- pa3sanbay uUOT3INSIIC] SSIIPPY —

&

=2

o
;3 ¢
< (o3
o] o}
3 A0
Ot O
IRTO
Q-0 X 957 50
\ 3 X N, M

woX <

oI Y
mX o0

-]

wha

SN0
owm L .
v Qs
i achines
o 3N
U - B
5 W
> : Vol. 1, Issue 2, March 1991 Price: $2.75

The 68xxz Machises is published and copyright (C) 1991 by Catham House Company, RDYL Box 379
Wyoming, DB 19934. Ph. (3B2) 492-8511, The editor 1s James H. DeStafenc. One year USA subscription
is $12.%0. Canada and Mexico $14.25, All others (surfaceg $17.25. ALl maénr credit cards arcepted.
Our low prices reflect a 18% cash discount. Please add 1BX to credit card orders. Any size display
advertising is accepted. The half page rate is $18/1ssue, Write for other size/duration rates.

Readers are encouraged to contribute letters, articles, programming information and other
naterial related to computers with the 68xx(x) processors; excepting Macs and Amigas. Tliease send
material to the above address. Thank you for your support.

The
Editor's Thoughts This Issue:
By Jawes DeStafeno
Editor's thouphts . 1
Selections In 'C° . 3

Mile stone number dne passed by
with noteworthy success. No one
hds told me issue number one
stinks. No subscriber of "68 NEWS"
P asked for their money back. (Be-
] i cause of that Peter Stark has OKed

Bob van der Poel cont-
inues with C programming
discoveries.

Hand Compiling, The

sser1d ASITI

us to carry the colors until far- Fasy Way - - - - A
ther notice.) Credit card numbers Peter Stark shows us a
have been phoned in and checks novel use for BASIC.
have been mailed in, both asking
for a subscriptions. That is our
life-line and we thank those that R'";D: yfualm:g'u:;: z:!o? - H
have done so.
| While handing out thanks, we
have many to go around. Of course Beginner's Corner . 12
1 feel blessed to have friends Ron Anderson continues with
that think enough of me to encour- his broad brush 68xxx
age the project. So "thanks" to assembly programming hints
all of you. series.
Randy Krippner is the layout
degigner. He put in a lot of time, o
effott and'a few bucks of his own
to get the résult we see. "Thank Advertiser's I1ndex 4
o you", Randy. - 5
fso mdj. I feel lucky to have chosen the Classfied Ads . . . 10
printer I did. As you can see Next Month - - - - 12

their quality is really good and
their cooperation is excellent.

{5

March 1991

68xxx Machines

Page 1

“"Thank you", Mike and your whole
team.

The fact is we have had nothing
but praise "for the first effort",
save "more pages and writers would
be nice". Of course our reply is,
"Thank you. Hang in, that's what
we want too. We'll get there."

An eagle eye on this month's
masthead will notice an increase
in the subscription rates. 1 feel
bad raising the rates after only
one issue. However, as you know
the postage rates went up on the
third of February. We were already
as close to the bone as we could
get. All of you that subscribed
from the first issue got in just
under the wire.

Speaking of dollars, Randy
tried to do Bob van der Poel a
favor by changing his S&H rate in
his ad from $2 to $2¢. Bob told us
to change it back; "It didn't fool
anyone."

I hope you noticed the clear
tape we use to hold the pages
closed during shipping peels off
without tearing the page. Inter-
esting stuff.

I was hoping to have a
"Reader's Letters" column this
time, but in trying to catch up
there has been little time between
the mailing of the first issue and
going to press for this second

issue. Most all the letters we've
gotten have a check for a subsc-
ription and a note much like Alen
Gordon's of Miami, Florida, "Many
thanks for the sample issue of
<68xxx> you sent." "Best of luck."
Maybe next time we'll have enough
letters to make a column. If you
let us know your thoughts, maybe
one of them will be yours.

On the subject of writing,
please remember that I am looking
for YOUR feed back. The effort is
being made for YOU and I want to
do good by you. Let me know what
you are thinking about. Of course
we are always looking for article
contributions. What did you just
learn and/or would like to share?
It doesn't have to be a program,
maybe even shouldn't be. Just some
experience that gave you satisfac-
tion to get right or completed.

Don't miss the new Classified
Ads column. Do you what or have to
sell, new or used software or har-
dware. The cost is low and we'll
do the type setting. A '"Wanted"
ad, $2.50 per 50 character line
per issue. A "Sale" ad, $5.00 per
50 character line per issue.

* k ok k ok k k x k kx k * *x * X

God bless our troops in the

Gulf and all around the world.
* kK k ok ok X % k k kX % % k k %

* ¥ X *
* ¥ ¥

The 68XXX Machines

The newest, most in-depth information vehicle for the new
68xxx machines and their operating systems.

Name

[1 1 year $12.50 US. Canada and Mexico $14.25, All others, $17.25
[T 2 years $23 U.S. Canada and Mexico $26.50. Al others $33.50

Company:

Street

City : St:

Zip:

Send check or money order to:

The 68xxx Machines
RD 1, Box 375
Wyoming DE 19934

Al major credit cards accpeted

For credit card orders phone:

(302) 492-8511

Page 2

68xxx Machines

March 1991

Selections In C

By Bob van der Poel

We started our discussion of
multiway selections in C last
month by reviewing the concept of
a pointer to a function. This
month we'll get a bit more fancy
(certainly not tricky) and expand
on this concept by setting up an
array of function pointers.

In my new text editor (VED for
0SK) I needed a method of creating
a series of cursors, depending on
the current state of the options.
For example, I want a block cursor
for insert mode and an underline
for overstrike. Complicating
things even more, I have to be
able to do this in normal and re-
verse video.

The basic technique to get a
keypress while displaying a cursor
is pretty straight forward:

1. Set the terminal position to
the correct x/y position,

2. Turn on the correct video at-
tribute,

3. Display the character under the
cursor,

4. Wait for a keypress,

5. Restore the original video at-
tribute,

6. Return the keypress to the
calling function.

In the above, it is (2) and (5)
which are the problem: how does
the cursor routine know which at-
tributes to use.

