Data Structures in Forth
by Joe and Marla Bartel, Hawthorne Technology

Is Forth Out of Date?

In the early days of computing, programming languages didn’t
provide for complex data structures. Languages like BASIC and
FORTRAN only have arrays and single variables. Personal com-

_puters have greatly affected programming style. COBOL. has al-
ways had complex data structures but only a few people use CO-
BOL on a personal computer. It was only when Pascal and C
became popular that many people started using a language that
supported complex data structures. It was then that they started to
think about using fields and records. Forth is one of those lan-
guages that has been around since the early days of computing. Its
definition does not include data structures. Does this mean that
Forth can not be the best language choice for an application that
should be handled with records? This article shows why Forth
shouidn’t be neglected when dealing with data structures.

Are Pascal and C the Only Way to Go?

(Data Structures Make the Difference.)

In Forth it is necessary to be explicit about pointer usage. Lan-
guages like C or Pascal do the same things with pointers but the
means are hidden from the programmer. One result of this is that
in C or Pascal, large, slow access routines can be generated with-
out the programmer being aware of it. There is nothing that can
be done in C that can’t be done just as well in Forth when field
words have been added. Another advantage to using Forth is that
it doesn’t take S00K of RAM and a hard disk to do useful pro-
gram development.

Some programming styles and languages fit better with a par-
ticular programming problem than others. There are many cases
where data structures can organize data and make a program eas-
ier to understand and cleaner to write. Pascal and C have data
structures. Unfortunately there are many times, particuiarly in
embedded systems for using small micros, where Pascal or C is not
available, or costs too much, or is too inefficient. By using the
same types of structures in Forth, you can continue to use familiar
structures and algorithms. By doing so you can avoid the probiems
that might creep up on you when you are forced to use new meth-
ods.

Forth is Dynamic so Data Sstructures

(Records / Field Words) Can be Added
Forth is a very flexible language that is easy to modify. A very
useful way to take advantage of Forth’s flexibility is by adding field
words. With field words it is easy to create any kind of record or
structure you need just as you can with Pascal or C.

HTForth (Hawthorne Technology) has field words included to
simplify the use of abstract structures. The field words define an
address that is an offset from a base address. The base address can
be a fixed location in memory or it can be a pointer that is on the
stack. The definitions for field words are provided in Forth so they
can be used with any Forth. The words that are used for fields in
HTForth are written in assembler and generate macros that are
inserted in-line in the code when they are used. The result is the
same as with threaded Forth but the speed is greatly improved.
The examples presented here should work with any Forth but they
have not been extensively tested.

The Computer Journal / #41

HTForth field words:

BFIELD defines a 1 byte field
WFIELD defines a 2 byte field
LFIELD defines a 4 byte field
SFIELD defines a variable length field

You can achieve the same effect of the other field words by using
a size of 1, 2, or 4 with the SFIELD.

These are defining words that create new words that have spe-
cial actions when used. The compile time behavior is to create a
new word that will add the value that was on the stack at compile
time to the value that is on the stack at run time. The other com-
pile time action is to increment the value on the parameter stack
by the size of the field that is being defined.

The declaration of a record using the field words is like the
declaration of a record type. No actual memory is allocated for any
variable but the offsets and order of the fields is set up for when
they are used. To actually allocate memory for a record that is
defined some other method must be used.

The listing of the Forth definition for the field words can be
used to define field words for any implementation of Forth that
does not include them. Data structures can then be created with
the field words that have been defined.

How to Define and Use Records and Pointers
The main example we will use will be a symbol table for an
assembler. The symbol table for a conventional assembler has an
entry for each symbol the user defines. Each entry consists of sev-
eral fields that must be kept together for each table entry. This
group of fields would be a record that you would define in
HTForth like this:

0
LFIELD LINK

(offset of first field

(
WFIELD TAG {

(

(

{

)

4 byte link to next symbol)

2 byte tag }

LFIELD SYMVAL)
12 $FIELD SYMNAME)
CONSTANT SYMREC }

4 byte value
12 byte symbol name
size of record

The field words use the top of the stack as the offset into the
structure for the field currently being defined. The size of the field
being defined is then added to the top item on the stack. This way
a field can be inserted into a structure and all the offsets used will
be automatically adjusted.

After all the fields in a record have been defined, the value on
the stack can be made into a constant that will give the size of the
whole structure. A constant that has the size of the structure is
very useful for defining arrays of structures, allocating new in-
stances of a structure, and for reading or writing disk files. The
constant can also be used to increment or decrement a pointer
into an array of the structure. By using a named constant that is
produced when the structure is defined you don’t have to worry
about the structures’ exact size and future changes will be much
easier to make.

