

71:

FILE TOO LARGE
Record position within a relative file indicates that disk overflow will
result.

WRITE FILE OPEN
This message is generated when a write file that has not been closed is
being opened for reading.

FILE NOT OPEN

This message is generated when a file is being accessed that has not been
opened in the DOS. Sometimes, in this case. a message is not generated;
the request is simply ignored.

FILE NOT FOUND
The requested file does not exist on the indicated drive.

FILE EXISTS

The file name of the file being created already exists on the diskette.

FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the
requested file.

NO BLOCK _
This message occurs in conjunction with the B-A command. It indicates
that the block to be allocated has been previously allocated. The
parameters indicate the track and sector available with the next highest
number. If the parameters are zero (0), then all blocks higher in number
are in use.

ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not exist in
the format being used. This may indicate a problem reading the pointer to
the next block.

ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or sector.

NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A
maximum of five sequential files may be opened at one time to the DOS.
Direct access channels may have six opened files.

DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the
BAM allocation or the BAM has been overwritten in DOS memory. To
correct this problem, reinitialize the diskette to restore the BAM in

memory. Some active files may be terminated by the corrective action.
NOTE: BAM = Block Availability Map

45

73:

74.

46

DISK FULL

Either the blocks on the diskette are used or the directory is at its limit of
152 entries for the 2040, 3040, and 4040 or 243 entries for the 8050.
DISK FULL is sent when two blocks are available on the 8050 to allow
the current file to be closed.

DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS | and 2 are read compatible but not write compatible. Disks may be
interchangeably read with either DOS, but a disk formatted on one version
cannot be written upon with the other version because the format is
different. This error is displayed whenever an attempt is made to write
upon a disk which has been formatted in a non-compatible format. (A
utility routine is available to assist in converting from one format to
another.) This message may also appear after power up.

DRIVE NOT READY

An attempt has been made access the 1541 Single Drive Floppy Disk
without any diskettes present in either drive.

APPENDIX C: Demonstration Disk Programs
1. DIR

4 OFEMHZ 2,19

S5 FPRIMTIY:G0TO 1803
1@ OFEML.G. 8, "eG"

2B GETH#1.AF.BF

T GET#1.A%.B¥

43 GET#1.R%.B%

C=a

+RSC B I#2SE
*y :, 'THE 3) ll-ll .

FPIHT (0
THEH 1828

GET#1.E$: IF
IF B#{LCHR:

d GET#1.F%:IF FHC0H
GET#1.B%: IF E .
1?@ PRIMNT TAREC1&
142 CE=CE+RE: hET#I B$ IF B3C"" THEH 148

156 FRIMT"A"LEFTHCCE, 30

128 GET T¢:IF T$<3"" THEM GOSUE 208l

17@ IF ST=@ THEMW 3@

lega PRIMT" RLOICKS FREE"

1ala CLOSEL:GOTO 12269

Z@ag IF Te="0Q" THEW CLOSELENWD

2012 GET THIF T$="" THEM 2089

2028 RETURM

4060 REM DISK COMMAMD

421@ Cg="" PRIMT 2",

4011 GETB#:IFB$="" THEN4411

4312 FRIMTBS;:IF B$=CHRF/13) THEM 4020

40173 C$=C$+B$:00T0 4811

4@z FRINTH#Z.C$

TRaaa PRIMT &

TG SETH#Z.A$:FRIMTAS. :IF ASCOCHREC13IHGOTOSE1R

TBZa FRIMT m"

