1802

Resource il

June/July, 1980.

compute Il

Some A/D

And D/A

Conversion
Techniques

Marvin L. De Jo

N
Department of I\%ofhemoﬁcs—Physics

The School of the Ozarks
Pt. Lookout, MO 65726

INTRODUCTION

The purpose of this paper is to de-
scribe some A/D conversion circuits
and programs that can be used with
6502 based microcomputer systems.
A digital-to-analog (D/A) converter
is also described. Our motivation
for this project was an NSF Short
Course on the Science of Sound.
The complete project was to be a
circuit that would sample some
waveform, from an electric guitar
for example, and a program that
would perform a Fast Fourier
Transform (FFT). The Fast Fourier
Transform program has not yet been
completed, but the necessary A/D
circuit and driver programs have
been completed and are herein
described. A digital-to-analog
converter allows the sampled wave-
form to be displayed on an oscillo-
scope, producing a much improved
storage oscilloscope over our original
‘‘storage scope’’ described in THE
BEST OF MICRO, Volume 1,
page 30, and Volume 2, page 61.
Some results of our experiments are
also included.

The analog-to-digital converter
is based on the AD570, an 8-bit
A/D converter sold by Analog De-
vices, Route 1 Industrial Park,
P.O. Box 280, Norwood, MA
02062. Its nominal conversion time
is 25 microseconds, allowing a
maximum sampling rate of 40,000
kHz. (The time necessary to read
the converter and store the data
will reduce this rate.) The AD570
requires no external components,

and can be operated either in a
bipolar or a unipolar mode. We
chose it because it is inexpensive,
relatively fast, and easy to inter-
face.

The D/A converter we used is
a Signetics NE5018. It is also easy
to interface because it has input
latches. It can be operated with few
external components, but it is not
an exceptionally fast converter. A
better choice would have been the
Analog Devices 565, but this would
have required an 8-bit latch.

The circuits shown here inter-
face to the expansion connectors on
the KIM-1 or the AIM 65. With
little modification they could be
connected to a SYM-1. The applica-
tion connector is left free for
other devices. In particular, we had
hoped to do our mathematics for the
FFT program with an AM9511
Arithmetic Processor Unit interfaced
to the I/0 ports on the application
connector. In any case, Appendix A
suggests a circuit for interfacing
the converters to a 6522 Versatile
Interface Adapter.

Description Of The Circuit

The complete A/D, D/A, and oscil-
loscope triggeér circuitry is shown in
Figure 1. This circuit was used to
interface the converters to an AIM
65 microcomputer, and all the

_necessary connections are available

at the expansion connector, includ-
ing the DS9 device select pulse.
The same circuit could be used with
a SYM-1 if the DS18 device select

pulse, available on the SYM-1 ex-
pansion connector, were used. In
that case the addresses used to acti-
vate the various circuits would be
$1800 through $1803. In Figure 1
you will notice that addresses $9000
through $9003 produce pulse on the
Y, through Y, outputs on the
74L.S138. For example, a STA
$9000 instruction produces a nega-
tive one microsecond pulse on Y.
This pulse is applied to the CLEAR
input on the 74LS74 flip-flop and
it will cause the Q) output to go to
logic zero. A logic one to logic zero
transition on the B/C pin of the ana-
log-to-digital converter (AD570)
starts a conversion. Approximately
25 microseconds later the data is
ready at the outputs of the AD570.
These outputs are connected to an
octal, three-state, buffer-driver
(81LS97). A LDA $9001 instruction
activates the 81LS97 and puts the
data on the microcomputer’s data
bus. The trailing edge of the same
device select pulse that enables
the 81LS97 clocks the 74LS74 back
into its “‘Q high’’ logic state.
This completes one analog-to-digital
conversion. A

The analog input voltage is
applied to pin 13 of the AD570.
The 15 ohm resistor can be omitted
if a slight loss of precision is of
no concern. With the bipolar offset
switch open, as shown in Figure 1,
voltages between -5 V and +35 V
will be converted to a binary number
between $00 and $FF respectively.
A binary output of $80 corresponds
to pin 13 being at zero volts. If
the bipolar output switch is closed,
the AD570 will read voltages be-
tween 0 V and +10 V. The AD
570 will also work with a negative
supply voltage of -12 V rather than
the -15 V shown in Figure 1.
Although a ‘‘data ready’’ signal is
available on the AD570, we chose to
use software to wait for the conver-
sion to be completed. One final
note on the AD570: the input im-
pedance for the analog input is only
about 5 k ohm. Consequently it
makes a very poor voltmeter unless
a high impedance (a voltage follower
circuit, for example) amplifier is
placed between the analog input

compute Il

mode it simply provides a high
impedance buffer for the AD570.
The AD521 is a differential ampli-
fier with a differential input impe-
dance of about 3 X 109 ohms.

Pin 3, the - input, need not be
grounded but can be connected
directly to the input voltage
source.

The circuits of Figures 1 - 3
provide a complete A/D and D/A
system that can be used for a large
variety of applications including
voltage measurements, temperature
measurements, and the storage
scope application described here.

A/D and D/A Converter

Software

The program in Example 1 was
designed to work with the AIM 65
or any other system that has a
6522 VIA available for timing pur-
poses. The addresses used to start
the conversion, read the A/D con-
verter, load the D/A converter, and
trigger the oscilloscope are $9000
through $9003, respectively. If a de-
vice select other than the DS9 is
used to enable the 741.S138 decoder,
then these addresses must be
changed accordingly. For example,
if the DS18 select on the SYM-1

is used, then these addresses
become $1800 through $1803, re-
spectively. Since the KIM-1 does
not have a 6522, we wrote another
program that will work for it, and
this program is listed in Example

The program in Example 1 has
a maximum sampling rate of one
sample every 32 microseconds, or
31,250 Hz. It allows the AD570
exactly 28 microseconds to make
a conversion if the T1 timer is
loaded with $0000. If you have an
ADS70 that is slightly faster, try
taking out the NOP instruction at
$0F3A. If your AD570 is slightly
slower, insert some extra NOP
instructions after $0F3A. Change
the various branch offsets according-
ly. You can tell if you are giving
the AD570 enough time by examin-
ing the data it returns.

The program in Example 1 has
the following features. It
continuously samples the analog
voltage at the input of the A/D

Figure 2. Modifications for the KIM-1.

O
D
>
[/> G2a o
Device
Select Q628
7415138 %74LS74
1
3 U
) 2 | u74LS32 b———————1=> 10 ENABLE ON 81LS97
3
5 5]
4 | ¥74L832 T0 LE BN NE5018
RAM-R/W

/-20-80) [amv;

Example 1. A/D and D/A driver program for 6522 based timing.

$0F00 8D 00 90 START STA CVNST Pulse 74LS74 flip-flop to be in a
known
0F03 AD 01 90 LDA A/D condition with Q at logic one.
0F06 A2 00 LDX $00 Initialize X register to zero
0F08 A9 40 LDA $40 Initialize ACR of 6522 to put T1 in
0FO0A 8D 0B A0 STA ACR its free-running mode.
0FO0D A9 00 LDA $00 Clear accumulator.
OFOF FO 03 BEQ TEST Branch to start the first conversion.
0F11 AD 01 90 AGN LDA A/D Read A/D converter
0F14 8D 00 90 TEST STA CVNST Start a conversion.
0F17 8D 02 90 STA D/A Output A/D to D/A converter.
OF1A C5 00 CMP TRIG Compare conversion result with trigger
0F1C B0 OE BCS SAMPLE level. Branch to sample an additional
OF1E A5 01 LDA TIMLO 255 points if A/D exceeds trigger level.
0F20 8D 04 A0 STA TiLL Load 6522 with the number of micro-
0F23 A5 02 LDA TIMHI seconds between conversions.
0F25 8D 05 A0 STA TiLH Start timer.
0F28 90 37 BCC AGN Branch to read A/D.
0F2A AD 01 90 MORE LDA A/D Read A/D
0F2D 8D 00 90 SAMPLE STA CVNST Start sampling waveform.
0F30 9D 00 02 STA TAB,X Previous result into table.
0F33 E8 INX X keeps track of the number of
conversions.
0F34 F0 0C BEQ OUT When X = 00, 256 conversions are
complete.
0F36 AD 04 A0 LDA TICL Clear T1 interrupt flag.
0F39 EA NOP Fill in the 25 microsecond conversion
0F3A EA NOP time with no operation instructions.
0F3B 2C 0D A0 LOAF BIT IFR Has T1 timed-out?
OF3E 70 E9 BVS MORE Yes, get another conversion.
0F40 50 F9 BVC LOAF No, wait for timer.
0F42 8D 0390 OUT STA SCPTRG Trigger scope.
0F45 EA NOP Use an eight microsecond pulse to
0F46 EA NOP trigger scope.
0F47 8D 03 90 STA SCPTRG
0F4A BD 00 02 NEXPT LDA TAB,X Get some data from the table.
0F4D 8D 02 90 STA D/A Output it to the D/A and the scope.
0F50 E8 INX
0F51 DO F7 BNE NEXPT Branch to get more data.
0F53 FO ED BEQ OUT
$0000 = TRIG; load with desired triggering level but not $00.
$0001 = TIMLO; low-order byte of time interval between samples (microseconds).
$0002 = TIMHLI; high-order byte of time interval between samples.
$0200 = TAB: base address of table to store 256 samples.
$9000 = CNVST; a STA CVNST instruction will start an A/D conversion.
$9001 = A/D; the analog-to-digital converter is read at this location.
$9002 = D/A; write to this location to perform a digital-to-analog conversion.
$9003 = SCPTRG; write to this location to trigger the oscilloscope.

compute Il.

converter. When the conversion re-
sult exceeds a preassigned level
stored in TRIG (location $0000),
the program proceeds to sample
another 255 points on the wave-
form at a rate determined by the
numbers stored in TIMLO (location
$0001) and TIMHI (location $0002).
The 256 data points are stored in
page two of memory. Once the
data have been obtained, the pro-
gram proceeds to read the data out,
one point at a time, to the D/A
converter for the purpose of dis-
playing the values on an oscillo-
scope. Each time the 256 points
are output to the D/A converter,

a trigger pulse is also supplied.
Since the conversion time is 32
microseconds with this program,
there is no use loading the T1
timer with a number less than 32
unless you wish to sample at the
maximum rate. In that case, put
$00 in location $0001. In the pro-
gram in Example 1, T1 is in its free
running mode, so its interrupt flag,
IFR6, will be set every N + 1
microseconds, where N is the 16-bit
number loaded into T1 from loca-
tions $0001 and $0002. Be sure to
load the locations TRIG, TIMLO,
and TIMHI before running the pro-
gram. The program comments
should explain how the program
works. The first two instructions
may produce a dummy conversion,
but their real function is to put

the 74LS74 flip-flop in a condition
with Q at logic one. The program
consists of three main loops. The
AGN loop continuously samples the
incoming data, and the program
branches out of this loop to the
MORE loop when the incoming
voltage exceeds the trigger level.

In the MORE loop another 255
points are produced. When this
data has been gathered, the program
branches to the OUT loop to out-
put the 256 points to the D/A
converter.

The program in Example 2
works in about the same way with
the same purpose in mind, but it
was used on the KIM-1. The
sampling rate with this program
is once every 39 microseconds,
or 25641 Hz. Its speed could be

Figure 3. Preamplifier circuit

for the A/D converter.

>

+15V
R2
8 100k
0
L+
13
ANALOG DEVICES 12
AD 521 >,
/ 11 TO A/D CONVERTER
3 2
14 Vo : B2
5 vy Rl
R1
2K
150 <

Example 2. A/D and D/A driver program for a KIM-1 interface.

0300 8D 00 04
0303 AD 01 04
0306 A2 00
0308 A9 00
030A 8D 00 04
030D 8D 02 04
0310 C5 00
0312 BO 16
0314 EA

0315 EA

0316 EA

0317 EA

0318 EA

0319 EA

031A EA

031B AD 01 04
031E 90 EA
0320 8D 00 04
0323 9D 00 02
0326 E8

0327 FO 13

0329 A5 01
032B 8D 04 17
032E EA

032F EA

0330 EA

0331 EA

0332 AD 01 04
0335 2C 07 17
0338 30 E6
033A 10 F9
033C 8D 03 04
033F A2 00
0341 8D 03 04
0344 BD 00 02
0347 8D 02 04
034A E8

034B DO F7
034D FO ED
$0000
$0001
$0400
$0401
$0402
$0403

START

TEST

MORE

SAMPLE

LOAF

ouT

NEXPT

STA CVNST
LDA A/D
LDX $00
LDA $00
STA CVNST
STA D/A
CMP TRIG
BCS SAMPLE
NOP

NOP

NOP

NOP

NOP

NOP

NOP

LDA A/D
BCC TEST
STA CVNST
STA TAB,X
INX

BEQ OUT

LDA TIME
STA TIMER
NOP

NOP

NOP

NOP

LDA A/D

BIT TIMER
BMI MORE
BPL LOAF
STA SCPTRG
LDX $00

STA SCPTRG
LDA TAB,X
STA D/A
INX

BNE NEXPT
BEQ OUT

Pulse 74LS74 flip-flop to be in a known
condition with Q at logic one.

Initialize X register to zero.

Initialize accumulator to zero.

Start A/D conversion.

Previous result into D/A converter.
Compare conversion result with trigger
level. Branch to sample 256 points if
voltage exceeds trigger level.

Delay with no-operation instructions
until the 25 microsecond conversion

time is completed.

Read A/D converter.

Branch to start another conversion.
Start an A/D conversion.

Previous result into table.

X keeps track of number of conversions.
When X = 00, 256 conversions are

complete.

Get time in microseconds from $0001.
Store in divide-by-one timer.

Fill in time to make 25 microseconds
before reading A/D converter.

Read converter.

Has timer timed out?

Yes, then start another conversion and
store the result of the last. Otherwise
wait. Trigger the oscilloscope.

Get some data from the table.
Output it to the D/A and the oscillo-

scope.

Branch to get more data.
Return to output table again.

TRIG; load with desired triggering level.

TIME: load with time (in microseconds) between samples.
CVNST; a STA CVNST instruction will start an A/D conversion.
A/D; the analog-to-digital converter is read at this location.
D/A; write to this location to perform a digital-to-analog conversion.
SCPTRG:; write to this location to trigger the oscilloscope.

10

compute I

improved to be about the same as
the program in Example 1. In any
case, the on-board timers on the
KIM-1 were used to produce the
necessary timing. Again, the
trigger level is stored in $0000,
and the time is stored in $0001.
The divide-by-one timer at $1704
on the KIM-1 was used, but the
other timers may also be used.