Here are some examples of how to access the elements of rec-
ords:

To access the tag of the symbol entry that variable SYMPNT
points to, use:

SYMPNT € TAG €W

To allocate a fixed array of 30 symbols use:
30 CREATE SYMTAB SYMREC 30 * ALLOT

To access the value of the Sth entry of the array use:
SYMREC 4 * SYMTAB + SYMVAL @

To allocate a new data item of the type SYMREC:
EERE SYMREC ALLOT

The result is the address of a new node that then can
be linked into the rest of the table.

How to Define and Use Substructures
Substructures are records that are one element of an-
other record.

A Pascal example of this would be:

friends = record

name s string [32] ;
address = record
street : string [32) ;
city : string { 16] ;
state s string [2] ;
zip : string { 5] ;
end ;
phone : string [15) ;
notes = record
birthday s date ;
favorite color : string [10) ;
hobbies s string [20) ;
end ;
end ;

In this example, NOTES is a substructure of
FRIENDS. You could go on to another layer of substruc-
ture by making HOBBIES a record.

To define substructures, push a zero on the stack and
define the fields that make up the substructure. At the
end of the definition of the fields use the variable field
word SFIELD followed by a name (in this case
‘NOTES’), to give the substructure a name. This will
make the size of NOTES equal to the total size of the
substructures’ fields.

A substructure that will be common to many struc-
tures can be defined separately and its size saved in a
named constant. The size value that is saved can be used
with $FIELD to create a name and space for the sub-
structure in the new structure being defined. This way a
common substructure doesn’t have to be re-defined for
each of the structures it is to be used with.

0
32 $FIELD NAME
0

32 SFIELD STREET
16 SFIELD CITY
2 SFIELD STATE
5 SFIELD ZIP
SFIELD ADDRESS
32 SFIELD PHONE
0
WFIELD BIRTHDAY
BFIELD SEX
16 SFIELD HOBBIES
SFIELD NOTES
CONSTANT FRIENDS

To create a record of this type for BILL and one for ART
We can write:

CREATE BILL FRIENDS ALLOT
CREATE ART FRIENDS ALLOT

To access the ZIP code for BILL we would write:

BILL ADDRESS ZIP

10

And to do the same for ART we write:

ART ADDRESS ZIP

The parameter stack would then have the address of the first byte of his
zip code.

How to Define and Use Variant Records

Variant records, or unions (as they are sometimes called), are when two
or more fields are assigned to the same location in a record. A tag field is
often used to determine which of the variant records is stored in the struc-
ture. For example, a record for DINNER might have a tag to indicate if
you are eating out or cooking at home. If the TAG indicates EATING
OUT, the RESTAURANT LIST will be using the WHERE TO GO field
in your record. If the tag indicates COOKING AT HOME, the GRO-
CERY LIST will be stored in that field. The programmer has to keep track
of the tag indication so you don’t end up at the local steak house and order
a dozen eggs and gallon of milk.

Figure 1:Cross assembler look up routine in Pascal

{
{ Pascal linear search of alphabetical symbol table list -- }
type

stringl2 = gtring[12 J;
symbolpointer = “symrec;
symrec = record
link : symbolpointer;
tag : integer;
value : integer;
symbol : stringl2;
end;
{ Global Variables }
var
counter : integer ;
firstsym, cursym : symbolpointer ;
{ }
function newsym(labnam : stringl2): symbolpointer;

var

tempsym : symbolpointer;
begin

new(tempsym) ;

newsyr := tempsym;

newsym” .link = nil;
newsym” .tag = 0;
newsym” .value := 0;

newsym” .symbol := labnam;
counter := counter + 1;
end; { newsym }
{ }
procedure lookup(var labnam : stringl2; var whr : symbolpointer);
var
nextsym s+ symbolpointer;
begin
nextsym := firstsym;
if firstsym <> nil then begin
whr := nil;
while whr = nil do begin
cursym := nextsym;
nextsym := nextsym”.link;
if cursym”.symbol = labnam then whr := cursym .
else if labnam < cursym".symbol then begin
firsteym := newsym(labnam);
whr := firsteym;
firstsym".link := cursym;
end
else if nextsym = nil then begin
cursym”.link := newsym(labnam);
whr := cursym”.link;
end
else if labnam < nextsym”.symbol then begin
cursym”.link := newsym(labnam);
whr := cursym”.link;
cursym := cursym”.link;
cursym”.link := nextsym;
end;
end;
end
else begin
firstsym := newsym(labnam);
whr := firsteym;
end;
end; { lookup }
{ }

The Computer Journal / #41

(==———m—mmae Pield words for F-83 style Forth ——eec—emeee)
bfield {n-n+l) (byte field)
dup 1+ swap
create

.

does> ¢ +

wf:{.eld (n - n+2)
dup 2+ swap

create ,

(word field)

.

does> @ +

1field
dup 4+ swap
create

.