18083 PRINT “D-DIRECTORY"

18619 PRINT ">~DISK COMMANI"

12820 PRIMT "@-QUIT FROGRAM"

18232 PRIWT "$~DISK STATUS

10106 GETR$: IFA$=""THEMI1B1G@

19ze@ IF A¥="D" THEM 1@

1a3pe IF Ax="." OR A$="2" OR A$="2" THEH 4205
1a31a IF R$="{" THEM EWD

1a32@ IF A$="3" THEM S@09

18333 GOTO 18100

ATHEM PRIMTE#: :GOTO11€
2y THEM 1z@

2. VIEW BAM

128 REM e VAR N

191 REM % YIEW BRM FOR VIC & 64 DISK

192 REM RaORMM SR MR SN AN R Ao o

195 OFEM15.8.15

119 PRINTH#15."18" HU$="H/R H/A H/R HAA HARY :Z4=1
120 OPEM2.8.2."#"

130 ¥E="3 Y }
140 X$="NBREBRRRRRRBNENBARNRNNET

150 DEF FHSC(Z) = ZMB-INTIS/8)%S) AHD (SBLINT(S/8)7

PRIMT#1S,"U1:":2:6:18.:8

FRIMTH#15, "B~P" 201
FRINT'OYS

W=22 W=1GOSUB438
FORI=gTOZR: FRIMT - PRIMT"TIRIGHTS(STRECI»+" M. 300 iHEXKT
0 GET#Z.AF
2 GETH#Z. A%

30 GETH#Z. RS

A TE=a

FORT=1T0O17 GOTLE4TG
i 22 w=T+4 GOSLEAZE GOSUBS4Q HEXT
7R FORI=1TOZ06Q: MNEXKT :FRINT"D"
Y=22 k=1 GISUR4320
FORI=gTO2R PRINT (PRINT"TIRIGHTSCSTRECIN+" ", 305 iHEXT
A FORT=12T03S
GOSURLSE
4 trmT =13 GOSURS3E GOSUBS4@ MEXKT
A FORI=1TO1088: HEXT
8 FRIMNT " TI8lmnm"
A FRIMT#1S. "B-F"
HE="" FORI=1TOZE: GETHZ., AF HE=HE+A%E NEXT
FEORRIMT "ME" "TS-170"ELOCKS FREE"

1 OFORI=1TO4RR8 HEXT
PRIWTYTI"

THFLT " olaTsmeKHOTHER TISKETTE HIMEE ;A%
IFAF="""THEMRUM

IFREC """ THEHEMD
3 PRIMTLEFTSOvE, YO LEFTEORE, WO "0
46 RETLIRH
JECESC=ASCIRIGHTSICHRECRI+SCE, 100

AR REREAE SRV YN

144

RETURH
o FRINT"EBI'RIGHTE
- PRINTT

24RHTIS=13THEN

RECTY, 10 "I
" nER "foll" "SRCZr=CHRF3)
-PPIHTMIDi’NHf Z4. 101 1G0TOREE

7THEH1FH1HTHIDQHUJZ4Jlhi5GDTDEGB
1@THEW FRIMTMIDFCMUS, 29, 100 GOTOESO
1STHEMFRIMTIMIDF CMU$. 24, 105 1 GOTOSE8

1 TAMDS=2ATHENFRINTMIDS (HUS ., 24, 10 0 24=24+1 1 GOTNEED
A PRINT" @
TF FHa
A FRIHT R
PRINT " "RER
AOHEET

D RETURH

o
4. 100 GOTOVE

FEMRIGHTECSTR

43

3. DISPLAY T&S

1R8 REM*: FEES
R REM# DISFLAY FAHY TRACE §
REM# O+ THE DISk TO THE

* T
R IHT " I0iA
FRIMTYDISFLAY BLOCE COMTEMTS"
T FRIMT™ e

SHRECDEF
CTa+" W ERT T
HYHCHRECT 0+ Y HERT T

=" FOR =S
3 Seg=" "CFOR D=8
3 DI AECLS) . HEDZ
Dy="g"

: PRIMT" b2

CREEHRNRENTRENDE AW B I HTER"

GETITE: IF JIF="" THEMZTS
=S THEHFRINTY ARSCREENS
) ”F“THEHFFIH*” NFRINTERE!
7 HFEH1=-5-1= T HDE GOSUE &S0

OFEMS . 4
HFEH 2

= |.u#H;GﬂHuﬁ S50
EEEREEEEES
. "
#

FREF R

IHFUT"!IIWRHC‘» fECTUH";T;S

IF T=0 OR T>33 THEHW FPRIMT#1Z,"1"D$: CLOS
IF JJg="5" THEM FRIMT"MMMTRACK"T" SECTOR"
IF JI$="F" THEW FRIMT#4: FRINT#4."TRACK"T"
FRIMT#1S. "1 2, "D%: T, 5 G0SURES5R

FEE T b ¥
FEM# READ EYTE & OF DISK BUFFER #

. RET]
48 PRINT#15, "E~F:2.1"

