203- 870 ~6!7?

Serial# S/ ¢

MICROMINT
Z8 FORTH

THE MICROMINT, INC. 4 PARK STREET, VERNON, CT 06066

Rev 2.0

20357117 foLiokmioal. aanilames

N M .) _ , ;
047\ i1 b husrevend
B g .
(}\)ﬁl\zll)(‘%{/ 4 / s
/:,"i“/],'u

Z8/FORTH USER'S MANUAL

PREFACE. . L] . L L] L] L L] . L] . . l
GETTING ‘BTARTED. i ¢ o ieiie! ¢ ieie

ADVANCED FEATURES., . .
Warnings and Errors.
INGOrrupts . e e e o
Autostart Hook . . .
Mass Storage Hook. .

® o o o o
e o o o o
e o o o o
e o o o o
e o o o o
CONRN N

FORTH UTILITIY EPROM . « . ¢« « « 10
A Full Screen Editor 10
Cassette Utility . . . o o 19
Eprom Programing Primatives . 20

BIBLIOGRAPHY ® o o e o e o o o o 23
WORD LIST AND CONFIGURATION. . . Al
FULL SCREEN EDITOR LISTING . . . Bl

ADDITONAL PRIMATIVES . . « « « « Cl

% % % % % % % % % % % % % % % % % % %% % % %% % % % % o ¥ ¥ % % ¥ % % % ¥ ¥ ¥ % ¥ % % ¥ F ¥ ¥ ¥ ¥ ¥ ¥ ¥ F F* ¥ ¥ * * ¥

 k k k Kk Kk Kk k k k k k * * Kk *k *x k *x * *k Kk *k *k *k k * * * * &

PRODUCT WARRANTY
* k Kk Kk Kk Kk Kk *k k Kk Kk Kk Kk Kk Kk *k *k *k k *k Kk Kk k *k *k *k k k k k %

Conditions of Sale

MICROMINT, INC., and the Buyer agree to the following
terms and conditions of the Sale and Purchase.

1. MICROMINT, INC. extends the following warranty; a factory
manufactured circuit board or assembly carries with it a 90
day warranty covering both parts and labor. Any unit which
is found to have a defect in materials or workmanship shall
at the option of MICROMINT, INC. be repaired or replaced.

2. For repair of units which have expired their warranty, a
minimum inspection fee must be prepaid. Contact MICROMINT INC
for information on current minimum charges.

3. NO WARRANTY is extended on USER ASSEMBLED systems or kits
However, assembled kits will be inspected and repaired with
charges based on the current minimum one hour charge.
MICROMINT, INC. retains the right to refuse to repair any
USER ASSEMBLED item. This right is at the sole discrertion
of MICROMINT, INC.. However, in the event that repair charges
would exceed a reasonable amount, the user may be consulted
for a determination. Repairs on user assembled items must be
PREPAID. Return authorization must be obtained prior to any
return,

4. MICROMINT, INC. shall not be responsible for repair or
replacement of any units which become defective through user
modification, negligence, abuse and/or mishandling, or
improper installation.

5. MICROMINT, INC. shall not be responsible to the Buyer for
any loss or claim of special or consequential damages.

6. All units returned for repair must have prior
authorization from MICROMINT, INC.. A return authorization
number may be obtained by phone or letter. Please retain a
record of the return authorization number as most subsequent
correspondence will reference the number. Under no
circumstances is any product to be returned to MICROMINT,
INC. without prior authorization. MICROMINT, INC. will assume
no responsibility for unauthorized returns. All returns must
be shipped prepaid. Insurance is recommended as losses by a
shipping carrier are not the responsibility of MICROMINT, INC
Repaired units will be returned with postage paid.

7. MICROMINT, INC. reserves the right to change any feature
or specification at any time as well as the minimum charges
and other condition or warranty contained herein.

REVISION 12/84

ok k k k ok k k Kk k k Kk k Kk Kk *k Kk Kk kK Kk k k k k kK k k k Kk Kk *
EFFECTIVE DEC. 1ST 1286
MICROMINT PRODUCT WARRANTIES
{ - TO BE: ONE YEAR
FROM DATE OF PURCHASE

% % % % % % % % O % % S o O % % % % % % % % % % % % % % ¥ % ¥ % % % ¥ ¥ % % ¥ ¥ ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ * F F * F ¥

¥ % ¥ K ¥ 3k % % % % K % ¥ ¥ ¥ N % % % ¥ % % % % N ¥ ¥ ¥ ¥ ¥ % ¥ ¥ ¥ ¥ % % % ¥ ¥ ¥ ¥ ¥ O ¥ ¥ ¥ ¥ ¥ ¥ ¥ %

COPYRIGHT *
ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok k k k Kk ok Kk Kk K K

Z8 FORTH was written and devloped under contract by
Steve Chalmer

Z8 FORTH is owned and copyright 1984 by CIRCUIT CELLAR INC

Z8 FORTH is licensed to Micromint INC

¥ % % ¥ ¥ ¥ F ¥ *

All rights reserved. No part of this publication may *
be reproduced, transmitted, transcribed, stored in any form *
or by any means, manual or otherwise, without the prior *

written permission of: o P
MM Coalme ow/teo
MICROMINT INC. e =Y

4 Park Street 5 B A 8
Vernon, Connecticut 06066 7/ FF3-6/6

* k k k k k k k& Kk k k k k k Kk *k k Kk k k *k % * *k *k *k k & %k &

DISCLAIMER
* ok ok ok ok ok k ok ok Kk k Kk k Kk k k k k Kk k Kk k k Kk Kk Kk & *

*

THE MICROMINT INC. makes no representations or
warranties with respect to the contents hereof. Further,
changes are periodically made to the information contained
herein. THE MICROMINT INC reserves the right to incorporate
these changes in new editions of this publication without
obligation to notify any person of such revision or change.

Mention in this document of specific product(s) does not
constitute an endorsement of the product(s); rather, the
information regarding specific products(s) is given for
illustrative purposes. Description of other manufacture's
interface or technical data is not intended to supercede
information provided by such manufacturer.

* k k k k Kk Kk Kk k k Kk k *k k k *k k k Kk k k k k *k k *k k k Kk *

TRADEMAREK
* k k ok ok k ok k ok k k Kk k k Kk k k k Kk Kk k *k k k * k k k *k &

Z8 FORTH is a trademark of CIRCUIT CELLAR INC.

Z8 is a trademark of ZILOG Corporation

¥ % ¥ ¥ ¥ ¥ ¥ K % ¥ % ¥ ¥ ¥ ¥ ¥ % % % ¥ % % ¥ % % ¥ ¥ ¥ F ¥ ¥ ¥ * ¥ ¥

* k k k k Kk Kk Kk Kk *k k * * k Kk *k *k *k * *k *k Kk Kk *k *k k * *k * K

Z8/FORTH USER'S MANUAL

PREFACE

Z8/FORTH is a high 1level language compiler on a chip. It
combines the power of the 28 microcomputer with the compactness
and speed of FORTH. The basic features of the 28 are well
documented in the "Z8 Technical Manual" and the 28 Assembly
Language as it relates to FORTH Implementations have been
documented in "FORTH-79" which is a publication of the FORTH
Standards Team, and is distributed by the FORTH Interest Group.

In addition to these publications, We highly recommend three
other books which will help you in your programming efforts. They
are:

Starting FORTH, by Leo Brody
FORTH Programming, by Leo J. Scanlon
The FORTH Encyclopedia, by Mitch Derick and Linda Baker.

All of these books will be found in the bibliography section
of this manual.

Throughout this document, it is presumed that you have some
knowledge of the workings of the 28 microcomputer and that you
have a rudimentary knowledge of FORTH. If you are not experienced
in working with FORTH, don't worry. It is very easy to pick up.
The best way to learn FORTH is to use it. To that end, this
manual leans very heavily towards practical examples using FORTH
and approaches it in a narrative style. The first section deals
with how to start talking to Z8/FORTH. The next section describes
some of its main features and how to use them. This is
accomplished by 1leading you through the programming of a full
screen editor. The third section describes some of the more
advanced features available. The appendix section is a brief
leixicon that lists all of the words in ROM. More complete
definitions of these words can be found in the Scanlon book. We
have tried to point out any differences that exist.

The examples that are used presume that you have the BCC21 28
System/Controller board from The Micromint Inc., and that you
have the SYSTEM/CONTROLLER manual.

The Micromint BCC01/02 Z8 Basic Computer/Controller may also
be wused but it is recommended that a Micromint 16k memory board
be used for expansion beyond 4K due to address decoding
constraints of the Computer/Controller board.

GETTING STARTED

Configure the jumpers on the main controller board as
outlined in the 28 system controller manual on pages 22 and 23. I
recommend that you use 4K of RAM at this point. Later on you may
want to experiment with autostart programs, etc.