The first part of the answer
lies in the parameters passed to
the function. I pass the x/y
screen position, the character
under the cursor and the cursor
type. The cursor type can be:

@ - underline cursor

1 - reverse video block (for use
on normal video text)

2 - normal video block (for use
on reverse video text)

For an underline cursor step
(2) becomes a call to a function
which turns on underlining and (5)
turns wunderlining off. Similar
sequences apply to reverse video,
etc. Have a look at the following
fragment to see how I did it:

curkey(x,y,c,ctype)

int x,y: /* x/y position
*/

char c; /* character curr
ently at cursor pos */

int ctype; /* cursor type @=
UL, 1 & =BLOCK */
{
register char k, getkey();
extern int revon(), revoff(
}, undlnon(), undlnof
£Q)
static int (*curfn[][2])()=
{
undlnon,undlnoff, /%
overstrike mode
x/
revon,revoff, /*
insert mode
*/
revoff,revon /* r
everse video input
lines */
}:
gotoxy(x,y);
(*curfn{ctypel(@])():
writel(c);
k=getkey();
gotoxy(x,y);
(*curfnlctypel[1])():
writel(c);
return k;
}

There are a number of things to
examine here. First, the line sta-
rting with 'extern' declares the
video functions we use. They need
to be declared as external since
the actual functions are contained
in a separate source file. The
next section <creates an array
which is pointers, pointing to
functions. The first element of
each entry in the array is the
function which enables the neces-
sary attribute, the second
disables it. The 'static' modifier
is needed so the compiler can set
the pointers in the program's data
area.

Now examine the actual funct-
ion: eight lines of fairly cryptic
code. The first line sets the cor-
rect x/y position. The second line
calls a function. Which one? It is
the one pointed to by the sub-
script subscript 'ctype'. The sec-
ond subscript, @, points to the
enable routine. If 'ctype' has a
value of @ the function undlnon()
will be called. The third line
displays the character which is
supposed to be under the cursor.

March 1991

68xxx Machines

Page 3

Line four calls a function which
gets a single keypress and assigns
the result to the variable 'k'.
Next the x/y position is reset,
the video attributes are restored
and the original character |is
again displayed. Finally, the key
is returned to the caller.

This could have been done with
SWITCH..CASE statements, but the
method used here is much shorter
(and faster). Not only that, but
it is very easy to change the vid-
eo attributes used for the cursor
and add other cursor types: just
change or add more entries to
‘curfn[]{]"'.

Have a good loock at the decla-
rations used in this function. I
know it looks a bit complex with
all those parentheses--but that is
the correct (and only) way to do
it. My actual function is even
shorter than the above one since I
wrote another function which sets
the x/y position, attribute and
character. See if you can set up
the correct parameters for this
second function and the call to
it.

Next month we will expand this
concept a bit more and create a
jump table using a structure. Un-
til then, if you have any comments
on this article or suggestions for
future ones please drop me a note
here at the "The 68xxx Machines"
or directly to me at PO Box 355,
Porthill, ID, 83853,

Advertiser's Index

The 68xxx Machines 2
Bob van der Poel Software . 6
delmar company 8, 9
Palm Beach Software . . . 11
Peripheral Technology . . 13

Hand Compri 1l ingx
The Fasy Way

By Peter Stark

Although there are several com-
pilers available which run under
68008 SK*DOS, there is none for
Basic, a language which I particu-
larly like. And so 1 frequently
write and debug programs in Basic
(which is very easy and fast to
use), and then hand-compile them
into 68000 assembly language.

Although compiling a program by
hand seems like a difficult job,
actually it is quite easy and fast
-- once you get the knack and dev-
elop some fairly simple steps to
follow. In this article, I will
describe how it's done, and give a
simple example. Hand-compiling
programs will work for almost all
Basic programs except those which
use floating-point arithmetic. We
do not yet have a good series of
assembly language floating-point
routines. One great advantage of
hand-compiling is, if you are rea-
sonably proficient at assembly
language programming, you can pro-
duce very compact and fast code,
probably faster than a compiler
might produce.

I have used the procedure sev-
eral times. For example, I used
this method to produce EDLIN, a
simple line editor which is part
of the SK*DOS operating system.
The entire EDLIN program took a
weekend to write - one day to
write the entire Basic program and
debug it, and a second day to tra-
nslate it to assembly language,
and get all the bugs out of it.
The procedure I follow goes like
this:

1. Write the original program
in Basic and debug it completely.
Make sure all parts work, and they
do what you want them to do. Al-
though it is possible to make
changes Jlater, it is easiest to
get it all working from the very
beginning.

2. Make a copy of the Basic
program file (in ASCII, if you
work on a PC clone), and rename it
with a .TXT extension; this will
be the framework of the assembly
language program.

3. Using an editor, insert an

Page 4

68xxx Machines

March 1991

asterisk before every line of the
program. In this way, the Basic
program will become a series of
comment lines in the assembly lan-
guage program. These Basic program
lines, plus any other comments
which you may add, will provide
documentation, which is probably
much better than most programs
written directly in assembly lan-
guage. This method describes not
just what each part of the program
does, but also HOW it does it.

4. Now make a firm rule: do not
remove any of these Basic state-
ments, and do not move them
around. Keep them in the exact
same order as they were in the
original Basic program. This will
force you to write the assembly
language program in the same
order.

5. Now look at the beginning
of the program. If there are any
DIM statements, or any initialized
variables; set up the storage for
them first. My own preference is
to put all storage at the end of
the program. Although this sepa-
rates the Basic declarations
(which are usually at the begin-
ning) from the assembly language
storage (which is at the end), it
seems to keep things more orga-
nized.

6. Now continue down the pro-
gram, and look at each line. If
possible, translate each line into
assembly language code literally,
without even thinking of the con-
text. Sometimes it will be easier
to translate an entire group of
lines, but wherever possible,
treat each Basic line separately.
As each line is translated, assume
that all data it needs is in mem-
ory. Do not carry anything in CPU
registers between lines. Each
block of code should take all its
data from memory, process it, and
then return everything to memory
when done. While this may make the
program a few lines longer, we 68K
users usually have so much memory
available that we can afford to
waste a few bytes here and there.
And it does make it much easier to
keep track of what is happening in
each line.

7. Each block of assembly lan-
guage code should have a label
based on the line number of the
Basic line it replaces. For
example, the block of code which
implements line 6@ of the Basic
program gets the label L6#, (where

the I, stands for Line).

8. 1 usually make all numeric
variables into long integers
(using four bytes), and give all
strings a maximum length of 79
characters. 1 use a CR ($6D) de-
limiter to mark the end of a
string, so I reserve 80 bytes for
them.