The last program listing for the
circuit in Figure 1 is a program that
can be used to sample a waveform
at as many points as your R/W
memory will allow. Rather than use
just one page of R/W memory for
storing the waveform, it will use as
many pages as you have available.
The maximum sampling rate for this
program is one sample every 43
microseconds or 23256 Hz. The
program in Example 3 uses several
of the same locations as the
program in Example 1. The trigger
level is stored in TRIG at $0000.
The 16-bit number giving the num-
ber of microseconds between sam-
ples is stored in TIMLO at $0001
and TIMHI at $0002. The low-
order byte of the base address of
the table to store the conversion
data is in location TAB at $0003.
Normally this location initialized to
$00. The high-order byte of the
base address (page number) of the
table is stored in TAB +1 at
$0004. For our experiments with
the AIM 65 we used pages $02
through $0E. The page number of
the last page you wish to fill
with data is incremented by one
and stored in location END at
$0005. Thus if page $0E is the last
page to be used to store data, then
$OF is stored in END. Load loca-
tion $0006, STARTP with the same
value you put in $0004 if you wish
to output all the results to the D/A
for display on the oscilloscope.

The program in Example 3
samples an incoming waveform at
N*256 points where N is the number
of pages used to store the data.

It then outputs all of these points
to the D/A converter at the same
rate that it sampled the waveform.
If you want to output the results
faster, replace the BIT IFR and
BVC WAIT instructions at $0f5D
with NOPs.

Example 3. N-Page A/D Conversion and Storage Program

$0F00 8D 00 90 START STA CVNST Pulse 7474 to be in a known condition,
0F03 AD 01 90 LDA A/D with Q) at logic one.
0F06 A0 00 LDY $00 Initialize Y to zero for indirect indexed
0F08 A9 40 LDA $40 addressing that follows.
0F0A 8D 0B A0 STA ACR Put 6522 T1 in free-running mode.
OF0D A9 00 LDA $00 Clear A.
OFOF 8D 00 90 AGN STA CVNST Start a conversion.
0F12 8D 02 90 STA D/A Output result to D/A converter
0F15 C5 00 CMP TRIG Compare conversion result with trigger
0F17 BO 21 BCS SAMPLE level.
0F19 A5 01 LDA TIMLO Get low-order byte of time between
conversions.
OF1B 8D 04 A0 STA T1LL Result into T1.
OF1E A5 02 LDA TIMHI Get high-order byte of time between
0F20 8D 05 A0 STA TiLH conversions
0F23 AD 01 90 LDA A/D Read A/D converter to get conversion
level.
0F26 90 E7 BCC AGN Return to compare with trigger level.
0F28 8D 00 90 DATA STA CVNST Start an A/D conversion.
0F2B 91 03 STA (TAB),Y Result of previous conversion into table.
OF2D C8 INY
0F2E DO 0A BNE EQUAL Branch around the page number incre-
ment routine.
0F30 E6 04 INC TAB +1 Increment page number
0F32 A5 04 LDA TAB +1 Now compare it with the ending page
OF34 C5 05 CMP END number.
OF36 90 09 BCC MORE Fill another page.
0F38 BO 14 BCS NOMORE Table is filled, branch to output the table.
OF3A EA SAMPLE NOP These NOPs equalize the time between
0F3B EA NOP loading the table when no page boundary
0F3C EA NOP is crossed and when a page boundary is
O0F3D EA NOP crossed.
OF3E EA NOP
OF3F A5 05 LDA TAB +2 This is also a dummy instruction.
0F41 AD 04 A0 MORE LDA T1CL Clear the T1 interrupt flag.
OF44 AD 01 90 LDA A/D Read the A/D converter.
0F47 2C 0D A0 LOAF BIT IFR Has the timer timed-out?
0F4A 70 DB BVS DATA -Start another conversion.
0F4C 50 F9 BVC LOAF Wait for timer.
OF4E 8D 03 90 NOMORE STA SCPTRG Trigger scope.
0F51 A5 06 LDA STARTP Reload TAB with starting page number.
OF53 85 04 STA TAB +1
OF55 AD 04 A0 RPT LDA TI1CL Clear T1 interrupt flag.
OF58 B1 03 LDA (TAB),Y Get data from the table.
OF5A 8D 02 90 STA D/A Output it to D/A.
O0F5D 2C 0D A0 WAIT BIT IFR Test T1 flag.
0F60 50 FB BVC WAIT
0F62 C8 INY
0F63 DO FO BNE RPT Get some more data for the D/A converter.
0F65 E6 04 INC TAB +1
0F69 C5 05 CMP END
O0F6B 90 EA BCC RPT Get more data from a new page.
0F6D BO El BCS NOMORE Output the table again.

We used this program to see
how the waveform from a plucked
guitar string varied with time,
but we couldn’t help connecting
a microphone to the AD521 and
using the program to output this
speech sound to an audio amplifier.
The results are quite good, even
though we made no attempt to in-
clude low-pass filters in either the
input or output circuits. The word
spoken into the microphone and out-
put to an audio amplifier is intelli-
gible and one can easily identify
the person who made the sound.
We had enough storage capability
on the AIM 65 to store one three-

syllable word. If you want a project,
you might try improving the circuit
and program to do a better job
with speech.

Results

In Figure 4 we show a photograph
of the results of sampling a 1000
Hz sine wave at a rate of about
25,000 Hz. The photograph shows
256 points on the sine wave. Since
we did not have a camera for our
oscilloscope, the pictures were taken
through a Celestron 5°’ telescope,
placed about 25 ft. from the oscillo-
scope. Figure 5 shows the scope
trace expanded to show just one

compute Il.

cycle of the same waveform in
Figure 4. Figure 6 shows 256
points of a 100 Hz sine wave
sampled about once every 40
microseconds, while Figure 7 shows
256 points on a 10 Hz sine wave
sampled once every 2000 micro-
seconds. Figure 8 is the waveform
of the A string of an electric
guitar just after being plucked.
The saimpling ratein this case
was about one sample every 85
microseconds. Finally, in Figure
9 we show a sampled version of a
2500 Hz sine wave. Clearly the
system still does a pretty good job
of reconstructing a 2500 Hz sine
wave, but the information in fre-
quencies much above 5000 Hz will
be lost. Hopefully these pictures
are worth a thousand words.

Figure 6. 256 points on a 100 Hz Sine,wave.

Figure 4. 256 points on a 1000 HZ Sine wave. Figure 7. 256 points on a 10Hz Sine wave.

Figure 5. One cycle of a 1000 Hz Sine wave sampled at
about 24,000 Hz.

compute Il.

Figure 9. Several cycles of a 2500 Hz Sine wave.

Figure 10. Interfacing the AD570 and
the NE5018 to a 6522 Versatile
Interface Adapter. Only data and con-
trol connections are shown in this
figure. Refer to Figure 1 for the other
details.

MSB 17

9
8 16
i 15
6 14
AD570 5 13 | PORT B

4 12
11
2 1SB 10

BaG [19 fcp

m PR #00om

|5
&l
g

NE5018

6502
MACRO ASSEMBLER

AND TEXT EDITOR

¢ Versions for PET, APPLE II, SYM, KIM
and ATAR I (1st quarter 1980)

e Written entirely in machine language

¢ QOccupies 8K of memory starting at $2000 —

Apple version with disk occupies just over

9K

Macro and conditional assembly

36 error codes, 26 commands, 22 pseudo ops

Labels up to 10 characters

Auto line numbering and renumber com-

mand

String search and string search and replace

¢ Copy, move, delete, load, save, and append
commands

Cassette and Manual $49.95
(including U. S. postdge)

Eastern House Software

3239 Linda Dr. Winston-Salem, N. C. 27106

Appendix A. Interfacing The Converters To A 6522 VIA

The AD570 analog-to-digital converter and the NE5018 converter can easily be inter-

faced to a 6522, eliminating the need for most of the control logic shown in Figure 1. AIM 65

and SYM-1 users may wish to use the 6522 accessed at the application connector

and the circuit shown in Figure 10. Note that only the data and control connections are
shown in Figure 10. The other circuitry, mainly a few resistors and capacitors, can be found
in Figure 1, as are the necessary power connections. This circuit eliminates the 74LS138, the
741.S74, the 81LS97, and the various NAND, NOR, and INVERTER chips. The CA2
pin on the 6522 could be used as an output to trigger the oscilloscope. Below find a short
assembly language program that will collect 256 conversions and store them. This program
has not been tried.

HERE

TEST

ouT

LDA $FF
STA DDRA
LDA $18
ORA ACR
STA ACR
LDA $FE
AND PCR
STA PCR
LDA $03
STA SR
LDA $02
AND IFR
BEQ TEST
LDA IRB
STA TAB,Y
INY

BNE HERE

Set up Port A as an output port.

Set up the ACR so the shift register shifts out (on CB2)
at the clock rate.

Set up the PCR so a negative transition on CA1 sets
its interrupt flag.

The shift register is used to supply a 4 microsecond
pulse to the A/D converter to start a conversion.
Test to see if conversion is complete by reading IFR1.

Read the A/D converter.
Store the result in a one page table.

When Y = 0, 256 conversions are complete.
Otherwise get another conversion.

compute Il

Some Routines From Microsoft
BQSIC Jim Butterfield, Toronto

KIM SYM AIM 0SI Description 1 1 3 ini
2000 C003 BOOA A0OO Action addresses for primary keywords RouFmes were identified by examining
203A CO3D BO4L A038 Action addresses for functions specific machines. There may well be

2068 CO6B BOT2 A066 Hierarchy and action addresses for operators

2086 C089 BO9O AOB4 Table of Basic keywords other versions of Basic on these

2169 C16E B175 A164 Basic messages, mostly error messages : . : :
5274 C1AB B1AC A1A1 Search the stack for FOR or GOSUB activity nnacbjnes,the user is urged to exercise
22A2 C1D9 B1DA A1CF Open up space in memory caution.
22E5 C21€ B21D A212 Test: stack too deep? R
22F2 €229 B22A A21F Check available memory OSI is from a C2-4 machine. KIM is
231F C256 B257 A24C Send canned error message, then: .
2348 C27E B27F A274 Warm start; wait for Basic command a cassette tape version. SYM and AIM
236A C2A0 B29D A295 Handle new Basic line input 4
23F1 C32¢ B329 A32E Rebuild chaining of Basic lines are the ROM versions.
2420 €359 B356 A34B Receive line from keyboard 1 3 3
5466 C30F B3AE A3A6 Crunch keywords into Basic tokens The address.es gven identify t'he start
24F2 Ch27 BU36 Al32 Search Basic for given line number of the area in which the described
2521 Cu56 Bu65 A461 Perform NEW . . .
253 CuT2 B481 A68C Perform CLEAR routine lies. This may not be the pro-
256B CUQF BUAE A4AT Reset Basic execution to start M 1
2579 CHAC BUBC AUB5 Perform LIST per program entry point or calling
2208 €535 B25C A556 Perform FOR address.
26AA C5DA B601 ASFF Execute Basic statement . .
26CB C60A B631 A61A Perform RESTORE ©Copyright 1980, Jim Butterfield
26DA C619 B6U40 A62C Check stop key
26E8 C622 B65C A638 Perform STOP or END 352E DY4EC C47S B34T Perform MID$
2711 C64B B685 A661 Perform CONT 3556 D516 CU9F B36F Pull string data
272B C665 A67B Perform NULL 3573 D531 C4BA B38C Perform LEN
273C C676 B69F FFFT Perform SAVE 3579 D537 C4CO B392 Switch string to numeric
278C C6B7 FFF4 Perform LOAD 3582 D540 Cu4C9 B39B Perform ASC

B6AB Special AIM input routines 3592 D550 C4D9 B3AB Get byte parameter
27CA C707 B6EC A691 Perform RUN 35A4 D562 CUEB B3BD Perform VAL
27D5 C712 B6F7 A69C Perform GOSUB 35E3 D5A1 C52A B3FC Get two parameters for POKE or WAIT
27F2 C72F B714 A6B9 Perform GOTO 35EF D5AD C536 B408 Convert floating-to-fixed
281F C75C BT41 A6E6 Perform RETURN, then: 3605 D5C3 C54C B41E Perform PEEK
2845 CT782 BT67 ATOC Perform DATA: skip statement 3610 D5DA C563 B429 Perform POKE
2853 €790 B775 AT1A Scan for next Basic statement 3619 D5E3 C56C B432 Perform WAIT

3635 DSFF €588 BUUE Add 0.5

2857 €793 B778 A71D Scan for next Basic line
363C D606 C58F Bu55 Perform subtraction

2875 C7B2 B797 AT3C Perform IF, and perhaps:

2888 C7C5 BTAA ATUF Perform REM: skip line 364E D618 C5A6 Bu6T Perform addition

2898 C7D5 BTBA A75F Perform ON 3765 D6FD C686 B537 Complement accumil

28B8 CTF5 B7DA A7TF Input fixed-point number 379C D734 C6BD B564 Overflow exit

28F2 C82F B814 ATB9 Perform LET 37A1 D739 C6C2 B569 Multiply-a-byte
B89D Enable printer 3802 D772 C6FB B59C Constants

297B C8B8 B8A9 A829 Perform PRINT 3830 D7A0 C729 B5BD Perform LOG

386E D7DE C76A BSFB Perform multiplication

2A13 C94F BOUA ABC3 Print string from memory
3904 D842 CT7CB B64D Unpack memory into accumit2

2A35 C971 B967 ABEO Print single format character
2A59 C991 B988 A904 Handle bad input data 392F D86D CT7F6 B673 Test & adjust accumulators

2ATE B9AD Perform GET 394C D8BA C813 B690 Handle overflow and underflow
2A8D C9BO B9BC A923 Perform INPUT 3954 D898 €821 B6YE Multiply by 10

2ABO C9DC BYE7 A9u46 Prompt and receive input 3971 D8AF €838 B6B5 10 in floating binary

2AB9 C9E5 BYFO A9UF Perform READ 3976 D8B4 C83D B6B9 Divide by 10

2BA2 CABL BADC AA1C Canned Input error messages 3987 D8C5 C846 B6CA Perform divide-by

2BC6 CAD8 BBOO AA40 Perform NEXT 398C D8CA €851 B6CF Perform divide-into

2C34 CB43 BB59 AAAD Check type mismatch 3A1A D958 C8E1 B74B Unpack memory into accumii

2C48 CB57 BBTF AAC1 Evaluate expression 3A3F D9T7D €906 B76B Pack accum#l into memory

2D82 CCYF BCBY ABF5 Evaluate expression within parentheses 3AT4 D9B2 C93B B79B Move accum#2 to #1

2D88 CCA5 BCBF ABFB Check parenthesis, comma 3A84 DYC2-C9UB BTAB Move accum#l to #2

2D99 CCB6 BCDO ACOC Syntax error exit 3493 DGD1 C95A B7BA Round accum#l

2D9E CCBB BCD5 AC11 Setup for functions 3AA3 DO9E1 C96A B7CA Get accum#l sign

2DA5 CCC2 BCDC AC18 Variable name setup 3AB1 D9EF €978 B7D8 Perform SGN -
2DC5 CCE6 BDOO AC27 Set up function references 3ADO DAOE C997 BTF5 Perform ABS

2EO4 CD25 BD3F AC66 Perform OR, AND 3AD3 DA11 C99A BTF8 Compare accum#l to memory

2E34 (D55 BD6F AC96 Perform comparisons 3813 DA51 C9DA B831 Floating-to-fixed

2E9F CE11 BDDA ADO1 Perform DIM 3B44 DAB2 CAOB B862 Perform INT .

