| 8

OCTOBER 1981 ISSUE NO. 6
26 17 26
D7 D7 - o7
D6 27 16 06 o 27 D6
| 28 15 28
D3 D5 _ D5
oo 129 4], L 2 | o,
s |22 LA —_— S
D2 31 11 02 o 31 D2
D1 B2 19 b —— > 1 o1
S — 2 1o _— N
20 | U2
OE
20 1 2 1 38
A1l () g - — CS1
A10 19 L ST _—— il Cs2
. . . see page 20
2 BASIC Trace 16 Text Buffer Data Recovery
Techni
3 BASIC “Screen Editor” echniques
18 Super Simple Single Line
10 Number Conversion Disassembler
Program
19 Letters to the Editor
13 Tidbits 20 Hear Your AIM 65
13 Easier USR Function Use 20 Low Cost Controller
15 CPU Clock Circuits Recipe

Rockwell International

where sciernce gets down to business

Page 2

EDITOR’S CORNER

FORTH AND PROM PROGRAMMER/
COED MANUALS READY

All you Forth and PROM Programmer/COED board users who received
preliminary manuals with your purchase will be happy to know that the
regular manuals are in!!! To get one, simply send the front cover of the
preliminary manual together with your name and address (of course) and
we'll rush one out to you. Send your request to SALES SUPPORT SER-
VICES, Rockwell Int’l, POB 3669, RCS5, Anaheim, CA 92803.

Anyhow, the Forth manual (document #265) and the Prom Prograrmmer/
COED manual (document #269) are also available for purchase. Contact
your area sales office for price information.

HOME OFFICE

Electronic Devices Division
Rockwell International
3310 Miraloma Avenue
P.O. Box 3669

Anaheim, CA 92803

(714) 632-3729

TWX: 910 591-1698

EUROPE

Electronic Devices Division
Rockwell International GmbH
Fraunhoferstrasse 11

D-8033 Munchen-Martinsried
Germany

(089) 859-9575

Telex: 0521/2650

FAR EAST

Electronic Devices Division

Rockwell International Overseas Corp.
ltohpia Hirakawa-cho Bldg.

7-6, 2-chome. Hirakawa-cho
Chiyoda-ku, Tokyo 102, Japan

(03) 265-8806

Telex: J22198

CORRECTIONS TO ISSUE #5

Page 13— You may notice some problems if certain BASIC instructions
are executed with the TTY drive located in page 2. Simply move the
program to reside at location $00DC when using them with BASIC. The
programs are completely relocatable with the only change required being
to the .WOR address at the beginning.

Page 24—The GND connection on the AIM 65 is pin | (not L).

CORRECTIONS TO ISSUE # 4

Page 2—The new flat rate charges for out-of-warranty repairs on the
AIM 65 is $59.80 (not $49.80).

Page 6—Line 2220 should read

IFP=225THEN2210).

IFP=255THEN2210 (not

All subscription correspondence and articles should be sent to:

EDITOR, INTERACTIVE
ROCKWELL INTERNATIONAL
POB 3669, RC 55
ANAHEIM, CA 92803

BASIC TRACE

Jeff Williams
Rockwell International

Ever wonder where you were in a BASIC program, or, how you got
there from here when you can’t get from here to there??? But, your pro-
gram did it anyway?7?

When active, the following program prints out the line number of every
BASIC statement just before it gets executed. Input/Output statements
are left justified with a carriage return prior to execution (just to be pretty)
and the line numbers are right justified in three columns.

To activate the routine, location 224 (S3EG) must be poked with a non-
zero value. Of course, to deactivate the trace, poke the same location
with a zero. This trace function may be activated and deactivated within
a BASIC program.

With a minor addition to the program. the contents of two memory lo-
cations may be monitored. Simply insert the following short ‘‘patch’’
between the instructions JSR SOUT and INC POS. (You'll end up with
two lines containing the INC POS instruction)

o

LDA VALUE ;

LDA BYTElI ;ADDRESS OF THE FIRST BYTE
JSR NUMA

JSR BLANK ;OUTPUT A BLANK

LDA BYTE2 ;ADDRESS OF THE SECOND BYTE
JSR NUMA

INC POS :ADD TO COLUMN COUNT

This technique can be expanded upon to monitor any BASIC parameter
such as a variable etc,

Thanks to Steve West and Frank Nunnely for the neat idea on how to
gain access to BASIC through the trap.
(Continued on page 22)

DRAMATIC PRICE CUTS!!!

In order to make Rockwell products an even bigger value, we have
dropped prices on most of the RM65 board level products, the AIM
65/40, and all of the AIM 65 accessory ROMS (BASIC, Forth, PL-65,
and the Assembler). Those ROM prices have been cut by more than
50%1!! Check with your local Rockwell dealer for details.

COPYRIGHT 1981 ROCKWELL INTERNATIONAL CORPORATION

Rockwell does not assume any liability arising out of the application or use of any
products, circuit, or software describad herein, neither does it convey any license
under its patent rights nor the patent rights of others. Rockwell further reserves
the right to make changes in any products herein without notice.

AIM 65 BASIC ‘‘SCREEN
EDITOR” PROGRAM

by Joe Hance
Rockwell International

One of the biggest shortcomings of the AIM 65 BASIC interpreter is the
lack of any editing features, as it is, it is necessary to retype the entire
line in order to correct a mistake in a BASIC line. By using this *‘Screen
Editor’’ program, however, a line can be corrected by simply typing over
any mistakes.

The editor is invoked by typing ““LIST#X'", where X is the line number
of the line you wish to edit. The program ‘‘intercepts’’ the ‘‘LIST#"’
command in the page zero character fetch routine (thanks to Steve West
and Frank Nunneley in INTERACTIVE #5) and sends the line to the
editor buffer. The line can now be operated on by the ‘‘Screen Editor™’.
When editing is finished, the line is forced into BASIC’s line input rou-
tine (thanks to Mark Reardon of Rockwell for help with basic entry
points).

The commands available are:

1) F1—Move cursor right. This key moves the cursor to the right one
space.

2) F2—Move cursor left. This key moves the cursor position left one
space.

3) F3—Insert at cursor. This key inserts one blank space at the cursor
position. The rest of the line scrolls to the right.

4) DEL—Delete at cursor. This key deletes one character at the cursor.
The rest of the line scrolls to the left.

5) CNTL F3—**/\"". The *'/\"* symbol is now accessed with a CNTL
F3 when in the editor (but not when in BASIC).

6) RETURN—Leave editor. Two returns will leave the editor and go
back to BASIC after editing a line. Three returns are needed if an
attempt is made to edit a nonexistent line.

Page 3

T

All other keys, when typed, will replace the character under the cursor.
The cursor is always in position number 11 on the AIM display. So the
line actually moves by the cursor instead of the cursor moving past the
line.

To assemble and load the program for a 4K AIM 65, type in the program
without the comments to fit in less than 4K. Assemble and direct object
to tape. Then initialize BASIC and limit memory size to 3695. Escape
to the monitor and use the ‘L’ command to load the editor. Reenter
BASIC with the ‘6>’ command. Basic should now respond to the
LIST#X command.

10 FOR I=1 TO 100
20 PRINT I;
30 NEXT K

Example:

We want to edit line 30 and change the “‘K’" to an *‘I"".
Type: LIST#30

and we see displayed:

30 NEXT K
/\ the cursor is here.

Type ‘‘F2°" to move the cursor left:

30 NEXT K
/\ the cursor is now here.

Now type “‘I'" to replace the ‘K’

30NEXT I
/\ the cursor automatically scrolls.

