
THE COSMAC

The COSMAC is gain·
ing fans in the hobby
market. Here the
author describes its
salient features. Read
on and evaluate them
for yourself.

CONT ROL 110 FlAGS 1 10 A£0U[S TS
W[WO A'I' AOOR£55 LINES ~ ~

by Brian Kapitan
The COSMAC microprocessor is an 8-bit register·

oriented central-processing unit designed for general
purpose computing or for use as part of a control
system. It features:
• Static silicon-gate CMOS circuitry
• 	Instruction fetch-execute time of 2.5 to 3.75 micro­

seconds at 10V

• Single voltage supply
• No minimum clock frequency
• Low power
• TTL compatible
• Any combination of RAM and ROM
• Memory addressing up to 64 K bytes
• Programmed 110 mode
• On-chip DMA
• Four 110 flag inputs directly tested by branch

instructions

• Programmable output port
• 91 instructions

REGISTERS
This microprocessor features sixteen 16-bit registers.

Individual registers are selected by a 4-bit binary code
from one of the three 4-bit registers (N, P and X). The
contents of the registers can be directed:

1) to external memory
2) to the D register (either high or low bytes)
3) to the increment/decrement circuit

COSMAC instructions usually consist of two 8-clock
pulse machine cycles. The first is the fetch cycle and
the second is an execute cycle. During a fetch, the 4-bits
in the P designator select one of the 16 registers as the
program counter. When the instruction is read out of
memory, the high order bits are loaded into the l register
and the lower 4 bits into the N register. Then, the pro­
gram counter is incremented by one, causing R(P) to be
pointing to the next byte in memory.

The X designator selects one of the 16 registers to
find in that register an operand or section of data to be
used in an ALU or input-output operation.

The N designator can perform many different opera­
tions. One of these is to designate one of the 16
registers to be acted upon during a register operation. It
may also designate a command-code or device-selection
code for peripherals. It is also used to indicate a specific
operation. Another, and the most used of this register, is
to load a value into the P or into the X designator.

PROGRAM COUNTERS
The purpose of the P designator is to indicate the pro­

gram counter. The 4-bit binary code of the register
whose purpose is to be the program counter is held in
the P register. Other register can be loaded with a
specific address in a program, and then the P designator
can be changed to that register there by causing a call
to a subroutine. When interrupts are being used , the R1
register is the program counter.

DATA POINTERS
The R registers may also be used as data pointers. Figure 1. Block Diagram of CPU

That is that they may point to a location in memory. The

130 INTERFACE AGE AUGUST 1977

MICROPROCESSOR

X designator points to a register for an ALU operation,
for input and output instructions and for other control
and miscellaneous operations. The N register is also
used as a data pointer. It is used in many memory load­
ing operations into the D register.

The last use of the R register as a data pointer is in
the DMA function. Register RO is always used as the
data pointer for memory in a DMA operation. Data is
written in or read out using the register as the pointer.
The best thing about the DMA-input is that the user can
load programs into memory directly without the need of
a bootstrap loader.

DATA REGISTERS
Another purpose of the R register is the storing of

data. These data may be read into the D register. Since
the D register is only eight bits and the R registers are 16
bits, only parts of the R registers can be loaded into the
D register. The R register is divided into two parts: high
and low bits . The high order bits of any register is R.1
and the low order is R.O. Also, the register may be used
as loop counters through the use of the increment and/or
decrement operations .

Number of
Register bits maximum Purpose
D 8 data register-accumulator
OF flag fo r ALU carry/borrow
R 16 scratchpad registers
p 4 designates program counter
X 4 designates data pointer
N 4 holds low order instruction bit

4 holds high order instruction bit
T 8 holds old X,P after interrupt
IE interrupt enable
a output flip-flop

THE Q FLIP-FLOP
The Q flip-flop is an internal flip-flop that can be set or

reset and can be sensed in a branch instruction and can
also be used for output.

MICROPROCESSOR INSTRUCTIONS
M(R(X))+ D: DF,D

means that the memory byte pointed to by R(X) is added
to D and the result is placed in D. If the total of the two is
greater than FF (hex 255) then OF (data flag) is set for 1.
Otherwise it is kept at zero .

OP MNEMONIC OPERATION

00 IDL idle ; wa it for DMA or interrupt , M(R(O)) : BUS
C4 NOP no operation; continue
ON SEP set P; let P equal N
EN SEX set X; let X equal N
?B SEQ 1 : Q
?A REO o : a
78 SAV save temporary storage T : M(R(X))
79 MARK push X,P to stack (X,P) : T ,(X,P): M(R(2)), P:X R(2)·1
70 RET return M(R(X)) : (X,P) , R(X)+ 1 , 1:1E
71 DIS disable interrupt same as above but: O:IE
ON LON load via N M(R(N)):D N cannot equal 0
4N LOA load and advance M(R(N)):D R(N) + 1
FO LOX load via X M(R(X)):D