9. If the Basic program uses
functions, I usually include simi-
lar subroutines in my programs. My
assumptions for subroutines are
exactly the same as calling SK*DOS
functions, namely (a) A®-A4 and
D#-D4 will never be changed by
subroutines, (b) A5-A6 and D5-D7
will be changed, (c¢) input into a
subroutine will be in A4 and/or
D4 if possible, and (d) returned
results from a subroutine will be
in A5 and/or D5, if possible.

Let's look at the following
simple Basic program as an exam-
ple:

1¢ FOR 1 = 1 TO 3

20 INPUT AS

39 L = LEN(AS)

49 PRINT RIGHTS$(AS,L-1);
50 PRINT LEFT$(AS,1);

60 PRINT "AY"

7¢ NEXT I

8¢ STOP

This program translates three
words to what kids sometimes call
Pig Latin. The rule for Pig Latin
is that you put the first letter
of every word on the end of the
word, and add "ay" to the end of
the word. For example, TABLE be-
comes ABLETAY. Let's look at the
program line by line. First, 1
start with the usual -- a comment,
a library call to bring in SK*DOS
function names, and a START line
with the version number:

* Demonstration program to show
hand compiling Basic:

LIB SKEQUATE

START BRA.S L10
DC.W 500681 version number

Now I start off translating
each line of the program. Line 18
becomes:

*1¢ FOR 1 = 1 TO 3

L1¢ LEA 1(PC),R0
MOVE.L #1,(R9) 1 =1
LEA LASTI(PC),A®
MOVE.L #3,(A®) LAST I=3

March 1991

68xxx Machines

Page 5

Great 0S—-9 Software

VED: 05-9 Text Editor $24.96

The best editor for 0S-9 just got
better. Version 2.0 of this best se-
ller now includes 36 definable mac-
ros, case-switcher, and even more
speed. See the review in Mar/Apr Cli-
pboard. Works with 128 or 512K. Up-
grades to version 2.0 with new 28 pg.
manual are $12.68 with proof of pur-
chase.

VPRINT: 0S-9 Text Formatter . $29.95

An unbelievably powerful formatter.
Features include complete proportion-—
al font support, multiple columns,
footnotes, indexing, table of conte-
nts and more. Comes with 120 pg. man-
uval, demo files and extensive macro
file. 512K RAM recommended.

Ultra Label Maker 9 $19.95

Turns your printer into a printing
press for labels. WYSIWYG previewing.
Supports ALL printers. Useful and
lots of fun. One of Rush Caley's Top
18. Requires 512K Coco 3. Coco 2/3
version $14.95 :

Magazine Index System 9 . . . $19.95

Now you can find those references
fast. Comes with extensive Coco maga-
zine data files. File compatible with
our RS-DOS version. Another one of
Rush Caley's Top 1. Requires 512K
Coco 3. Coco 2/3 version $14.95

Sorry, no credit cards. Bnclose check
or money order plus $2 S/H. Complete
catalog available. Send $1.00. (Free
with order.) Most orders shipped next
day!

Bob van der Poel Software
P.0. Box 57

Wynndel, B.C. OR
Canada V@B 2N@

P.0 Box 355
Porthill, 1D
USA 83853-0355

68xxx Machines

The above shows that 1 simply
place a 1 into a long integer
called I, and a 3 into an integer
called LASTI. (Variable storage is
all at the end of the program.)
Note how this block of code begins
with the label L1060, and how we use
PC-relative addressing to refer to
memory. Note also how the original
Basic line becomes the comment.

The next line becomes:

*2@¢ INPUT AS

L2@ LEA QUESTM(PC) ,A4
DC PSTRNG
print "? "
DC INLINE
input string
LEA LINBUF(A6),A4
move "from" address
LEA ADOLR{(PC), A5

move "to'" address
BSR.L STRMOV
put string into AS
BRA.S L39
QUESTM DC.BR "? ", 4

Since Basic always prints a
question mark before the doing the
INPUT, we duplicate this here by
setting up the appropriate string
(QUESTM) and using SK*DOS's PSTRNG
function to print it. (Since we're
using the SK*DOS print-string fun-
ction, we use the normal delimiter
of 4 to end the string.) The rest
of the code uses the SK*DOS INLINE
function to input a line of text,
sets up A4 to point to the string
just read, A5 to point where we
want it to be moved into, and then
calls the STRing-MOVe subroutine
(shown later) to move the string
from the line buffer into ADOLR.
ADOLR is an 8@-character buffer
(defined at the end) which holds
the string AS.

The following line determines
the length of the string AS:

*3¢ L = LEN(AS)
L38 LEA ADOLR(PC) ,A4
BSR.L LEN
LEA L(pC), A4
MOVE.L D5, (A4)
store length

We simply point A4 to the
string and call the LEN function
(shown later). The length, which
is returned in D5, is placed into
the long integer called L.

The next Basic line prints the
right L-1 characters of the string
AS. For example, if AS is "TABLE",
then the line prints ABLE:

o
Page 6

March 1991

*4¢ PRINT RIGHTS$(AS,L-1);

L49 LEA ADOLR(PC) , A4
AS
LEA TEMP(PC) ,A5
TEMP
MOVE.L L(PC),D4
SUB.L #1,D4
L-1
BSR.L RIGHT
LEA TEMP(PC) , A4
TEMP

BSR.L PRTSTR
print string

Our assembly code does this in
two steps: first, it moves the
right L characters into a tempo-
rary string called TEMP, and then
it prints TEMP. The first part is
done with the RIGHT subroutine
(which needs A4 to point to the
input string AS$, A5 to point to
the output string TEMP, and D4 to
contain the length). The second
part is done with PRTSTR (which
needs A4 to point to the string).
There would have been an easier
way of doing this (pointing A4
into the middle of A4 and then
using PRTSTR), but I wanted to
show how to use the RIGHT subrou-
tine.