Now press the RETURN key twice to send the line back to BASIC.
Let’s check it. Type:
LIST 30

and we see: 30 NEXT I

I've officially retired my DecWriter II printer from newsletter duty. A
new Epson MX-80 is now assuming the role of generating program print-
outs. The MX-80 has turned out to be quite a versatile printer and quite
deserving of all the praise it has received. There are a number of oper-
ating modes including compressed (132 char/line) and emphasized (it
raises the paper slightly and makes another pass to fill in the dots) that

INTERACTIVE GETS NEW PRINTER!

make it ideal for newsletter duty. It’s moderately fast (80 cps), relatively
inexpensive (under $500) and seems to be very reliable. Anyhow, for
those of you who would like to hook up the MX-80 to your AIM 65,
stay tuned. In the next issue, we’ll present the parallel interface driver
software.,

Page 4

2000
2000
2000
2000
2000
2000
2000
2000
2000
010A
010A
010C
ooCs
0o0Cc8
o0Cc8
oocs
oocs
00CH
oocs
OOCR
QOCC
0018
0O05E
OE&7
OE&L7
OEL7
OE&L7
QE&7
OE&L7
QE&7
OE6L?
QE&B
OE&6D
QE&F
OE72
QE73
OE74
OE77
OE79
QE7B
OE7D
OE7F
oE82
QEBZ
OEB4
0E8BS
oE87
0EBY
OEBR
OEB8D
OEZ0

9B

OE

4C &7 OE

EA

co
FO
ce
BO
4C
60
48
20
AO
R1
co
FO
20
&8
38
60
Eb6
DO
E6
A9
8D
A9

99
o8
3A
03
cC

PE
01
Co
23
06
AC

C6
02
c7
a5
13
Qo

Qo0

ER

ER

A4

MR AR A ‘AW an

[TR T SRV T R T RRVY]

INTERACTIVE

BASIC "SCREEN" EDITOR
FOR AIM-65 MICROCOMPUTER

WRITTEN BY JOE HANCE

¥=%$010A

-WORD UOUT : SET UP USER OUTPUT VECTOR
x=3%C8

THIS IS THE "WEDGE" INTO
BASIC. IT INTERCEFTS

THE COMMANDS BEFORE
GOING TO BASIC

JMF WEDGE

NOP

x=%$18
BUFFR %x=%+70

x=%0EHL7
PHXY =$ER?PE
PLXY =$ERAC
CLR =$EB44
ODUTFUT =$E27A
READ =$E?3C

ODUTFLG =%A413

WEDGE CMP #3$99

LOOK FOR "LIST" TOKEN

BER LIST
CMP #43A
BCS NOTNUM

JMP $CC RETURN TO BASIC

NOTNUM RTS
LIST PHA

EXIT JSR PLXY

ADK INC $C6

ADK1 LDA #7U

JSR PHXY
LDY #1

LDA (3$C&),Y
CMP #° #

BER ADK

SET UP INDEX
GET NEXT CHR
IS IT A # 7

LTIV T R V]

NO # GO BACK

an

PLA
SEC
RTS

SET CARRY FOR BASIC

PROCESS LIST#

-8

BNE ADK1
INC %C7
SET OUTPUT TO USER

an

STA DUTFLG
LDA #0

OEF2
QEFS
0oES8

OE9R
OEZR
OEYB
OE9B
OE9B
OEZR
OE9B
OEZD
OE9E
OEA1
OEA4
OEASL
OEA9
OEAC
OEAE
OEBO
OEB1
OEB1
OEB1
OEB1
OEB1
OEB4
OEBS6
OEB8
OEBE
OEBE
OECO
OEC3

OECA
OEC4
OECA4
OEC4
OECA
OEC4
OEC4
OECA4
OEC4
OEC4
QEC4
OECA4
OEC4
OEC4
OECA4
OECA4
QEC4
QEC6

8D
8D
ac

0
68
8E
AE
95
EE
AE
co
FO
60

AD
FO
A9
ab
4C
A9
8D
60

A9

FD
FE
7F

FF
FE
16
FE
FF
OA
01

FD
08
oD
13
Cc4
01
FD

00

OF
OF
OE

OoF
oF

OF
oF

OF

A4
OE

OF

8D FC OF

C w4 as as as

STA CRFLG :
STA PNTR :
JMP EXIT ;

USER OUTPUT HANDLER
ALL OUTPUT FROM THE
LIST COMMAND WILL

Page 5

CLEAR FLAG
CLEAR PNTR
OK, DONE HERE

COME HERE

DUT BCC INIT
PLA ; GET THE CHR
STX SAVX ; SAVE X
LDX PNTR ; LOAD POINTER
STA BUFFR-2,X 3 PUT CHR INTO BUFFER
INC PNTR
LDX SAVX
CMP #%0A ; END DF LINE?
BEQ@ CR

INIT RTS

5

; END OF LINE-CHANGE OUTFLG

; BACK TO NORMAL OUTPUT

;

CR LDA CRFLG ; END OF LINE
BEQ FIRST
LDA #$0D
STA DUTFLG
JMP EDIT ; GO TO EDITOR

FIRST LDA #1 ; FIRST LF IGNORE
STA CRFLG
RTS

; REx%% EDITOR k%%

;

; ALL LINE EDITING IS DONE HERE

; THE VALID COMMANDS ARE:

; F1 — CURSOR RIGHT

; F2 - CURSOR LEFT

; F3 — INSERT AT CURSOR

; DEL - DELETE AT CURSOR

5

; NOTE: THE ~ CHARACTER IN BASIC

; CAN BE TYPED BY USING

; CNTL F3

;

; A RETURN ENDS THE EDITOR

;

EDIT LDA #0

STA COL1

Page 6

QEC?
QECR
QECE
OED1
QED3
QEDS
QED7
OEDA
OEDA
OEDR
QEDC
OEDE
QEEQ
QEE3
QEES
QEE7
QOEE®?
OEER
OEED
OEEF
OEF1
QEF3
QOEFS
QEF7
OEF9
OEFB
OEFD
QEFD
OEFD
OEFD
QEFD
QEFD
QEFD
OEFE
OEFE
OF 01
OF03
QOF 0S5
OFO07
QOF 08
OF0A
QFOC
QFOD
OF10
OF12
OF13X
OF14
OF16
OF17
OF1s8
OF1A
OF1RB
OF 1B

AD
AE

20

BS
cw
FoO
20

E8
c8
Co
DO
20
Co
FO
Co
FO
Co
FoO
ce
FO
co
FO
Co
DO
A9

48

20
BS
ce
DO
E8
EO
DO
&8
4cC
95
CA
68
95
8A
8
E?
AA

EE

Qo0
FC OF
44 EB
18
oD
4A

7A E9

14
F1
iC E9
SD
61
SR
42
SE

-

7F
34
oD

4
B T

1E
02
SE

D& OF
18
oD
oc

45
o4

C? Ot
18

18

FC OF

HERE

LOOP

; INCREMENT BOTH POINTERS

LP11

KEY

T ws v as wn wE as

3

s

STORE

NOCR

LDY
LDX
JER
LDA
CHMP
BEQ
JER

INX
INY
CPY
BNE
JSR
CMP
BE®Q
CHMP
BEQ
CHMP
BEQ
CMP
BEQR
CMP
BEQR
CMP
BNE
LDA

PHA

JSR
LDA
CMP
BNE
INX
CPX
BNE
PLA
JMF
STA
DEX
PLA
STA
TXA
SEC
SBC
TAX

: SCROLL

0K 1

INC

#0

coL1
CLR
BUFFR, X
#30D
ENDLN
OUTPUT

#20
LOOP
READ
#3]
LEFT
#°C
RIGHT
#’;‘\
INSERT
#$7F
DELETE
#$0D
FINIS
#41E
F3
#45E

REPLACE CHARALTER

UNDER CURSOR WITH THE ONE
IN ACCUMULATOR
AND SCROLL

CHECK FOR END OF LINE

ADD10
BUFFR, X
#$0D
NOCR

#69
STORE

HERE

BUFFR, X

BUFFR, X

#10

coL1

FIIRT]

1)

IS AR R IS AP AR N

1]

TR TR 1Y

————

INTERACTIVE

TSN

CLEAR DISPLAY
CHECK FOR END OF LINE

OUTPUT LINE

ONLY SEND 20

GET A KEY

1S IT AN F2 7
CURSDR LEFT

IS IT AN F1 7
CURSOR RIGHT

IS IT AN F3 7
INSERT CHAR

IS IT A DELETE 7

IS ITACR ?
GO0 AWAY
CNTL F3 7

CHANGE CNTL F3 TO "~

CHECK FOR LINE TOO BIG

‘,_,_,.,, B — B

INTERACTIVE

L.