2EA9 CESF BDE4 ADOB Search for variable 3B6R DAAY CA32 B887 Convert string to floating-point

2F3D CEF3 BET8 AD8B Create new variable 3COA DB3B CABD B912 Get new ASCII digit

2FA3 CF57 BEDC ADE6 Setup array pointer 3C3F DBTO CAF2 B94T Constants

2FBL CF68 BEED ADF7 Evaluate integer expression 3C4E DB7F CBO1 B953 Print IN, then:

2FD4 CF8B BF10 AE17 Find or make array 3C55 DB86 CBOC BYSA Print Basic line #

3181 D138 COBD AFAD Perform FRE, and: 3C69 DBYA CB1C B96E Convert floating-point to ASCII

3195 D14C COD1 AFC1 Convert fixed-to-floating 3D99 DCCA CC4C BA96 Constants

3142 D159 CODE AFCE Perform POS 3DC2 DCF3 CC75 BAAC Perform SQR

31A8 D15F COE4 AFD4 Check not Direct 3DCC DCFD CC7F BAB6 Perform power function
31B2 D16C COF1 AFDE Perform DEF 3E05 DD36 CCB8 BAEF Perform negation

31E0 D19A C11F BOOB Check FNx syntax 3E10 DD41 CCC3 BAFA Constants

31F3 D1AD C132 BO1E Evaluate FNx 3E3E DD6F CCF1 BB1B Perform EXP

3266 D21E C1A3 BO8BC Perform STR$ 3EQ1 DDC2 CD44 BB6E Series evaluation

3276 D22E C1B3 B09C Do string vector 3EDB DEOC CD8E BBB8 RND constants

3288 D240 C1C5 BOAE Scan, set up string 3EE3 DE14 CD96 BBCO Perform RND

32EF D2A9 C232 B115 Build descriptor 3F1F CDD2 BBFC Perform COS

3321 D2DB €264 B147 Garbage collection 3F26 cDD9 BCO3 Perform SIN

3434 D3F2 C37B B24D Concatenate 3F6F CE22 BC4C Perform TAN

3471 D42F C3B8 B28BA Store string 3F9B CE86 BC78 Constants

349A D458 C3E1 B2B3 Discard unwanted string 3FD3 BC99 Perform ATN

34D2 D490 C419 B2EB Clean descriptor stack 4003 BCC9 Constants

34E3 D4A1 CU2A B2FC Perform CHR$ 4041 DE50 CE86 BCEE CHRGET sub for zero page
34F7 D4BS C43E B310 Perform LEFT$ c:
3523 DUE1 CU6A B33C Perform RIGHT$ Remaining routines are Basic startup.

June/July, 1980.

compute II. 17

Nuis and Volis

Gene Zumchak

1700 Niagara Street
Buffalo, N.Y. 14207

In the first N & V discussion, I talked about read/
write timing in general, and 6502 timing in particular.
Fast TTL chips can be used with the 6502, but so
can most of the I70 chips of other processor families,
provided all the timing requirements are resolved.
Even chips with apparently incompatible timing re-
quirements can usually be accomodated by using tricks
like latching the write data, or shortening the write
strobe, as discussed in the first column. Let’s consider
what is required to interface a popular port chip of the
8080 family.

The 8255A port chip has 24 1/0 pins, program-
mable in groups of four or eight bits as inputs and
outputs. The ports can be used as simple ports, ports
with handshaking (and interrupts) and even as bidirec-
tional buses. The reader might want to dig up a spec
sheet to study this versatile chip. The ““A’’ suffix of
the part number is important. The original 8255 (with-
out the ““A’’) had long set-up and hold time require-
ments. The 8255A, like newer Intel family chips,
has improved timing specs with a 100 ns. set-up
time and 30 ns. hold time, completely 6502 compatible.

The low-true read gate of the 8255A, RD, can be
the inverted R/W signal which need not (but can be)
gated with 02. The low-true write strobe, WR, is met
by the normal 6502 write strobe, which we saw
earlier is 02 NANDed with the inverted R/W line.

A high true Reset signal must be provided. Like most
peripherals, it has a low-true chip select. Figure 1.
shows the connections which satisfy the 8255As
timing requirements.

Figure 1.

9{2—_ e T

RES {>& RES

=
2
fo)
3l

Interfacing 8255A Port

If you have an I/0 application requiring more than 16
pins, or you covet some other 8255A feature, there’s
no electronic reason why you cannot use this chip
with your 6502 system. The same can be said of

I/0 chips from other families. Clearly, all families

are designed to be both voltage level and drive
compatible with TTL and hence with each other. As
we can see, accommodating the read/write timing need
not be difficult.

Using Port Chips

The most commonly used family accessory chips are
the I/0 port chips. However, when simple I/0 is
required, port chips may not be the best choice.
Family chips, including port chips, are not inexpen-
sive. Port chips typically sell in the $8 to $15

range. Since they are MOS devices, their drive
capability is usually just one TTL load. They are also
vulnerable to static. Since their data bus lines also
can only drive a single TTL load, their use is limited
to the internal unbuffed data bus around the pro-
cessor. One could interface them to a buffered bus
with bidirectional buffers, but these buffers are
expensive and power hungry. MOS port chips, there-
fore, are most attractive for use in small dedicated
controllers, especially where power and parts count are
important considerations.

In applications using a buffered bus, where simple
I/0 is adequate, and where ruggedness and drive
capability are important, TTL I/0 is more attractive,
and usually much cheaper.

TTL Input

To make an input port, we need a set of tri-

state® (® trademark National Semiconductor) gates which
are gated in unison. A tri-state gate is an electronic
switch. When enabled, the output reflects the input
(sometimes with inversion). When disabled, the output
is high impedance or floating. Thus a large number
of tri-state outputs can be bussed together, provided
that only one set or device is enabled at one time.
RAM chips, ROM chips, and any other devices de-
signed to attach directly to a bidirectional data bus
have built in tri-state outputs.

TTL tri-state gates come in quad, hex, and octal
configurations. Quad types like the 74L.S125 have indi-
vidual enables for each gate. Hex types like the 8T97,
74LS367, 8097 etc. have four gates with one enable,
and two gates with one enable. Although octal gates
are the most attractive for eight bit processors, the
supply has not kept up with the demand, and hex
types are a little easier to come by. Octal types
81LS97 (Nat.) and 74LS244 are not pin compatible.

All that’s required to use some tri-state gates as
an input port is a low-true read gate. This is ob-
tained by ANDing of the R/W line in the read
state, and a chip select decoded from the address
lines. Figure 2. shows a couple of possibilities, de-
pending upon the polarity of the chip select.

compute |l

June/July, 1980.

18
Figure 2.
N

IN1 I« Do

IN2 k D1
. DATA
. BUS

INS L} D7

€

TTL Input Port With Gating

If read gate signals are required for several ports,

a single three to eight decoder chip can be used to
get eight read gates from a coarser select. The R/'W
line is used as an enable and is internally gated with
all the outputs, as shown in figure 3.

Figure 3
74L5138
R/W Gl 7 —— %7
—_— 6 o= R6
cS1 ——dG2a
5 jp—————— R5

¢85y ~——————aG2B

A2 —————

Ay, ——— B 1 o—

N
A - Y

AO

Input Port Read Selects

One nice feature of TTL tri-state gates is that they
are always buffers and are meant to drive busses. Low
power Schottky devices are more desireable and
usually adequate for most applications.

TTL Output

An output bit is a flip-flop which can be written

to and from the data bus and whose output is connec-
ted to the world. Output bits are usually ‘““D’’ type
flip-flops or latches. In TTL there are several
configurations, duals, 74L.S74, 74LS109; quads,

741.S75, 74L.S175; hex, 74L.S174; and octal, 74L.S273,
74L.S373, 74LS374 and others. Again octal types are
sometimes a bit hard to come by.

Output ports need a write strobe generated by
ANDing the general purpose write strobe with a
select decoded from addresses. Figure 4. shows an out-
put port and the necessary write strobe.

Figure 4.
D7 D O 07
s
D6 o—os
iy
)
®
e
Do p o0
— = —> T
R/W —]
oI

cs _._

Output Port With Write Strobe

Since TTL devices are very fast, they have set-up
time requirements of only a few nanoseconds. There-
fore the locking edge of the write strobe better

come before the data goes away. That is, the @2
closest to the processor must be used, and not any
delayed versions. With a little care, we can use a
single decoder chip to generate write strobes for several
ports as in Figure 5.

Figure 5.
7415138

p2 — 61 70— w7

R/W — c2a

3Po— W3
A2 — - ¢

2 p=——— w2
Al B 1 o—n1

AO

Output Port Write Strobes

June/July, 1980.

compute il. 19

From the data sheet for the 74L.S138, we see that the
delay from the high true enable input (G1) to any out-
put is a maximum of 26 ns. (typically 17 ns.). This

is quite acceptible, provided that we are not using

a delayed 02.

Now if you are building a small dedicated con-
troller, you certainly may not need eight input ports
or eight output ports. There’s no reason why you can-
not use a single 74L.S138 to give you gates and
strobes for four of each.

Figure 6.
74LS138

Gl 7P—=x3

Al4

Al3 0O g2a

Al5 —Q g2B 4 jo——— D

02 T)a c 3Pp—ws
"M l 2 pP—w2
Al B 1 pP——— W1

20 A 0P WO

Write Strobes and Read Gates

Figure 6 shows a 74L.S138 wired to give four read
gates and four write strobes. In a dedicated controller,
you usually have memory space to burn so that you
can afford to waste some. In figure 6. we apply
address lines directly to the enables. This puts the
ports in an 8K block of memory starting with $4000.
The Nand gate generates the general purpose write
strobe. It is applied to the ‘‘C’’ input of the de-
coder. When it is low, a write strobe is generated,
when high, a read gate. The maximum delay through
the NAND gate is 15 ns, through the decoder, a
maximum of 26 ns. Thus 02 experiences a worst case
delay of 41 ns. to the trailing edge of the write
strobe. This would be acceptable even if there was no
data bus buffer delay to compensate it.

Summary

Interfacing 1/0 to an existing system or a do-it-
yourself prototype is not difficult as long as you
understand and consider read/write timing. Family
chips from any family are useable. Some applica-
tions may favor family chips. Others may suggest
TTL. The gates and strobes required by TTL 1/0

are easy to generate.
In the next column I will talk about address decod-

ing and generating selects. Please feel free to
write and suggest hardware topics that you would
like me to write about.

(o}

32 K BYTE MEMORY

RELIABLE AND COST EFFECTIVE RAM FOR
6502 & 6800 BASED MICROCOMPUTERS

AIM 65-*KIM*SYM
PET*S44-BUS

+ PLUG COMPATIBLE WITH THE AIM-65/SYM EXPANSION
CONNECTOR BY USING A RIGHT ANGLE CONNECTOR
(SUPPLIED) MOUNTED ON THE BACK OF THE MEMORY

BOARD.
MEMORV BOARD EDGE CONNECTOR PLUGS INTO THE
6800 S 44 BUS.

16K X | DYNAMIC RAM

THE MK4116-3 IS A 16,384 BIT HIGH SPEED
NMOS, DYNAMIC RAM. THEY ARE EQUIVALENT
T0 THE MOSTEK, TEXAS INSTRUMENTS, OR
MOTOROLA 4116-3.

* 200 NSEC ACCESS TIME, 375 NSEC CYCLE

TIME.
* 16PINTTL COMPATIBLE
+ BURNED IN AND FULLY TESTED
* P/’\‘RTS REPLACEMENT GUARANTEED FOR

ONE YEAR.
$8.50 EACH IN QUANTITIES OF 8

I
6502 & 6800
54K BYTE RAM AND CONTROLLER SET

MAKE 64K BYTE MEMORY FOR YOUR 6800 OR
6502. THIS CHIP SET INCLUDES:

* 32 M5K4116-3 16KX1, 200 NSEC RAMS.
* 1MC3480 MEMORY CONTROLLER.

* 1 MC3242A MEMORV ADDRESS

CONNECTS T0 PET OR KIM USING AN ADAPTOR CABLE.
RELIABLE—DYNAMIC RAM WITH ON BOARD INVISIBLE
REFRESH—LOOKS LIKE STATIC MEMORY BUT AT
LOWER COST AND A FRACTION OF THE POWER
REQUIRED FOR STATIC BOARDS.
USES +5V ONLY, SUPPLIED FROM HOST COMPUTER.
FULL DOCUMENTATION. ASSEMBLED AND TESTED
BOARDS ARE GUARANTEED FOR ONE YEAR AND
PURCHASE PRICE IS FULLY REFUNDABLE IF BOARD IS
RETURNED UNDAMAGED WITHIN 14 DAYS.

ASSEMBLED WITH 32K RAM ...

WITH 16K RAM ...

TESTED WITHOUT RAM CHIPS

HARD T0 GET PARTS (NO RAM CHIPS)

WITH BOARD AND MANUAL ...

BARE BOARD & MANUAL

PET INTERFACE KIT—CONNECTS THE 32K RAM BOARD TO
A 4K OR 8K PET. CONTAINS: INTERFACE CABLE, BOARD
STANDOFFS, POWER SUPPLY MODIFICATION KIT AND
COMPLETE INSTRUCTIONS $49.00

(e

Y YRnHVOYOY

MULTIPLEXER AND COUN
* DATA AND APPLICA'HON SHEETS PARTS
TESTED AND GUARANTEED.
$295.00 PER SET

& T [
COMPUTER DEVICES

1230 W.COLLINS AVE.
ORANGE, CA 92668
(714) 633-7280

Y. = Calif. residents please add 6° sales tax. Mastercharge
(ST
& Visa accepled. Please allow 14 days for checks to
clear bank. Phone orders welcome. Shipping charges
will be added to all shipments

ALL ASSEMBLED BOARDS AND MEM-
ORY CHIPS CARRY A FULI. ONE YEAR
REPLACEMENT WARANT

June/July, 1980.

compute Il 21

Programming
& Interfacing

the 6502, with
Experiments,

by Marvin L. Dejong.