The next Basic line prints the
first letter of A$. Again, there
would have been an easier way (by
simply picking up the first char-
acter of ADOLR and using SK*DOS's
PUTCH function to print it), but I
wanted to show the LEFT subrou-
tine:

*50 PRINT LEFTS$(A$,1);

L5@ LEA ADOLR(PC), A4
AS
LEA TEMP(PC) ,AS
TEMP
MOVE.L #1,D4
1
BSR.L LEFT
LEA TEMP(PC) ,A4
TEMP

BSR.L PRTSTR
print string

The next Basic line prints the
string "AY" at the end of the
word. As before, there would have
been an easier way, but this exam-
ple shows how to use PRTSTR:

*6@ PRINT "AY"
L6@ LEA AYSTRN(PC) ,bA4
BSR.L PRTSTR
print string "AY"
DC PCRLF
follow with CR/LF

BRA.S L70
then continue
AYSTRN DC.B 'AY',$0D
Next we have to implement the
NEXT I statement. It takes just a
few lines to get 1, increment it,
put it back, and check against
LASTI. As long as 1 is equal to
LASTI or less, we simply go back
to line 206:

*7¢ NEXT I
L7¢ LEA I1(PC), A4
MOVE.L (A4),D7
1
ADD.L #1,D7
increment
MOVE.L D7, (R4)
restore
CMP.L LASTI(PC},D7
check against last value
BLS.L L2¢
continue if I <= LASTI

Line 86 is almost trivial:

*8¢ STOP LS8¢ DC WARMST
then stop

Finally, we have to put in the
subroutines. If you are going to
do hand-compiling often, it is
very useful to write a stock set
of subroutines to mimic the stan-
dard Basic string functions. I
always assume that all strings
have a maximum limit of 79 charac-
ters plus a delimiter (this is
easily changed for special cases).
I have done enough debugging of
the original Basic source program
that 1 don't have to worry about
string overruns etc., so these
subroutines are fairly simple.
Here the are:

* STRMOV subroutine - move a
string from (R4) to (A5). ASSUME
THAT
* ALL STRINGS HAVE LENGTH 80, so
don't bother to check for end
STRMOV MOVEM.L A4-AS5,-(A7)
push on stack
STRMO1 MOVE.W #79,D7
80 - 1
STRMO2 MOVE.B (RA4)+,(A5)+
DBRA D7 ,STRMO2
repeat until 80 moved
MOVEM.L (A7)+,A4-A5
pull
RTS
* LEN subroutine - enter with A4
pointing to string, exit with
length in D5 LEN CLR.L D5
MOVE.L A4,A5 LENA

March 1991

68xxx Machines Page 7

059/68000 SOFTWARE

OUIXCK ED - Screen editor and text formatter - . -8275
A high quality documentation tool and program editor ideally suited to
laser printer users. Uses function and cursor keys on any terminal ,

con-
figurable per user. Microjustifies mixed proportional text. Automatic
table of contents generation and user-definable macros and commands.

Drives any printer. Ideal for multi-user systems. Available on a 30-day

try before-you-buy basis.

FLEXELINT V4 .00 - The C source code checker
Flexelint finds quirks, idiosyncracies, glitches and bugs in C programs.
60 options control checking by symbol name or error number. Checks in-
clude intermodule inconsistencies, definition and usage of variables,
structures, unions and arrays, indentation, case fall-through, type con-
versions, printf and scanf format string inconsistencies, and suspicious
semi-colons. A must for all serious C programmers.

IMP - Intelligent Make Program Coe e e e e e e,
IMP does everything you wished Microware's Make would do, and a great
deal more. It is well-behaved, consistent, and extremely flexible. It
has a built-in C-like preprocessor and has comprehensive debugging
facilities. Rules can be user-defined, and make files for jobs other
than assembly-language or C compilation are easily constructed.

DISASM OS99 - 05-9/68K Disassembler e e e e e e
This high-speed, three-pass 68000 disassembler can also handle the 68010
and 68020. It intelligently decodes module headers and produces symbol
information that can be repeatedly edited and passed through the disas-
sembler allowing iterative disassembly. The system libraries are read to
supply symbols.

WINDOWS - C Source Code Windowing Library e e
This C source code library package supports multiple overlapping windows
displayed on one character-based terminal screen. It supports window
headers and footers, and pop-up windows. Windows may be moved, panned,
written to while off-screen, etc.

PROFILE - User State Program Profiler,
Designed to profile user-state programs. Profile effectively samples a
traced execution building statistical information as it goes. It reads
symbol table modules to give a function-by-function account of the time
spent during execution. The user may "zoom in" on a function to find a
smaller range of addresses where time is being spent.

PAN UTILITIES - C Source Code Utility Set [
Forty useful utilities are supplied in this C source code package. In-
cluded are utilities to move files, find files, patch disks, undelete,
cross-reference C programs, set and remove tabs, and spell-check docu-
ments.

PC9 - MS-DOS to 0S-9 Windowing System e e . $350
PC9 allows an MS-DOS computer to be used as a terminal to multiple
processes on a remote 0S-9 system linked by a single serial cable. Each
0S-9 process is displayed through a resizable, moveable window on the PC
screen. Terminal emulation facilities support uMACS and other screen
editors and provide a programmable PC keyboard. Access to PC disk drives
is also available through the 0S-9 unified 1/0 system, giving disk
capability to ROM based 05-9 systems. A hot key switches between DOS and
05-9 displays.

¥ (elmar co

Middletown Shopping Center - PO Box 78 - Middletown, DE
302-378-2555 FAX 302-378-2556

19709

08-9 is 3 Trade Mark of Microware Systems Corp. Flexelint is a
Trade Mark of Gimpel Software. MS-DOS is a Trade Mark of Microsoft

. $495.

. $§250.

. $250.

. $250.

. $270.

. $250.

.00

00

00

00

00

00

00

.00

SYSTEM IV COMPUTER

THE SYSTEM IV is a high performance computer system based on the Motorola 68000
microprocessor operating at a clock speed of 16 MHz and has been designed to
provide maximum flexibility and versatility. Microware's Professional 0S89/
68000 operating system is included with the SYSTEM IV providing an efficient
multi-user and multi-tasking environment. This provides the user with a PC for
home use, small business applications and a viable low-cost solution for many
industrial control applications (embedded systems). Special requirements
{such as midi, sound, A-D/D-A, net-working, etc.) are easily handled with
readily available low-cost PC/XT boards which can plug into the SYSTEM IV ex-
pansion slots. And, as user requirements change or improved special function
boards become available, they may be added or replaced at the user's option.
Thus, when software requiring multi-media or other new capability becomes a
reality, the user will be able to add that capability easily and have the latest
technology at his disposal.

TO ACCESS THE LARGEST SOFTWARE BASE available, an MS-DOS board, the ALT86, will
be available shortly as a low-cost option. This board has a V30 (8086) micro-
processor running at 10 MHz, includes ! Meg of O-wait state RAM, uses the Chips
and Technology BIOS, has a socket for an 8087 math co-processor and plugs into
one of the SYSTEM 1V expansion slots. Additionally, an 059/6809 software emul -
ator/interpreter will be available soon. The emulator/interpreter will permit
running most COCO 0S9/6809 software on the SYSTEM V.