(n-n+d) (long field)

does> @ +

i

sfield
over + swap
create ,

(D8 - n+s) (variable field)

does> & +

)
-- FORTH linear search of alphabetical symbol table -- }
------ Define a symbol table r d)

1field link (pointer to next symbol)
wfield tag (2 byte tag)

1field value (4 byte value)

12 $field symbol (12 byte symbol name)

constant symrec (size of record)
0 constant nil

variable counter variable firstsym

: $<12 ("stringA “stringB -- tf)
12 0 do
over C& over C@ (=--"A"Bab)
<> if leave then
1+ swap 1+ eswap
loop
C8 swap CR swap <
;
()
: $=12 ("stringA “stringB -- tf)
12 0 do
over C@ over C@ (--"A"Bab)
<> if leave then
1+ swap 1+ swap
loop
Ce swap CR =

Figure 2: Cross assembler look up routine in Forth

’
()
: newsym (create a new symbol)

hers symrec allot

nil over link !

0 over tag |

0 over value |

over over symbol 12 cmove

swap drop counter 1+t

7

()
variable nextsym variable labnam variable whr
variable cursym

: lookup (labnam -~ whr)

labnam 1 nil whr 1

firstsym @ nextsym 1

firstsym € nil <

if

begin whr € nil = while

nextsym ¢ cursym !
nextsym @ link @ nextsym !
cursym & symbol labnam @ $=12
if

cursym @ whr !
else labnam @ cursym @ symbol §<12
if
labnam € newsym dup firstsym ! whr |
cursym € firstsym @ link 1
else nextsym @ nil =
if
labnam @ newsym dup cursym € link
else labnam € nextsym @€ symbol $<12
if
labnam @ newsym dup cursym @ link |
dup whr | cursym |
nextsym @ cursym € link 1|
then then then then
repeat
else
labnam € newsym dup firstsym | whr |
then
whr
;3 (lookup)

| whr !

~ -~

s

To define variant records DUP the size constant value on the
stack and then define the first variant of the record. The variant
can have multiple fields defined and can have variants of its own.
After defining the variant portion use MAX to get the larger size
of the structure. This will insure that there is enough space allo-
cated for the largest variant when variants are of different sizes.
This method can also be used to create alternate definitions on the
same level. If two different variants are wanted as substructures
use MAX before + to add the largest variant substructure to the
main structure.

Sample Forth Data Structure Code

The program examples in Figures 1 and 2 are from a lookup
routine for a cross assembler Marla wrote this summer. To make
it more understandable to those who are new to Forth, the same
routine is presented in Turbo Pascal and then in F-83 style Forth.
The cross assembler was written in Pascal. We carefully translated
the Pascal into Forth but have not actuaily run the Forth code.
The data structures allow for an almost line for line translation
from Turbo Pascal to Forth but the Forth version results in more
compact code.

When a program is being assembled, as each symbol is encoun-
tered, the lookup routine is called and the table is searched. If the
symbol is not found, it is added to the table in alphabetical order.
These symbols are being stored in a singly linked list. The link field
of the defined record points to the next record in the list. The
lookup routine steps through the list comparing the symbol from
the assembly to those stored in the list. If it finds a match for the

The Computer Journal / #41

symbol, it returns a pointer to the record containing the matched
symbol. The cross assembler can then use the information in the
record or add things such as flagging multiple definitions of labels,
undefined symbois, or recording the value of the symbol to be
used in the rest of the program.

Each time the lookup routine compares a symbol that doesn’t
match, it checks to see if the entry in the list is still higher in the
alphabet than the symbol being searched for. If it is not, you know
the symbol is not in the list because you have passed the place
where it would have been. If the symbol is not found, the
NEWSYM routine is used to make a new entry in the table. The
new entry is then linked in to the list just before the last item it was
tested against.