Howard W. Sams & Co., Inc.
4300 West 62nd St.
Indianapolis, IN 46268

414 pages, $13.95

[Review by Jim Bufterfield

This book might have been subtitled, ‘‘A hands-on
guide to the 6502.”” That’s what it really is: it invites
the owner of a KIM, SYM or AIM to learn the

6502 by working through example after example on
his machine. Most of us learn by doing, rather than
just by reading; and this book contains eighty carefully
graded ‘‘experiments’’ that encourage you to get your
hands on the machine and prove to yourself that it
works the way the book says.

This is good stuff: the text and experiments
are carefully graded and go at a gentle pace. You
won’t get very many advanced programming concepts
here: the book covers only the basics. But it does a
careful and thorough job. Early concepts are developed
with care at a pace the beginner can cope with.

As the title suggests, the book comes in two parts.
Part I deals with programming the 6502, Part II
with interfacing. Each chapter begins with a statement
of objectives, identifying what you may expect to learn
there. Each chapter ends with a series of experiments
designed to reinforce what you have learned. An ex-
periment often takes the form: ‘‘load this program ..
now do this .. what do you see? .. can you explain
why?”’. Emphasis is on gaining understanding as to
how a simple program operates; the last experiment
or two in a chapter often suggest small projects for
the reader.

Machine language is developed a few op-codes
at a time. Loads, Stores, and Transfers are intro-
duced first, and subsequent chapters progressively
bring in more commands. Branches, for example,
don’t arrive until chapter six - I would rather have
seen them a little earlier because I believe loops
are so important - and the op codes aren’t completely
covered until chapter 9 has been completed. Advanced
addressing modes, such as indexing and indirect

addressing, are held back until chapter 8. It’s all
carefully graded, and the going is about as easy as
it can be for machine language.

The pace changes in Part II, Interfacing the 6502.
We’re thrown quite abruptly into the hardware field:
logic diagrams, truth tables, timing charts and oscillo-
scope traces start to appear with great rapidity. The
author seems to assume that the reader will have some
understanding of hardware, which is likely true for a
sizable fraction of KIM/SYM/AIM owners. A begin-
ner who isn’t sure about the different shapes of AND
and NOR logic symbols will have to work hard.

In keeping with the accelerated pace of the
material, Part II takes on a number of more ambitious
projects, some of which might prove to be of special
interest to readers. Music synthesis, an ASCII
input port, data logging, a morse keyer, and a lunar
occultation program are included; most are adapted
from other sources but are accompanied by extra
explanations.

The book contains a quite extensive appendix sec-
tion, with emphasis on hardware. Many of the data
sheets are printed in very fine type and may be hard
to read. An index is included.

Is it possible to write a book which deals with
three different machines--the KIM, SYM, and AIM?
The experiments jump around from one machine to the
other without always specifying which machine is
intended. Even so, most users will be able to sort it out
without too much trouble. Two key tables point out
vital addresses on the respective machines; readers
may find themselves repeatedly scrambling for page 44
or 35 - I wish that these had been printed on fold-
out sheets so that they could be visible during the
experiments.

The author deals carefully with difficult subjects;
he doesn’t gloss over the tricky parts but treats
them with precision. One thing, however, bothers
me: his notation for immediate-mode addressing. If
you want to load the A register with the value 12
decimal, any of the following may be used on most
assemblers: - o

LDA #12
LDA #$0C
LDA #%00001100

.. you may code the number in binary, decimal,
hexadecimal or whatever, but you must include that
pounds sign (#) to indicate Immediate mode. The
author codes LDA $0C; most assemblers would take
this to mean, ‘‘load the contents of address 12’

- not the value 12. Readers will have to re-adapt when
they start using an assembler.

The book is a good, gentle introduction to pro-
gramming the 6502. It’s a little harder going for
inter-facing, especially for hardware beginners.

The ‘‘hands-on’’ nature of the experiments tend
to drive the lessons home. It’s a good way to come
to grips with your computer.

()

e

June/July, 1980.

compute Il.

35

The Single-
Board 6502

Eric Rehnke

The 5th West Coast Computer Faire was FAN-
TASTIC!!! Besides having the chance to meet a
number of you, I got a real good look at the

latest developments in the small computer industry.
I am very excited with what’s happening.

Everything is becoming increasingly sophisticated.
Music, graphics, interface devices, software, applica-
tions. . .and on and on.

Graphics seemed to be one dominating theme
of the show. Everywhere you looked was evidence on
the fact. New and lower cost graphics peripherals

were introduced. Two drum plotters for under $700, a

graphics input device for $200, sophisticated 3-D
software for the Atari machines, graphics animation
on the Apple, the list goes on.

Telecommunications is another area of the indus-
try that is expanding greatly. This is an area which
I am particularly interested in because of the fact
that as a society, we will be facing an increasing
need to replace fossil-fuel burning transportation with
energy and time efficient communication. The office
of the future will more than likely be in the home
for people who can interact with their jobs through
a low-cost computer terminal and a modem.

We as computer hobbyists will have much to do
with the future of tele-computing. We’re the
pioneers

Basically, there are two broad types of informa-
tion systems accessible today with low-cost equip-
ment. The decentralized type of system includes
PCNET (Personal Computer Network), CBBS (Com-
munity Bulletin Board Systems) and the like. These
systems are fairly casual, since they’re more than
likely run by hobbyists, have no access charges,
and are, at the very least, excellent ways to become
familiarized with computer ‘‘networking’’.

The other, more centralized, approach is that
taken by The Source and Micronet (to name two).
These outfits have large computers with access to
very large data bases and many other services
available. You can write programs in many of your
favorite languages (BASIC, COBOL, FORTRAN,
APL, RPG), have access to such things as the UPI
General wire service, stock exchange quotes, back-
gammon, bridge, travel club, a buying service, file
generators, editors, Star Trek and Football. On one
service you can even download complete programs to
your Apple, Pet or TRS-80 (how’d that one get in
this column?). Anyhow, all kinds of stuff.

All you need to access this myriad of service is a
300 baud terminal and modem. But, to get the full

>

For low-cost digital input (about $200), how about this?
Your Apple (or whatever) simply reads the position of
the two pots which are mounted in the pivot points to
compute the position of the arm. Clever, huh???

benefit of all the services, you should also have a
microcomputer on your end of the phone line.

Of course, with these large centralized informa-
tion systems, you have access charges, passwords and
the need of a plastic bank credit card to get into
the system in the first place. Small price to pay for
a little piece of the future, though. Beats the hell
outa’ the BOOBTUBE!

Getting Hooked Up

Presumably, you already have a computer and a
terminal (or a computer with a built-in CRT) and are
looking for a modem. The minimum modem necessary
will be an originate only, acoustically coupled style
capable of handling the BELL 103 standard modem
protocol (300 baud). This will permit access to the
centralized information system and the hobbyist bulle-
tin board service but will not allow communica-
tion with other hobbyists that have orginate-only
modems. -

You see, for modem systems to communicate
with each other, certain conventions must be adhered
to. The most important of these states that the system
that originates the phone call has to be in the ‘‘orgin-
inate’’ mode while the system answering the call
should be in the ‘‘answer’’ mode. This originate/
answer mode business has to do with the set of
frequencies that’s used to send the data and need
not concern us here except to realize that to be
able to receive calls as well as place them, you
need both modes (orginate and answer) in your
modem system.

Now modems can couple up to the telephone
line in two ways: acoustically and directly.

With an acoustically coupled modem, you must
usually place the telephone call manually and put
the telephone handset into rubber cups on the modem

36

compute Il

June/July, 1980.

when the telephone call is connected.

This type of modem is easiest to install, adequate
for most applications, and available from several
sources in the $150--$200 price range.

If you expect your computer/modem system to be
able to automatically answer the phone to carry on a
conversation with another system or even be able to
automatically place phone calls to other systems
without user intervention, you’ll want a direct-
coupled modem-instead of an acoustically-coupled type.

Most direct-coupled modems plug into a modular
style phone jack like your extension phone does and
allow for full computer control of the line.

Keep in mind that to be completely legal, the
" modem MUST use a data coupler that has been
registered with the FCC guys. Now that’s important.

Having a fully automatic telephone system hooked
to the old computer benefits you in several ways.
First, you can take messages from other systems all
day long while you’re at work or out playing golf
(of course, this presumes you have enough friends to
make it all worthwhile). And secondly, your computer
can place calls to your friendly local (or long distance)
data base very late at night to take advantage of
low activity and/or cheaper phone rates. You could
even download the complete UPI news service to your
disk so you can enjoy the up-to-the-minute news with
your coffee in the morning. Since the data stream is
happening at 300 baud, your computer could sit and
scan for key words-picking out only what you’re
interested in reading about. Quite a bit more effi-
cient than the newspaper. Wouldn’t you say?

Anyhow, there are three modem manufacturers
which seem interested in supporting the hobby/
personal computer market. They are

U. S. Robotics Inc.
1035 W. Lake St.
Chicago, IL 60607
(312) 733-0497
NOVATION Inc.
18664 Oxnard St.
Tarzana, Ca 91356
(213) 996-5060

TNW Corp.

5924 Quiet Slope Dr.

San Diego, Ca 92129

(714) 225-1040
(TNW modem useable only with PET or other IEEE
Bus computer)
There are other companies making modems for this
market, such as D. C. Hayes but most of these are
useable only with certain bus configurations such as
Apple or S-100. If you have one of these machines,
this part of this column won’t prove very useful
to you.

I placed a call to U.S. Robotics to get more
data on their 300 baud, direct coupled modem and
was treated very well. They expressed a willing-

ness to help me with my application and even

sent me all their technical literature on the promise
that I'd sent them a $5.00 check. No, I didn’t

tell them that I wrote a column for COMPUTE II.
As far as they knew, I was just another hobbyist.

I also had some contact with TNW Corporation.
They manufacture stuff for the PET (or other IEEE
Bus equipped computers) so their direct-couple modem
didn’t turn out to be as useful for my particular
application. But, if you’re looking to turn your
PET into an electronic mail system, TNW has the
software and hardware to do just that. I believe
they are working very closely with the PCNet
people so they should have some good software
coming out.

As it turns out, the PCNet software protocol is
a bit on the complicated side for those of us not well
versed in the esoterics of network theory and the
like, so having a software package alredy prepared
looks mightly appealing.

My personal application for a modem includes use
on the PCNet as well as checking into one of the
large time sharing systems like the Source or Micro
Net (or both). Since I may want to automatically
access a data base late at night, the modem/
telephone interface needs to be fully automated.

I’ll be checking out modems for a while and
will report my findings.

DISK DRIVE WOES? PRINTER INTERACTION?
MEMORY LOSS? ERRATIC OPERATION?
DON'T BLAME THE SOFTWARE!

1SO-1

Power Line Spikes, Surges & Hash could be the culprit!
Floppies, printers, memory & processor often interact!

Our unique ISOLATORS eliminate equipment interaction
AND curb damaging Power Line Spikes, Surges and Hash.
*ISOLATOR (1SO-1A) 3 filter isolated 3-prong sockets;
integral Surge/Spike Suppression; 1875 W Maximum load,
1KWiloadanysocket $56.95
*ISOLATOR (ISO-2) 2 filter isolated 3-prong socket banks;
(6 sockets total); integral Spike/Surge Suppression;

1875 W Max load, 1 KW eitherbank '$56.95
*SUPER ISOLATOR (1SO-3), similar to ISO-1A

except double filtering & Suppression $85.95
*ISOLATOR (1SO-4), similar to 1ISO-1A except

unit has 6 individually filtered sockets $96.95
*ISOLATOR (1SO-5), similar to 1ISO-2 except

unit has 3 socket banks, 9 sockets total ... $79.95

*CIRCUIT BREAKER, any model (add-CB) Add $ 7.00
*CKT BRKR/SWITCH/PILOT any model
(-cBS)

.................. Add $14.00
PHONE ORDERS 1-617-655-1532

L=/ Electronic Specialists, Inc.
171 South Main Street, Natick, Mass. 01760

Dept. C

June/July, 1980.

compute Il ‘37

Barcodes Come Of Agell!

Back in 1976 (November to be exact) BYTE
magazine introduced an interesting concept regarding
program entry from magazine pages (or other printed
media).

Using a code very similar to the Universal Product
Code, which can be found on just about anything
you purchase anymore, programs (and data) can be
reproduced on paper in a form that can be fed
directly into your computer. This, of course, elimi-
nates, the laborious typing in of magazine soft-
ware. Just think about the amount of wasted energy
when 10,000 computerists across the country have to
type in the same program? Now THAT amounts to
a lot of effort!!! Well, this new scheme could put an
end to all that.

I’ll bet you’re wondering if it’s so great, why
aren’t all the magazines offering software in bar-
code format. Well, that’s a fair question----and the
answer is that up until now, bar code reading wands
have cost from $300 up.

But that’s all changed since Hewlett-Packard
introduced the HEDS-3000 bar-code data entry wand
for around $100 in single quantities. Now, for a
little more than the price of a good audio cassette
deck, you can have a truly revolutionary peripheral
device for your computer!

Think of all the neat things that can be done with
such a device. You computer music users now have
the ability to load musical scores directly into your
““instrument’’ (providing of course, music publishing
companies print music in some sort of bar code
format). Industrial controllers could have the
control program or several programs printed right
on the face plate for ease of operator input. You
could easily input trip data to your car computer
or phone numbers to your communication computer.
The applications are numerous.

The April 1980 issue of BYTE has an article
on the new HP bar code reader and the biblio-
graphy of past BYTE articles written on the subject,
so I’d suggest you start there if you want more
information.

~-HP can be contacted directly at: 640 Page Mill
Rd., Palo Alto, CA 94394 Attention: John Sien.

I’m very tempted to spring for one of these
devices but will probably have to put it under the
modem on my priority purchase list.

If you’d like to see COMPUTE (or COMPUTE
IT) publish software in bar code format contact
Robert Lock and make yourselves known.

MTU Graphics

I received the Micro Technology Unlimited
Visible Memory board a short time ago and have
been working on application ideas for this rather
unique board.

For those of you not familiar with it: Visible
Memory is both an 8K dynamic RAM board with

invisible refresh AND a 320x200 bit-mapped video
graphics board.