OTHER OPERATING SYSTEMS may be installed. These include CPM, UNIFLEX, MINIX,
STARDOS, REXDOS and most any other operating system capable of running on the
68000 microprocessor chip.

THE DESIGN OF THE SYSTEM IV is derived from previously successful
uses components that have been tested and proven in other systems.
uniqueness stems from the ability of its designer and manufacturer, Peripheral
Technology, to provide well designed, reliable hardware at a low cost. Fur-
ther, only the functions necessary to the basic operation have been designed
into the mother board. Seven PC/XT compatible expansion slots allow an un-
restricted selection of standard PC/XT accessory boards by the user. The user
is not locked into any preconceived notions of what is best.

designs and
SYSTEM 1V's

THE MOTHER BOARD is a 4 layer XT size board which holds the MiCTIOProcessor,
sockets for up to 4 MBytes of O-wait state RAM, a battery backed-up clock, 4
serial ports, 2 parallel ports, a high density (37C65) floppy disk controller,
7 PC/XT compatible expansion slots, a memory expansion connector to allow an
additional 6 MBytes of O-wait state DRAM, keyboard connector and the necessary
system support chips.

THE TERMINAL SYSTEM includes the mother board with } MByte of on-~board DRAM, a
high density floppy disk drive (3 1/2" or 5 1/4"), 4 serial port connectors, a
parallel printer port connector, a 200 watt power supply, mini-PC style case
capable of holding 5 half-height drives and Professional 0S9/68000. This con-
figuration requires the use of an external terminal(s).

THE CONSOLE SYSTEM adds a VGA (800 x 600 x 16) graphics board and an AT style
keyboard and provides full graphics capability at the console. Terminals may
be added.

THE SYSTEM IV comes with a one (1) year parts and labor warranty.

TERMINAL System $ 999 00
CONSOLE System $1,149.00
OPTIONS
3 MByte additional DRAM $120.00
Hard Disk Controller and driver $ 69.00
40 MByte Hard Disk $295.00
20 MByte Hard Disk . $240.00
Additional 5 1/4" or 3 1/2" HD Floppy Drive S 92.00
AT Style keyboard and 800 x 600 x 16 VGA Card
and driver $159.00
For 1024 x 768 x 256 VGA Card w/l1 Meg of Memory
in place of standard VGA card add $170.00
Mono Display Card in place of VGA card deduct $ 50.00
Prices subject to change without notire
Special monitor prices when ordered with the SYSTEM 1V.

See the PERIPHERAL TECHNOLOGY AD for kits.

+ delmar co «

Middletown Shopping Center - PO Box 78 - Middletown, DE
302-378--2555 FAX 302-378-2556

19709

CMP.B #$0D, (A5)+
is next char a CR?
BEQ.S LENEX
yes, exit
ADD.L #1,D5
no, increase length
BRA.S LENA LENEX RTS
finally exit
* LEFT subroutine - put left D4
chars of (A4) string into (AS5)

LEFT BSR.S STRMOV
copy entire string first
ADD.L D4,A5

MOVE.B #$0D, (R5)
cut off end of string
RTS

* RIGHT subroutine - put right D4

chars of (A4) string into (AS5)

RIGHT MOVEM.L A4-A5,-(A7)
push on stack
BSR.S LEN

get length of (A4) string

ADD.L D5,A4
point A4 past string

SUB.L D4 ,A4
then back up to 1lst char of

desired
MOVE.L 4(A7).,AS5
restore original A5
BRA.S STRMO1
move string, pull, and RTS
* PRTSTR subroutine - print
string pointed to by A4 PRTSTR
MOVEM.L R4-R4/D4-D4,-(A7)

push
PRTSTI1 MOVE.B (A4)+,D4

next character

CMP.B #50D,D4
is it CR?

BEQ.S PRTST2
yes, so stop

DC PUTCH

no, so print it

BRA.S PRTST1

then go back for next
PRTST2 MOVEM.L (A7)+,A4-R4/D4-D4
pull

RTS

We are almost done. We now need
to set aside space for all vari-
ables. This data area assumes that
all numeric variables are long
integers, and that all strings get
8¢ bytes:

I DS.L 1
I

LASTI DS.L 1
last I in FOR loop

L DS.L 1
L

ADOLR DS.B 89
AS

TEMP DS.B 8¢

{5

Page 1@

68xxx Machines

temporary string

Since Basic assumes all vari-
ables are zero and all strings are
empty when it starts a program,
you may want to initialize this
area with appropriate DC state-
ments rather than just defining
storage with DS. I am usually car-
eful in my Basic program to assume
no initialization, so I do not
bother with this extra step.

Finally, we end off the program
with

END START

The trick is to play dumb.
Don't try to combine lines, and
don't try to consider what each
Basic line is doing. Simply do
what a real compiler does: tran-
slate each line as you go and ig-
nore its context. Remember the
rules for register usage, both as
to what registers subroutines use
and/or change, and also the rule
that nothing gets left in the
680008's registers between Basic
lines. If you want to make the
program smaller or faster, then
wait until it is finished and run-
ning before trying to optimize. My
experience has been that you will
not feel the need to make any cha-
nges.

So do try it. I have hand
compiled several ©programs from
Basic, and found it very useful.
In a few cases, where I was stuck
on a complex algorithm within an
assembly language program, I have
used Basic to check it out and
then hand-compiled just that small
portion into a larger program. It
works.

Classified Ads

- WAWNTRD SS equipment . "VT CPU card, also
Gimix P10 28 FDC. Alen P Gordo Hg

168 N¥ 176 St7 Wisni, FL 33168] (305
53-3089.

- IAITID Floppy disk drive, double gided, for
CoCo. Jim DeStafeno / Rd 1, Box 375/ Wyoming,
DB 19936 / (382) 492-8511.

- SALE Complete, read{ to plug in; all hard-
ware, software aod manuals; super fast 20MB hard
digk and 35/48 track, double sldvd flo fpy dlsk
drive; both in one case, for Cofo |

Works with both BASIC and 0§- 9. b 15 parkl
tioned. Used sparingly; 8525, tafeno (Rd
1, Box 375 / ¥yoming, DE 19934 }13 §92-8311.

March 1991

Rush Caley, LIVE! I

Like a great many people in
this country, much of my attention
has been given to the war in the
Persian Gulf. One of the fascinat-
ing points of interest to me is
the insistence on the part of the
press to ask stupid questions at
Pentagon briefings and other such
gatherings. Following are examples
of such questions.