The baud rate switch settings are the same as the ones used
in BASIC/DEBUG. The chart shown here should help clarify things:

baud rate switch #
1 20304n596 7 8
150 S ib. 9% Mok Sk nk
19. 2K Ny oy Wil R W
9600 R I . = ON (logic low)
4800 * k ok k Kk k X * = OFF (logic high)
2400 I N T
1200 * , k Kk Kk Kk Kk &
110 Lok Kk ok ok ok kK
300 k k *k * k k Kk %

The switches are presumed to reside as a byte at FFFD hex. In
addition to these rates, any integer divisor of 19.2K may be used
to get different frequencies by setting the divisor in binary and
storing this byte in register F4 hex. Any value from 0-255 can be
used. In general, this will only be done if you are not using the
console on the serial port.

Make sure that jumper JPl is set for the F800-FFFF range.

After setting the baud rate switches and making sure that
your terminal is plugged in, turn on the power to the system. hif -
your terminal was on before you turned on the power to the Z8
board, you will have noticed a carriage return/line feed, but you
should not see any characters. Now press the return key.

If all is well, you should see the friendly greeting "OK" on
the screen. This is FORTH's way of saying that everything seems
to be in order, the memory is configured, there is no autostart

application program to run, and FORTH is waiting for you to tell
it what to do.

The way that your RAM has been configured is discussed in the
section of this manual titled: word list and configuration. Right
now, don't worry about it.

If for some reason you don't see "OK" then there's probably
something wrong. Check the baud rate settings and the cable to
your terminal, and make sure that you have the jumpers set up for
the amount of RAM that vyou're wusing. Unlike Zilog's 128
Basic/Debug 2K interpreter, Z8 FORTH uses the first 4K of memory
space, so make sure that you've set the lower 2K of RAM to start
at 1000H and the next 2K should start at 1800H.

Page 2

Let's start by writing a program. All it will do is print the
word HELLO on the screen, but it's a start.

Type in the following line exactly as you see it here. Make
very sure that you put all of the spaces in. Notice that there is
no space between the dot and the first quote:

: TEST ." HELLO" ;

Now press the Return key. Nothing happened! Well, it said
"OK" after the semicolon, but no "HELLO". What's going on?

I said we were going to write a program to print the word
"HELLO" on the screen, and we have. But we haven't run the

program yet. To do that requires a command. Type in the word TEST
and press the Return key.

Hal Wrong again, That's not "HELLO", it's "HELLOOK" and
where's the friendly "OK"?

Trust me. All it needs is a 1little tweaking. Let's try
another word. This one is called NEWTEST and we type it in like
this:

¢ NEWTEST CR TEST CR ;

Note that CR is a FORTH word not a representation for the
Cariage Return key on the console.

Well, at 1least we got the "OK" back. Say, doesn't that word
TEST look familiar? Now try typing in NEWTEST and press Return.
Now we get "HELLO" on the line after our word NEWTEST and "OK" on
the line after that.

Having gotten through the preliminaries, let's analyze what
we've just done.

The first word, "TEST" was defined by using a colon followed
by a space followed by the word TEST. (In FORTH, all words are
separated by spaces. This doesn't waste any storage because the
spaces are removed when the definition is compiled.) After the
name of the word being defined was a curious pair of characters
consisting of a period followed immediately by a quotation mark :

." (space)
This was followed by the word "HELLO" with another quotation
mark at the end of the word, then a space, then a semicolon. What

does it all mean? We already know what it does. It prints the
word HELLOOK on the screen and loses "OK".

Page 3

Nothing happens when you type characters on a 1line, except
that the characters are put into a special place in RAM called
the TIB(in long english that is Terminal Input Buffer). If you
make a mistake before you type Return you can backspace and
correct it, but the backspace erases the characters it goes over.
If you try to backspace past the beginning of the line, you get a
beep and can't go any further.

After you press the Enter or Return key, FORTH starts to look
at what you're telling it to do. The first thing it came to was a
colon followed by a space.

FORTH considers any character followed by a space to be a
word. To find out what the word means, FORTH looks it up in a
dictionary. (Isn't that what you would do?)

The word : is in the dictionary, and it means:

"Create a new word in the dictionary and name
it by the next word you come to."

So, the new entry is created and the next word which FORTH
comes upon is the word TEST. That's what the new entry is called.
Once a colon-definition (as 1it's «called) is started, FORTH
remembers all the words between the new word's name (here, TEST)
and the semicolon. These words are the definition of the new word
and are executed whenever FORTH encounters the new word.

As FORTH continues to look at what you typed in it comes to
the word ." and, not being bothered with our typographic
prejudices, it merrily looks it up in the dictionary to find that
it means:

"Get and count all of the characters you can find until you
come to another quotation mark. Put the number of characters
found into the dictionary followed by the characters themselves.
At some point in the future, be prepared to extract these
characters from the dictionary and print them to the console."

This 1is speedily done. Continuing, FORTH comes to the
semicolon and looks it up. The semicolon means:

"Check to make sure that there are no loose ends and close
the dictionary addition; then attach it formally so that it too
can be referred to when required."

Having done all of that, FORTH found that there was no more
that you'd typed in and so it immediately said "OK".

Page 4

When you typed in TEST, FORTH looked up that word in the
dictionary and found it (not surprising as it was the most recent
addition). TEST says output the characters "HELLO" to the
console, so FORTH does just that. Then with nothing else to do it
sent "OK", and that's why TEST prints HELLOOK". You never told it
to put a space after "HELLO".

NEWTEST was defined after TEST and what you said was to put

out a carriage return and 1line feed (or CR) before TEST and
another CR after TEST. This put the HELLO on its own line.

So, you've just written your first FORTH program. How do you
get ridioficiit?

Forget it.

Wait- you mean to say I've got to keep this 'PROGRAM'? in the
dictionary; that I can't get rid of it!!

Calm yourself. I said forget it and I meant it. The way to do
it is to type in FORGET TEST and press return. FORTH will forget
you ever defined TEST. It will also forget you ever defined
NEWTEST. In fact, any time you say FORGET, FORTH will take the
word immediately following the word FORGET and chop off the
dictionary at that point. Everything after the word you gave as
the argument for FORGET will be forgotten. FORTH will very
placidly 1lombotomize all of its creative power and control if
told to do so. You can turn your immensely powerful controller
board into a vacuous dolt with absurd ease. All you have to do is
say FORGET EXECUTE and press Return. (Go ahead, try it.)

We just made FORTH FORGET how to execute machine language
programs. ALL machine 1language programs. Forth is a machine
language program.

Now press the reset button, and all will be as it was. Of
course if you had just spent an hour typing things into the
dictionary, all that would be gone. The moral is that FORTH will
always do exactly what you tell it to do. The power of FORTH is a
double edged scalpel. Forth allows you to get right down to the
control registers and turn off access to the console. This is
real power and real responsibility. Just think ahead before you
act and you'll do fine.

So much for fun and games. ULet's Jjump head first (pun
intended) into something more serious.

Page 5

ADVANCED FEATURES

In this section, various hooks are described in the
dictionary which will allow you to tailor your own error
messages, add your own mass storage routines, and provide
precompiled autostart applications programs.

Warnings and Errors

There 1is only one warning message trapped. If the word being
defined is called by the same name as one already in the
dictionary, the word being defined is printed out followed by ?2U.
This stands for not Unique. Be very careful of any words you use
which begin with the three letters FOR. Any six letter word which
starts with FOR will be impossible to FORGET, as will any word
after it in the dictionary. This can be used to advantage if you
want to redefine the word FORGET to include a fence buffer. This
is a register which is loaded by the word FREEZE which is defined
to take the address left by HERE and put it into the fence
buffer. The new definition of FORGET will not allow any words to
be forgotten unless their addresses are higher than the address
in the fence buffer. Register pair 2EH has been reserved for this
purpose if you wish to use it.

There are seven possible error messages trapped by the
system.
These are:

CODE# CHARACTER MEANING

0056 vV reaching the end of a buffer while in
compilation mode. Unless you install a mass
storage routine, you won't see this very
often.

0143 <word> ?2C This word must only be used when system is
in compilation mode.

024E <word> 2N This word is not in the dictionary and is
not a number.

0353 ; 7?8 There is something wrong with the
definition, most likely an unpaired
conditional of some sort, eg. IF with no
THEN or a CASE ... OF ...ELSE ... ENDCASE
with a missing ELSE. 0444 ¢?2D You
are attempting to use $ inside a
definition.

0557 <word> ?W This word is not in the dictionary so it
cannot be compiled into a defini- tion.

0656 <word> 2?2V This word is not in the dictionary, so it
cannot be forgotten.

Page ©

In general, fatal errors empty both stacks and perform the
word QUIT. This puts you back into console mode waiting for
input. A carriage return will give you OK.