OF1E
OF21
OF24
OF 24
OF24
OF 24
OF24
OF27
OF2A
OFZD
OF2D
OF2D
OF2D
QF 30
OF X3
OF 35
QF 36
OF37
OF 38
OF3A
OF 3B
OF3C
OF 3E
OF 40
OF40
OF 43X
OF 435
OoF48
OF 48
OF48
OF 48
OF4B
OF4D
OF4F
oF5S2
OF 34
OF57
OF5A
OFSC
OFSF
OFSF
OF 61
OF &4
OF &5
OF &6
OF &8
OF&B
OF6R
OF 6B
OF&D
OF70
OF71
OF73

4C
4C

4C
4C
4C

EE
20
BS
48
B8A
B
E?
AA
68
co
FoO

~
“<

30
4C

CE
10
A9
CD
DO
EE
20
AO
AE

A9
20
c8
ES
30
4C

A9
20
c8
Co
DO

40
&R

78
A8
E1l

FC
DX
18

09

oD
o8

FC
12
ce

FC
D1
FS
FC
0%
FC
44
00
FC

20
7A

OF
OF

oF
OF
oF

OF
OF

OF

OE

OoF

OoF

oF

ER

OF

EY

EQ

Okl JMP
ENDLN JMP

INSERT JMP
DELETE JMP
FINIS JMP

; SCROLL CURSOR RIGHT

RIGHT INC
JSR
LDA
PHA
TXA
SEC
SBC
TAX
PLA
CHMP
REQ
;5 TEST FOR
NEGTST BIT
BMI
JMP

[an as ran

EFT DEC
BPL
LDA
CMP
BNE
INC
oK2 JSR
LDY
LDX

5 OUTPUT BLANKS ON LINE

LP10O LDA
JSR
INY
INX
BMI
JMP

NEGTST
ENDL 1

JUMF TABLE FOR OUT
OF RANGE RELATIVE BRANCHES

INSR1
DEL2
FINISI1

coL1
ADD%
BUFFR, X

#9

#40D
LEFT

COLUMN ONE NEGATIVE

coL1
oK?2
HERE

SCROLL CURSOR LEFT

CcoL1
oK
#$F5
coL1
oK2
CoL1
CLR
#0
coL1

#4220
ouUTPUT

LF10O
LoopP

5 END OF LINE
s OUTPUT BLANKS

ENDL1 LDA
LFP1 JS5R
INY
CFPY

BNE

#4220
ouTPUT

#20
LP1

2

ONLY 20 BLANKS

Page 7

Page 8

OF795
OF78
oF78
OF78
QoF78
OF7A
OF7D
OF7F
OF81
oFg2
or84
oF 86
oF 89
oF 89
OF8C
OF8D
OF9Q
OF 93
oF 94
oF97
QF 98
OF 99
OFQC
OF9E
QFAD
OFA1
OFA4
OFAS
QFAB
OFAB
OFAB
OFAB
OFAB
OF AR
OFAR
OFAD
OF AF
OFB1
OFR4
OFB4
OFB7
OFEB8
OFB9
OFBB
QOFBC
OFBE
OFBF
OFC1
OFC2
OFC3
OFC4
OFC&
QFC7

4C

AQ
R
ce

- FO

c8
Co
DO
4C

20
BA
8D
B9
ce
99
88
88
cC
DO
A9
ce
99
88
ac

BS
ce
DO
4cC

AE
8Aa
18
&9
AA
BS
CA
25
48
8A
38
E?
AA
EB

EO

Q0
18
oD
08
44

Fa
C9

FB
18

18
FR
F2
20
18

40

D&

18
oD
o3
40

FC

OR

0A

00

X QOF

oF

oQ

00

oF

Q0

oF

OF

oF

OF

e

INTERACTIVE

BAA_JL I 3L b AN

JMF KEY

INSERT A SFACE UNDER CURSOR

INSR1 LDY #0
LF7 LDA BUFFR,Y
CMFP #$0D
BEQ MOVE
INY
CPY #&48 : DON’T ALLOW MORE
BNE LP7 THAN 70 CHARS
JMP HERE
: MOVE REST OF LINE OVER
MOVE JSR ADD9
TXA
STA CURSOR
LP9 LDA BUFFR,Y
INY
STA BUFFR,Y
DEY
DEY
CPY CURSOR
ENE LP9
LDA #%$20
INY
STA BUFFR,Y
DEY
JMP NEGTST

DELETE CHARACTER UNDER CURSOR

) 4n aa car

ELZ JSR ADD10O
CHECK FOR CR
DON’T DELETE A CR IF HERE

LDA BUFFR, X
CMP #%0D
BNE DEL3J
JMP NEGTST

; MOVE REST OF LINE OVER
DEL3 LDX COL1
DEL1 TXA
cLC
ADC #11
TAX
LDA BUFFR, X
DEX
STA BUFFR, X
PHA
TXA
SEC
SBC #10
TAX
INX

NTERT]

,,,,,,,,,,,,

INTERACGTIVE

A e A A

QOFC8
OFC?9
OFCB
OFCD
QFDO
OFD3
OFD3
- OFD3
OFD3
OFDX
OFDS
OFD&
OFDS8
OFD?
OFDB
OFDC
OFDF
QFEQ

OFE1
OFE1
OFE1
OFE1
OFE1
OFE1
OFE1
QOFE1
OFEZX
OFES
OFE?7
QFE®?
OFER
QOFEC
OFEE
OFEE
OFF O
OFF2
OFF2
OFF3
OFF4
OFF4
OFF&
OFF8
OFF8
OFFB
OFFR
QOFFC
OFFD
OFFE
OFFF
1000

68
Co
FO
4c
ac

A9
2C
A9

A9
18
&D
AA

&0

A2
RS
ce
Fo
95
EB
DO

A9
25

A8
68

A2
AD

4c

oD
03
B7 OF
40 OF

0A
OB

FC OF

0Q
18
oD
05
16

FS

00
16

15
Q0

87 R2

PLA

CMP #$0D

BER STOP

JMP DEL-1
STOP JMP NEGTST

’
: ADDS 9,10,0R 11 TO COLUMN
; TO LOCATE PROPER CURSOR
L]
ADD9 LDA #9
.BYTE $2C
ADD10 LDA #10
.BYTE $2C
ADD11 LDA #11
cLC
ADC COL1
TAX
RTS

SEND EDITED LINE
BACK TO THE BASIC
INPUT BUFFER

L 1]

e s

MOVE LINE INTO
BASIC INPUT BUFFER
FINIS1 LDX #0
LPA LDA BUFFR, X
CMP #$0D
BER QUIT
STA $16, X
INX
BNE LPA
: STORE A NULL AT THE END
QUIT LDA #0
STA $16,X
FIX THE STACK TO RETURN
PLA
PLA
X AND Y HAVE BUFFER ADDRESS
LDX #%15
LDY #30
BASIC LINE INPUT ROUTINE
JMP $B287
: RAM STORAGE LOCATIONS
CURSOR %=%+1
COL1 %=%+1
CRFLG #=%+1
PNTR ¥=%+1
SAVX #=%+1
.END

a8 W

e

Page 9

Page 10

NUMBER CONVERSION
PROGRAM

Jens Grysbjerg
UNESCO, Box 3311
Dakar, SENEGAL

When working in BASIC, it's useful to have a number conversion pro-
gram which goes from HEX to DECIMAL and vice versa. Here are two
routines which do just that.

The first program accepts a decimal number of up to five digits and
converts it to a hex number from $0000 to $FFFF. An error message is
displayed if the number exceeds this range. Start this program running
at $OECE and énter the decimal number you wish to convert. If it’s less
than five digits long press the RETURN key to terminate it. The hex
equivalent will be displayed. The DEL key may be used to correct any
typing errors on input. If you’d like to do another number conversion,
press the RETURN key, otherwise press ESC to go back to the monitor.
The printer may be enabled to print the results if you wish.

The second program converts hex numbers ($OOOO to $FFFF) to decimal
and starts running at $OF62. Otherwise, it works just like the previous
routine but with the number of digits you can input limited to four.

The programs use 3 zero-page locations ($F0, $F1 and $F2) which are
normally used for the Editor ‘F’ command. These locations are outside
the zero-page area used by BASIC so when you need to convert numbers,
you can exit and reenter BASIC without damaging your program. Be
sure to limit the memory size to 3789 (30ECD) when BASIC is first
entered.