418 PRINT#15., "M-R"CHRECQICHRE (SN

428 GETH#15.A%c0 IFAE@=""THENAF (Bo=ML %
422 IF JI$="5"THEM42E

428 IF JI$="F"THEN45@

CLOSE4 :CLOSELS:PRIMTYEMD" 'EMD

431 RE!

32 REM# READ & CRT DISPLAY "
433 REM# REST OF THE DISK EBUFFER #
434 RE! ok

436 k=1: NE(IJ‘RwPfﬁ$(ﬁJJ

2 THEM GOSUE 710:IF Z#="M"THEM J=80:60T0 4358

442 FET#Q A%l I3:1F R$CIy="" THEM AECI =M%
444 IF K=1 AMD I<2 THEM MBIZo=ASCCAR$CIN)
44 MEAT 1 k=0

443 A$="":Pg=""1" M=Tk4:GOSUR 790 AF=RE+":"
458 FOR I=9 TO 3:H=ASCC(AECTIYL GOSUER 79@
452 CE=A£C12:GOSUR 850 BS=BI+C$

454 MEAT I1:IF JJ#="S" THEW FRIWTA¥ES

458 MEXT J:GOTOST1

49

000 0 3~ o ghh Gy

a3

2 e I N It R v v}

AR NN s b EbhD AR DbD RSB ER

REL
REM# R
REM¥##
K=1:HMB

EAD & PRIMTER DISFLAY #
EEEREE L FELY ﬁ#ﬁ***#***#»*ﬁ#
1 y=RSC

FOR J=3 TO 15

FOR I=

ETO 15

GET#2.AF0I0 IF AFCI="" THEM A$CIr=MLE

IF K=1

HERT I:

Aa=tv:
For I
CE=RF(
HEXT 1
IF 113
HERXT T
REM#%##
REM# M
REM##k
PRIMT"
FRIMT"
GET Z£%:

AHD 1<2 THEN MBZ23=RSCCAFCIY)
k=2
BE=":":H=I#16 OOSUE 790 AS=AF+" "

=3 TO 15:H=ASCIA$CI:) GOSUE 798 IF Z#="H"THEM J=4@:060T0 571

1 GOSUE 950 Re=E3+C$

="F" THEM FRIMT#4.RA%ES
CGOTOSTL

bEEREEL A2 BEEL AL LS FEEE L L
ExT TRACK AWD SECTOR *

HREER AR ROk

MEXT TRACK AMD SECTOR'MEC1)MB(2) "M

IO WOU WAMT MEXT TRACK AMD SECTOR®
IF Z$="" THEHSSE

IF Z#="%" THEMW T=HB(1)5:S=MEC2) GOTA33G
IF Z&="W" THEW 326
GOTO S5
RE Pk LEE L WA
REM# SUBROUTIMES b4
RED #
REM* ERROR ROUTIHE #
3 REM £
THPUT#H1Z, EN.EME.ET.ES: IF EH=4 THEH RETURM

A PRINT"

A lsk ERRORMYEM.EME.ET.ES
RE M % i HEEYH
PEM* 2 PEEH COMTIMUE MESSAGE #
BEEELEE]

RENM:

1 PRIMNT

RETZ%:
IF I3
IF 2

2 PFIHT”
REM# 4
B REME T
REMdbede
HJ—THT

50

AURRRICONT THUE ¢
IF Z2$="" THEM
“H" THEM RETLRM

't THEH 750

TTRACK" T " SECTOR"S "0 :RETURM

EEEESRER P EEEESEELBELENEEEE]
ISk BYTE TO HEX PRIMT #
*

MALE D : HS—H$+MIDI i, AL+1 .10

3 #A10 AF=AF+MIDE (HLE {2+, 10
QPi RETURH

FE=Rs+
REM###4# ;
REM# DISk BYTE T RSC DISPLAY #
FEM# CHARACTER #
" RETURM
537152 THEM RETURN
“RETIRH

4. CHECK DISK

1 REM CHECK DISK ~- WER 1.4

Z DH=g& REM FLOPFY DEVICE MUMEBER

DIMT<lagr :DIMSC1R8) REM BAD TRACK, SECTOR ARRAY
PRINT " Tleale- !
g PRIMT" CHECK DISK FROGRAM"
2 PRIMT™
B D$=“B“
A DFEMIT. DM, 15

S PRIMT#1%, "W L¥F
S ME=RMDCTI 2SS
o]
a
<]
@

GOSUEBSBE
DFEMZ. OM. 2, "#"
PRIMT FRINTH#2.AF:
28 T=1:8=@

S8 PRIMT#1S.'B-A "D T. S
THFLUT#15, EM EMS,ET.ES

IFEM=@THEM13&

IFET=ATHEMZE0@ REM EMD
FRIMTH#15. "B~A: "I ET/ES: T=ET ' S=E5
FPRIMT#15."U2:2,"De:T: 2

ME=HE+1 FRIMT" CHECKED BLOCKS"HB

PRINT® TRACK 1BREIT ;" SECTOR meE s T
INFUT#1S . EN, EM$.ES.ET

IF EM=ATHEHES

ToJo=T 8(Jo=S: J=J+1

PRIMT"SMEAD BLOCK :IRI", T.35""