1. How long will the war last?

2. When will the ground war
begin?

3. Will Sadaam Hussein use
chemical and biological
weapons?

The list could go on and on; but
you see the pattern. All of this
led me to thinking about some of
the unanswered questions that nag
me sometimes late into the night.

But before 1 go further, 1
should explain that I am a person
given to listmaking. For some rea-
son it helps me to compartmental-
ize things into nice little pack-
ages I can open from time to time
and study. There are lists common
to most of us that we live by. We

make grocery lists, lists of
“"things to do" address lists,
Christmas lists, and so on. But
me? I go a step further. I have a
list of pet peeves, a list of mov-
ies I have on tape, a list of his-
torical people I most admire. It
goes on ad nauseam ad infinitum.

That brings me back to this
particularly favorite list of mine
- a list of questions to which I
really need the answers. Now I
realige that I may not get the
answers to many of these while
still on this side of Paradise;
but when 1 get to the other side,
here's a few things I'm going to
ask about straightaway:

1. Was Bruno Hauptmann innocent
of killing the Lindberg baby?

2. Were the Kennedy brothers
truly victims of lone
assassins? What was the
true nature of the
conspiracy surrounding the
death of President Kennedy?

3. What was the real cause of
the extinction of the
dinosaurs?

4. How does the bird in a cuckoo
clock know when to come out?

5. Is labor racketeer James
Hoffa really buried in a
bagseball stadium?

PT68K2/4 Programs for REXDOS & SK*DOS

EDDI A screen editor and formatter

A 160,000-word spelling checker
A native code assembler

A sub-directory manager

A disassembler program

A name and address manager

SPELLB
ASMK
SUBCAT
KRACKER
NADMES

$50.00
$50.00
$25.00
$25.00
$25.00
$25.00

Include operating system, disk format, terminal type and tefephone
number with order. Personal checks accepled. No charge cards.

PALM BEACH SOFTYWARE
Route 1 Box 11911
Oxford, I1. 32684

904/748-5074

68xxx Machines

March 1991

Page 11

6. Did William Shakespeare write
all of his plays?

7. Was the moon landing in July
of 1969 real? Or was it, as
some say, staged and filmed
in Colorado?

8. Was there really a King
Arthur; and more importantly,
did Merlin the magician
really live his life
backwards?

9. The world spins on its axis
at over 25,080 MPH. If
everyone in the world could
theoretically jump up in the
air at precisely the same
moment, would the world spin
out from underneath us?

160 We know that time is an
artificial measurement
created by human beings. If
time does not truly exist,
why are we trapped within a
specific portion of it?

Anyway, you might want to try
making your own list. It is very
relaxing and takes one's mind away
from ROMS, RAMS, nanoseconds, CRT
glare, and other such electronic
worries. It can provide excellent
mental exercise; but most of all
it's fun!

RTC

Beginner ' 's Corner

By Ron Anderson

- NEXT MONTH -

The last part of Bob van der
Poel's informative "Selections
in 'C' will continue with solu-
tions to even more complex "C"
programming stumbling blocks.
Ron Anderson's "Beginner's
Corner" series will continue
with its adventures in assembly
language programming the 68XXX
processor. I am confident Rush
Caley will come up with a sub-
ject of special interest to all
of us.

In addition to the above,
there will be a surprise for
all of us.

Of course I'd like to see a
fist full of ads in the new
Classified Ads column, and
enough time should have elapsed
for us to get enough letters
for a "Letters" column. All in
all, it will be an issue of
wanted information making for
high interest. I'm looking
forward to it and hearing from
you.

IlIlIlIlIlIlIlIllIlIlIIIlIlIlllIIlIllII-lIIIIlllll.lllllllllllllllll

Page 12

68xxx Machines

Now we are about to get into
something that is most wuseful.
Let's write a "Filter" program.
Basically a filter program is one
that reads an input file one char-
acter at a time, performs some
conversion on the text and writes
the altered text to an output
file. In simplest form, perhaps,
it does something trivial. We
could start with a program to re-
duce all multiple spaces in a file
to single ones, or even more
basic, one that converts all lower
case characters in a file to upper
cagse. Of course if we can do that,
we can do the reverse.

*

* UPPER CASE UTILITY FOR SK*DOS
/ 68K

* A PROTOTYPE "FILTER" PROGRAM

* THIS ONE CONVERTS LOWER CASE
LETTERS TO UPPER
* FROM FILE TO FILE

* SYNTAX: UPCASE INFILENAME
OUTFILENAME

*

* INFILE MUST EXIST, OUTFILE
MUST NOT

CONVERTS ONLY a-z to A-Z. ALL
OTHER CHARACTERS

NOT CHANGED.

»*

* ¥ %

EQUATES TO SK*DOS
*

FCBERR EQU 1
VPOINT EQU $A000
DEFEXT EQU $A024
PSTRNG EQU $A@35
FCLOSE EQU S$SA@@S8
FOPENR EQU S$AG®S5
FOPENW EQU SAGG6
FREAD EQU SA@01
FWRITE EQU $R002
GETNAM EQU $R023
PCRLF EQU $A034
PERROR EQU $AR@37
PUTCH EQU $A®033
WARMST EQU $AQlE
*

UPPER BRA.S START GOTO START
VER DC.W $6100 VERSION NUMBER
START DC VPOINT
MOVE.L A6,A0 SAVE USER FCB
POINTER FOR OUTPUT
LEA INFCB(PC),A3 POINTER TO

March 1991

INPUT FCB

MOYE.L A3,AGL POINTRR

DC GETNAM GET PILR SPEC

BCS HELP

¥OYE.B F1,D4 DEFAULT EXTENSION

DG DEFEXT

MOYE.L AP, A% OUTPUT PCB POINTER

DG GETNAM

BCS RELP

MOVE.B 11,04 DEFAULT EXTBNSION TXT
'DC DEFEXT DEPAULT EXTENSION

* NOW OPEN THE PILES
MOVE.L A3, A4 INFILE POINTER
DC FOPENR
BNE.S ERROR IF HOT ZERO
MOVR.L AB A4 OUTFILR POINTER
DG POPENNW OPEN POR WRITR
‘BNE.S ERROR IF NOT ZBRO

: MAIN 1LOOP TO READ AND WRITE EACH CHAR

MAIN MOYR.L A3, A4 POINT T0 INFILE
DC FREAD GO READ NEXT CHAR
BNE.S ERROR

RERE IS THR PILTBR THAT COMPARRS CHAR WITH

a-1 and changes to A-7

This section could be replaced with code to do
other functions. The rest of the pge only deals
with opening and closing the files ete.