2000 ; THIS ROUTINE CON-
2000 ;VERTS DECIMAL NUN-
2000 BERS UP TO 63533
2000 70 HEXADECIMAL
2000 INT =$00F0

2000 LD =$00F |

2000 HI =$00F2

2000 ERROR =$EI91

2000 CURPDZ =$A413

2000 RDRUR =$ESSF

2000 RB2 =$E95C

2000 BLANK =$EBIE

2000 EQUAL =$E7DB

2000 QUTPUT =$E97A

2000 NUMA =$EA4S

2000 READ =$ESIC

2000 CRLOW =$EA13

2000 DIRUFF =$A438

2000
OECE
QECE

OECE
OECE
0EDO
0ED2

0ED4
OED4
0ED7
OEDA

0EDD
OEDD

OEED
OEED
0OEE2

GEE4
(OEE4
OEEb
OEEB
OEEA

OEEC
OEEC
OEEF

OEF2
OEF2
OEF4

0EF7

OEF9
QEF9

OEFC
OEFC

OEFE
OEFE

0F01
0F 01
0F03

0F 05
0F05

A3 00
85 £2
85 F1

20 3E E8
20 3 £8
20 3 E8

20 5F E9

€9 0D
FO 15

£e 30
30 04
£e 3A
20 96

20 SC E9
4C EO OF

Ad 07
CC 15 A4
B0 E4
20 JE EB
A2 03

BD 38 A4

9 20
Fo 08

20 33 OF

INTERACTIV.

P e

¥=$0ECE
START

+CLEAR HI AND LD
LDA 0
STA HI
5TA LO

;OUTPUT 3 BLANKS
JSR BLANK
JSR BLANK
JSR BLANK

:6ET A CHR, ECHO D/P
NXTCHR JSR RORUB

sRETURN?
TEST CHP #80D
BEQ FIVE

;DECIMAL CIFFER?
CHP $$30
BCC INVALI
CHP #43A
BCC VALID

:INVALID, BACKSPACE
INVALT JSR RB2
JMP TEST

15 DIGITS 7
VALID LDV #7
CPY CURPD2

BCS NXTCHR

;DUTPUT P
FIVE J5R BLANK

1ADJUST TO MSD
LDX #3

s6ET A DIGIT
NEXT LDA DIBUFF,X

;ALL DIGITS DONE?
CHp &
BEG DONE

;CONVERT TO DECINAL
JSR CONV

E

0F33

0F33
0F33
0F35

0F37
0F37
0F39
OFIA
0F3C

0F3D
OF3D
OF3F
0F4]
0F43

£8
90 Fi

20 DB E7
20 3E EB
Ay 24

20 78 E9

AS F2
Fo 03
20 46 EA
A5 Fi
20 46 EA

20 3C E9

26 13 EA

4C CE OF

20 91 E3

4C 24 OF

29 oF
83 FO

AS F2
48
A5 Fi
48

06 Fi
26 F2
06 Fi
26 F2

sNUMBER > 655357
BCS OVERFL

jSET UP NEXT DIGIT
INX
RCC NEXT

;OUTPUT = 5P 8

DONE JSR EQUAL
JSR BLANK
LDA #°¢'
JSR OUTPUT

;RESULT TO D/P
LDA HI
REQ SUPRES
J5R NUMA
SUPRES LDA LD
JSR NUMA

;WAIT FOR ANY KEY
WAIT J5R READ

;CR AND LF TO D/P
JSR CRLOW

JMP START

{NUMBER » $FFFF,
sPRINT ?ERROR’
OVERFL JSR ERROR

JMF WAIT
=1
sWITH THANKS TO

;LED SCANLON

;ASCIT, S0 CLEAR MSD
CONV AND #$0F
STA INT

;5AVE OLD VAL DN STK
LDA HI
PHA
LDA LO
PHA

sMULTIPLY BY 4
ASL LD
ROL HI
ASL LB
ROL HI

O0F4S
0F435
0F 44
0F48
OF4A
0F4B
OF4D

OFAF
OFAF
0F51

0F33
0F33

0F35
0F33
0F57
0F59
0F5B
0FSD
OF 5F

0F 61
0F62

2000
2000
200G
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
0F62

68
6 Fi
B3 Fi
68
85 F2
85 F2

06 Fi
26 F2

BO OC

A5 FO
63 Fi
85 Fi
A5 F2
&9 00
85 F2

60

;ADD OLD VALUE
PLA
ADC L0
STA LO
PLA
ADC HI
STA HI

sMULTIPLY BY 2
ASL LO
ROL HI

s OVERFLOK?
BCS END

sADD NEW VALUE
LDA INT
ADC LO
STA L0
LDA HI
ADC 40
STA HI

END RTS
.END

; THIS ROUTINE CON-

$VERTS HEXADECIMAL

;NUMBERS UP TO FFFF
;7O DECIMAL

FLAG =$00F0
Lo =$00F1
HI =$00F2
NOUT =$EASI

BLANK =$EB3E
DUTPUT =$E974
DIBUFF =$A438
RDRUB =$E95F
CURPO2 =$A415
EQUAL =$E7D8

READ =$E93C
RB2 =$E95C
CRLOW =$EAL3
PACK =$EAB4
HEX =$EA7D
$=$0F 42

Page 11

Page 12

0F42

0F42
0F42
OF &3
0F 48
OF 4B
0F&D

0F70
0F70
0F72

0F75
0F75

0F78
0F78
OF7A

0F7C
0F7C
0F7F

U
0F81
0FB4

0F87
0F87
0F89

OF8C

OFBE
QF8E
0F91

0F92
0F92

0F94
0F94
0F97

0F9A
0F9A
OF9D

OFAD

20 3E E8
20 3t EB
20 3E E8
A9 24

20 7A E9

A% 00
8D 3B A4

20 5F E9

£9 0D
FO 12

20 84 EA
90 06

20 5C E9
4C 78 OF

Ay 07
£C 15 A4

B0 E7

AE 15 A4
CA

A0 00

BD 37 A4
20 7D EA

BD 38 A4
20 B4 EA

99 F1 00

START

sOUTPUT 3 SP AND 1 ¢
JSR BLANK
JSR BLANK
JSR BLANK
LDA #'#’
JSR OUTPUT

;CLEAR DIBUFF+3
LDA $0
STA DIBUFF+3

;6ET A CHR, ECHD D/P
NXTCHR JSR RDRUB

sRETURN?
TEST CNP 480D
BEQ FOUR

sHEXADECINAL CHR?
JSR PACK
BCC VALID

sNOT HEX, S0 BACKSP
ISR RR2
NP TEST

;4 DIGITS?
VALID LDY 7
CPY CURPD2

BCS NXTCHR

;ADJUST X TO CURPO2
FOUR LDX CURPOZ
DEX

;Y = BYTE NO.
LDY $0

sHI-NIBBLE ASCII/HEX
PAKNXT LDA DIBUFF-{,X
ISR HEX

;L0 NIBBLE ASCII/HEX
LDA DIBUFF,X
JSR PACK

STA LD, Y

OFAS
OFA3
OFA4
OFAS

OFAb
OFAb
OFAB

OFAA
OFAA
OFAD
0FBO

OFB3
OFB3
0FB3

0FB7
0FB7
(OFB9

0FBA
0FBA
0FBC
OFBF

OFCt
(OFCl
0FC2
OFC4

0FC7
0FC7
0FC8
OFCH

0FCA
OFCA
oFCC
OFCD

OFCF
OFCF
OFD1
0FD4

0F D&
0FD&
0FD7
OFDY
0FDB

CA
cA
c8

£0 04
BC EA

20 3JE €8
20 D8 E7
20 3t EB

A0 00
B4 FO

A2 00
38

AS Fi
F9 F7 OF
85 F1

c8
AS F2
F9 F7 OF

88

90 05

85 F2
£B
B0 EB

AS Fi
79 F7 OF
85 F1

BA

DG 04
24 R
10 06

[ey ——

INTERACGTIVE

 Roaedters AN,

{NXT ASCIT DBYTE
DEX
DEX
INY

;ALL CHR PACKED?
CPX #4
BCS PAKNXT

;758P = SP* TO D/P
JSR BLANK
JSR EBUAL
JSR BLANK

sCLEAR FLAB
LDY %0
STY FLAG

:COUNT = 0
NXTDIG LDX 40
SEC

sSUBTRACT LOW
SURT LDA LD
SBC TABL,Y
STA LD

+SUBTRACT HIGH
INY
LDA HI
SBC TABL,Y

sBACK TO LOW

DEY
sNEGATIVE?

BCC ADDBCK

;GTORE HI & CONTINUE
STA HI
INX
BCS SUBT

;700 FAR, SO ADDBACK
ADDBCK LDA LD
ADC TABL,Y
STA LO

:DIGIT IERQ?
TYA
BNE NDIERD
BIT FLAG
BPL SUPRS

N ———

INTERACTIVE

TIDBITS

Users of AIM 65 systems who would like to expand their keyboards will
find a dip cable that has piggyback sockets on both ends of interest. This
allows another 16 pin dip to be plugged in on top of the cables dip plug
at either end of the cable.