The CODE# column refers to the numbers left on the stack when
the error routine is invoked. There is a hook left here for
writing your own error trap routine. The reserved register pair
R26H is tested for a non-zero value at the beginning of the
warning routine. If the register contains 0000, the warning is
issued and if it is a fatal error, QUIT is invoked. If R26H does
not contain 0000, the value is assumed to be the code field
address of the error trap routine. This is put onto the stack and
executed. To link your error trapping routine to this hook, write
and test it and after it has been debugged type in:

FIND <word> 26 !

where <word> is the name of your error trap routine.

Interrupts

Interrupts may be used as you desire, but you cannot 1link
interrupt routines into high-level code easily. However, as 1long
as you preserve the values of certain working registers, you can
vector to machine code interrupt routines very easily. When an
interrupt occurs, provided the interrupt mask register has been
modified in accordance with proper 28 procedures (ie, DI change
mask then EI), the interrupt will go to its normal ROM location.
In these locations are the addresses of instructions which are
JMP IRR04 to IRROEH depending on the interrupt. If the addresses
of the appropriate routines are loaded into RR04 through RROEH,
those routines will be jumped too. You must preserve the
following things to successfully return from interrupt:

the system stack pointer (RRFEH)
the register stack pointer (RFDH)
registers 10H-2FH
registers 50H-5FH
registers 70H-7FH

You may freely use registers 30H-4FH and registers 60H-6FH.
These are never used by FORTH.

Page 7

Autostart Hook

The autostart hook happens only on power-up, reset, or if you
invoke the word COLD. The system is configured by initializing
the control registers, then testing for contiguous ROM at 400H
boundaries starting with the internal ROM space. The testing |is
performed by reading the byte at an address, writing the
complement of the data to it, reading the byte again, restoring
the original data, and finally comparing the two data reads. If
they are identical, the location is assumed to contain ROM for
the next 1023 bytes. When the first non-ROM location is found, it
is presumed to be RAM, and the dictionary pointer is loaded with
this address. RAM is tested at 1K boundaries using the same
method until the test routine detects the first non-RAM location.
At this point, the configuration is completed.

The Rstack pointer is loaded with the address of the top of
RAM space. The Dstack pointer is loaded with the address 100H
below the Rstack pointer value, and the TIB pointer (Terminal
Input Buffer) is loaded with the same address as the Dstack
pointer. The Dstack grows down towards the dictionary, and the
terminal input buffer grows up towards the bottom of the Rstack.
Once this configuration is completed, the top two bytes of lowest
ROM block are tested. If they contain FFFFH, then the baud rate
switches are read and QUIT is performed.

The system is set up in console mode waiting for input. If
the two top bytes of ROM contain any other value than FFFFH, they
are presumed to contain the code field address of the first word
to execute in an applications program, and this address is
EXECUTED. The system must contain at least 1K of RAM located just
over the ROM space in order to function properly. Other RAM and
ROM may be put anywhere, but if applications are to autostart,
the address must be in non-writable memory contiguous with the 28
ROM space.

Note that the actual code to be run can reside anywhere. It's
only the pointer that must be at the top of contiguous ROM space.
Thus if a 2716 EPROM were located from addresses 1000H to 17FFH,
the code field address of the word to be executed on power-up
must be stored in locations 17FEH and 17FFH. The most significant
byte of the address is stored in 17FEH and the least significant

byte is stored in 17FF. This can be easily done by compiling the
program and then typing:

FIND <word> 17FE !

where <words> is the name of the program you want to have on
power up.

Page 8

Mass Storage Hook

The mass storage hook 1is provided through the use of the
register named BLK. If you've studied the listing for the full
screen editor in the 1last section, you will have seen that if
this register (R16H) pair contains a number between 0 and 3FH,
the number is presumed to be the address of a 1K screen residing
in RAM. The absolute address is derived by multiplying the number
in BLK by 400H. This is why screen addresses must be on even 1K
boundaries. If the number in BLK is greater than 3FH, it ds
presumed to be the code field address of the mass storage routine
and is EXECUTED. The mass storage routine is expected to leave
the address of the buffer location in RAM where the new input
stream is to be found by WORD.

Page 9

Z8 FORTH UTILITY EPROM

REV, 2.0 473 EPRom

This set of utility words for the Z8 FORTH language includes
a full screen editor, cassette I/0 driver primitives, EPROM
programmer primitives, and some words which make it easy and fast
to write a HEX file loader for machine code downloading.

It is important that the EPROM which contains the utility
words be located at BO000 hex in the address space of the
Micromint system. Make sure that you have properly configured the
jumpers on the board which you are using to insure this.

The editor which is found in the wutility EPROM differs
somewhat from the full screen editor which was described in the
728 FORTH manual. The utility editor is also full screen, but Iis
much easier to modify in order to accommodate different control
codes or add new features.

The cassette I/0 primitives will allow you to easily dump and
load screens of information. You can also dump and load machine
code, dictionary pictures, register files, and virtually anything
which resides in memory. The primitives are almost completely
unconstrained with respect to header length and format, and are
very easy to incorporate into any kind of cassette based file
structure.

The EPROM programming primitives support 2716 and 2732 type
EPROMS, and pre-suppose a 50 millisecond programming pulse. The
adaptive programming algorithm is not employed. Verification,
extraction of pre-programmed data, and programming are all easy
to do using these primitives.

The HEX file loader primitives make it possible to download
machine-code routines from another computer using the INTEL HEX
file format.

For all of these utilities, I have provided examples of how
to use them to some advantage. The actual uses to which you will
put them are, of course, left as an exercise for the reader.

FULL SCREEN EDITOR

The FULL SCREEN EDITOR allows you to edit a 1024 byte screen
of text which is located on any 1K boundary in available RAM. The
screen format is 16 (decimal) lines of 64 characters each. The
cursor may be moved to any character position in this space by
means of re-definable control keys. Text is always entered in a
type-over mode. That 1is, any text you type in will replace the
text you are typing over. Insertion mode is not supported, but
can be added if desired.

Page 10

All of the examples in this manual will use the full screen
editor as the means of entering and storing programs. Of course,
you can also use the more primitive line by line entry method

supported by the Z8 FORTH kernel to enter the examples if you
wish.

To compile the vocabulary for the editor, make sure that the
EPROM is properly installed in your system at address B000 hex,
and that you have sufficient RAM available to use it. When
compiled, the editor vocabulary takes up 1125 (decimal) bytes or
a little over 1.1K. If you have 4K of RAM on the main controller
board and 2K of RAM plus the UTILITY EPROM on the expansion board
then you will have a bit less than 3K of dictionary space left,
and room for two separate screens of editing space. If you have
the expansion memory card in your system, you can easily
partition the editing screens to be 1located anywhere in this
space by changing the value stored in the variable SCR as
described later in this section.

Compiling the editor vocabulary is done by typing in the line:

2C BOOT

and pressing the carriage return or enter key. The word BOOT
which is part of the kernel vocabulary causes the editor to be
compiled by making the input stream come from a location 1in
memory. In this case, that 1location 1is block 2¢ hex which
translates into address B000 hex by means of the mass storage
hook described in the Z8 FORTH manual. Note that the word BOOT
ends by using the word QUIT which means that it cannot be used
inside another definition because QUIT causes the system to go
back to input mode and wait for keyboard instructions. The
definition of BOOT is given in Appendix B. You can easily
redefine another word which preserves the contents of >IN and
allows you to redirect compilation from within another word. The
source code for the word LSCR is a good example of this. It can
be found in Appendix A.

When the editor is successfully loaded, you will get the OK
prompt back. It takes about 11 seconds to compile. If it takes
much longer than that, there is probably something wrong so check
to make sure that your hardware is functioning properly and that
the UTILITY EPROM is correctly installed at the right address.

Before using the editor, it is necessary that you provide a
place in memory for the text to reside. A good location would be
any RAM which resides on the expansion board, as this is likely
to be non-contiguous with the dictionary. For example, let's say
that you have 2K of RAM residing at address 8000 hex. To set up a
screen which resides at this address type in the following line:

8000 SCR | .CLEAR
and press the enter key. After a very slight hesitation, you will
get the OK prompt back. What you have done is filled a 1K

buffer beginning at 8000 hex with ASCII blank characters (20 hex)
and set up a pointer to this buffer in a variable called SCR .

Page 11

You can now begin to use the editor. Type in the line:
EDIT
and press the enter key. What you should see is:

8000

00<|_ |
01<| |
02<| |
03<| |
04<| |
05¢<| |
06<| |
07<| |
08<| |
09<| |
0A<| |
0B< | |
oc<| |
0D< | |
0E<| |
0F<| ;S |

If your screen does not look like that, then you must modify
the control codes used by the editor. See the section below on
modifications.