This clever design makes use of the fact that
the video circuitry must read the entire 8K
block at specified intervals and allows it to serve
the double purpose of also refreshing the dynamic
RAM. You’re wondering why you didn’t think of
it, right?

‘‘Bit-mapped’’ means that every bit in the 320x
200 screen matrix is represented by one bit in the
screen memory. With this board, one has total control
over every pixel. It’s very similar to the Apple hi-
resolution graphics in that respect, with the exception
that the MTU board is slightly denser (320x200 vs. -
280x193).

MTU also has some software available for this
board that could, assuming you owned an AIM-65,
turn your computer into a low cost version of the
HP-85. One software package works together with
AIM Basic to allow such things as mathematical
functions to be graphed out on the display while
another software package allows the built-in AIM
printer to record whatever pattern is on the screen.
How does that sound? That same software also
allows text lines up to 80 characters in length
to be printed SIDEWAYS on the AIM printer for
increased readability.

My appreciation for AIM increased considerably
when I saw it performing in this fashion.

Without any further software work, the AIM 65
coupled with some MTU hardware would seem
ideally suited for duty in the laboratory, the
classroom or most anywhere that a relatively low-
cost graphics system can be justified. Assembling
such a system turns out to be very easy. It can
be performed by someone with moderate electronic
skills and with totally ‘‘off-the-shelf’” components.

But don’t let your imagination stop here. Many
other things can be done with such a display. How
’bout a 16-channel digital logic analyzer? Very possible
with a bit-mapped graphics display.

Want to make your KIM, AIM, or SYM look
like a PET? Simple. ,

PET’s screen is organized as 25 lines of 40
characters each. Each of these characters is composed
of an 8x8 dot matrix. Multiply 40 characters times
8 bits (character width) and what do you get? Why
320, of course. Then do the same with 25 lines
times 8 bits and you get 200.

So, when you break down PET’s display to the
dot level, the MTU and PET display are precisely
the same. It is possible to generate all PET’s
graphic characters in software or design your own
special purpose characters for that matter.

Get the picture?

The Apple and Atari can be simulated in pre-
cisely the same fashion. Foreign language fonts are
also possible.

Normal X Y plotting subroutines are also in-

38

compute Il.

June/July, 1980.

cluded in the MTU graphics software.

You can get more information on these and other
products from

Micro Technology Unlimited

P.O. Box 4596

Manchester, NH 03108

(603) 627-1464

Sound Chip Update

I finally got hold of some General Instruments
Programmable Sound Generator chips (AY3-8910).
One of them is residing on a prototype card along
with a 6522, which interfaces the sound chip to my
computer.

After some initial problems (with me, not the
chip) I was able to get the sound generator to start
generating some sound. I haven’t yet even scratched
the surface of what’s possible with the PSG-maybe
you’ll also hook one to your computer and see what
sounds you can get out of it.

In my next column, I'll write up the driver
software to save you the trouble.

Lately, my mind has also been racing with some
of the possibilities for ways to input music into the
system as well as output it.

Hope For The OSI Users

There may be hope for you OSI users yet. No, not
from OSI but from a company called AARDVARK
TECHNICAL SERVICES (1690 Bolton, Walled
Lake, MI 48088 tel (313) 624-6316).

They seem to have a really good attitude and
sure have lots of low-cost game and utility soft-
ware for C1 and C2 system users.

Their catalog says it all though with several
BASIC program listings (including LIFE), at least 4
pages of useful info on Microsoft BASIC and the
OSI system besides the incredibly large catalog of
program offerings. Well worth their asking price of
$1.

Remember the friend of mine who was working on
using his C2-4P as a terminal for his new found
love (a KIM-1)? Well, that story had a happy ending
when he loaded in the dumb terminal program from
AARDVARK and it worked perfectly the first time.

Love those happy endings. (o)

3
>

)
]
‘v I l
o

tHEAVY DUTY COUPLER

Crystal control punches through rain-soaked,
muddy lines to grab weakened signals.

Heavy duty rubber cups hold fast...knock out
noise.

Torture testing boosts reliability above 99%.

DATEC Heavy Duty couplers are guaranteed.

We're building our reputation on acoustic
couplers. We've got to build them better.

—————T ™
aTec DATEC 30 originate

Datec Incorporated onfy. DATEC 39 ori:
300 E. Main Street Full or half duplex
() Carrboro,N.C.27510 iyichadie.0-300
A (919)929-2135

DEVELOPMENT SYSTEM
$I50BH

IF YOU ALREADY HAVE A KIM, SYM, AIM OR ANY
OTHER 6502 SYSTEM WITH AN EXPANSION BUS, YOU CAN
TURN IT INTO A DEVELOPMENT SYSTEM FOR BRINGING
UP YOUR OWN 6502 CONTROLLERS OR DEVELOPING EPROM
SOFTWARE, AND IT NEED NOT COST A BUNDLE. YOU
NEED MINIMALLY AN EPROM PROGRAMMER AND AN EPROM
EMULATOR (SIMULATOR). (SEE ERIC'S COLUMN IN THE
FIRST ISSUE OF COMPUTE II,) WE CAN SUPPLY BLANK
PC BOARDS FOR BOTH OF THOSE ITEMS. IN THE NEAR
FUTURE, WE'LL OFFER ASSEMBLED AND TESTED UNITS,
AND MAYBE EVEN KITS.

EE-1 EPROM EMULATOR

* 2K TWO-PORT RAM BLOCK (2114L)

* EMULATES 1K OR 2K EPROMS

* SPACE FOR THREE 1K OR 2K EPROMS
FOR ASSEMBLER/EDITOR OR UTILITIES

* KIM-4 BUS, 4% BY 6% CARD, ADAPTS TO
ANY BUS, EVEN SPLIT BUS (s-100)

* USE AS EXTRA RAM OR EPROM BOARD

BARE BOARD WITH DOCUMENTATION $40,00
(YOU STUFF FOR ABOUT $40)

EPROM PROGRAMMER
PROGRAMS ALL 1K, 2K, AND 4K EPROMS

EP-1
*
* MAKE PERSONALITY MODULES FOR $.50
*
*

USES 1% PORTS
SOFTWARE FOR PROGRAMMING, VERIFYING
AND COPYING EPROMS

BARE BOARD WITH DOCUMENTATION $19,00
(YOU STUFF FOR ABOUT $10,00)

WRITE FOR MORE INFORMATION

NIAGARA MICRO DESIGN, INC.

1700 NIAGARA STREET, BUFFALO, N.Y. 14207
716-873-7317

June/July, 1980.

compute Il.

47

Part 2: Implementing the IEEE-488 Bus on a SYM-]

DESIGNING AN IEEE-488
RECEIVER WITH THE SYM

Larry Isaacs, COMPUTE. Staff

This is the second part of an article describing
the use of a SYM-1 to interface a PET to a Spinwriter
with a serial interface. We will continue to divide the
more complex functions into simpler sub-functions
when necessary. Once the sub-functions are simple
enough, they will be implemented. In the first part,
the interface was divided into four sub-functions:
INIT, PRINT, CYCLE, and INTERFACE. Imple-
mentations for PRINT and CYCLE have already been
presented. Briefly, the PRINT routine handles the
communication with the Spinwriter. By using the
ETX/ACK protocol, the PRINT routine keeps the
Spinwriter printing at its maximum speed. The
CYCLE routine handles the handshaking necessary to
transfer a byte from the IEEE 488 Bus to the SYM.
For convenience, these routines are given again in the
complete listing of the interface software found at
the end of this article. Also, the hardware to connect
the Spinwriter to the SYM is shown again in Figure 2.

Before we can begin work on the INTER-
FACE sub-function, we must first understand how the
PET will try to communicate with the SYM using
the IEEE 488 Bus. Now we will continue with a
description of this communication procedure.

Communicating On The IEEE 488Bus

The next step is to become familiar with how the
PET communicates on the IEEE Bus. This discussion
will involve two more signal lines. These are the ATN
(Attention) line and the EOI (End Or Identify)

line.

Each communication on the IEEE 488 Bus can be
described as a sequence of three parts. In the first
part the PET identifies which device it wishes to
communicate with. In the second part it sends or
receives the data. And finally in third part, the
PET terminates the communication sequence. Each
part makes use of the byte transfer cycle described
previously to transfer information. However, the infor-
mation transferred in the first and third parts is
differentiated from the second by the state of the ATN
line. During the first and third parts the ATN line
is low, indicating that the bytes transferred should be
treated as commands and not data.

Here is a brief description of what happens during
a communication sequence with a device, or devices,
which only receives data, such as our printer. I
will assume that prior to the beginning of the sequence,
all devices on the bus are in. the inactive state, i.e.
the NRFD line is high.

The sequence begins with the PET setting the
ATN line low. This brings all operating devices on
the bus to the active state. The PET now executes
a byte transfer cycle sending the device address to
each device. Only those devices whose device address
matches the one sent by the PET will continue with
the communication sequence. All other devices will
return to the inactive state at the end of this first
part. The Commodore printers use device address
24 hex. The lower 5 bits contain the device number,
in this case 4. The upper three bits, ‘“‘001’’, indicate
that the device is to receive data. A ‘‘010”’ in the
upper three bits would indicate the device is to send
data. Now the PET may end the first part by setting
the ATN line high, or transfer another byte known as
the secondary address before setting ATN high. The
secondary address is used to address different functions
or channels within the selected device.

The second part consists of the required number
of byte transfer cycles to transfer the data to the device.
In most cases, the PET will signal that the last
data byte is being transferred by setting the EOI
line low during the last cycle. Because the EOI isn’t
always sent, it wouldn’t be a reliable signal to use
for determining the end of this part of the communica-
tion sequence.

For the third part, the PET sets the ATN line
low again, and executes a byte transfer cycle which
sends $3F hex to all active devices. This is the
UNLISTEN command, which tells all listening devices
to stop receiving data.

One requirement for the interface which may not
be obvious is that once the communication sequernce
has reached the second part, all commands except
for the UNLISTEN command should be ignored.

It would not be a violation of the IEEE 488 Bus
Standard for the PET to activate a device which sends
data at the same time as one which receives data, and
have them communicate directly with each other.

There is one other IEEE signal line which should
be included in the interface. This is the IFC (Inter-
face Clear) line. Whenever this line goes low, the
interface should return to the inactive state.

Now we are ready to deal with the hardware
requirements for communicating on the IEEE Bus. We
will be using 6522 #2 on the SYM for the necessary
I/O signals since all of the I/O lines from both ports
go to the A-A connector. If necessary, the 6522
supplied as 6522 #3 could be moved to the #2 socket,
losing only a few features which aren’t needed for

compute Ii.

June/July, 1980.

this interface. The main hardware requirement con-
cerns a requirement for the delay between ATN
going low to the time when NRFD is set low by a
device. The IEEE 488 Standard calls for a maximum
of 200 nanoseconds for this delay. Though the PET
can’t operate this fast, it does operate too fast for

the SYM to meet this requirement using just soft-
ware. The solution to obtain the necessary speed is to
selectively send the ATN signal back out the NRFD
line. The SYM can then assume control of the NRFD
line when it is ready. The only other hardware
needed are a couple of open-collector gates for the
Wire-or requirements of the NRFD and NDAC lines.
The circuitry shown in Figure 1 will meet these re-
quirements.

Interface
The main function of the INTERFACE sub-function
is to handle the communication sequence for the IEEE

Listing 4
procedure INTERFACE

end; {handles the IEEE communication}

procedure ATNIRQ begin ...
end; {resets the interface}

procedure IFCIRQ begin ...
begin {INTERFACE procedure}
repeat
if INTERRUPT=TRUE then
begin
if IRQ=ATN then ATNIRQ;
if IRQ=IFC then IFCIRQ
end
duntil 2+2=5 {hopefully repeat forever}
end;

Bus. The first decision we must make is how the
INTERFACE software will know when a communi-
cation sequence has begun, or when the IFC line
goes low. Since the IFC signal is supposed to reset
the device regardless of its current state, this signal
should be tied to an interrupt. For greater flexibility
we will tie the ATN line to an interrupt as well.
This will allow the SYM to do other things when
not being used as an interface.

The use of interrupts now provides a basis for
dividing the INTERFACE sub-function into smaller
parts. Listing 4 shows my division of the INTERFACE
sub-function.

At this point we are almost ready to write the
assembly language for the remaining parts of the soft-
ware. However, ATNIRQ needs one more division.
This involves addressing the question of how much
intelligence to put in the interface. One answer is
to program ATNIRQ in a way that leaves the door
open for expansion. This can be done easily using
the secondary address to call different interface
routines. The division for ATNIRQ is shown in
Listing 5. The ‘‘case’’ statement in this listing is
a multiway subroutine jump. If SECADDRS is 0 when
the ‘‘case’’ statement is executed, the SENDASCII
procedure will be executed. For other secondary
addresses, the DUMPCHRS procedure will be execu-
ted.

Listing 5
procedure ATNIRQ

procedure ATNINIT; begin ... end; {get ready for communication}
procedure SENDASCII; begin ... end; {input data and print it}
procedure DUMPCHRS; begin ... end; {ignore data}

begin {ATNIRQ statements}
CYCLE; {get device address}
if DATA=MLA then
begin
ATNINIT;
CYCLE; {get next byte, possibly a secondary address}
if ATN=LOW then
begin
SECADDRS := DATA;
CYCLE
end;
case SECADDRS of
@ : SENDASCII;
1..15 : DUMPCHRS;
end {case statement}
end {if statement}
end; {ATNIRQ}

Now we can write the assembly language for INIT,
then IFCIRQ, and finally ATNIRQ. Not clearly
shown by the preceeding PASCAL programs is how
the machine language should actually handle the
interrupts. After an interrupt occurs, the first
thing the machine language must do is save the register
contents. Then it must test to see what interrupt
occured. If it was an ATN interrupt, then the current
stack pointer must be saved and ATN interrupts dis-
abled before continuing with the rest of the ATNIRQ
routine. If the interrupt was an IFC interrupt, the
IFCIRQ routine should test to see if the ATNIRQ
routine was executing. If it was, the IFCIRQ
routine must restore the stack pointer to the value
saved by ATNIRQ and reenable the ATN interrupt
before restoring the registers and returning to the
interrupted program.

The full listing of the assembly language for the
interface is given in Listing 6. I’ve tried to write
the assembly language so it can be easily expanded.
Just remember that when you put a different routine
in SCTABLE, the first data byte will have already
been fetched by CYCLE when your routine is entered.