It’s available from:

ARIES ELECTRONICS
BOX 130

FRENCHTOWN, N.J. 08825

Order part #16-XXX-208, where XXX is the length in inches, i.e.
12" = 012.

Cost 12" @ 11.72 ea., 24" @ 14.00 ea., 36" @ 14.00 ea.—other lengths
available

R. Riley

Box 4310

Flint, MI 48504 -
OFDD 1SET FLAS
OFDD 38 NOZERD SEC
OFDE &6 FO ROR FLAG
OFEQ +OUTPUT DIGIT
OFE0 20 51 EA JSR NOUT
OFE3 sNEXT EXP OF 10
OFES C8 SUPRS INY
OFE4 (8 INY
OFES +DONE 4 DIGITS?
OFES CO 08 CPY #8
OFE7 90 CE BCC NXTDIG
OFE9 $YES, QUTPUT REMAIND
OFE? AS F1 LDA LD
OFER 20 51 EA J5R NOUT
OFEE {WAIT FOR ANY KEY
OFEE 20 3C E9 JSR READ
OFF1 ;CLEAR & BOTO START
OFF1 20 13 EA JSR CRLOW
OFF4 4C 62 OF JHP START
OFF7 10 27 TARL .WOR 10040
OFF9 EB 03 NOR 1000
OFFB 44 00 LNOR 100
OFFD QA 00 .WOR 10
OFFF 1=t

OFFF .END o

Page 13

EASIER USR
FUNCTION USE

George Meldrum
Rockwell International

When using Basic, it is often necessary to ‘‘drop’’ into machine language
for certain operations. With AIM 65 BASIC, this is accomplished with
the USR function. The starting address of the machine language routine
needs to be ‘‘poked’’ into memory locations $0004 and $0005 and the
routine called with a statement something like I=USR(Y) where ‘I' is a
variable which can be returned to BASIC from the machine code and ‘Y’
is a variable which can be passed to the machine language routine from
BASIC. We’ll discuss how to use these variables in a moment.

Normally, if multiple machine language subroutines are to be used, each
one of their addresses must be converted to decimal and ‘‘poked’’ into
the appropriate locations before they can be used. This can easily lead to
errors and takes up some room in the program.

What I have written is a sort of a subroutine ‘‘distributor’’. That is, all
subroutine calls get routed through a special machine language routine
that determines exactly which of the subroutines gets called. It uses a
variable passed from Basic (like the ‘Y’ variable) to figure this out.

Now, about those variables. When we execute the statement I=USR(Y),
the ‘Y’ variable gets stuffed into a special Floating Point Accumulator in
memory. Since a typical machine language program cannot readily use
this number in its floating point format, it must usually be converted to
an integer. Fortunately, BASIC contains such a subroutine to do that. It’s
located at $BEFE and converts this floating point format number to a
two-byte signed integer in locations 300AC (MSB) and $00AD (LSB).
Simply perform a JSR $BEFE instruction to accomplish this. Of course,
this variable ‘Y’ must be an integer within the range of +32,767 to
—32,768 or an FC error will occur.

A two-byte signed integer can also be retuned to BASIC through the
variable ‘I’ (see above) by placing the MSB of the integer in the 6502
Accumulator and the LSB in the Y register and using the instruction JSR
$COD1 to convert that number to a floating point format and placing it in
the Floating Point Accumulator. Upon returning to BASIC via an RTS
instruction, that value will be found in the ‘I" variable.

As we said before, it’s the variable that gets passed FROM BASIC that
determines which of the machine language subroutines will get called.
The subroutine distributor takes this variable and indexes its way into a
list of subroutine addresses (see MATRIX in the listing). The order that
the subroutine addresses are placed in this list determines what value the
variable will have to be to call it. For example, if you wish to call SUBO
(in the listing) the variable would have to equal zero. To call SUBI, the
variable would have to equal 1, and so on.

Page 14

2000
2000
2000
2000
2000
2000
2000
2000

2000
2000
2000

2000

2000
OF QO

OF 00
OF 03
OF 05
OF 04
QFO7
OFOA
OFOC
OFOQD
OF10
OF12

OF15S
OF17
OF19

OF 1R

OFiB
OF1E

OF 1F
OF 22

OF23
OF26

QF27

20
AS
OA
AA
BD
85
ES
BD
85
6C

1B
1F
23

20
20
&0

20
60

FE BE
AD

15 OF
D7
15 OF

D8
D7 00

OoF
oF
OoF

AT E7

A7 E7

FO E9

RN PP S

RS E82222 08333233223 2322823 8222828,

s XX XX
;¥x PROGRAM TO IMPLEMENT THE XX
;KX USR FUNCTION OF BASIC XX
S $ BY GEORGE MELDRUM L 3 §
s XX JUNE 29, 1981 §
XX XX

IR 282020202020 22302 32022838323 2200

s ZERO FAGE EQUATES

VECTOR =%D7 s JUMP VECTOR FOR SUBROUTINES
LSB =$AD ;LOW BYTE FROM FPHEX ROUTINE
FFHEX =$BEFE ; CHANGE FLOATING POINT TO HEX

¥=%$F00 s STARTING ADDRESS

JSR FPHEX s CONVERT ARGUMENT TO HEX

LDA LSE s BET ARGUMENT

ASL A sMAKE IT TWICE AS LARGE

TAX ;PUT IT IN INDEX REGISTER

LDA MATRIX, X s6ET LOW BYTE OF ADDRESS

STA VECTOR sPUT IT IN JUMP VECTOR

INX

LDA MATRIX, X sGET HIGH BYTE

STA VECTOR+1 ;PUT IT INTO JUMP VECTOR

JMP (VECTOR) s JUMP TO SUBROUTINE
MATRIX .WORD SURO s STARTING ADDRESSES OF

-WORD SUR1 s THE SUBROUTINES

-WORD SURZ2

s EXAMFLES OF SUBROUTINES

SURO JSR $E7A3
RTS

SUR1 JSR $E7A7
RTS

s5uBZ2 JSR $EYFO
RTS

. END o

e e i e

NTYERACTIVE

e

CPU CLOCK CIRCUITS

Rockwell is now recommending an alternative clock circuit to the ones
that were presented on page 2-16 of the 6502 Hardware Manual. Evi-
dently, the RC Network and the Parallel Mode Crystal Controlled Os-
cillator just haven’t proved reliable enough in operation. (Something to
do with the internal design of the 6502). This problem affects 65027s
from ALL three manufacturers.

Here is the recommended clock oscillator circuit and some additions to
it which will allow the use of low-cost crystals and/or be able to operate
with slow memory or peripheral devices.

1L
XTAL
Clock
O
‘ @O 'Oulput
1.8K 18K
‘FWVV\ WA

Figure 1 BASIC CRYSTAL OSCILLATOR CIRCUIT

A | or 2 MHz crystal can be used in the circuit in figure 1 to directly
drive the single phase clock input of an R6500 family CPU. In this case,
you’'ll need to connect the output to the phase ¢ (IN) pin on the CPU
(pin #37 on the R6502).

Perhaps you'd like to use a low-cost crystal or, maybe you need a two-
phase clock for driving an R6512, for example. You can do both with
just one TTL package shown in figure 2.

X = Clock/d
Y = Clock/2 h
X

-5

PR CLR -~

DR LQ _— {bY r;p CLQR b1 (do)
Clock |, 7474 ? 7474
Input Lo > > ° d)z

-

Figure 2 DIVIDER/TWO PHASE CIRCUIT

Page 15

To use this circuit, you need a crystal either two or four times faster than
the desired system clock rate. The position of the jumper (‘X' or ‘'Y’)
determines whether the circuit will divide the incoming clock frequency
by two or four. For a really cost effective clock design, you can use a
3.5795 color tv crystal and divide it down by four to get system clock
freq. of around 900 KHz. (close enough to 1 MHz for most applications.)
Or, if you plan on using an R6551 ACIA in your design, you can avoid
having to use two crystals by using the 1.8432 MHz baud rate crystal
in the system clock and divide it by two to provide about a 920 KHz
clock for your CPU. The signal from the last inverter gate in the clock
circuit will go directly to your ACIA chip. By the way, this same divider
circuit is used on the AIM 65 to divide a 4 MHz clock down to 1 MHz.