The cursor controls (usually shown by arrows on your
terminal) should be able to move the cursor around the screen.
When you reach either a line boundary or a column boundary your
terminal should beep and you should not be able to cross the
boundary. Note that the cursor will stop in the left most
character position, but will stop one position to the right of
the right most character position. This is done to allow normal
backspacing. Note also that backspacing is non-destructive and
that use of the rubout (or DEL) key will cause a non-printing
character to be inserted into the buffer which will make a 1line
appear shorter than it actually is when the line is listed.

If your cursor controls do not move the cursor properly, then
you must modify the control codes used by the editor. See the
section below on modifications.

To leave the editor, press the ESCape key. This should cause
the cursor to go to the line immediately following 1line OF and
print the OK prompt followed by a carriage return/line feed
sequence. If your escape key does not cause this to happen, then
you must modify the control codes used by the editor. See the
section below on modifications.

Page 12

To use the editor, type in the program (I'll give a sample
below) and make whatever changes you wish. Remember that spaces
must be left between all words. Pay particular attention to the
ends of lines. The end of one line and the beginning of the line
immediately below it are right next to each other in memory. If
you are cramped for space, there is nothing wrong with beginning
a word on one line and ending it on the next line. The conpiler
will see that as one word. This is important to remember when
entering strings. If you are not using the full screen editor, no
string that you enter can be longer than will fit on a single 64
byte line including the ." word. In the full screen editor, you
could start a string on a line and finish it 4 lines later. The

maximum length is 256 bytes between the first character and the
closing "

Before I show the sample program, you will note that the
current address in memory is shown as the top line on the
terminal, the cursor 1is indicated by the underscore (
character, and that the line numbers are shown in hex. If you had
been in decimal base prior to stating the word EDIT then the
address and line numbers would have been in decimal. The word ;S
which appears at the end of the screen is always placed in that
location by the editor. Its purpose is to insure that the screen
Stops loading at that point. It will always be placed there, even
if you write over it so to prevent possible problems it's a good
idea to avoid putting anything either one space before it or one
space after it,

Here are the screen images of a sample program:

8000

00<l: (29 WORD 1 >IN +! ; IMMEDIATE (THIS ALLOWS COMMENTS)
01<|: VARIABLE <BUILDS , DOES> ;

02<|0 VARIABLE OFFSET 0 VARIABLE CHECKSUM

03<|: CHECKIT DUP CHECKSUM +! ;

04<|: get B5A8 EXECUTE ;

05<|: *10 BS5AC EXECUTE ;

06<|: *100 B5AA EXECUTE ;

07<|: 2GET get SWAP *10 SWAP get ROT OR

08<| IF OR CHECKIT
09<| ELSE ." DATA ERROR"
0A<| THEN

0B< | ;

0C<|: PROGRESS CR ." YOU HAVE LOADED SCREEN: " SCR @0 D..CR:jp
0D<|: 4GET 2GET *100 2GET OR ;

OE<|: ESCAPE BEGIN KEY 1B = UNTIL CR ." OK" QUIT ;

OF<| PROGRESS G ;S

Page 13

8400

00<|: GETHEX BEGIN KEY 3A = UNTIL

01<| 2GET 4GET OFFSET @ + SWAP 2GET

02<| CASE 0 OF 1 DO 2GET OVER I + 1 - C! LOOP DROP

03«<]| 2GET DROP 0

04<| ELSE

05<]| 1 OF DROP 2GET DROP 1 ELSE

06<| SWAP DROP 0 D. ." IS NOT A RECOGNIZED RECORD TYPE"
08<| ESCAPE

09<| ENDCASE

0A<L]| ;

0B<|: HEXLOAD 0 CHECKSUM ! CR

I
|
I
I
|
I
I
07<| CR ." PRESS <esc> TO EXIT LOADING" :
|
[
I
0C<| BEGIN CR GETHEX CHECKSUM @ FF AND :

I

I

0D< | IF ." CHECKSUM ERROR - <esc> TO QUIT" ESCAPE THEN
0E<| UNTIL
OF<|; PROGRESS _ ;S

To type in this sample program, start by loading SCR with
8000 hex as shown above. Then enter the first screen full of
data.

When the first screen is properly typed in, press escape and
type in the line:

8400 SCR ! .CLEAR EDIT

which will put you back into editing at the top of the next
screen.

When the second screen is typed in, press escape to get back
to console mode.

To view the screens you have entered, use the word LIST
which will scroll the 1listing but not put you into editing

mode. Remember to change the address in SCR to view the other
screen.

To load the screens, type in the following line and press enter:

8000 SCR ! LSCR 8400 SCR ! LSCR

When the OK prompt returns you have sucessfully loaded the
program. You will have been notified of your progress along the
way if you typed in exactly what I have shown.

(Incidentally, the program allows you to download INTEL HEX
format data files from another computer. Each line is accepted
with a CR/LF sequence, and each 1line is tested for a wvalid
checksum and record type. It is an interesting project to rewrite
this program to use XON/XOFF type protocols and interface it with

an originating program such as PC-TALK. The words get *10 and
*100 are defined in Appendix B.)

Page 14

Modifications

In the event that your terminal doesn't work with the full
screen editor as it resides in the EPROM it will be necessary to
modify the control codes which the editor uses to correspond to
those which your terminal uses.

To begin this process, make sure that you have your terminal
manual in front of you so that you can refer to the proper codes.
Note that all of the numbers I am using in the following
procedures are in hex unless specifically stated otherwise.

If you look at the listing of the editor source code which is
reproduced in Appendix A you will notice that the first set of 16
(decimal) colon definitions consist of one number which is 1left
on the stack, and in the case of CRETURN one other number which
is emited. These 16 definitions are divided into three groups:

1. The words SCR POS and LN# are used to define registers
for variable storage;

2. The words HOME CLEFT CDOWN CUP CRIGHT CRETURN and BELL
which are used to control cursor movements in the terminal;

3. The words ESC LC DC UC RC and DR which are used to
identify the control codes which the terminal sends out when you
press the cursor control keys.

Before making the modifications, you should determine which
words you want to modify. If you don't need to use registers 70 ~
75 then you need not modify any words in the first group. (If you
have been following the recommendations in the Z8 FORTH manual
then you should not be using the registers from 70 - 7F anyway,
but these words are there should you need to modify them.)

If you tried to EDIT a screen, and the listing did not start
in the upper left hand corner, then you must modify the word
HOME .

If you could not exit from the editor without pressing the
reset button then you must modify the word ESC .

If you did not hear the 'bell' on vyour terminal when you
tried to advance the cursor past an editing screen boundary, then
you must modify the word BELL .

If your cursor control keys did not move the cursor properly,
then either the words in group two or the words in group three or
both must be modified. It can be tricky to find out which option
to take without experimentation unless your terminal manual tells
you what character sequences are output by the cursor control
keys, and what character sequences must be input to the terminal
in order to control cursor movement.

Page 1%

The following listing shows what the editor expects to see
from the terminal in order to control the cursor, what the editor
outputs to the terminal to move the cursor, and which words are
involved in each case (all values are in hex):

FUNCTION VALUE FROM TERMINAL WORD USED
left cursor 08 ("H) LG

down cursor 0A ("J) DC

up cursor 0B ("K) uc

right cursor 0cC (L) RC

return (ENTER) 0D ("M) DR

escape edit 1B (<esc>) ESC
FUNCTION VALUE TO TERMINAL WORD USED
left cursor 08 CLEFT
down cursor 0A CDOWN

up cursor 0B cup

right cursor 0ocC CRIGHT
cr/1lf 0D OA CRETURN
bell 07 BELL

If the values in this table do not correspond to those which
your terminal needs, you must modify the words which don't match.
It is important that only single numbers be sent FROM the
terminal as cursor control keys. Values sent TO the terminal by
the editor can be any number of characters long.

In the example which I will give, I will show how to modify
the cursor control keys sent FROM the terminal so that they
correspond to the ones used by WORDSTAR (reg. MICROPRO), and how
to modify the word BELL so that it automatically performs a
cursor wrapping function. This example should give you the
necessary techniques to make your own modifications.

The WORDSTAR (reg. MICROPRO) control keys are shown in this
table:

FUNCTION VALUE FROM TERMINAL WORD USED
left cursor 13 (°Ss) lc
down cursor 18 (" X) dc
up cursor 05 ("E) uc
right cursor 04 ("D) ro

The simplest method for modifying the editor requires the
definition of four new words. If we use lower case for the names

of the words, it will be easy to tell which words are ours. The
definitions are:

Sl cinli3a,
s de¢ 18 ;
SERLIC () 50 s
s rc 04 ;

Page 16

Once these definitions are typed 1in, type the following
lines:

MODIFY LC lc
MODIFY DC dc
MODIFY UC uc
MODIFY RC rc

This amends the editor by replacing the old compiled words
with the new words which have just been defined. This is a one
way procedure. Once the original words have been modified there
is no way to restore the original values unless you FORGET SCR
and re- BOOT . You may redefine the new words after you have
MODIFYed the old ones, but you must re-MODIFY using the new
definitions. If you have deleted the new definitions by
FORGETting them, any attempt to use the editor will result in a
crash unless you define new words and re-MODIFY .