Summary

I’ve tried to make this article as much an example

of interface design as one describing an actual inter-
face. Most of the material presented dealt with needed
facts or the steps involved in reaching a solution. I
do not wish to imply that designing an interface
should proceed from start to finish as easily as this
article makes it seem. It is very likely that during your
design, you will come upon a piece of new information
or see a different approach which would have been
highly useful at some previous step. This occured a
few times during this design. Sometimes it is necessary
or perhaps desireable to return to that previous step
and take a different path. However, if you do enough
preparation and planning before you begin the design
process, you shouldn’t have to backup too many times.

June/July, 1980.

compute Il. 49

SYM-1, 6502-BASED MICROCOMPUTER
FULLY-ASSEMBLED AND COMPLETELY INTEGRATED SYSTEM that's
ready-to-use
e ALL LSIIC'S ARE IN SOCKETS
e 28 DOUBLE-FUNCTION KEYPAD INCLUDING UP TO 24 “SPECIAL"

FUNCTIONS
e EASY-TO-VIEW 6-DIGIT HEX LED DISPLAY
e KIM-1* HARDWARE COMPATIBILITY J
The powerful 6502 8-Bit MICROPROCESSOR whose advanced
architectural features have made it one of the largest selling “micros”
on the market today.
THREE ON-BOARD PROGRAMMABLE INTERVAL TIMERS available to
the user, expandable to five on-board.
® 4K BYTE ROM RESIDENT MONITOR and Operating Programs.
® Single 5 Volt power supply is all that is required.
1K BYTES OF 2114 STATIC RAM onboard with sockets provided for
immediate expansion to 4K bytes onboard, with total memory expan-
sion to 65, 536 bytes.
USER PROM/ROM: The system is equipped with 3 PROM/ROM ex-
pansion sockets for 2316/2332 ROMs or 2716 EPROMs
o ENHANCED SOFTWARE with simplified user interface
e STANDARD INTERFACES INCLUDE:
—Audio Cassette Recorder Interface with Remote Control (Two

modes: 135 Baud KIM-1* compatible, Hi-Speed 1500 Baud)
—Full duplex 20mA Teletype Interface
—System Expansion Bus Interface
—TV Controller Board Interface
—CRT Compatible Interface (RS-232)
APPLICATION PORT: 15 Bi-directional TTL Lines for user applications
with expansion capability for added lines
EXPANSION PORT FOR ADD-ON MODULES (51 1/O Lines included in
the basic system)
SEPARATE POWER SUPPLY connector for easy disconnect of the d-c
power
AUDIBLE RESPONSE KEYPAD

.

Synertek has enhanced KIM-1* software as well as the hardware. The
software has simplified the user interface. The basic SYM-1 system is
programmed in machine language. Monitor status is easily accessible,
and the monitor gives the keypad user the same full functional capabili-
ty of the TTY user. The SYM-1 has everything the KIM-1* has to offer,
plus so much more that we cannot begin to tell you here. So, if you want
to know more, the SYM-1 User Manual is available, separately.

SYM-1 Complete w/manuals $229.00
SYM-1 User Manual Only 7.00
SYM-1 Expansion Kit 60.00

Expansion includes 3K of 2114 RAM chips and 1-6522 1/O chip.
SYM-1 Manuals: The well organized documentation package is com-
plete and easy-to-understand.

SYM-1 CAN GROW AS YOU GROW. It's the system to BUILD-ON.
Expansion features that are available:
BAS-1 8K Basic ROM (Microsoft) $ 89.00
KTM-2 (Complete terminal less monitor) 319.00

QUALITY EXPANSION BOARDS DESIGNED SPECIFICALLY FOR KIM-1, SYM-1 & AIM 65

These boards are set up for use with a regulated power supply such as the one below, but, provisions have been made so that you can add
onboard regulators for use with an unregulated power supply. But, because of unreliability, we do not recommend the use of onboard
regulators. All 1.C.'s are socketed for ease of maintenance. All boards carry full 90-day warranty.

All products that we manufacture are designed to meet or exceed industrial standards. All components are first qualtiy and meet full
manufacturer’s specifications. All this and an extended burn-in is done to reduce the normal percentage of field failures by up to 75%. To you,
this means the chance of inconvenience and lost time due to a failure is very rare; but, if it should happen, we guarantee a turn-around time of
less than forty-eight hours for repair.

Our money back guarantee: If, for any reason you wish to return any board that you have purchased directly from us within ten (10) days after
receipt, complete, in original condition, and in original shipping carton; we will give you a complete credit or refund less a $10.00 restocking

charge per board.

multiplyer so there is no need for an additional power supply. All
software is resident in on-board ROM, and has a zero-insertion socket.
VAK-5 EPROM Programmer w/2708 adapter $249.00

VAK-5A Single voltage 2716 adapter 45.00

VAK-6 EPROM BOARD
This board will hold 8K of 2708 or 2758, or 16K of 2716 or 2516

EPROMs. EPROM:s not included.
VAK-6 EPROM Board $119.00

VAK-7 COMPLETE FLOPPY-DISK SYSTEM (Oct '79)

VAK-1 8-SLOT MOTHERBOARD
This motherboard uses the KIM-4* bus structure. It provides eight (8)
expansion board sockets with rigid card cage. Separate jacks for audio
cassette, TTY and power supply are provided. Fully buffered bus.
VAK-1 Motherboard $129.00

VAK-2/4 16K STATIC RAM BOARD
This board using 2114 RAMs is configured in two (2) separately
addressable 8K blocks with individual write-protect switches.

VAK-2 16K RAM Board with only $239.00
8K of RAM (%2 populated)
VAK-3 Complete set of chips to 125.00 VAK-8 PROTYPING BOARD
expand above board to 16K This board allows you to create your own interfaces to plug into the
VAK-4 Fully populated 16K RAM 325.00 motherboard. Etched circuitry is provided for regulators, address and
data bus drivers; with a large area for either wire-wrapped or soldered

VAK-5 2708 EPROM PROGRAMMER
This board requires a +5 VDC and +12 VDC, but has a DC to DC

POWER SUPPLIES

ALL POWER SUPPLIES are totally enclosed with grounded enclosures for safety, AC power cord, and carry a full 2-year warranty.

FULL SYSTEM POWER SUPPLIES

This power supply will handle a microcomputer and up to 65K of our
VAK-4 RAM. ADDITIONAL FEATURES ARE: Over voltage Protection on 5

IC circuitry.

VAK-8 Protyping Board $39.00

KIM-1* Custom P.S. provides 5 VDC @ 1.2 Amps
and +12 VDC @ .1 Amps .

volts, fused, AC on/off switch. Equivalent to units selling for $225.00 or KCP-1 Power Supply $39.00
more.
Provides +5 VDC @ 10 Amps & +12 VDC @ 1 Amp SYM-1 Custom P.S. provides 5 VDC @ 1.4 Amps
VAK-EPS Power Supply $119.00 VCP-1 Power Supply $39.00
VAK-EPS/AIM provides the same as VAK-EPS plus 24V
149.00

unreg.
*KIM is a product of MOS Technology

E N T E R P R l S E S 2967 W. Fairmount Avenue

Phoenix AZ. 85017
N CORPORATED

=
i J
(602)265-7564

Add $2.50 for shipping and i\andling per order.

50

compute Il.

June/July, 1980.

0200-
0203~
0205-
0207-
0209~
p20C-
P20E-
p211-
p213-
p216-
p218-

20
A9
85
A9
8D
A9
8D
A9
8D
A9
8D

86

8B

A6
A6
A6
A6

0010
0020
0030
0040
0050
po60
0070
0080
0090
0100
0110
0120
9130
0140
0150
0160
0170
9180
0190
0200
0210
0220
230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
P340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
460
0470
0480
0490
0500
0510
0520
0530
0540
0550
560
0570
ps80
0590
p600

; IEEE INTERFACE
; WITH HARDWARE
; VERSION 2.5
’
; CONSTANTS
UNLISTEN .DE S3F
BS .DE $08
UNDLN .DE $5F
LF .DE $0A
COLON .DE $3A
SPACE .DE $20
COMMA .DE $2C
CR .DE $0D
; VARIABLES
COUNT .DE SEO
SIGNALS .DE SE1
DATA .DE $E2
MLAl .DE SE3
SEC.ADDRS .DE S$E4
TEMP .DE SE5
LENGTH .DE SE6
NL.FLAG .DE S$E7
SCAN.CNT .DE SES8
F.LEN .DE SE9
SP.IEEE .DE SEA
’
s ADDRESSES
ACCESS .DE $8B86
TOUFL .DE $A654
SDBYT .DE SA651
TECHO .DE $A653
OUTCHR .DE $8A47
INCHR .DE $8A58
CRLF .DE $834D
TOUT .DE $8AAD
@2ACR .DE $SA80B
@2DDRA .DE $A803
@2DDRB .DE $A802
@2PCR .DE $A80C
@2IER .DE SA8QE
@2IO0RB .DE $A800
@2IO0RA .DE $A801
@2IFR .DE $A80D
OUTVEC .DE $A663
UIRQVC .DE $A678
IND.JMP .DE SEE
.BA $200
INIT JSR ACCESS
LDA #$24
STA *MLAl
INIT.SYM LDA #$90
STA TOUFL
LDA #S$10
STA SDBYT
LDA #$S00
STA TECHO
LDA #L,TOUT
STA OUTVEC+$1

; INITIALIZATION

;MY LISTEN ADDRESS

; ENABLE CRT

;SET FOR 1200 BAUD

;OUTPUT & NO ECHO
; SET OUTPUT VECTOR

June/July, 1980.

compute Il

51

p21B-
p21D-
0220-
p222-
p225-
p227-
022A-
p22C-
P22E-
9230-
p233-
6236-
p238-
p23B-
023D~
0240~
p243-
0244-

0247~
p248-
p24A-
p24D-
024F-
0252~

0253~
254~
p255-
p256-
0257~
258~
p25B-
p25D-
p25F-
0261~
p263-
0265-
p267-
026A-
026D~
P26F-
-0272-
0274~
0276-
0277~
027A-
p27B-
p27C-
027D~

P27E-
p27F-

p280-
0281~
0284-
0287-

78
A9
8D
A9
8D
60

48

48
8A
48
AD

29
C9
Fo
C9
Fo
4C
AD
A9
2C
DO
A6
oA

68

68
A8

68
40

BA
8E
AD
A9

8A
65
53
78
02
79

EQ
00
gB
03

02
04
gC
47

44

83
PE
06
00

EA
g1
@5

A6
A6

A6

A8
A8

A8

A8
92

g2

A8

A8

A8

02
A8

A8

02

0o

A8 .

9610
P620
P630
P640
P650
P660
6670
g680
P690
0700
0710
0720
0730
6740
0750
0760
0779
0780
0790
P8O0
0810
0820
830
0840
850
p860
0870
p88o
0890
o006
0910
0920
930
0940
950
0960
6970
po8o
8990
1000
1010
1020
1030
1040
10650
1060
1070
1080
1090
1100
1110
11290

1130
1140

1150
1160
1170
1180
1190
1200

INITPORTS

IDLE
7

EN.IEEE

INTERFACE

IEEE.IRQ

IFC.IRQ

IEEE.OFF

EXIT.INTF

;
ATN. IRQ

ATNINIT

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
JSR
CLI
JMP

SEI
LDA
STA
LDA
STA
RTS

PHA
TYA
PHA
TXA
PHA
LDA
BPL
AND
CMP
BEQ
CMP
BEQ
JMP
LDA
LDA
BIT
BNE
LDX
TXS
JSR
PLA
TAX
PLA
TAY

PLA
RTI

TSX
STX
LDA
LDA

#H, TOUT

OUTVEC+$2

#L, INTERFACE .

UIRQVC ; SET USER IRQ VECTOR
#H, INTERFACE

UIRQVC+S$1

#502

*COUNT

#500

@2ACR ; NO LATCHING

@2DDRA ; 2PA7-2PA0@ ARE INPUTS
#$507

@2DDRB ;3PB2-3PBf ARE OUTPUTS
#9504

@2PCR ; INTERRUPTS

EN.IEEE ;ENABLE IRQS

IDLE ;WAIT REAL FAST
#$83 ; ENABLE ATN AND IFC
@2IER H INTERRUPTS

#$06

@2IORB ;NDAC=1, NRFD=ATN

; SAVE REGISTERS

@2IFR

EXIT.INTF

#503 ;WHICH INTERRUPT?

#501

ATN.IRQ

#502

IFC.IRQ

EXIT.INTF

@2IO0RA ; CLEAR INTERRUPT

#501

@2IER ; IEEE ACTIVE?

EXIT.INTF

*SP.IEEE
;RESTORE STACK POINTER

EN. IEEE

SP.IEEE ;SAVE STACK POINTER
@2IORA ;CLEAR INTERRUPT
#505

; EXIT INTERFACE

compute Il.

June/July, 1980.

0p289-
p28C-
P28E-
0291-
0294~
p295-
0297-
9299-
p29C-
029E-
p2A0-
p2A2-
p2A4-
@2A7-
P2AA-
p2AC-

P2AE-
p2B1-
2B3-
@2B5-
p2B7-
p2B9-
@2BB-
@2BE-
p2Co-
p2Cl-
02C2-
p2C5-
p2C7-
p2CA-
p2CC-
P2CF-
@2D1-
p2D3-
p2D5-
p2D7-
92D9-
92DB-
@2DD-
P2DF-
P2E1-
P2E3-
P2E5-
P2E7-
P2E9-
02EB-
@2ED-

@2EF-
P2F1-

P2F4-
P2F7-
P2F9-
P2FA-
@2FD-
0300-
p302-
p304-

A8

A8
A8

02

A8
A8

02

02

g2
B2
00

A8
A8

A8
A8

A8

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

1710
1720

1730
1740
1750
1760
1770
1780
1790
1800

EXIT.IEEE

@l5

i
DEVICEl

@3

SCTABLE

we o

CYCLE
el

STA
LDA
STA
STA
CLI
LDA
STA
JSR
LDA
CMP
BEQ
LDA
STA
BIT
BMI
BPL

JSR
BIT
BPL
LDA
AND
STA
JSR
LDA
ASL
TAX
LDA
STA
LDA
STA
JMP
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI
.SI

LDA
STA

BIT
BVS
ROR
STA
LDA
EOR
STA
LDA

@2IORB
#501
@2IORB
@2IER

#500

*SEC.ADDRS

CYCLE
*DATA
*MLAl
DEVICEl
#502
@2IORB
@2IORB
@15
IFC.IRQ

CYCLE
*SIGNALS
@3

*DATA
#SOF

; SET NDAC=0 NRFD=0
; TURN OFF ATN=NRFD
; TURN OFF ATN IRQS

; INIT SEC. ADDRS

;BRANCH IF MY ADDRESS
; RELEASE ATN=NRFD

;WAIT FOR ATN=1
;BR ALWAYS

; SECONDARY ADDRESS?
;BRANCH IF ATN IS OFF
;GET SECONDARY ADDRESS
;ALLOW 16 SEC.ADDRS'S

*SEC.ADDRS

CYCLE

;GET FIRST CHAR.