A GOTOSS

FRIMT#1S,"1"D#

B GOSURIGE8

CLOSEZ

IF J=ETHENFRIHT " WAvBRERC BRD BLOCKS!" EMD
T OOPENZ. DN 2, "R

PRIMT " MARAD BLOCKS" . "TRACK" . "SECTOR"
FORI=@ATQJ~1

FRIMTH1S, "B~F:"iDF. TOI0iS0T

PRIMT, .TCI. 2010

A HEXT

FRIWNT"®M"J"ERD BLOCKS HAVE EEEMW ALLOCATEID"
@ CLOSE2:EMD

IHPUT#15,EM,EMF.ET.ES

IF EM=8 THEM RETURH

FRINT"IMERFROR #"EN.EM$ETIES"

FRIMT#1S, "1"D$

5. PERFORMANCE TEST

| REM FERFORMAHCE TEST 2.8

‘@ AT COMMODORE &9
E FLOPPY DISK DRIVE

REM W1
REM S INMG

ST OPEHLS. S

1 OFEH |

A AgE="" FORI=1T0255 AF=A$+CHRF2TTAMDCI+NRD) T HERT

51

52

A CCs="WRITE TPH

£ LT 7 "
PRINT" FERFORMAMCE TEST"
FRIMT"
PRINT
ERIMT® IMIERT SCRATCH
PRINT

FRIMT" DISKETTE IM DRIVE"
FRINT
PRINT'S FRE
FRINT

FRINT" WHEW RERD'YS"

FOR I=8 TO S 0ET A$:MEXT

GET R$:IF ASCHCHRECLEY THEW 1210

| MEETLURM

T =" G@a0aaa"
TT=1%
FRIMTH#1. EST DISE, Bg"
F=" DISE MEM ZOMMAMD YHCHRE 13D
='W LAIT ABOUT S8 SECOHDS"
FACEF GOSUR 1848
IF TIZHTTHEHWL1Z?E
FRIMT"®SYSTEM IS"
FRIMT" ™ HOT RESFOMDIMG
FRINT" CORRECTLY TO COMMANDE"
GOSUR L&

PRIMT"MDRIVE F

FRIMWT" MECHAMICAL TESTA"
TT=21
A OFEM 2.8.2, "8 TEST FILE.S. WY
CCs="0FEN NRITE FILE" HISUR 1348
13 1336
(E0SUER 1348
OFEN 2.8 3R
A CcCx="0 EH REHD FILE“ CGOSUR 1547
S8 CH=2:GOSUR 1399
& FPRIMTH#1."S@:TEST FILE"
26 CCF="SCRATCH FILEM" :TT=1 CGOSUER 1242

TT=21

OFEM 4.8.4. 74"

REim L +RHD O T P42S4+HEORND 2SS PRINTH L, "B~P" 45 HNK
HHE="":FOR I=1 TO 255 HNS=NME+CHREC D) HEAT

4 PRIMT# 4. HNE;

FRIMT# 1.90J2:":4:8:LT:8
Cog="WRITE TRACK"+LT3:GOSUE 1848
FRIWT#1,"U2:";4:9.1:8

IGOSUE 124A
FRIMT#1. "1 j
CCF="REARD TRACK +LT$ (GOSUE 1849
FRIMT#1, "1 481,88

CCE="READ TRACK 1° GOSUE 18482
CLOSE 4

[

TE OFRIMT"® UMIT HAS PRSZED"

2 FRIMTY FERFORMAMCE TEST!"
FRINT"M FULL DISKETTE FROM"
FRIMT"® TRIVE BEFORE TURMIMG®
PRIMT" POWER OFF."

EMD

FRINT" PUOHTIHUE O M
FOR I=@ TO S8:GET A% MEAT

2 GET A%:IF Af="" THEW 1T77H
FRIMT AE"H"

IF AF="H" THEH EWD

BOIF AF="4" THEM RETURH

o GOTO 17ES

FRIMT CCF

@ THFLUTH# 1.EM.EME,ET.ES

FRIMTTRECLIZ: " "EMIEMEETES: "

IF EM<CZ THEM RETURM

3 PRINT"M UHIT IS FAILIMG"

A FRIMT"N FERFORMAMCE TEST"