The outputs from the second section of the 7474 flip-flop can be used
as a two phase clock circuit. We've verified this by installing an R6512
in our AIM 65. Two very minor mods were required but it works great.
(Since any mods to your AIM 65 will invalidate your warranty, I don't
recommend that you try this. But, if you HAVE to know what we did
to get an R6512 running in an AIM 65, here it is: install a jumper from
pin 8 of Z10 to pin 3 of Z9 and another jumper from pin 36 of Z9 to pin
37 of 29).

There are circumstances, such as when you have a slow block of memory
or a slow peripheral device, when you would like to have your system
run at full speed at all times except when you are accessing that slow
section of memory or peripheral device. Well, the circuit in figure 3 will
help you do just that.

oo

To
CPU ¢o (IN)

Clock
In

>

Figure 3 CLOCK STRETCHING CIRCUIT

The CS input gets connected to the low true chip select that enables the
slow memory or peripheral. Whenever that signal is low (indicating that
the peripheral or memory is being selected) the clock input signal gets
divided in half to slow the CPU down. When the CS line is high, every-
thing works nomnally (the clock signal goes through the circuit unaltered).

Page 16

TEXT BUFFER DATA
RECOVERY TECHNIQUES

by Dr. Lawrence A. Ezard
2149 Kentwood Dr.
Lancaster, PA 17601

This section suggests ways to ‘‘recover’’ the information in the Text
Buffer if you have inadvertently re-initialized the Editor with an E com-
mand before permanently storing the old Test Buffer contents onto a
cassette tape.

The effect of an inadvertent E command depends entirely on how far you
have progressed since typing E. Consider the following situations:

1. If you merely typed E, and have not yet responded to the FROM=
prompt, the original Text Buffer contents are still intact, and you can
escape to the Monitor by pressing ESC. The contents of 00DF to
OOES6 are also intact.

2. If you typed in an address in response to the FROM= prompt, and
have pressed RETURN, but then pressed ESC the Editor will have
stored the specified starting address in two parameters in memory—
BOTLN (addresses $O0EI and $00E2) and TEXT (addressed $O0E3
and $O0E4). However, the end-of-text character, $00 will not yet be
stored in the starting address location.

3. If you typed an address and RETURN in response to both the
FROM= and TO= prompt and then press ESC, the Editor will have
stored the specified starting address in TEXT (addresses OOE3 and
00E4) and the specified ending address in END (addresses 00E5 and
00E6). The value contained at NOWLN (addresses 00DF and 00EO)
and the value contained at BOTLN (addresses OOE! and 00E2) will
be the specified starting address. The end-of-text character, $00, will
be stored in the specified starting address location.

As you can see, an inadvertent E command may do as little damage as
affecting no Text Buffer locations (1 above) or only one Text Buffer
location and some parameters in memory or it may affect some—or
most, or all—of the information in the Text Buffer (4 above). Clearly,
your recovery procedure depends on how much damage was done, but
here are the corrective steps you need to take to reconstruct the original
Text Buffer:

1. If you responded to the FROM= with ESC all addresses associated
with NOWLN, BOTLN, TEXT and END should be unchanged and
the text buffer memory should be unchanged. Use the M command
to assure that this is true.

INTERAC

2. If you responded to the FROM= prompt with the address then re-
alized that a mistake had occurred and you pressed ESC:

A. The addresses associated with- TEXT and BOTLN must be re-
stored using the M and / command.

B. Address information at NOWLN and END as well as the text
buffer memory should be checked to be sure that it is unchanged
and satisfactory using the M command.

3. If you responded to the FROM= and TO= prompt with address in-
formation and then pressed ESC:

A. The addresses associated with NOWLN, BOTLN, TEXT, and
END must be restored using the M and / commands.

B. Since the address specified in the response to the FROM= prompt
contains the end-of-text character, 00, this data must be restored
to its original ASCII code value using the M and / command.

4. If you responded to the FROM= and TO= prompt with address in-
formation and also entered some text the restoration procedure is as
follows:

A. Use the M command to display the current address associated with
BOTLN (contents of address 00EI and OOE2). Display the con-
tents of this address and use the / command to change the contents
of this location from hexadecimal 00 to hexadecimal 40 corre-
sponding to ASCII code character@. For example, if the current
data at O0EI is OB (low order byte address) and the current data
at 00E2 is 02 (high order byte address) then the M command
would be used to display the contents of address 020B. The value
of this address is the end-of-text character 00 which should be
changed to an easily recognized, valid ASCII code (such as 40
for the symbol @) which occurs nowhere else in text memory
space. This means that it will be possible to easily find this char-
acter later using the F command and change it to its correct ASCII
code using the C command.

B. Using the M and space commands search memory from the cor-
rect original starting address using the M and SPACE commands
until the entry OD followed by the end-of-text character 00 is
found. The address associated with the 00 is the end of text for
the original text buffer. This address should be stored in BOTLN
(addresses OOEl and 00E2).

C. The addresses associated with NOWLN, TEXT and END must
be restored. Use the M and / commands to restore TEXT and
END to their original values. Set the value of NOWLN equal to
the original value of TEXT. This sets NOWLN to the beginning
of the text.

INTERACTIVE

Bt A

D. Finally, the undesired lines of text can be deleted using the K
command. The original desired lines of text can be entered into
the text buffer using the I or R command.

After all the recovery procedures above have been completed the actual
recovery should be verified. Use the T command to re-enter the text
editor and display the top line. The D command can then be used to
move down a few lifes to assure proper operation. The B command
should be used to verify that the last line is fetched and printed. The U
command could be used to print a few lines above the last line of text
to assure proper operation. If desired the L command can be used to list
all the lines of text.

TEXT BUFFER DATA RECOVERY USING
CASSETTE TAPE

A cassette tape recording should always be made of the information in
the text buffer memory. Then if vital information is inadvertently de-
stroyed the cassette tape can be used to restore the information using the
E command.

OTHER TEXT BUFFER DATA RECOVERY
TECHNIQUES

An analysis of the operation of the text editor reveals that proper oper-
ation of the text editor commands requires two sets of conditions.

1. The addresses associated with NOWLN, BOTLN, TEXT, and END
must be correct.

2. The only occurrence of 00 in the entire text buffer memory must be
at the address specifed by BOTLN. Furthermore, the 00 data must
follow the ASCII code OD for carriage return. If there are any 00
entries prior to the actual end of the text it will not be possible for
commands such as D, F, and C to go beyond the first occurrence of
the 00.

PARAMETER

ADDRESS PARAMETER NAME
00DF Line pointer address low byte NOWLN
00ED Line pointer address high byte
00E1 -Actual text ending address low byte BOTLN
00E2 Actual text ending address high bylc'*\

This is the address of the end-of-text

character 00.
00E3 Text Buffer starting address low byte TEXT
00E4 Text Buffer starting address high

byte
00Es Text Buffer ending address low byte END

00E6 Text Buffer ending address high byte

Page 17

With the above information a recovery technique can be formulated.

1. Use the M and / command to set TEXT to the first address in the text
buffer memory. Address 00E3 should be set to the low order byte
starting address. Address 00E4 should be set to the high order byte
starting address.

2. Use the M and / command to set NOWLN to the first address in the
text buffer memory. Address 00ODF should be set to the low order
byte starting address. Address 00EQ should be set to the high order
byte starting address.

3. Use the M and / commands to set END to the last available address
in the text buffer memory. Address 00ES should be set to the low
order byte ending address. Address 00E6 should be set to the high
order byte ending address.

4. The most difficult task now left is to restore the proper address as-
sociated with BOTLN. Address 00E! must contain the low order byte
address of BOTLN and address 00E2 must contain the high order
byte address of BOTLN.

A, If the address associated with BOTLN was recorded before in-
formation in the text buffer memory was destroyed this original
address should be entered for BOTLN using the M and / com-
mands. If the BOTLN address is not known it must be found by
the method outlined below.

B. In either of the cases the presence of any 00 entry prior to the
correct BOTLN address must be found and restored to its original
value. This can be done in the following manner:

(1) Re-enter the text editor with the T command.

(2) Use the F command to search for a character that you are sure
does not exist in the memory space (an example is!)

(3) Since the character is not found the END message will be
displayed or the display will be blank. Now exit the text editor
with the Q command.

4) The M command followed by the address 00DF is now en-
tered to find the value of the current active line specified by
the line pointer, NOWLN. The contents of address 00DF is
the low order byte address of NOWLN. The contents of ad-
dress QOEO is the high order byte address of NOWLN.