CMP.B }'a

' DS
BLT.S CRARD ASCII VALUE 700 LOW To BR IN RANGE
cMe.B 1'z D5

BGT.S CHARL ASCIT YALUE 700 WIGH T0 BE [N RANCE
’SUB.! #528,05 CHANGE IT FROM LOWER TO UPPER

: BND OF FILTER, WRITR IT TO OUTPUT PILE

CHAR! MOVE.L AB,A4 OUTPUT FILR PCB POINTER
OYE.B D5,D4 CAAR READ INTO D5, WRITTEN FROM Dé
DC FWRITE WRITE TO QUTPUT FILB

‘BRA.S MAIN AND CONTINUB

: ERROR HANDLER

BRROR CMP.B #8, FCBERR{A4)

e % e e

BBQ.S EXIT

DC PERROR PRINT ERROR CODE
BXIT BSR.S CLOSB CLOSE THE FILE
*DC WARMST RRTURN TO SKDOS

: CLOSE SUBRROUTINE

CLOSE MOVE.L A, A4 POINT TO OUTPUT FILE PCB
DC PCLOSE CLOSE FILE

WOVE.L A3,A4 POINTER 10 INPU FILE PCB
ggsPCLOSB

HELP LEA HLPMSG(PC), A4
DC PSTRNG

DC WARMST
INECB DS.B 648
HLPMSG DC.B "Syntax: UPGASE INPILENAME
T oUEPILRNAME® §0, 504
DC.B "UPCASE reads an existing file converting atl
the lower™ 58D S84
DC.B “case letters From infile to upper case and
writiog the ,$6D §
BC.B “result to gutfgle. Default extensions .TXT
Jfor both files™,$8D,5MA
DC.B "and both g:fuult to the work drive.",

END UPPER

There are several things to discuss.
First, if GETNAM has an error, that means
that a proper file specification (or
rather two of them) are not present. In
that case, the HELP message is to be
printed for the user. Try running UPCASF
without any filenames and you will get
the help message.

We've used SK*DOS' system file control
block for the output file FCB rather than
creating our own. The choice is ours and
it really doesn't matter much., Most writ-
ers of utilities do take advantage of the
system FCB which is used to load the

68000 Single Board Computers

KITI1-16

Base 16MHZ Kit with board and parts

$189.00

for R§232 operation. Includes REX/MONK.

PT68K4-16

16MHZ Kit with 512K DRAM, 4 RS232 + $399.00

2 Parallel Ports, HD Floppy Controller,
PC interface, MONK/REX operating system.

BARE BONES I6MHZ System Board with IMB DRAM,

$849.00

Kit Cabinet, Power Supply, Choice of High
Density Floppy, Professional 0S9 with C.

REX/MONK Operating system for PT68K2 and PT68K4 $19.95

SK*DOS
089/68000

Operating system including HUMBUG
Professional OS9, includes C Compiler

$100.00
$299.00

Additional kits are available. VISA, MC, MO accepted.
Personal checks allow 10 days. Shipping charge $7 for kits.
: See the DELMAR AD for systems!

Peripheral Technology

1480 Terrell Mill Rd. Suite 8§70
Marietta, GA 30067
(404) 984-0742

March 1991

68xxx Machines

Page 13

program, but then is available to the
user program.

The FILTER action takes place in five
lines clearly marked in the program
listing. Suppose we wanted to eliminate
multiple spaces in a text file. We could
simply replace a section of our code with
the following:

This line is added just before
the main loop

‘CLR.B b# USE POR MULTIPLE SPACE FLAG
: NAIN LOOP TO READ AND WRITE BACH CHAR

MATN MOYR.L A3 A4 POINT T0 INFILE
DC FREAD GO READ NEXT CHAR
*BNB.S ERROR

* This code goes in the Filter slot

t [t will remove wultiple spaces in a file

cMP.B 528,05

BNB.S NOTS

1518 08 ‘

BNE.S MAIN IP WE'YE OUTPUT A SPACE SKIP THIS ONE
MOVE.B #SEP, D@ SET SPACE FLAG ARTRR OUTPUT OF ORE
BRA.S CHARI
§0TSP CLR.B D@ NOT A SPACE SO CLEBAR SPACE PLAG

: END OF PILTER, NOW WRITB IT TO OUTRUT FILR

Granted this is a little more complex
than simply making lower case characters
upper case ones, but it is not terribly
difficult. You can perhaps see the usefu-
iness of such a program. Suppose for
example, that we have somehow imported an
MS-DOS text file that uses $PA to termi-
nate a line. It would be simple to change
$BA to $@D wherever it is found. That is
an easy filter. Suppose you had written a
book and when done, wanted to change the
name of a character in the book from
Frederick to Paul. That would be a bit
harder, but you could still write a £il-
ter program to make the change.

Well, by now you should be pretty much
comfortable with assembler, though we
have not touched on a number of the inst-
ructions of the 680@@. There are the MUL
and DIV instructions, the DBcc set, of
which it only makes sense to use DBEQ or
possibly DBMI. These instructions are
useful for repeating a loop a predeter-—
mined number of times, and they save a
small amount of code. The MULU and MULS
(multiply unsigned and multiply signed)
instructions are described in the user
manual, but unless you are at least some-
what familiar with binary arithmetic,
they won't be easy to understand immedia-
tely. The same can be said of the DIV
instructions.

-~ Style in Assembler Programs -

So far we have avoided a discussion of
Style in writing assembler programs. None
of the "unassembled" source listings
presented so far have been tabbed. That

is, the labels and comments started in
the first column, the operation mnemonics
in the second or one space after a label,
etc. The assembler will tabularize the
listing when it runs, and you can have
the assembler prepare a listing for you
to study. Some people like to tab their
source code so it is easier to read. [
have no objection to that. My non-tabbing
is probably a holdover from when a floppy
held 90K bytes, and I had 32K of RAM to
work with. It was advantageous to keep
source files short.