This is not good programming practice because you are
patching code which has already been compiled, but it does allow
easy modification of ROMed source code.

The use of the word MODIFY make things easy, but the new
definitions do take wup room 1in the dictionary. It 1is also
possible to redefine the group three words only by replacing
their compiled literal number values with the new ones. For
instance:

113 FIND LC 4 ofe !

will replace the 1literal number 08 in the original definition
with the literal number 13 . This method is bad practice, and can
only be wused with group three words which consist of a single
number compiled in a colon definition. The word MODIFY allows
whole new control structures to be defined, not just literal
number replacement. However, this method has the advantage of not
taking up dictionary space. Be careful.

Another example of the word MODIFY is to redefine the word
BELL so that the cursor will wrap around instead of being stuck.

If you look at the editor source code listing, you will see
that the word BELL is used in the words ?CTL and EDIT it both
cases, it is invoked when the cursor 1is detected to .be:inatyca
screen boundary, and in ?CTL it is also invoked when the control
character is not recognized. In order to wrap the cursor, our new
definition which we will call CWRAP must determine at which
boundary if any the cursor is, and must both move the cursor to
the new location and update POS for the new column number and LN#
for the new line number. If CWRAP does not find the gursor:at:. a
boundary, it must ring the bell to satisfy that constraint. For
whatever function it performs, CWRAP must leave a value on the
stack which is EMITted by the word EDIT as part of the overall
editing program logic.

Page 17

With this in mind, here is a definition of CWRAP :

: CWRAP
0
?L IF 1 + THEN
?R IF 2 + THEN
?F IF 4 + THEN
?20 IF 8 + THEN
CASE
0 OF 7 THEN
1 OF 3E 0 DO CRIGHT LOOP 40 POS ! CRIGHT ELSE
2 OF 3E 0 DO CLEFT LOOP O POS ! CLEFT ELSE
4 OF D 0 DO CUP LOOP O LN# ! CUP ELSE
8 OF D O DO CDOWN LOOP F LN# ! CDOWN ELSE
5 OF 3F 0 DO CRIGHT LOOP 40 POS !
D 0 DO CUP LOOP O LN# ! CUP ELSE
6 OF 3F 0 DO CLEFT LOOP 0 POS !
D 0 DO CUP LOOP O LN# ! CUP ELSE
9 OF 3F 0 DO CRIGHT LOOP 40 POS !
D O DO CDOWN LOOP O LN# ! CDOWN ELSE
A OF 3F 0 DO CLEFT LOOP 0 POS !
D 0 DO CDOWN LOOP O LN# ! CDOWN ELSE
DROP 7
ENDCASE

e

For each test performed, a separate bit is set. This allows
us to determine what to do in the corners. I have decided that
when a valid control character is received in a corner, the
cursor will go to the diagonally opposite corner. If the cursor
is not in a corner position, it will wrap around the same column
or the same 1line. This definition takes up another 540 decimal
bytes of dictionary space (which is one reason why I left it out
in the first place).

To install CWRAP load in the definition (which should be
done using the full screen editor for greatest ease) and then
type in: '

MODIFY BELL CWRAP

From this point on until you FORGET SCR or reset the system,
the cursor will behave according to the modifications which you
made.

To make the modifications permanent, you could save your
definitions on tape using the cassette wutilities described in
this manual, or you could blow another EPROM which contains a
completely modified EDITor program and which resides at an
address other than B000. If you opt for the latter choice, you
can determine which number to use for the word BOOT by taking the
address you would like to use and dividing it by 400 hex. This
will result in a number of 3F or less. As long as the remainder
of the division is zero, the EPROM will load properly there.

Page 18

CASSETTE UTILITY

The cassette utility provides the primitive I/0 driver for
the cassette port on the system expansion board. All file

organization and data structuring is left to the discretion of
the programmer.

To use the cassette utility, you should define this word:
: CASSETTE B5A4 EXECUTE ;

This allows you to invoke the utility easily without having
to remember the execution address of the code in the EPROM,

The word CASSETTE takes three arguments on the stack:

address count i/o-flag

stack depth: 2 1 TOP

where address is the starting address of where the data is either
coming from or going to; count is the number of bytes of data to
be transmitted or received; and i/o-flag tells the utility
routine whether the data is being transmitted or received.

When the i/o-flag is equal to 0 it means that the data is
being received from the cassette port and placed into memory at
address. After count number of bytes have been received, the
utility exits with nothing on the stack and the received data
stored in memory.

When the i/o-flag is non-0 it means that the data is being
transmitted to the cassette port using 8 cycles of 2400Hz for a
one-bit and 4 cycles of 1200Hz for a zero-bit. The transmission
format for each byte is:

time-->

XXXXT"™] /XXXXXXXX~™"~
| I
1l start bit----! | ‘2 stop bits
data bits

and count number of bytes are transmitted contiguously.

Additionally, the non-zero i/o-flag is used as a counter for
the number of one-bits which are output before the first byte is
transmitted. Thus, if the i/o-flag equals 100 hex, there will be
256 (decimal) one-bits output before the first byte of data. This
translates into 1024 (decimal) cycles of 1200Hz or about .85
seconds of header tone which will allow the input circuitry to
synchronize. This header tone can be varied at will to allow the
program to catch-up to the data, etc. Any number from 1 to FFFF
hex is wvalid, but 0 is reserved for the receive function as
stated above. Bear in mind that FFFF hex would output 218 seconds
of 1200Hz.

Page 19

This unconstrained approach to the cassette primitives allows
you to tailor your storage needs to any given application. For
instance, storing and loading an editing screen full of program
can be as simple as the words:

STORE SCR @ 400 4B0 CASSETTE ;
LOAD SCR @ 400 0 CASSETTE ;

Of course, you will probably want to add words which tell you
to start the cassette machine in record mode, and stop the
machine when the data is finished, etc. You also may want to add
checksums or other data integrity checks. Remember that these
must be added into the data which you are outputting. The easiest
way to do that sort of thing would be to designate a separate
buffer area for formatted data to which you move the information
to be output, and from which you test the data being input.

Both the input and output routines for the cassette will
abort if you press the ESC key on your terminal (provided this
outputs the ASCII escape code which is 1B hex).

EPROM PROGRAMMING PRIMITIVES

There are three primitives 1in the utility ROM which are
helpful in driving the EPROM programmer board. They should be
invoked by defining the words:

: PROGRAM BS5B0 EXECUTE
: READDR B5A6 EXECUTE
¢+ MOVEIT BS5AE EXECUTE

«e we we

The word PROGRAM takes four arguments on the stack. These are:

EPROM offset address source address count type flag

stack depth: 3 2 1 TOP

The EPROM offset address is the address relative to the start
of the EPROM where you want to begin programming the data. The
lowest EPROM address is 000 for either 2716 or 2732 types. The
highest offset address is 7FF hex for a 2716 type and FFF hex for
a 2732 type. Offset addresses higher than these will merely wrap
around the address space, but will not cause any damage.

The source address is the address in system memory from which
the data will be taken in order to program the EPROM.

The count is the number of bytes which will be programmed
into the EPROM. These bytes are contiguous, starting from the
source address and the EPROM offset address, and continuing
towards increasing addresses.

The type flag is an indicator of which EPROM type is being
programmed. The two types supported are:

flag type
0 2732
1 2716

Page 20

Attempting to program the wrong device could result in
permanent damage to the EPROM. Make sure that the EPROM is
correctly installed and that the switch on the EPROM board is set
to the correct position before invoking the word PROGRAM .
Remember also that 2732A type EPROMS require you to adjust the
pProgramming voltage to 21V from its normal 25V level. Contact the
MICROMINT Inc. on how to make this adjustment on your board.

The word PROGRAM has no constraints on the number, source,
or offset address used for programming. If the number is greater
than the size of the EPROM you will be over-writing previously
programmed data when the EPROM address wraps around and this will
almost certainly result in garbage. You are responsible for doing
your own bounds checking.

You may program only one byte if you desire, or any size
block of bytes. Each byte takes ~50 milliseconds to program, so a
2716 will require about 102 seconds and a 2732 will require about
205 seconds. There is no method for aborting PROGRAM once it has
been invoked short of pressing the reset button and this could
very easily destroy the device. Be careful. If this distresses
you, write a word which programs one byte at a time and updates
the source and offset addresses by itself while checking for
keyboard entries between each byte cycle. The speed overhead is
quite minimal for such a word.