(5) The NOWLN address is the address of the first byte of data
on the line above the line containing the data 00.

(6) Use the M command to access the data on the line specified
by NOWLN by typing M followed by the NOWLN address.

Page 18

(7) Use the SPACE command to search successive memory lo-
cations for the occurrence of 00.

(8) If this occurrence is undesirable use the / command to change
the 00 to an easily recognized character that is used nowhere
else in memory. The hexadecimal value 40 corresponding to
the ASCII character @ is probably a good choice.

(9) Repeat steps B(1) through B(8) until all undesirable 00 entries
are deleted from the text memory.

C. The desirable end-of-text character 00 entry can be recognized
because it will satisfy two requirements.

(1) The desirable 00 must follow the carriage-return ASCII code
0D.

(2) When the address of the desirable end-of-text character 00
is placed in BOTLN correct operation of the text editor com-
mands will be restored. This can be checked with commands
such as T, B, U, D, and F.

D. There is just one final step required to restore the text editor data.
In step B(8) above any undesirable 00 entries were changed to
40 corresponding to the ASCII code character @. All these @
characters must be restored to their original correct ASCII code.
This is most easily done using the text editor.

(1) Re-enter the text editor using the T comumand.
(2) Use the F command to find each @ character.

(3) When this line is found use the C command to change the @
character to its original correct value. The operator must be
able to recognize the correct value to insert by reading the
line.

MULTIPLE TEXT BUFFERS

It is possible to have several Text Buffers reside in memory at the same
time. The operating rules are quite simple.

1. Each Text Buffer memory block to be set up must be initialized by
using the E command.

2. Before initializing the next Text Buffer the address parameters as-
sociated with NOWLN, BOTLN, TEXT and END in memory loca-
tions 0ODF to 00E6 must be recorded for future use.

3. To access a particular Text Buffer the operator must load the partic-
vlar Text Buffer address parameters associated with NOWLN,
BOTLN, TEXT, and END in their respective memory locations.

SUPER-SIMPLE
SINGLE-LINE
DISASSEMBLER

You want to hear the simplest method of disassembling a single instruc-
tion line to the display?

Tumn the printer off and enter the ‘K’ command as usual followed by the
starting address. When you get the */* prompt press the *." (period) key
BUT DON'T RELEASE IT YET. The first instruction should now be
dissassembled on the display. Now, hold down any other key (the comma
key is convenient) and then release the period key. At this point the sec-
ond instruction will be displayed. Hold down the period ('.”) key again
and release the comma (‘,’) key. Another line will be displayed. If you
want to skip ahead a number of instructions, release both keys and watch
the display. When you wish to stop it, simply hold down a key.

Get it I'll leave it up to you to figure out exactly why it works.
But we should all thank Kurt Peter (Kolner Str. 6, 6053 OBERTS-

TRAUSEN 2, West Germany) for the tip. What a great new feature he
discovered. Thanks Kurt! ©-

4. The actual re-entry to the Text Buffer is then achieved from the AIM
65 monitor using the T command.

TEXT LINE LENGTH LIMITATIONS

When using the text editor in the read mode there is a maximum limit
of 60 characters allowed on a single line. If an attempt is made to enter
more than 60 characters from the keyboard the result is that the characters
are not entered and there is no response. The RETURN key should be
pressed to terminate this line.

The change command, C, can be used to add characters, delete char-
acters, or change characters on a line. If using the C command results
in more than 60 characters being placed on a line it is possible that the
text editor will not respond to key commands from the keyboard and that
the response, if any, will be unpredictable. To regain control the operator
can use the reset switch to re-enter the AIM 65 monitor. The text editor
can now be re-entered with the T command. The F and K commands
can be used to find and delete text lines which exceed 60 characters. The
desired text information can then be added using the I command.

Before the C command is used to add characters to a line it is recom-
mended that the operator examine the line length to be sure that the new
line length will not exceed 60 characters when the change has been
completed. O

e i

INTERACIIVE

LI e T N

LETTERS TO THE EDITOR

Dear Editor,

In the back of the AIM 65 BASIC USER MANUAL (Appendix F), you
present a program which converts a hex number to a decimal one. The
only problem with it is that the range of hex numbers is limited to from
$0000 to $7FFF. I modified the Basic portion slightly to handle hex
numbers up to SFFFF. Here's the new program:

I PRINT “HEX/DEC CONVERTER"
2 PRINT “TYPE-IN 4 FIGURE HEX NUMBER "’
5 POKE 4,161: POKE 5,15

10 DIM H @)

15 INPUT H$

20 FOR I=1 TO 4

25 H (I)= ASC (MID$ (H,1,1))

30 POKE 4048 +1,H (I)

35 NEXT

40 X=USR (I)

45 IF X<0 THEN X=65536—ABS (X)
50 PRINT X

55 GOTO 15

Hope you find it useful.

Sincerely,
M.I. Forsyth-Grant
Catworth Court, Rhydspence,
Whitney, Hereford
ENGLAND HR3 6EY

Dear Editor,

I have read with interest Mark Reardon’s article “*TTY Output Utility
Programs’’ in Issue 5 of ‘‘Interactive’”. I have had the same problem
when I wanted to switch between keyboard and TTY under software
control in order to enter data from the keyboard and use the TTY to print
the processed and formatted data.

After using a poor approach with a USR routine that was very slow I
found a much simpler way which permits you to switch from TTY to
keyboard control and back completely under software control.

This method manipulates the status of bit 3, port B (PB3) of the Z 32
VIA. Normally this bit is programmed as an input and its state is de-
termined by the position of S3, the TTY-KBD switch. By executing the
instruction:

Page 19

POKE 43010,63 in BASIC, or

LDA#8$3F

STAS$AB02 in assembler language this bit is re-progammed as an output.
After this has been done the state of the bit can be set high=Keyboard
by executing:

POKE 43008,252 in BASIC, or
LDA#S$FC
STA$A800 in assembler language.

It is set low=TTY by executing:

POKE 43008,244 in BASIC, or
LDA#SFA
STA $A800 in assembler language.

The switch should be set in position ‘*'KBD’". The method also works
when it is set to ““TTY’’ but the software and the hardware try to pull
the level at the pin in different directions and the VIA might get some-
what hot. The Baud rate setting also has to be initialized, either by en-
tering the baud rate manually or, if the TTY has a keyboard by doing
the normal TTY startup once.

Erich A. Pfeiffer, Ph.D., P.E.
265 Viejo Street
Laguna Beach, CA 92651

Dear Mr. Rehnke:

I find that the MCT-2 for the safety isolation circuit on page 4 of Inter-
active No. 4 is difficult to obtain.

But the 4N33 in the Application Note 230, RS-232C Interface For AIM
65 is easy to obtain.

Now, in Interactive No. 5, Easy RS 232C, I see you are using the
MCT-2 instead of something like a 4N33.

When people write constructive articles I wish they would give a number
of devices that would work equally as well. You may want to list some
of these in your next issue.

Cordially,

R. D. Overby

805 North 11th Avenue
Fargo, North Dakota 58102

Page 20

HEAR YOUR AIM 65

Robert P. Barrett
Messiah College
Grantham PA 17027

A small addition to the AIM that has helped much in saving/loading
cassettes is a crystal earphone. It is soldered to the ground and the AU-
DIO IN line from the recorder. Both lines are on top of the board & the
AUDIO IN can be located as it goes from C-11 to a hole thru the circuit
board and finally on to pin L of edge connector JI.

A crystal earphone has a high impedance and does nor draw significant
power. Most cassette player/recorders send the signal being recorded
back out the monitor jack so that the earphone *‘listens in”’ during both
the loading and saving (damping) operations.

Hearing what is being recorded or played provides the following help:
1.) It is easier to search a cassette for the start of a program.

2.) There is an audible reminder of the tap gap setting and if it is still
at the default value.

3.) One can sometimes hear tape drop out and other recording problems.

4.) The operator is afforded the general pleasure of hearing a tape going
into the AIM and seeing the tape blocks being counted.

The proper crystal earphone is available for $1.99 from Heathkit (part
no. 401-36)

(EDITOR’S NOTE: Mr. Barret was kind enough to send me the proper
crystal earphone so I could try it out. Works great!!!) -

AIM 65 COURSE
TO BE OFFERED

The Foundation for Computer Education Inc has announced plans for
holding a number of microcomputer seminars around the country. These
three day seminars are based on the AIM 65 and are intended to introduce
the student to microcomputer hardware, software and interfacing. The
fee for the course is $850.00 and includes the AIM 65 as well as some
additional documentation and class notes. For more information on the
schedule and the cities involved contact the company at Box 668, Ogden,
Towa 50212. Their phone number is 515-275-4524 or 712-843-2000.