*SEC.ADDRS

A

SCTABLE,X

*IND.JMP

;FIX POINTER TO
; SELECTED ROUTINE

SCTABLE+$1,X
*IND.JMP+§1

(IND.JMP)
SENDASCII

DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS
DUMPCHRS

#503
@2IORB
@2IORB
el

A
@2IORB
@2I0RA
#SFF
*DATA
@2IORB

; NORMAL PRINTING

; NRFD=1 NDAC=0
; TEST DAV
;BRANCH IF DAV=1

;NRFD=0 NDAC=0

June/July, 1980.

compute Il.

53

0307~
0309~
930B-
P30E-
p311-
p313-
p315-
318~
0319~
g31C-
P31E-
0320~
p322-
0325-
0328~
p32A-
@32C-

032D-
G32F-
9331~
9334-
337~
P339~
@33B-
#33D-
P33F-
p341-

0344-
0347~
0349~
p34B-
634D~
P34F-
351~
354~

85
A9
8D
2C
50
A9
8D
60
20
E6
D@
A9
20
20
A9
85
60

A5
29
20
20
24
10
A5
C9
D@
4C

20
24
10
A5
C9
D@
4C
00

E2
7F
19
EF
El
F2
E2
3F
F3
A2

EF
El
F9
E2
3F
F3
A2

A8
A8

A8

8A

8A
8A

03
02

02

02

02

1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200

@2

PRINT

ACK

RETURN

.
4

e1s

NEXT
SENDASCII

.
14

i
NEXT2
DUMPCHRS

SYM to Spinwriter Hardware
SYM T CONNECTOR

RS232 CONNECTOR

QN =

LN HJ

IQ\IGSU\

GND
TRANSMIT
RECEIVE

GND

Lca\xasu'

Editor’s Note: For those of you who don’t have issue 1, we’re

reprinting these two charts. RCL

STA
LDA
STA
BIT
BVC
LDA
STA
RTS
JSR
INC
BNE
LDA
JSR
JSR
LDA
STA
RTS

LDA
AND
JSR
JSR
BIT
BPL
LDA
CMP
BNE
JMP

JSR
BIT
BPL
LDA
CMP
BNE
JMP
.BY
.EN

CLEAR TO SEND
DATA SET READY

CARRIER DETECT

*SIGNALS

#500

@2IORB ; NRFD=0 NDAC=1
@2IORB

@2 ;BRANCH IF DAV=0
#501

@2IORB ;NRFD=0 NDAC=0
OUTCHR ;PRINT AND INC. COUNT
*COUNT

RETURN

$#S03 ;ASCII ETX
OUTCHR

INCHR ;WAIT FOR ACK
#5902

*COUNT

*DATA

#STF

PRINT

CYCLE

*SIGNALS

@18 ;BR IF ATN=1
*DATA

#UNLISTEN

NEXT

EXIT.IEEE

CYCLE

*SIGNALS

NEXT2

*DATA

#UNLISTEN

NEXT2

EXIT.IEEE

$0

TABLE 1

NAME SET BY DESCRIPTION

DIO1- Talker Data Input/Output. These lines carry the

DIo8 - commands and data.

NRFD Listener Not Ready for Data. When low, it means
the device is not ready to receive data. It
is set high when the device is ready.

DAV Talker Data Valid. When high, it means the data
on the data lines is not valid. It is set low
once all NRFD goes high and valid data
has been placed on the data lines.

NDAC Listener Not Data Accepted. When low, it means
that the data has not been accepted. It
is set low once DAV goes low and the
data has been latched.

ATN Talker Attention. Signals that the byte on the
DIO lines is a command.

EOI Talker End Or Identify. Signals that the last

IFC

data byte is being transferred.
Interface Clear. Resets all devices.

54 compute Il June/July, 1980.
Figure 1
AA IEEE
2PA7 | 16 15| D108
2PA6 | M le 11| D107
oPA5 | 11 7 | D106
2PA4| N 3 | DIO5
2PA3| 12 13| DI04
2PA2| C 9 | DIO3
2PA1/| 3 5 | DI02
2PAO| D 1 | DIo1
1
2CA2| 4 3 A 05| ATN
9PB7|6 e |
74LS00
4
2PB2 (K _»{ 19| NRFD
74LS00
74LS00 74LS03
2PB1| 9
2PB6 | H ¢ 17| .NDAV
13
2PBO| L 12 1 21| NDAC
741803
9PB5 | 7 le 27| EOI
2CAl| E 23| IFC

June/July, 1980.

compute il.

SYM High
Speed Tape

Gene Zumchak

The SYM has two different tape formats, the low speed
or KIM format, and its own high speed format that
can handle 185 bytes per second, which is not bad

at all . . . if it works. The high speed format has given
problems from the beginning. The new SYM monitor,
version 1.1 was changed significantly in the tape
routines to overcome the early problems. Also, newer
SYMs use a different bias network on the tape input
comparator and a fatter (.22 mfd) input coupling capa-
citor (GC16). (Synertek advises that a few users have
improved their tape reads by reducing C16, a typical
value being .05 mfd.)

If you have an early SYM and still use the origi-
nal version 1.0 monitor you won’t be able to benefit
from this discussion. I recommend very strongly that
you obtain the new monitor. It’s available from SYM
Users Group, P.O. Box 315, Chico, CA 95927, for
$16, and includes the resistor mod kit.

Nevertheless, even if you have the hardware mods
and the new monitor, there is no guarantee that you
will get reliable tape reading. The differences in success
appear to be most affected by the tape recorder. Often-
time a cheap discount store recorder will give good
results when a more expensive name brand unit will
not. Frequency response of the recorder does not
seem to be a criterion for predicting success. The
SYM high speed format, and most high speed tech-
niques depend upon measuring the time interval be-
tween transitions on the tape. Misinterpret one transi-
tion time and it’s all over. The transitions are put
on the tape very accurately. However, when the tape
is played back, the high frequency components may
experience significant phase shifting, affecting the
zero crossing positions. Thus the high frequency
shifting, and not so much the frequency response,
appears to be the culprit. Fortunately, the new SYM
monitor has some variables built into the tape routines
that allow you to ‘‘tweak’’ the tape read/write pro-
grams to accomodate your recorder. These variables
are shown in the accompanying figure, reproduced by
permission of Synertek.

In the SYM format, the bit period is constant.
A “‘one’’ is two transitions per bit period, and a
‘‘zero’’ is one transition per bit period. In the origi-
nal monitor, the two intervals for the one were symme-
tical. In the new monitor, however, the first interval,
(the only one measured) is narrower than the second,
making it easier to distinguish between a short period
(one) and a long period (zero). The intervals are speci-
fied by variables TAPET1 and TAPET2 which are

initilized by reset to $33 and $5A respectively. These
numbers represent a number of 5-microsecond inter-
vals. Thus each bit time is $8D (141 dec.) intervals or
705 microseconds. The transition time interval is
measured by starting the 6532 timer at $FF, counting
down with the divide by eight clock. When a transition
is detected, the value originally in location $A632 =
HSBDRY (High Speed BounDRY) is added to the
value from the timer. If the interval was short, the
counter will not have counted down very far from
$FF and adding HSBDRY will result in a carry which
is interpreted as a ‘‘one-bit’’ transition. Thus the
ability to distinguish between a one and a zero depends
upon how carefully we choose the high speed boundary
value. The default value of $46 (70 decimal) gives

a boundary time of 70 x 8, or 560 microseconds.
Synertek arrived at this value experimentally by trying
several popular recorders. There is no guarantee that
this value is ideal for your recorder. To split the
difference between the short and long transitions
would give an ‘‘ideal’’ boundary of 255 + 225, or
480 microseconds, or 60 ($3C) 8-microsecond inter-
vals. If your recorder is closer to the ideal response,
the default value of 560 microseconds will cause slightly
narrow zero intervals to be interpreted as ones giving a
bad reading. Before I took a look at the numbers, I
experimentally determined the value of HSBDRY for
my Panasonic recorder to be about $3C. Actually
there was quite a range from $40 down to $39, but
HSBDRY definitely needed to be smaller. Interesting-
ly, I still can load tapes only over a very narrow range
of volume settings.

If indeed it is the phase shifting of high fre-
quency components that affects zero crossings, then
perhaps low-pass filtering the tape output before it
goes onto the tape would improve performance. Then
again, I do need the tone control as high as it will
go to give best results. It would seem that with the
diode clipping at the input of the comparator, the
tape read would be relatively insensitive to amplitude,
with a high volume being ideal. However, with my
SYM that is not the case. Clearly, a great deal of
experimenting can be done pre-filtering tape dump
output before it is recorded, and conditioning the
playback output before it is decoded.

So far we have discussed only changing the value
of HSBDRY to improve our read capability. However,
the tape dump parameters TAPET1 and TAPET?2 can
also be modified. To generate SYM compatible tape,
their values should not be changed radically, and their
sum should equal $8D. On the other hand, if the sum
is changed, the bit time and the corresponding number
of bytes per second will change. We can make the
tape speed faster or slower, and still read it back
with the regular SYM programs by changing
HSBDRY correspondingly. Just for kicks, I made
TAPET1 $22 and TAPET?2 $46, and was able to get
fairly reliable loads with HSBDRY $30. This is a
byte rate of approximately 250 bytes per second. It
may be possible to double the SYM’s high speed rate

55

56

compute Il.

June/July, 1980.

wye
J (018 MON) L

705 ps.

’ "0" (0l1d and New Mon)

255 ps. 450 ps.
TAPET1 TAPET2
wyw
(New MON)
560 ps.
HSBDRY
255 ps. 225 ps. —tl—— 225 pS.——

e————————— 480 ps. ————>1
"Ideal" HSBDRY

NAME LOCATION DEFAULT VALUE

HSBDRY $2632 $46 (70 dec.) 350 ps.
TAPET1 $A635 $33 (51 dec.) 255 ps.
TAPET@® $A63C $5A (90 dec.) 450 ps.

and still get good loads. The important thing, how-
ever, is to get reliable loads at the regular high
speed.

Unfortunatley, there are still a number of problem
sources that have nothing to do with SYM hard-
ware and software. You may be using a bad tape.
Your recorder may be excessively noisy, or generate
motor noise. You might suspect the latter if the
Sync display indication occasionally flickers even when
set at the optimum volume setting. Sometimes a capa-
citor (.05 to .1mfd) from the input of the compari-
tor (pin 3) to ground will solve this problem. To
help find other problem sources, a list of guide-
lines, provided by Synertek, are reproduced at the
article’s end.

In summary, SYMMERSs still having problems
with tape loading and using the new monitor may only
need to adjust the value of HSBDRY ($A632),
thanks to Synertek’s forsight in making the tape
parameters variables. Remember, however, that this
value, and all system RAM is initialized by RESET
and will have to be fixed after each Reset.

There is certainly a lot of experimentation that
can be done on the SYM high speed tape reading
and writing. I hope that the information in this
brief article will inspire other SYMMERSs to do some
investigation. I’'m sure that others besides myself
will want to hear about any discoveries you make.

Twenty Important Cassette
Recording Guidelines

Reprinted by permission of Synertek Systems Corp. ©1979 Synertek
Systems Corp.

1. Use high quality tape (Maxell UD or equivalent).

2. Use shortest tapes possible. You can shorten tapes
to several minutes in length if you enjoy splicing.

3. Use shielded cable between your computer and the

cassette recorder.

. Keep heads and pinch rollers clean.

. Keep heads aligned for tape interchangability.

. Avoid recording too close to beginning of tape.

. Make sure cassette is properly seated in recorder.

. If you have trouble with a cassette try another.

You can have a bad spot on tape or a warped
cassette.

9. Highest setting of tone control is usually best.

10. A dirty recorder volume control can cause tape
dropouts.

11. Make sure cassette connection plugs make good
contact.

12. Rewind cassettes before removing them from
recorder.

13. Store cassettes in dust-proof containers.

14. Avoid exposing cassettes to heat or magnetic
fields.

15. Before recording, wind cassette to one end and
fully rewind.

16. Cassette recorders will give you problems once in
a while (They don’t like certain cassettes, etc.).
If one gives you problems most of the time re-
place it.

17. Make sure that MIKE plug is connected before
recording. On most recorder the TAPE light
will glow while recording.

18. You may have to record with the EAR plug
out for some tape recorders.

19. Always use AC adaptor with recorder for best

RO 3 O O p

results.
20. When a tone control is available, adjust it to the
highest possible setting (maximum treble). ©

June/July, 1980.

compute II.

57

KIM Rapid

Memory Load/

Dump Routine

Bruce Nazarian
1007 Wright Street #3
Ann Arbor, Ml 48105

This routine works well for mass entering of stuff like
long programs from a hex dump or similar, where
you can tell at a glance where any errors in your
entries are. A few words of additional explanation
about it:

For those users who would rather have a Carriage
Return activate the address entry portion and the
associated functions, substitute ASCII CR ($0D) at
location $010E. This will do the trick and is the
same as Markus Goenner’s function from his TTY
load routine from K.U.N. Thanks go to him for the use
of some of his programming techniques.

The directions also indicate that the program will
list until it senses a key pressed at the end of a
line. This is true, but the user should only use one

of the DATA keys on the keypad, not ST or RS.

Finally, the routine will only indicate the stopped
address after the user commands RUBOUT thru his
terminal. Then the KIM monitor will print the current
pointer, which will be the address where it stopped
dumping.

If you want the routine to present one line of
hex at a time, and wait on a key depression before
looping back again and printing another line, make
this change:

0147 20 6A 1F JSR KEYIN (Instead of the getkey
subroutine)

014A DO FB BNE 0147

014C EAEA NOP’s to fill previous coding

0100 ORG $0100

0100 D8 ENTER CLD Clear decimal mode

0101 A9 00 LDA #$00 Zero out the input buffers

0103 85 F8 STA INL Low.

0105 85 F9 STA INH And High. . ..