AUGUST 1977

72 LDXA
F8 LDI
5N STR
73 STXD

1N INC
2N DEC
60 IRX
8N GLO
AN PLO
9N GHI
BN PHI

F1 OR
F9 ORI
F3 XOR
FB XRI
F2 AND
FA ANI
F6 SHR

76 SHRC
RSHR

FE SHL
?E SHLC

RSHL
F4 ADD
FC ADI
74 ADC
?C ADCI

F5 SO
FD SDI
75 SOB
70 SDBI

F? SM
FF SMI

77 SMB

?F SMBI

30 BR
38 NBR
32 BZ
3A BNZ
33 BDF

BPZ
BGE

3B BNF
BM
BL

31 BQ
39 BNQ
34 B1
3C BN1
35 B2
30 BN2
36 B3
3E BN3
37 B4

load via X and advance M(R(X)):D R(X) + 1

load immediate M(R(P)):D R(P)+ 1

store via N D:M(R(N))

store via X and decrement D:M(R(X)) R(X)·1

increment register R(N) + 1

decrement register R(N)·1

increment register R(X) + 1

move low N register to D R(N).O:D

reverse of above D:R(N).O

move high N register to D R(N).1:D

reverse of above D:R(N).1

M(R(X)) or D:D

or immediate M(R(P)) or D:D R(P) + 1

exclusive or M(R(X)) xor D:D

exclusive or immediate M(R(P)) xor D:D R(P)+ 1

M(R(X)) and D:D

and immediate M(R(P)) and D:D R(P)+ 1

shift right D ; least significant bit D:DF msb set

to zero

shift righ t D; isb(D):DF; DF:msb(D)

shift left D msb(D):DF lsb D set to zero

shift left D msb(D):DF DF :Isb(D)

add ; M(R(X)) + D:DF,D

add immediate ; M(R(P))+ D:DF,D R(P)+ 1

add with carry; M(R(X)) + D + DF:DF,D

add with carry, immediate ; M(R(P)) + D + DF:DF,D

R(P)+ 1

subtract D; M(R(X))·D:DF,D

subtract immediate; M(R(P))-D:DF,D R(P) + 1

subtract with borrow; M(R(X))·D·(not DF):DF,D

subtract with borrow, immediate M(R(P))·D·(not

DF):DF,D R(P) + 1

subtract memory; 0 -M(R(X)):DF,D

subtract memory , immediate ; 0-M(R(P)):DF,D

R(P)+ 1

subtract memory with borrow ; D·M(R(X))-(not

DF):DF,D

subtract memory with borrow , immediate

D-M(R(P))·(not DF):DF,D R(P)+ 1

short branch M(R(P)):R(P).O

no short branch R(P) + 1

short branch if D =zero M(R(P)):R(P).O else R(P) + 1

branch on no zero M(R(P)):R(P).O else R(P)+ 1

if OF= 1 M(R(P)):R(P).O else R(P) + 1

if positive or zero (same as above)

if greater or equal (same as above)

if OF= 0 M(R(P)):R(P).O else R(P) + 1

if minus (same as above)

if less than t{same as above)

if Q = 1 M(R(P)):R(P).O else R(P) + 1

if 0=0 M(R(P)):R(P).O else R(P)+ 1

if EF1 = 1 do process M(R(P)):R(P).O else R(P) + 1

if EF1 = 0 do above process

if EF2 = 1 do above process

if EF2 = 0 do above process

if EF3 = 1 do above process

if EF3 = 0 do above process

if EF4 = 1 do above process

INTERFACE AGE 131

instructions if D =zero. If Dis some other number than zero, it will
continue.

7. 	In the instruction set , you may have noticed one op code with more
than one mnemonic . The reason for this is it depends which instruc­
tion is before it. The same action will occur, but it is worded differ­
ent to make its action clear.

SIGNALS IN THE 1802
BUS 0 to BUS 7 8-bit directional DATA BUS lines. These lines are

3F BN4 if EF4 = 0 do above process

Note: the following are along branch instructions . See notes below
for explanation.

co LBR long branch M(R(P)):R(P).1, M(R(P)+ 1):R(P) .O
C8 NLBR no long branch R(P) + 2
C2 LBZ branch if D = 0 M(R(P)):R(P).1, M(R(P) + 1):R(P).O

else R(P)+2
CA LBNZ branch if D not zero (process same as above)
C3 LBDF branch if OF= 1 (process same as above)
CB LBNF branch if OF= 0 (process same as above)
C1 LBa branch if a= 1 (process same as above)
C9 LBNa branch if a= 0 (process same as above)
38 SKP short skip R(P) + 1
C8 LSKP long skip R(P) + 2
CE LSZ long skip if D = 0 R(P) + 2 else continue
C6 LSNZ long skip if D not zero R(P) + 2 else continue
CF LSDF long skip if OF= 1 R(P)+ 2 else continue
C7 LSNF long skip if DF = O R(P)+2 else continue
CD LSa long skip if a = 1 R(P)+ 2 else continue
C5 LSNa long skip if a = 0 R(P) + 2 else continue
cc LSIE long skip if IE = 1 R(P)+ 2 else continue

