Software Timers for the 68000
By Joe Bartel,:Hawthorne Technology

In most process control projects, and many interactive

programs, there is a need to sequence and time operations. These
are some techniques [have developed over the years and have
converted into 68000 assembler code. A similar method will work
with almost any other processor.
/m/mFor most projects there is a trade off between more sof-
tware and more hardware to accomplish a given task. Using more
software means the unit cost will be lower, but it also means there
may be more developement costs involved. Software needs less
board space than hardware does and it uses much less power. The
purpose of a standard software item is to provide the same con-
venience that an LSI part like a UART or PIA does. You can use
them and you don’t have to design the parts each time. Also by
reusing the same parts you can get more done with less effort and
fewer bugs.

If the time interval is very short, less than a millisecond, then
it is hard to use software instead of another hardware timer. If the
time interval is longer than 100 msec and the resolution is 10 msec
then there is no reason to use hardware. With a software timer
you can have as many timed intervals as you want, but you only
pay for one hardware timer. The internal timer on the 68681 used
in the HT68k is an example of this.

When doing timing I like to divide the servicing of the timer
interrupt from the actual action that is performed. The goal is to
spend as little time as possible inside the interrupt service routine.
This lessens the chance of losing an interrupt and makes more
time available for the time critical services like serial input
devices. Todo this | use flags to indicate that an operation is to be
performed. A non interrupt loop tests the flags and does the
operations indicated.

IN LINE COOE:
INCT! MOVE . W COUNT1(A5),00 ;TEST OLD
BEQ.S INCT2 ; IGNORE IF Z
SUBQ.W #1,COUNT1(A5) ;DEC COUNTER
BNE.S INCT2 ;NO ACTION |F NZ
ST FLAGT+1 (A5) SSET FLAG IF Z
MOVE . W LOAD1 (A5),COUNT1 (A5) ;RELOAD COUNTER
INCT2 RTS
SUBROUT INE
LEA COUNTER1(A5),AQ ;POINT TO STRUCTURE
BSR SOF TCOUNT
LEA COUNTER2(A5),A0 ;#2
BSR SOF TCOUNT
LEA COUNTER3(A5) ,A0 ;#3
BSR SOF TCOUNT
RTI

A soft counter is defined as a data structure in memory which
has a counter that is counted down each time a timer interrupt oc-
curs. There is a reload value to reload the count after it is counted
down, and a flag that is set when the count has been counted
down to zero. This is a flexible arrangement that can be used for
one shot timers, continuous timers, or other timer types.

First, clear the flag to indicate that the timer is about to start.
Then if it is to be continuous, set the reload value. If the time is to

The Computer Journal / [ssue #30

be a one shot timer, then the reload value should be zero. To start
the timer, set the count to a nonzero value. The timer will then
count down on each time tic until it reaches zero. At that time it
will set the flag. To find out if the time has expired you check the
flag at convenient intervals. Once the soft timer has been set and
is runniing it will continue in the background almost like a har-
dware timer. For long time intervals in the millisecond or second
region this is a very low cost way to have many timers. The single
hardware timer on the ht68k can be used in this manner to
provide a variety of timed intervals.

A common method of using the timer flags is to have a single
very large loop for the main program. The loop is a series of tests
of the various flags that have been defined. If a flag is set, the ac-
tion routine that it was timing is done, and the flag is cleared. For
physical events the accuracy will be good enough in most cases.
As more timers are added, then the accuracy of the timing for
each event may be less then when there are few timers. One ap-
proach to this part of the problem is to have the most time critical
event flags at the start of the flag test loop. Instead of testing the
next flag, a routine that takes a long time to execute can go bac}
to the top of the test loop. This would insure that only one long
routine gets executed each time through the scan loop. The same
loop can also respond to flags set as the result of other kinds of in-
terrupts or events.

An example of using a software timer is in a communication
program. When a reply is expected the count value can be set to
the maximum amount allowed, the flag cleared, and the reload
value set to zero. The flag is tested and if any interval causes it to
time out then the flag will be set. This can be used to abort a call if
there has been no activity for a certain time period.

An sxample of using a periodic counter is a logging or repci-
ting system. The counter and the reload value are set to the log in-
terval. The flag is checked very often. When the flag is found set,
a log record is generated and recorded. After the logging is done
the timer flag is cleared and the wait for the next time proceeds.

A series of sequential events can be controlled by a single
timer if a state variable is used, or a series of times can be used.
When the flag for the first timer is set, the action for that flag is
done. Then the flag for that event is cleared, and the timer for the
next event in the sequence is started. Eventually the time for the
first event is started and the cycle starts all over again. In this case
each timer is acting like a one shot that triggers the next one shot
in the series.

This has been a short discussion of how to time various even-
ts with only a single hardware timer. The techniques will work on
any processor but are especially well adapted to the 68xxx family.
With this type of programming it is possible to trade the faster
speed of the 68000 for less complex, less expensive hardware. Also
by having a simple generic timer routine that can be inserted like a
hardware block it is possible to create larger, more complex
programs without greatly increasing the time needed to debug the
routines involved. By having the action part of the routine
separated from the timer part, it is also easier to get less overall
variation in timing, and almost eliminate time drift. W