1 am going to borrow a short section
of code from Marion Systems drivers for
their SCSI interface for the hard disk.
I'm sure Tom Oberheim won't mind terri-
bly. What the code does is relatively
unimportant, but it transmits a 6 byte
pre—composed message to the SCS1 as a
command. Let's first do a completely
stripped down version of it:

PUT_COM_6 MOYR.B FTCRCDM,SCSITCR
PC6COMRAIT BTST.B #BSRPRMB, SCSIBSR
BEQ.L PC6COMWALT

MOYEQ #5,D]

PC6LOOP MOVE.B (AB)+,DP

BSR.L PUT BYTE

DBF D1,PCELOOP

MOYBQ 49,07

RTS

That is a total of 9 lines of code.
The author used long labels and symbols
hoping to make the code more readable. 1
think it is, but only to someone already
familiar with the SCSI device. For exa-
mple, SCSIBSR is the SCSI Buss Status
Register, etc. An effort was made to make
the symbols mnemonic and suggestive of
the thing they represented. A step in
making this more readable would be to tab
it.

PUT COM_6 MOVE.B #TCRCDM,SCSITCR

PC6TOMMKIT BIST.B IBSRPHMA,SCSIBSR
IIS.L PCHCOMWAT
MOVEQ 45,0

PC6LOOP NOYE.B (AB)+, D8
BSR.L POT_BYIE

DBF D1,PCELOOP
MOVEQ 9,07
RTS

The next step would be to comment the
lines of code:

PUT_COM_6 MOVE.B #TCRCDM,SCSITCR Only CD should
be asserted
PC6COMWAIT BTST.B !HSRPHﬁrJSCSIBSR Test the phase
natce 1t
ng.L PC6COMMAIT Wait for this phase
B

MOVEQ #5,D] Will send 6 bytes
PC6LOOP MOVE.B [AB)+,D8 Get byte to send
BSR.L PUT BYTR Send it

DBF Di,PCELOOP Loop uatil all bytes
sent

HOVgg 19,07 Zero b7 to signal

RTS

So far T am with this. The author,
however, made it into the following:

lIllllllIIlllIIIlllllllllllIIllIlllllllllIIIIlIIIIlIIllIIllIIIlIllllllIIlllllIIlIIllllIlIllIlllllllllI

Page 14

68xxx Machines

March 1991

REARARERAAL
: PUT_COM_6: ISSUB A 6-BYTE SCSI COMMARD

* PUT_COM 6 Pirst checks that the target is

ready to receive

: a command. [t then sends 6 command bytes.
d Eotry;

: # points to bytes to send

t Uses:

* DB for byte transter

: Pl for loop index

* Returns:

*

D7 = # and 2 flag set only if all is
ERELRRLALRNT

PUT_COM 6
t

Set Target Command Register to COMMAND phase to
check for

* nismatch in lioes.

t
MOVE.B #TCRCDM,SCSITCR Only Cd should be
, asserted
Wait for command phase
PC6COMWAIT
BTST.B YBSRPHMB,SCSIBSR Test the phase match

bit

BEQ.L PCHCOMWAIT Wait for this phase
tes

MOVEQ #5,01 Will send 6 bytes

*

PCSLOOP
MOVE.B SA')' D Get byte to send
BSR.L UT BITR Send it
DBF D1,FC6LO0P Loop until all bytes sent
MOVEQ li,D7 Zero D7 to signal OK
PCOEXIT

* ALl bytes sent
RTS

If I count correctly that is 49 lines
of program for 9 lines of actual code.
First note that ASM allows labels on
lines by themselves. They associate with
the next line of code. PUT _COM 6 (the
label) is 6 lines away from the first
line of code. The label PC6EXIT does no
harm, but there are no references to it.
If you really feel that commenting to
this degree HELPS you to understand the
program (or more to the point, helps
someone else to understand it), then so
be it. To my mind, however, the code gets
lost in the comments. The section of
program of which this is part, is a 14
page listing with two pages of actual
code. In my opinion it would be easier to
understand and use if it were four or
five pages. In a more extreme example I
could have chosen from the same listing
of SCSI routines, there is one called
WAIT_AWHILE. It uses 26 lines to document
TWO LINES of assembler code.

My rules for assembler code commenting
are;

1. Bach routine or major section
should have a heading describing what the
routine does, what is passed to the rou-
tine in which registers, what is re-
turned, and which registers the routine
uses but does not restore. The latter is
particularly important with the 680690
since it has so many registers.

2. A comment is not needed for EVERY
line. After you've written two assembler

programs an instruction like DBEQ D1,L.0OOP
doesn't need an informationless comment

like "Go Around Again" or worse, 'Bump
The Counter”. An instruction like TST.B
D1 doesn't need the comment "Set the

Flags". Comments should add information
to what is already there, not just spell
out the instruction.

3. A blank line can be used to sepa-—
rate minor sub-parts of routines without
requiring a three line comment.

4, If a listing 1is tabbed, labels
stick out like sore thumbs and don't need
a line all their own.

1f you don't like my rules,use your
own, but be consistent. I would treat the
above listing as follows:

(332332232331

* PUT_COM_6 First checks that the target is
ready to receive

: a command. It then sends 6 command bytes.

: Entry: A® ;01uts to bytes to send

' Returns: D/ = # and 2 flag set if all is well
. Uses: D? for byte transfer

iliiiiittixg for loop index

* Set Target Command Register to COMMAND phase to

check for

* mismatch in lines.

PUT_COM_6 MOVE.B #TCRCDM,SCSITCR Only Cd should be
. asserted
: Wait for command phase

PC6COMWAIT BTST.B
IBSRFHMB SCSIBSR Test the phasc match bit
RLUN PC6COMMAIT Wait for this phase

: Send 6 bytes

WOVBQ #5 D1 Will send 6 bytes

PC6LOOP MOVE.R (AB)+,DP Get byte to send
BSR.L PUT_BYTB Seand it

DBF D PCELOQP Loog until all bytes sent
:2;30 19,07 Zero DY to signal oOF

First, I would depend on the assembler
to tab the listing later. Secondly, I
would put all labels on the line to which
they refer. Thirdly, things 1like RTS
(ReTurn from Subroutine) hardly need a
comment to tell us that we've reached the
end of the code. Nor do they need an
unused label to do the same.

When my son or my daughter had a paper
to write in one of their classes and they
wanted to use the computer as a word
processor, they always wanted to set the
printer to double space and 1® character
per inch, as opposed to a nice proportio-
nal spacing printing I have thal uses
about 15 characters per inch. Why? They
simply wanted the paper to Jlook longer.
Two pages are always more impressive than
2/3 page, right?

Unless you are a programming consul-
tant and getting paid by the page, there
is no need to make listings extra long.
That wastes paper and wears out printers!
Impress people with how short and simple
your code is, not with how many pounds of
paper it takes to print it.

March 1991

68xxx Machines

Page 15