INPUT-OUTPUT

6N OUT where N = 1 to 7 M(R(X)):BUS R(X) + 1
6N IN where N = 9 to F BUS:M(R(X)), BUS:D

NOTES ON THE INSTRUCTION SET
1. theN in t he op code stands for the digit in theN register.
2. the : in the operation means moved to .
3. in the input and output , the N is for the device address line.
4. the branch instructions are not for subroutines . They are goto's.
5. 	the short branch is used to branch to another memory location in

the same page (256-byte) of memory. The long branch involves three
bytes. The first is the instruction. The second and third are the
branching address . In a short branch, there is only two bytes-one
for the instruction itself , and the other for the current page branch·
lng address .

6. 	 The skip instructions are used to ' skip' the next or next two Instruc­
tions. Take for example instruction CE. This will skip the next two

B!T5

N

SPECIALTIES:

Business Packages

Industrial Systems

Entrepreneur Systems

Hardware Designs

Service

We Stock Most Major Micro Manufacturers

* * * Hobbyists Welcome * * *

Our Representative In San Diego!

Jim Farthing

(714) 421-1041


~~~~; =~sJn~~s Park ~~ ]! ~~ 
679 "0" S . State College Blvd . ~-- ~ u ij 1 
Fullerton, Cal1f . 92631 _~ n ' I 
(714) 879-8386 	 ' IU ' !.:1 
HOURS : 	 12-7 P . M. M - F 0 

12-5P.M. Sat. o'"""""o""•" 1~ 
....,,,,, •• ,,, 11 II 

CIRCLE INQUIRY NO. 62 

used for transfer of data between the micropro­
cessor, the memory and t he 1/0 devices. 
Issued by an 1/0 instruction for the 1/0 control 
logic of data transfer. These lines can be used to 
issue commands or device selection codes to the 
1/0 devices. The N bits are low except when an 1/0 
instruction is being executed . During this time, 
their state equals that of their corresponding bits 
in the N register. The direction of data flow is 
defined by the N3 bit , and indicated by the level of 
the MRD signal. 
These are flag lines that can be tes ted in the pro­
gram. These flag lines can have a variety of uses 
such as input and output for sensing of a certain 
condition or counting a certain number of objects. 
Interrupt: X,P stored in T. X is set t o 2 and 
Pis set for 1 and IE is set to zero. 
Dma in/out: R(O) points to memory location for in· 
put or output of memory . After input or output of 
data, the R(O) is incremented. 
These lines indicate the action of the CPU. 
process SC1 SCO 
fetch low low 
execute low high 
DMA high low 
interrupt high high 
Timing pulses that occur once each machine cycle 
these are the 8 memory address lines. The high 
bits appear on the line and are put into the exter­
nal address latches by TPA . Then , the low order 
bits are placed on the lines after the TPA is com ­
pleted . 
This is the memory write pulse that appears after 
the address lines have been stabilized . 
This is the memory read level. It can be used to 
control 3-state outputs from the addressed 
memory which may have a common data input out­
put bus . 
This is a single bit output line from the CPU which 
can be set or reset under program control. 
This is the i nput line for externally generated 
single-phase clock. The clock Is counted down at 
lhe rate of 8 pulses/machine cycle . 
purpose is to provide for external crystal for timing. 
Provide control modes as follows : 
CLEAR WAIT MODE 
low low load 
low high reset 
high low pause 
high high run 
Load : holds the CPU in idle and allows for an 1/0 
device to load the memory without the need of a 
bootstrap loader. 
Reset : I,N,a are reset , IE set , and zeros are placed 
on the data bus . 
Pause: stops the internal CPU timing generator on 
the first negative high to low transition of the In­
put clock. 
Run: starts a fetch from 0000 in memory . 

OTHER COMMANDS 
!Maaaa xx change memory at aaaa t o xx 
?Maaaa hhhh list memory at aaaa for hhhh bytes 
$Paaaa begin program execution at aaaa with p =zero 

MONITOR BOARD COMMANDS 

NO to N2 

EF1 to EF4 

INTERRUPT 
DMA-IN/OUT 

SCO, SC1 

TPA,TPB 
MAO-MA7 

MWR 

MRD 

a 

CLOCK 

XTAL 
WAIT CLEAR 

!Rn hhhh 
!Xn 
!Pn 
!Dhh 
!Fb 
!BPaaaa 
!BR 
?R 
?X 
?P 
?D 
?F 
$P 
$Nhhhh 
aaaa =address 

set Rn to hhhh 
setXton 
set P ton 
set D to hh 
set D flag to b=O or 1 
set a breakpoint at aaaa 
remove the breakpoint 
display the registers 
dis X 
dis P 
dis D 
dis F 
resume program execution 
execute the next hhhh instructions 
xx is a hex digit pair n Is a reg number 
h is a hex digit 

132/NTERFACE AGE AUGUST1977 