R

LOW COST
CONTROLLER RECIPE

There are certain applications where it makes sense to build your own
dedicated controller system. If you feel the need, here is a design that
could start your grey matter working.

It uses an R6502 processor and an R6532 RIOT (RAM, VO and Timer)
chip, along with a low-cost 2716 EPROM, a color TV crystal and a few
other parts.

There are even a few spare inverter gates that can be used for /O in-
terfacing functions. The clock and divider circuit is from one of our ap-
plication notes (Low-Cost Crystal Oscillator for Clock Input. Document
#208) The 7474 is used to divide the 3.579 Mhz clock by four, which
produces a system clock frequency of about 900 Khz. A very simple
Power-On-Reset circuit, consisting of DI, C3, R4 and two inverter gates
is used. (This circuit has worked quite well in other systems.)

" Here is a system memory map:

$FFF
2K
EPROM

iy, ...

6532 1/0 & Timers

My, .

R6532 RAM
(128 bytes)
for Z page & stack

$000

And a parnts list:

POWER CONNECTIONS

PART PART NUMBER
+5 GROUND # of pins
Ul R6502 8 1,21 40
U2 2716 24 12 24
U3 R6532 20 | 40
U4 741504 14 7 14
uUs 7407 14 7 14
ué6 7474 14 7 14

INTERACTIVE

3.579 MHz

[
X1

R2
1.8K
- Rt
22K
7
-5 3 o
R7 R8
22K 22K
2 RDY
6] -

5
Y Page 21
1 l 4 \3l $ 10
CLR PR CLR PR
12 9
2 D Q D Q
us U6
9 3 11 8
O > > (EV0TY
c2 Ct
*—"’—W““’“ 001 10pt
R3
1.8K
'S (GROUND)
ne \/
2.2K
< RESET)
AES p20 3) mes
— 4 o
RG = e
39 39
2 b2
__ 4
R -2 3B riw
26 17 2 15
o o o ew
z 5 14
D6 D6 . 27 | s a8
28 15
29 4
D4] e e L W PA4 M12 v CBRL)
0
03 |- = 03 - 21 0s) A ———)
11
D2 3t D2 ——— <)) D2 PA2 10 . ”l |
32 1 32
o1 24 o1 - Y AL L CRR)
33] 13 s
0o 0o e 0o PAD femssmnrnnn RO)
U1 © | U2 U3
OE
s L - 38
At =5 R cst
2 19 ar| 16
A10 A10 —_— €83 PB? —-—-———-——~—————-_ PB7
18 22 16 17
A9 A9 _——— RS PB8 MPBG
17 23 18
A8 A8 PBS
! ! 19
e v P
15 2 20 2
A8 A6 - A6 PEa b2 CTEET)
14 3 2 2
A AS - AS PB2
13 4 -————-"——“3 (Fez)
. Moo 2 pe P [2 CEETD)
2 3 4 24
. oo . & P
1
A2 3 e 54 a
10 7 5
Al A1 P Al
9 8 B
AD AD —_——— AB
13 12
us U4
11 10
3 us us
13 12
us Us
CONTROLLER SCHEMATIC

SPARE GATES

N(;)‘

Page 22

(Continued from page 2)

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
O0EOQ
QOEO
O0E1
QOE3
QO0E4
Q0ES
QOE7
QOE®?
QOER
QOQED
OOED
QOED
QOOED
oocg
00CB
oocC
00CC
OF9C
OF9F
OF A0
OF A0
QF AQ
OFAO
OFAO0
OFAZ2
OFA4
OFA4
OF A4
OFA4
OF A4
OFA6
OFA7
OFA9
OFA9
OFA9

OF
E7
&3
o9

4C
EA

20
48

AS
FoO

Ab
ES
FO

27
03
00
00

9C

E

EO
40

82

3B

OF

EB

s TRACE PROGRAM

5

s EQUATES

3

SOUT =$CBOS8
ouT =$E9BC
NUMA =$EA4L

CRLOW =SEA13
BLANK =%EB3E
PHXY =%EBYE
PLXY =%EBAC

E
s ZERO PAGE

H]
TXT =$00C6
OTXT =40085
CURLIN =%$0081
£=$00EO
FLG =%+
LTXT %=%+2
POS 2=%+1
SAVX k=%+1
BUF .WORD 9999,999,99,9

BASIC TRAP

Wi We wWae

¥=%00C8
JMP TRACE
NOFP
BAGC =X
¥=%0F9C
TRACE JSR PHXY
PHA
E
s IF $F0=0 TRACE OFF
; IF $FO#0 TRACE ON

s

LDA FLG
BEQ SAMLIN

DIRECT CMMD?
YES==>5AML IN

WS A3 WME Wa

LDX CURLIN+1
INX
BEQ SAMLIN

;
; COMPARE OLD
; TO LAST

INTERACTIVE Page 23

b

OFA9 H

OFA? AS 81 LLDA CURL.IN
OFAB C5 E1 CMP LTXT
OFAD DO 06 BNE NEWL. IN
OFAF AS 82 LDA CURLIN+1
OFB1 C5S E2 CMP LTXT+1
OFB3I FO 2F BEG SAMLIN
OFBS H]

OFBS s UPDATE LAST TEXT
OFBS]

OFBS AS 81 NEWLIN LDA CURLIN
OFB7 85 E1 STA LTXT
OFB? AS 82 LDA CURLIN+1
OFBB 85 E2 STA LTXT+1
OFBD H

OFBD ;P70 CURLIN

OFRBD s RIGHT JUSTIFY
OFBD s EACH COLUMN
QFBD H

OFBD A2 06 LDX #6&6
OFBF 20 FO OF FO1 JSR RJ
QFC2 A6 E4 LDX SAVX
QFC4 CA DEX

OFCS5 CA DEX

OFCs4 10 F7 BPL POD1
OFC8 20 08 CB JSR SOUT
OFCB E&6 E3 INC POS
QFCD H

OFCD s FORMAT FOR A PRINT
QFCD sOR INPUT TOKEN
OFCD H

OFCD 68 PLA

OFCE 48 PHA

OFCF C9 97 CMP #%97
OFD1 FO OA BEQ PRNT
OFD3 C9 84 CHMP #$84
OFDS FO 06 BEQ PRNT
OFD7 3

OFD7 33 LINES /CR

oFD7 3CK HEAD POSITION
OFD7 H

OFD7 AS E3 LDA POS
OFD? C9 Q03 CMP #4$3
OFDB 90 07 BCC SAMLIN
OFDD A9 00 PRNT LDA #0
OFDF 835 E3 STA POS
OFE1 20 13 EA JSR CRLOW
OFE4 648 SAMLIN PLA

OFES 20 AC EB JSR PLXY
OFEB C9? 3A CMP #%3A
OFEA 90 01 BCC SAM1
OFEC &0 RTS

OFED 4C CC 00 SAM1 JMP BASC

(Continued on next page)

OFFO 5
QFFO s RIGHT JUSTIFY RTN
OFFQ H
OFFO AS 81 RJ LDA CURLIN
OFF2 86 E4 STX SAVX
OFF4 DS ES CMP BUF, X
OFF& A5 82 LDA CURLIN+1
QFF8 FS E&6 SBC BUF+1,X
OFFA BO 03 BCS RJ1
QFFC 4C 3t EB JMP BLANK
OFFF &0 RJ1 RTS
1000 - END
-+
COMING UP!
Have received several good articles on the use of AIM 65 in Computer
Aided Design (CAD) applications. Look for a handy Fourier Series pro-
gram in the next issue. Forth seems to be getting quite popular according
to the feedback I'm getting. I’'m going all out to get a number of Forth
‘‘goodies’’ for issue #7. Some good information on this new and ex-
citing computer language in the next issue. Is your system idle during
the lunch hour. What a shame, especially when you could be playing a
mini-adventure game (assuming you have BASIC w/4K of RAM). Watch
for it in the next issue!
NEWSLETTER EDITOR Bulk Rate
ROCKWELL INTERNATIONAL U.S. POSTAGE
P.O. Box 3669, RC55 RATE
Anaheim, CA 92803 U.S.A. Santa Ana Calif.
PERMIT NO. 15