The word PROGRAM does not check for a blank EPROM prior to
programming, nor does it perform a verification of the data after
it has finished. 1In order to do these important tasks, you can
use the word READDR.

READDR takes one argument on the stack and returns a byte:
EPROM_offset_ address --- data

The EPROM offset address is the address relative to the
lowest address in the EPROM (000) . The data which is returned
is the contents of that address from the EPROM.

This allows us to define two useful words:

¢ ?BLANK IF 7FF ELSE FFF THEN 0
DO I READDR FF -
IF ." NOT " LEAVE THEN
LOOP
." BLANK" CR

e

¢ ?COMPARE IF 7FF ELSE FFF THEN 0
DO I READDR OVER I + C@ =
IF ." NOT " LEAVE THEN
LOOP DROP
." EQUAL" CR

~e

2BLANK takes the EPROM type flag on the stack and returns a
message of either BLANK or NOT BLANK .

2COMPARE takes the source address and the EPROM type flag from
the stack and returns a message of either EQUAL or NOT EQUAL .

These two words allow for the verify blank and verify program
functions, and both are easily modifiable for incorporation into
more advanced programs.

The third useful utility is the word MOVEIT . This word takes
three arguments from the stack and performs a function similar to
the kernel word CMOVE .

source destination count

stack depth: 2 1 TOP
Source is a memory address from which the data is taken.

Destination is a memory address to which the memory is moved.

Count is the number of contiguous bytes moved.

MOVEIT differs from CMOVE in that MOVEIT only addresses
memory space, whereas CMOVE treats addresses 0000 to OOFF as
register space. Furthermore, MOVEIT will perform non-destructive
data moves if destination is greater than source even if source
plus count is greater than destination. That is; i€ ‘the data
being moved upwards in memory is longer than the distance it is
being moved, CMOVE will overwrite some of the data before it |is
moved while MOVEIT will move the data properly. If you are
moving data upwards in memory, use MOVEIT . If you are moving
data downwards in memory, use CMOVE but remember the constraint
about register space. As you ordinarily don't attempt to move
things around in ROM space, this should not pose too much of a
problem.

Page 122

BIBLIOGRAPHY

FORTH Encyclopedia; Mitch Derick and Linda Baker, Mountain View
Press, Inc. 1982

fig-FORTH Installation Manual; Forth Interest Group 1980

FORTH-79, A Publication of the FORTH Standards Team;
FORTH Standards Team, 1980

FORTH Programming; Leo J Scanlon, Howard W. Sams & Co., Inc.
1982

Starting FORTH; Leo Brodie, FORTH Inc., 1980
Z8 Microcomputer Preliminary Technical Manual; Zilog Inc., 1978

Z8 PLZ/ASM Assembly Language Programming Manual; Zilog Inc., 1980

Page 23

WORD LIST AND CONFIGURATION

This section contains the words available in the Z8/FORTH
ROM. In general, reqular words which have similar functions
are represented by only one form of the word. For example, only
U* and U/ are included for multiplication and division. U/ can
Serve as a base for implementing the MOD function as it 1leaves
the remainder second on the stack with the quotient on the top of
the stack. Likewise, D. is available but « .18 not. This 1is
because the word S->D is present which makes double numbers out
of single numbers while preserving the sign. So the word . can be
defined by you as : . S->D D. ; if you need it.

With the exception of the words >IN BLK and BASE all other
registers which are used are not given names in the dictionary.
They are defined below in terms of their location and function,
should you wish to define them as constants for use in programs.

Register Pair Name

RR04 interrupt vector address for interrupt 0

RR06 interrupt vector address for interrupt 1

RRO8 interrupt vector address for interrupt 2

RROA interrupt vector address for interrupt 3

RROC interrupt vector address for interrupt 4

RROE interrupt vector address for interrupt 5

RR10 DPL (holds number of places to right of
(radix point)

RR12 H (this is the dictionary pointer)

RR14 >IN (Input buffer index pointer)

RR16 BLK (hook to mass storage and editor)

RR18 BASE (holds the current number base)

RR1A TIB (pointer to terminal input buffer)

RR1C STATE (holds 0 if executing or COH if)
(compiling)

RRI1E HLD (points to current output number)
(conversion)

RR20 S0 (holds the start value for the Dstack)

RR22 RO (holds the start value for the Rstack)

RR24 WIDTH (holds the number of characters)
(used in dictionary entry)

RR26 WARNING (holds 0 or the code field)
(address of error trap)

RR28 CONTEXT (holds a pointer to link to)
(context vocab)

RR2A CURRENT (holds a pointer to link to)
(current vocab)

RR2C VOCLINK (points to the length byte of)
(the latest dictionary entry)

RR2E FENCE (reserved for lowest address to)
(allow FORGETting)

RR50~RR5E temporary registers used as working

registers by FORTH.
!11DO NOT EVER MESS WITH THESE!!

RR70-RR7E / RR78 is used for stack balancing
RESERVED FOR / RR7A is the FORTH Rstack pointer
SYSTEM USE! ! \ RR7C is the FORTH instruction pointer

\ RR7E is the FORTH execution vector

Page A - 1

The control registers are loaded with the following default
values on power up (the meaning of these values can be found in
the 28 Technical Manual):

RFO RF1 RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9 RFA RFB RFC RFD RFE RFF

00 OF FO0 FF <a> OF FF 4l 9« ZBeO @0 *~00 " 50 <stack>

\ /
value of baud values depend
rate switches on your memory

configuration

Word list:

Words are shown below in ASCII order. Each word has a
preferred pronunciation which is given in capital letters
immediately following the word. Following this is the stack
parameter representation which is explained below. After the
stack representation is a brief explanation of what the word
does, and some possible uses if it is generally used with other
words, eg. CASE...OF...ELSE...ENDCASE, etc.

The stack representation consists of a set of characters
separated by dashes and enclosed in parentheses:

('n2 nl¥===:n)

The top of the stack is always the right most number if more
than one number listed on one side of the dashes. On the left of
the dashes, the characters represent the values which must be
passed to the word. To the right of the dashes, the characters
represent the values remaining on the stack after the word is
finished executing. If there are no parameters remaining, the
right side 1is blank. 1In general, the letter n will be used to
represent a single number (ie. a number from 0000 to FFFF in hex)
while the 1letter d will be used to represent a double number
(from 00000000 to FFFFFFFF hex). Double numbers are stored so
that the most significant 16 bits are the top of stack.

Certain words do not take parameters but do require that they
be followed by another word. Compiling words are of this
catagory. Certain other words may take both a value on the stack
and require another word to follow them. The word CONSTANT is a
good example of this. In both of these cases,the stack
representation will take two lines eg.:

e
CONSTANT <word>

In this example, the <word> string is used to represent any
word you choose. The < and > are not meant to be included in the
word unless you wish them to be part of the spelling of the word.

For further information on the working of this vocabulary, it
is strongly recommend that you consult one of the excellent books
listed in the bibliography.

Page A - 2

! STORE

SHARP
#> SHARP-
' PICK

+ PLUS

Z8 FORTH - ROM WORD DEFINITIONS

(‘mia w=-)

The number second on the stack is stored into the
memory location pointed to by the address on the top of
stack. If the address is less than 100 hex, the address
is treated as a 28 register It is stored with the most
significant byte in the lower numbered register or
memory address. Register pair boundaries are not
respected, Registers 80-EF hex are not used in the 28,
and writing to them effectively loses the data.

(4 w=s 4.)

This word only makes sense to use within the
expressions <# and #>. Its function is to convert one
digit of a number to ASCII and place the converted
digit into a string which is growing downwards towards
the dictionary from the value returned by PAD.

GREATER THAN (d === an)

This word is wused to terminate the pictured numeric
output sequence. Its function is to drop the double
number being converted, and place the address and
number of characters that have been converted on the
top of stack for use by another word, such as TYPE. #S
SHARP-S (d ==- 0 0) This word converts digits to
ASCII until the entire number is converted. This leaves
a double precision zero on the top of the stack. This
is only wused in the pictured numeric output sequence
between the words.

<# and #>.
(=== a) if not compiling
(===-) if compiling

' <word> in either case

This word has two actions. If used in a colon
definition,it compiles the parameter address of the
word which follows it as a literal. That is, when the
definition executes, the parameter address of the word
which followed TICK will be left on the stack rather
than being executed. If TICK is used when the system is
in console mode, the parameter address of the word
which follows it is left on the stack. You can achieve
the same result as stating a word by using the phrase:

' <word> 2 - EXECUTE

You can also change the value of a constant by wusing
TICK. For example, if HOOHAH is a constant which was
leaving the value of 13 on the stack, after executing
the phrase: 68 ' HOOHAH !

the value left by the execution of HOOHAH will be 68.
(nn ==-=n)

The top two values are added and the sum is left on the
stack.