B TME=TIF: GOSUE 1758 TIE=THME: RETLRH

PRIMT"LRITING DATR"
< I=1002 TO 2008 PRIMTHOH. T HEXT

FRINTYRERDIMG TATA®
GETAE

FOR I=1808 TO 2989
THFUT# CH.J

53

APPENDIX D: DISK FORMATS

NOTE
Not to scale

7 POINTLRS TO LINK N\
/ TOGLTHER ALL BLOCKS N
WITHIN A FILL
/ AN
4 L4 4
b
b o CHLCK- | . Z b= | 2saByTES | CHECR- | GaP
ki =
SYNC | 08 | 1ot | 02 | TRaCK | sLeTor | CEEERT T Gary | svne | or | £ | B | SRS oo 3
x> 2]

1540/1541 Format: Expanded View of a Single Sector

54

Block Distribution by Track

2040, 3040 Block or
Track number Sector Range Total
1to17 0to20 21
18 to 24 Oto 19 20
25t0 30 Oto17 18
31to 25 Oto 16 17
4040 Block or
Track number Sector Range Total
1tol7 0to 20 21
18to 24 Oto18 19
25to 30 Otol7 18
31to035 0to 16 17
8050 Block or
Track number Sector Range Total
1 to 39 0to 28 29
40 to 53 Oto 26 27
54 to 64 0to24 25
65 to 77 0to 22 23

1540/1541 BAM FORMAT

Track 18, Sector 0.

BYTE CONTENTS DEFINITION

0,1 18,01 Track and sector of first directory block.

2 65 ASCII character A indicating 4040 format.
3 0 Null flag for future DOS use.

4-143 Bit map of available blocks for tracks 1-35.

*1 = available block
O=block not available

(each bit represents one block)

55

* STRUCTURE OF SINGLE DIRECTORY ENTRY

BYTE CONTENTS DEFINITION
0 128+type File type OR’ed with $80 to indicate properly
closed file.
TYPES: 0=DELeted
1 = SEQential
2 =PROGram
3=USER
4 = RELative
1-2 Track and sector of 1st data block.
3-18 File name padded with shifted spaces.
19-20 Relative file only: track and sector for first side
sector block.
21 Relative file only: Record size.
22.25 Unused.
26-27 Track and sector of replacement file when OPEN@
is in effect.
28-29 Number of blocks in file: low byte, high byte.
SEQUENTIAL FORMAT
BYTE DEFINITION
0-1 Track and sector of next sequential data block.
2-256 254 bytes of data with carriage return as record terminators.
PROGRAM FILE FORMAT
BYTE DEFINITION
0,1 Track and sector of next block in program file.
2-256 254 bytes of program info stored in CBM memory format (with

key words tokenized). End of file is marked by three zero bytes.

56

1540/1541 DIRECTORY HEADER

Track 18, Sector 0.

BYTE CONTENTS DEFINITION
‘?0, (L 144161 Disk name padded with shifted spaces.
162-163 Disk ID.
164 160 Shifted space.
165-166 50,65 ASCII representation for 2A which is DOS
version and format type.
166-167 160 Shifted spaces.
177-255 0 Nulls, not used.
Note: ASCII characters may appear in locations 180 thru 191 on some diskettes.
DIRECTORY FORMAT
Track 18, Sector 1
BYTE DEFINITION
0-1 Track and sector of next directory block.
2 2-31 *File entry 1
272 3463 *File entry 2
4“2 6695 *File entry 3
G2l 98127 *File entry 4
¥4 130159 *File entry 5
A2 162191 *File entry 6
CZ 194123 *File entry 7
=21 226255 *File entry 8

57

RELATIVE FILE FORMAT

DATA BLOCK

BYTE DEFINITION

0,1 Track and sector of next data block.

2-256 254 bytes of data. Empty records contain FF (all binary ones) in
the first by te followed by 00 (binary all zeros) to the end of the
record. Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE DEFINITION

0-1 Track and sector of next side sector block.

2 Side sector number (0-5)

3 Record length

4.5 Track and sector of first side sector (number 0)

6-7 Track and sector of second side sector (number 1)

8-9 Track and sector of third side sector (number 2)

10-11 Track and sector of fourth side sector (number 3)

12-13 Track and sector of fifth side sector (number 4)

14-15 Track and sector of sixth side sector (number 5)

16-256 Track and sector pointers to 120 data blocks

58

Printed in Japan 1540031-02-830201

(x commodore

COMPUTER