List before new symbol is inserted:

Asymbol.link —» Bsymbol.link =» Csymbol.link =» Esymbol.link

List after new symbol is inserted:

Asymbol.link ~» Bsymbol.link —» Csaymbol.link Easymbol.link
i 1
Dsymbol.link

By linking things into the list in this manner, the symbols are kept
in alphabetical order. This has several benefits. You don’t have to

(Continued on page 26)

1

/* == execute printer mode instruction == ¥/
set_mode(int flg} /* From select() */
{ char pchr;

/* == the modes require ESC as initial input m= «/
pchr = ‘\033’; prnt_code(pchr); /* escape */

/* == turn on Near Letter Quality print == »/
if(fig == 1) {
pchr = 0x78;
pchr = Ox1;

return; }

/* == turn off Near Letter Quality print == +/
if(flg == 2) {
pchr = 0x78; prnt_code(pchr);
pchr = 0x0; prnt_code(pchr);

return; }

prnt_code(pchr);

X /* char ‘x' */
prnt_code(pchr);

/* decimal 1 +/

/* char ‘x’ */
/* decimal 0 +/

Summary

This article has covered a considerable amount of material. We
have learned that two levels of file input/output exist and how to
program in either. Also that the command line arguments and
redirection provide considerable flexibility in reading from and
writing back to disk files. And then we saw that writing to the
printer is simplified by the provision of interrupt 17H.

And that’s it, mostly. Of course it doesn’t just happen. A fair
amount of time and effort must be invested as we descend into the
depths of our machine’s inner workings. The reward is a great deal
of satisfaction in expanding our program activity beyond the key-
board and screen. @

Reference Listing for
PROGRAMMING INPUT/OUTPUT WITH C

1. “Advanced C Primer+ +” by Stephen Prata,
The Waite Group
Howard W. Sams & Co, Indianapolis, IN
2nd printing 1986
This text, chapter 3, “Binary and Text File I/O” provides a very
thorough coverage of the low and high level file I/O functions.

2. “TURBO C Reference Guide”
Borland International, Inc.

4585 Scotts Valley Drive

Scotts Valiey, CA 95066

3. “Programmer’s Problem Solver for the IBM PC, XT & AT”
by Robert Jordain

A Brady Book

Pubiished by Prentice Hall Press

New York, NY 10023

1986

XEDA4/5/8 integrated Editor Cross-Assembler

XEDA4/5/8 is a fast and convenient method to develop and

debug small to medium size programs. For use on Z80

machines running Z-system or CP/M. Companion

XDIS4/5/8 disassembler aiso available.

Targets: 8021, 8022, 8041, 8042, 8044, 8048, 8051, 8052.
8080, 280, HD64180, and NS455 TMP.

Documentation: 100 page manual.

Features include:

* Memory resident text {to about 40 KB) for very fast
execution. Recognises Z-system’s DIR: DU:. Program
re-entry with text intact after exit.

* Built in mnemonic symbols for all 8044,51,52 SFR and
bit registers, NS455 TMP video registers and HD64180 |1/0
ports.

* Output to disk in straight binary format. Provision to
convert into Intel Hex file. Listing to video or printer. A sorted
symbo! table with vaiue, location, all references to each
symbol.

* Supports most algebraic, logic, unary, and relational
operators. Eight levels of conditional assembly. Labels to 31
significant characters.

* A versatile built in line editor makes editing of individual
lines, inserting, deleting text a breeze. Fast search for labels
or strings. 20 function keys are user configurable.

* Text files are loaded, appended, or written to disk in whole
or part, any time, any file name. Switchable format to suit
most other editors.

* The assembler may be invoked during editing. Error
correction on the fly during assembly, with detailed error and
warning messages displayed.

For further information, contact:

PALMTECH

(a division of Paim Mechanical}
Phone: 6177 463-109 Fax: 6177 463-198

ecnr. Moonah & Wilis Sts.
BOULIA, QLD. 4829
AUSTRALIA

Data Structures in Forth

(Continued from page 11)

search the whole list for each symbol, only till you reach the point
where the symbol should have been. Another advantage is that the
symbol table does not have to be sorted into alphabetical order to
print it out at the end of the assembly. This can be useful in many
lists. You have to search the list anyway and you can save the sort
time and space that would be needed to change the order of things
later.

In the Forth example, the word $<12 is used to test if a 12
character string is less than another. The word $=12 tests to see if
two 12 character strings are equal. The word newsym allocates
space for a new symbol node.

No matter what language you choose, you should try to write
good, understandable code. Try to keep things simple. Don’t be
lazy or try to save a couple of bytes or a few lines of code at the
expense of being understandable. Design your code so it can be
changed without falling apart. Spend some time and effort on find-
ing good ways of doing what you are trying to do. After you write
something, look at it again in a few days. Most people will not send
out the first draft of a letter without reading it and trying to make
it better, so do the same with your code. A little effort in this area
will be noticed by your boss or your peers as well as save you effort
figuring out your own code. It can pay off in many indirect
ways. ®

The Computer Journal / #41

	TCJ41p09
	TCJ41p10
	TCJ41p11
	TCJ41p26