~ Page A -~ 3

+! PLUS-STORE (n a ===)

The number second on the stack is added to the number
stored at the location pointed to by the top of stack.

+LOOP PLUS-LOOP (n ===)

, COMMA

- MINUS

This is one of the words used to end a DO «i. +LOOP of
DO ... LOOP structure. The number on the top of stack
is added to the loop index. When the loop exceeds the
loop limit, the loop is exited. Be careful., DO wuses
signed values for both the 1limit and the index. If
either number is bigger than 8000 hex you may be in for
a surprise. If you need longer loops you should either
try nesting loops or use another branching structure.

(1 sesl)

The number on the stack is compiled into the dictionary
at the location referenced by the dictionary pointer.
The dictionary pointer is incremented by 2.

(nn==-n))

The number on the top of the stack is subtracted from
the number second on the stack and the result is left
as the top of stack. -

." DOT-QUOTE-SPACE (===)

o
]

This word takes no arguments from the stack. It may
only be wused inside a definition. Its function is to
take a string which follows it wup to the first "
character and compiles it into the definition. When the
word that ." is used in is executed, the string is
output to the terminal device at the current baud rate.

ZERO-EQUALS (n =--- f) where £ isnosor =l

This word leaves a flag corresponding to the truth
value of the question: is the top of stack equal to
zero? If n were 0, £ would be 1. Otherwise, f will be
0. If n were a truth value left from a previous logical
operation, the effect of 0= would be to reverse that
truth value. Used 1in this sense, it becomes the
equivalent of the NOT function.

1+ ONE-PLUS (n === n+l)

The number on the top of the stack is incremented.

2DROP TWO-DROP (d ---)

: COLON

Page A - 4

The double number on the top of the stack is dropped.
Of course, the compiler can't tell whether the top two
numbers are a double number or not, so this word will
also drop the top two single numbers from the stack.

(===

: <word>

This is the chief compiling word in FORTH. Its function
is to put the system into compilation mode and save the
value of the stack to check for possible compiling
imbalances in structures.

H SEMI-COLON (===)
This is the word used to end colon definitions. Its
function is to put the system back into console mode,
toggle the smudge bit so that the interpreter will be
able to find the word in the dictionary, and to check

to make sure that the stack 1is balanced and that
structures are complete.

<# LESS-THAN-SHARP (d =-- {)
This word is used to open the pictured numeric output
phrase. It doesn't do anything with the stack, but
subsequent words will convert the double number on the
stack to start a string of ASCII characters. Its
function is to put the value left by PAD into the HLD

register. This sets up the storage needed to buffer the
output string.

<BUILDS (===)

This word is used to start the <BUILDS ... DOES>
Structure. The word <BUILDS can only be used inside a
colon definition. When the word which contains <BUILDS
executes,the word immediately following 1is compiled
into the dictionary. When that word is executed, the
words which follow the DOES> part of the defining word
are executed, with the parameter address of the defined
word left on the stack.

How about a couple of examples to clarify things.

Let's say we define the word VARIABLE. What this word will do
is define other words in the dictionary which will allow us to
refer to wvariables by name. Let me emphasize that:the word
VARIABLE will define other words which we can use to store single
numbers in. When we want to use a word which has been defined by
VARIABLE,we do so by storing or fetching the wvalue. That means
that we want the words defined by VARIABLE to leave their
addresses on the stack. The words ! and @ take a value and an
address as their arguments. If the words defined by VARIABLE
leave their addresses on the stack, all we have to supply are the
values.,

Now that we have a firm grip on what we want VARIABLE to do
for us,we can define it. Remember that <BUILDS will create a
dictionary entry when it executes, and when the word which
<BUILDS built is executed it will leave its address on the stack.
So we should define the word VARIABLE as

: VARIABLE <BUILDS , DOES> ;

This 1is a colon definition, so it starts with a colon and
will end with a semi-colon. It uses the word <BUILDS and the word
DOES> so we know that it must take another word immediately
following it as an argument.

Pacae ‘A fe iR

Right after the word <BUILDS is the word , which takes a
number off the stack and compiles it into the dictionary. That
means that we must have a single number on the stack before we
use the word VARIABLE. There are no other words between DOES> and
; so that we know that when a word which is defined by VARIABLE
executes it leaves 1its own address on the stack and since the
only word between ¢BUILDS and DOES> is the word , Wwe know that
what 1is initially stored at that address is the number which we
had on the stack when the defined word was built. Putting all of
this together, we can define a variable named WINSTON which has
an initial value of 1984 by stating

1984 VARIABLE WINSTON
and we can obtain the value of WINSTON by stating
WINSTON @

If we wish to change the value of WINSTON we can easily do so
by stating, for example

1776 WINSTON !

In the next example, we'll make up a word which will define
functional words. The words defined will take a wvalue from the
stack and add this value to another value taken from the stack
when the defined word is invoked.

. OFFSET <BUILDS , DOES> @ + ;

The word OFFSET, takes a value from the stack and compiles it
as a parameter for the words which it defines. When the defined
words are invoked, they add their initialized value to whatever
happens to be on the top of the stack at that time. Thus, if we
define the following words

2 OFFSET 2PLUS 5 OFFSET 5PLUS

then stating 15 2PLUS will leave the value 17 on the top of
stack. Stating 10 5PLUS will leave the value 15 on the top of
stack. Words defined by OFFSET could have some application in
table lookups, etc. Try some examples of your own. Remember that
there is a substantial savings in dictionary space by using the
<BUILDS ... DOES> construct. Words defined by the defining words
using this construct take up only enough room for the parameter
storage necessetated by the <BUILDS part, plus one word which
points to the DOES> part. If these words do something fairly
complicated, you can save a great deal of room. The proper use of
¢BUILDS and DOES> also makes the program very readable because
you can refer to each function by a descriptive name.

Page A ~ 6

<null> (===

This word does not have a name, and cannot be invoked
under normal circumstances. The word itself consists of
the ASCII null character which is a byte with the wvalue
of 0 hex. The sole function of this word is to be the
indicator of the end of a character input buffer such
as the terminal input buffer or a buffer such as the
one described in the full screen editor called SCR.
What <null> does is relatively simple, but a detailed
explanation is rather beyond the scope of this
document. What I'll do here is give you the definition,
and if you are sufficiently motivated by a need to know
you can consult one of the excellent FORTH books listed
in the bibliography.

Please note that although the word null is used as a place
holder in this colon definition, the actual dictionary header
consists of a length byte of Cl hex followed by the ASCII
character 00 hex. In the dictionary, the 1last 1letter actually
compiled into the name field has the most significant bit set.
This means that the complete name field for the word <null> in
hex looks like C180. Its definition is

¢ <null> BLK @
IF 1l BLK +!

>IN @

0 >IN !

3FF =

IF state @ CO =
IF 0056 error
THEN

THEN

ELSE R> DROP

THEN

e

The word STATE (in 1line 6) leaves the value 1C hex on the
stack. It is shown in lowercase because it is a virtual word that
cannot be invoked unless defined. Register pair 1C is used to
hold the value of the flag which indicates whether or not the
system is compiling. The word ERROR (in line 7) is similarly a
virtual word.

= EQUAL (nl n2 === f)
If the top two numbers on the stack are equal, the
value of f is one. If the top two numbers are not
equal, the value of f is 0. The numbers are treated as
unsigned values, so the comparison is valid for both
positive and negative numbers. That is, +1 and -1 are
not equal,

>= GREATER-EQUAL (Nl n2 === f)
If nl 1is greater than n2, f will be equal to 1. If nl
is equal to n2, f will be equal to one. If nl is 1less
than n2, f will be equal to zero. The comparison is
done on UNSIGNED quantities. This means that -1 (FFFFH)
is greater than 0 (000H). Be careful.

Page A - 7

>IN GREATER-IN (=--- a)

>R TO=R

@ FETCH

AGAIN

This word is the name of a variable that is used to
point to the offset location in an input buffer. Being
a variable, it leaves an address on the stack that can
be examined by the use of the words ! and @ . The
address left by >IN is 14 hex which indicates that this
variable is kept in one of the 28 register pairs,
namely RR14. If vyou refer to the definitions in the
full screen editor you'll see that >IN is used as the
location pointer for the characters stored in SCR .

(i O ==)

This word takes the number on the stack and pushes it
onto the R stack. Be extremely careful in your use of
this word. Every use of the >R must be balanced by a
use of R> or you will end up crashing the system. The
Rstack is used to hold the return parameters for
threading code, as well as loop indices and temporary
values.

(B ==)
This word leaves on the stack the value of the number
stored at the address on the top of the stack.

{ s)

This is only used in conjunction with the word BEGIN to
form an endlessly repeating loop. A word which has the
structure

BEGIN ... AGAIN

in it will never exit unless somewhere between BEGIN
and AGAIN the word <null> is encountered or the same
effect as the word <null> is produced.