0107 20 2F 1E JSR CRLF Use KIM Subroutine to send functions
010A 20 5A 1E ADDR JSR GETCH Input one character.. (of starting addr)
010D C9 20 CMP #8$20 Check for go ahead.. (Insert 0D for CR)
010F FO 05 BEQ DATA If yes, load address from buff in pointer.
0111 20 AC 1F JSR PACK If no, load character into INL,INH
0114 FO F4 BEQ ADDR ...and loop back again

0116 20 CC 1F DATA JSR OPEN Move INL,INH, to POINTL,POINTH..
0119 20 2F 1E DECIDE JSR CRLF (Saves bytes, doesn’t it?)

011C 20 S3A 1E INPUT "JSR GETCH Now input some Hex for the code..

011F C9 4C CMP #8$4C ‘L’ (Load memory)?

0121 FO 2E BEQ LOAD Yes, branch to LOAD portion (0151)
0123 C9 51 CMP #$51 ‘Q (Dump from memory)?

0125 DO F5 BNE INPUT No, ignore invalid characters;Loop..
0127 A9 OF DUMP LDA #$0F Set up byte counter (16 decimal)

0129 8D 7F 01 STA COUNT stick it in $017F

012C 20 2F 1E JSR CRLF New line, please..

012F 20 1E 1E JSR PRTPNT Output the current pointer address

0132 20 9E 1E JSR OUTSP ...and space it...

0135 20 9E 1E GET JSR OUTSP ...again...

0138 A0 00 LDY #$00 Set up Y-Register for Indirect addressing
013A B1 FA LDA (POINTL),Y Load contents of pointed address

013C 20 3B 1E JSR PRTBYT ...and print as two hex digits...

013F 20 63 1F JSR INCPT Increment the double-byte pointer

June/July, 1980.

58 compute Il

0142 CE 7F 01 DEC COUNT Decrement the byte counter

0145 10 EE BPL GET And loop back if not finished yet
0147 20 6A 1F JSR GETKEY After 16th byte, test for end of list
014A C9 15 CMP #$15 ...and if no key is pressed,

014C FO D9 BEQ DUMP go back and output another 16 bytes...
014E 4C 64 1C JMP CLEAR else jump to Clear input buffs..
0151 20 2F 1E LOAD JSR CRLF

0154 20 S5A 1E READ JSR GETCH Input one character..

0157 C9 0D CMP #CR’ ..and if it is a carriage return..
0159 FO - F6 BEQ LOAD ..Jet it function, but ignore it..
015B C9 1B CMP #ESC’ ..or if it is ‘‘Escape’’...go 015F
015D DO 06 BNE STORE ..if not, must be valid.. Store it.
015F 20 80 01 JSR STRING ..else send ‘? KIM ?’ prompter...
0162 4C 64 1C JMP CLEAR ..and clear buffers..exit load routine
0165 20 AC 1F STORE JSR PACK Pack character into INL,INH
0168 Do EA BNE READ If packed value is zero, skip it..
016A 20 5A 1E JSR GETCH Get second byte of Hex code
016D 20 AC 1F JSR PACK ..and pack it also..

0170 A0 00 LDY #$00 Set up for indirect addressing
0172 Ad F8 LDA INL Bring in packed value..

0174 91 FA STA (POINTL),Y .. and store it at pointed address
0176 20 63 1F JSR INCPT Increment the double-byte pointer
0179 18 CLC

017A 90 D8 BCC READ Branch always..

017C EA EA EA NOP Waste some space

017F [XX] COUNT [This location used to hold the variable byte cntr]
0180 ; Subroutine ‘‘STRING”’ to send KIM prompter
0180 ORG $0180

0180 A2 0C STRING LDX #$0C Set up X-reg as counter

0182 BD 90 01 STRNG?2 LDA TABLE,X Get character at TABLE + X
0185 20 A0 1E JSR OUTCH Ship it out...

0188 CA DEX Decrement the counter

0189 10 F7 BPL STRNG? Loop is not finished

018B 60 RTS Else return to mainline when done
018C EA EA EA NOP NOP’s to fill

190 20 3F 20 TABLE .BYTE ‘SP,?,SP,

0193 4D 49 4B M,LK

0196 20 3F 00 Sp,?,NUL,

0199 00 0A 0D NUL,LF,CR

019C oD CR’

Some Instructions To Help It All Make Sense:

1. This routine is set up for an I/O device of the
user’s choosing, as long as it is fed thru the KIM
internal TTY port.. Users with other I/O will
have to modify the coding to suit their particular
situation.

2. The routine is self-contained on Page One and
leaves all other memory free for user programs,
but be prepared, as always, to re-read the
routine from cassette should the stack overwrite
the routine.

3. Execute as follows:
After loading the coding, a ““GO’’ executed at
address $0100 will get the ball rolling.. your
terminal should immediately execute a CR/LF

sequence and will pause... Begin by typing in
the four digit address you wish to start loading,
or dumping from.. If you err in typing, just
correct by typing in the correct address again,
just like the KIM TTY monitor.. A “‘SPACE”’
after the correct address is in place will enter
that address into the pointer.. The program will
again send CR/LF and pause.. now, enter ‘‘L’’
if you wish to use the rapid load routine, or
“Q’" if you wish a formatted memory dump
from your indicated address.. If LOAD was
chosen, you may now begin entering data in two-
digit HEX and the pointer will be taken care of
for you automatically.. a good way to do this is

June/July, 1980. compute II. 59

QUICK CHANGE ARTISTRY

ENGINEERED SPECIFICALLY FOR ATTRACTIVE FUNCTIONAL PACKAGE

THE KIM-1 MICRO COMPUTER e Professional Appearance
e Protection of Chips and e Four Color Combinations
Other Components e Improves Man/Machine Interface
e Viewing Angle of Readout MADE OF HIGH IMPACT STRENGTH
Enhanced THERMOFORMED PLASTIC
e Improved Keyboard Position e Kydex 100 *
for Easier Operation e Durable
EASILY ASSEMBLED e Molded-In Color
e Absolutely No e Non-Conductive
Alteration of KIM-1 Required AVAILABLE FROM STOCK
e All Fasteners Provided e Allow Two to Three Weeks for
e Goes Together in Minutes Processing and Delivery

e No COD’s Please
e Dealer inquiries Invited

TO ORDER: 1. Fillin this Coupon (Print or Type Please)
2. Attach Check or Money Order and Mail to:

enclosures

STREET

CITY g rOUp

771 bush street / san francisco, california 94108

with a Small Screwdriver

STATE ZIP

Please Shipo Prepaid SKE 1-1(s) Color Desired blue 0O beige O
@ $24.50Each black] white OJ
California Residents please pay
$26.09(Includes Sales Tax)

** TM Rohm & Haas

Patent Applied For

June/July, 1980.

60 compute Il.
to enter two hex digits, and then space, as the 0100 3 LFY PROGRAM
routine will ignore the packed space character and g:;g ;xm TAPE VER
only enter the valid hex... If DUMP was chosen, 0130 JHARVEY Be HERMAN
the routine will now commence to dump the con- g:gg 3 BA $300
tents of memory consecutively from your indica- 0160 oS
ted address like this: 0170 CHKL +DE S17E7
0180 CHKH «DE $17E8
0190 VEB «DE $17EC
0200 LOAD1I2 «DE $190F
0200 00 01 02 03 04 05 06 07 08 09 OA 0B 0C OD OE OF 0210 LOADTS “DE $1929
0210 EAEAEA i i ittt etc. 0300- D8 0220 VERIFY CLD
0301~ A9 00 0230 LDA #300
0303~ 8D E7 17 0240 STA CHKL
IT WILL LIST CONTINUOUSLY UNTIL YOU 0306~ 8D EB 17 0250 STA CHKH
PRESS A KEY ON THE KIM KEYPAD AND 0309~ A2 06 0260 LDX #3506
030B- BD 16 03 0270 LOADP LDA PROG-1,X
HOLD IT DOWN AT THE END OF A LINE.. 030E- 9D EB 17 0280 STA VEB-1,X
It will then stop and indicate the stopped address. 0311- CA 0290 DEX
0312- DO F7 0300 BNE LOADP
0314~ 4C 8C 18 0310 JMP $188C
0317- CD 00 00 0320 PROG +BY SCD $00 $00
(@) 031A- 4C 1D 03 0330 «BY $4C S1D $03
03i1D- DO 03 0340 PATCH BNE FAILED
031F- 4C OF 19 0350 JMP LOADI2
- - 0322- 4C 29 19 0360 FAILED JMP LOADTS
0370 «EN
KIM-1 Tidbits
Harnvey B. Herman 0100 3
| 0110 3APPEND MODIFICATIONS TO
Chem'STry DepOrTmenT . 0120 sKIM MICROSOFT BASIC
University of North Carolina at 0130 } SERIAL NUBER 9011
Greensboro 5 0150 JHARVEY B. HERMAN
0160 3
Greensboro, N.C. 2741 s1e0 5 s2785
3 i 0180 3ADJUST TAPE LOAD POINTERS
I have been using KIM for a number of years and _leh 2785~ 38 0190 NEWLOAD s
to share programs which I have developed or modified 2786~ AS 74 0200 LDA *S7A
with the readers of Compute II. 2788~ E9 03 0210 SBC #3023
_ The first item is a modification to the I?IM tape ::,’:g: zg ;g 17 g:gg f;: :;;gs
verify program from Issue #13 of 6502 User’s Notes. 0240 3NAIVE HARVEY
This program has a small bug which affects TTY use. :;gll"’ gg gg g::: ggg fl:zl;
The TTY delay characters (CNTL30/CNT.H30) are 2793- 8D F6 17 0270 SKIP STA SLTF6
stored in $17F2 and $17F3 and are overwritten by a 0280 JORIGINAL CODE CONTINUES
section (VEB) of the original verify program. In- gg:: JASSIGN ID ;fﬁ $2744 s
stead of the comforting KIM message on compleFion of 2744« A9 01 0310 LDAT(:SE?PE
the program, all I got was a meaningless chugging. 0320 +BA $2026
. .. . 0330 3POINTER TO NEWLOAD
The following program (origin 3300). circumvents the 2026~ 84 27 0340 ST NEWLOAD-1
problem by shortening the VEB section so the delay 0350 <EN

characters remain intact. I now include this in KIM
Microsoft BASIC, as the User program, so I can check
tapes after a SAVE.

Item 2 is a modification to KIM Microsoft
BASIC (serial number 9011) which allows one to
append programs on tape to the current one (if any)
in memory. Line numbers must be higher in the
appended program and cannot overlap. Otherwise the
only noticeable change is that one must remember to
NEW before LOAD when appending is not desired. I
have found this very helpful in conjunction with a
renumbering program, written in BASIC (see 6502
User’s Notes no. 13, p. 12).

I hope these programs will be found useful and
plan to share other tidbits with Compute II readers
in the future.

June/July, 1980. compute Ii.

Kl M EX-1 HERE’SANEATCOMBINATION

IDEAL FOR DEDICATED INDUSTRIAL OR PERSONAL APPLICATION

-
FEATURES z
® PLUGS DIRECTLY INTO AND EPROM-SOCKETS PROVIDED FOR 6
COVERS UPPER HALF OF KIM-1. 8K EPROM. @
EXPANSION FINGERS CARRIED (INTEL 2716 2KX8's) ¥
THROUGH FOR FURTHER m
EXPANSION. ® BLOCK SELECT SWITCHES FOR g
EPROM. e
O NERFUL 8522 VIA EPROM USABLE IN ANY ONE OF 3
(VERSATILE INTERFACE FOUR 8K BLOCKS FROM 800OH. E
ADAPTER) !
18 BI-DIRECTIONAL 1/0 LINES ® AUTOMATIC RESET ON POWER =
4 INTERRUPT/HANDSIAR UP AND SWITCH SELECTABLE z
LINES DSHAKE INTERRUPT VECTORS. b
2 INTERVAL TIMERS ® PERMITS UNATTENDED x
SHIFT REGISTER FOR SERIAL- OPERATION.
PARALLEL/PARALLEL-SERIAL ® LOW POWER CONSUMPTION-
OPERATIONS. 5V AT 300 Ma. FULLY LOADED
® RAM-SOCKETS PROVIDED FOR ® BUFFERED ADDRESS LINES
4K RAM CONTIGUOUS WITH KIM
RAM. ® HIGH QUALITY PC BOARD,
(LOW POWER MOSTEK 4118 SOLDER MASK
1KX8's)
@ COMPLETE DOCUMENTATION ASSEMBLED AND TESTED

PROM, RAM AND 1/0 EXPANSION ON ONE BOARD HAVING MANY INDUS-
TRIAL/HOME APPLICATIONS FOR DATAACQUISITION, PROCESS CONTROL,
AUTOMATIC CONTROL OF FURNACE, SOLAR HEAT, LIGHTING, APPLI-
ANCES, ETC.....

PA RESIDENTS INCLUDE 8% STATE SALES TAX

DIGITAL ENGINEERING ASSOCIATES N
P.0.BOX207 @ BETHLEHEM, PA 18016 LIMITED TIME 1K RAM FREE P

* KIM IS A REGISTERED TRADEMARK OF MOS TECHNOLOGY, INC.

AA A AR A AT A AN AR AR A A AR AR

KIMST
FLOPPY
DISKS—

PERRY PERIPHERALS HAS
THE HDE MINIFLOPPY TO KIMSI
ADAPTER

MINIFLOPPY S-100 ADAPTER: $20

(New Price Effective June 1, 80)
® FODS and TED Diskette
® FODS and TED User Manuals
® Complete Construction Information-

Not A Kit, No Parts Supplied

OPTIONS:
® FODS Bootstrap in EPROM (1st Qtr'80)
® HDE Assembler (ASM) $75
® HDE Text Output Processor (TOPS) $135

(N.Y. State residents add 7% Sales Tax)
Place your order with:

PERRY PERIPHERALS
P.O. Box 924
Miller Place, N.Y. 11764
(516) 744-6462

Your ‘““Long Island’’ HDE Distributor
KIMSI, a product of Forethought Products
TSR 222X R R R R RS & &8

COMPUTE’S BOOK CORNER

We Now Have One of the
Best Collections of 6502
Resource Materials Around:

Best of The PET Gazette
$10.00
Collected PET User Notes

Volume 1, Issues 2 - 7
$9.00

$1.50

All 7 issues $10.00
6502 User Notes

Volume 1, Issues 1-6 S 6.00

Volume 2, Issues 1-6 S 6.00
Volume 3, Issues 1-5 $10.00

All 17 Issues $20.00

MC/VISA Accepted
Add $2.00 shipping & handling
COMPUTE, P.O. Box 5119, Greensboro, NC 27403

Volume 2, Issue 1

I R R e R Y L 2 2 22 R R
* NN NNNRRNRRNNAENERNNENARNNNENNPXEEAEENLR