ALLOT (n ===
This word advances the dictionary pointer by n bytes,
where n is the number on the top of the stack. Its
function is to reserve space in the dictionary.
Remember that each number you wish to leave room for
takes up two bytes. Double numbers take up four bytes.
Strings take up one length byte plus one byte per
character. In general, the word ALLOT is wused in
defining words to make room for tables and other
structures for which the values are not known until
execution time.

AND (nl n2 === n3)

Page A =~ 8

This word performs a 16-bit logical AND operation
between the two numbers on the top of the stack and
leaves the result on the top of the stack.

BASE

BEGIN

BLK

C,

(=== a)

This word 1is the name of a variable where the current
number base is stored. The address left on the stack is
18 hex, so the value is stored in the 28 register pair
RR18. If you state BASE @ you will always 1leave the
value 10 on the stack., If you print out base, it will
always print out as 10 unless you use the word H. which
prints out the number on the top of the stack in hex
regardless of the value in BASE . The system will
default to the hexidecimal number base (base 16
decimal) on powerup unless you tell it to do otherwise
in an autostart program., Any number base from 2 up to
7F hex is valid, but there is no checking on this. 1If
you state 1 BASE ! vyou will have some difficulty
obtaining meaningful numeric responses. Remember that
the value in BASE represents only how you are
communicating with the system. All values are treated
internally as binary numbers.

(o wtw)

This is the opening word of various conditional and
non-conditional loop structures. These can be used only
inside colon definitions. The structures are listed
here. For more detailed explanations of each type, see
the definition of the other words used in each type.

BEGIN ... AGAIN
endless loop

BEGIN ... UNTIL
loop until a nonzero value is found on the
stack when UNTIL is encountered.

BEGIN ... WHILE ... REPEAT
if a non-zero value is found on the stack when
WHILE is encountered, perform the words
between WHILE and REPEAT , then branch back to
BEGIN . When a 2zero 1is found on the stack
when WHILE is encountered, branch to the
word immediately following REPEAT.

B-L=K (=== a)

This is the name of a variable used to determine where
the input stream is coming from. The address 1left on
the stack is 16 hex, which means that the value is
stored in the Z8 register pair RR16. See the section
"Mass Storage Hooks" for more details.

C-COMMA (n ===)

This word compiles the least significant byte of the
number on the top of the stack into the dictionary, and
increments the dictionary pointer by 1. It can be used
to compile byte tables, etc.

-~ Page A =94

C! C-STORE (n a ===)

This word stores the 1least significant byte of the
number second from the top of the stack (n) into the
address pointed to by the number on the top of the
stack (a). Only the byte at the address pointed to is
affected. This is the primary method for writing a
value to PORT 2, for example. The expression 1 2 C!
will cause bit 1 of port 2 to go high if port two has
been set up as an output port for this bit. Remember
that anything under 100 hex is treated as the address
of a Z8 register.

Cce@ C-FETCH (a === n)
The byte stored at the address pointed to by the number
at the top of the stack is fetched and left as the
least significant byte of the number on the top of the
stack; the most significant byte is set to 00 hex.
Because numbers on the stack are always 16 bit
quantities, this is the primary method of obtaining
byte values from ports and other register addresses.
Remember that anything under 100 hex is treated as the
address of a 28 register. You can easily change the
system control registers this way, but be careful !!!

CASE (===
This is the opening word of a multiple value testing
structure. The number on the top of the stack is used
to determine which of the statements contained in the
structure will execute. In general, this is the most
powerful programming tool that is built into the FORTH
language. The CASE structure is made up of four words.
These are

CASE ... n OF ... ELSE ... ENDCASE

The word ELSE is the same word used in the IF ... ELSE
... THEN structure for a good reason: you can think of
a CASE structure as being a set of nested IF structures
in which all of the housekeeping is done for you.

The word CASE does nothing but save the value of the
stack pointer temporarily. Every time the word OF is
encountered, there are assumed to be two values on the
stack. The top of the stack is the number defined in
the case structure (shown as n in the structure
description above), and the number second on the stack
is the number you are using as the index for the case
table.

Page A - 10

C-~MOVE

COLD

When OF executes, it compares the top two numbers on
the stack without destroying your index value. If the
numbers are equal, the index value is dropped and the
words between that particular OF and the ELSE that
follows it are executed. When the ELSE is encountered,
the program will branch to the words that immediately
follow the word ENDCASE at the end of the case table.
If the numbers are not equal, the program skips to the
words which immediately follow the ELSE associated with
the OF that detected the nonmatch. In most cases, this
word will be the number used to test for another OF .
Else pair. In the last case in the table, the words
which follow the ELSE are those words which will be
executed in the event that none of the OF cases found a
match. When the words between the last ELSE and the
word ENDCASE execute, the number used as the case table
index 1is still on the stack. This is to aid you in the
determination of why the other tests failed., TIf you
don't need the index value, be sure to drop it. A good
example of the usefulness of the case table is found in
the definitions for the full screen editor. Case tables
can be used more easily than IF ... THEN ... ELSE
Statements if you are nesting more than two deep.

(al a2 n «=-)

The byte found at the location pointed to by address al
is copied to the address pointed to by address al; then
both al and a2 are incremented and n is decremented.
The process repeats until n decrements 1 to 0. All
three numbers are unsigned single numbers, and the
move is performed destructively. That is, if al+n is
greater than a2 some of the bytes moved will have been
previously overwritten by earlier iterations. This can
be used to advantage when filling a buffer with a set
value. For a good example of this, see the definition
of .CLEAR in the full screen editor descriptions.

(===)
This word causes the execution of the system powerup
sequence. It is the same in effect as pressing the
reset button and has the same implications. The entire
start up procedure will be followed, including memory
sizing and baud-rate setting if there is no autostart
program. It provides a very handy way of doing
system development work. If a portion of RAM contiguous
with the Z8 ROM space can be write-protected by means
of an external switch, doing some definitions and
following the procedure outlined in the " Autostart
Hook " section will compile the definitions into the
dictionary located in the RAM space.

At this point, assuming there is still some RAM in the system

which

not write-protected to allow for stack usage, throwing

the switch and invoking COLD will allow the testing of a ROM

based

application without the trouble of blowing an EPROM. This

is particularly easy to do if you have a "soft ROM" or ROM
simulator which looks like a 2732 type or 2716 type, as these can
Plug into the Micromint board directly.

Page A - 11

COMPILE

(===)

COMPILE <word>

CONSTANT

This word causes the word immediately following it to
be compiled into the definition of the word which is
currently being compiled when COMPILE executes, not
when COMPILE is being compiled.

Under most circumstances, you won't need to use this
word. Its primary function is to add to the compiler by
building words which are used in the creation of other
words. The same kind of power is available by using the
<BUILDS ... DOES> construct, and by the judicious use
of the word IMMEDIATE.

(3t) ke85

<n> CONSTANT <word>

This word compiles a new word in the dictionary which
leaves the value <n> when invoked. The main reason for
using a constant rather than a literal number is that a
constant only uses up two bytes every time it's
compiled into another word while a literal uses four
bytes. Also it is possible to change the value of a
constant retroactively by using the sentence

<new-value> ' <constant> !

COUNT

CR

where <new-value> is the number you want the constant
to leave on the stack, and <constant> represents the
name of a previously defined constant. This does not
make any constant into a variable. variables in FORTH
leave their addresses on the stack but constants leave
their values on the stack directly.

(a =--an))

This word presupposes that the number on the stack is
the address of a string in which the first byte
contains the 1length of the string and the subsequent
bytes are the characters contained in the string. COUNT
leaves on the stack the address of the first character
of the string, with the number of characters on the top
of the stack. This sets the string values for use by
the word TYPE but can also be used for general purposes
for any kind of indexed array.

(-

)

This word causes the output of a D hex followed by an A
hex to the serial output port. This is an ASCII
carriage return followed by an ASCII line feed. If
your terminal is the type that automatically inserts a
line feed after the receipt of a carriage return and
you can't disable this function you're going to have to
get used to double spacing for certain things. Of
course, you can always redefine CR to suit vyour
purposes, but FORTH itself uses CR as defined here and
you can't change those applications. Fortunately you
can always get around them as they happen only in
console mode, never in applications programs.

Page A - 12

CREATE

D+

DABS

DIGIT

[wom)

CREATE <word>

This is the basic method for putting together something
in the dictionary. The header for the word <word> which
must immediately follow the word CREATE in the input
Stream is compiled into the dictionary. The system is
not put into compile mode, and although the 1link
pointer is wupdated so that this new word can be both
located and forgotten if necessary, the smudge bit is
set. This means that the word cannot be executed.
That's a good thing, because CREATE puts a zero in the
execution address as a place holder, and trying to
execute an address that contains a zero will result in
a system crash. Most of the time you'll use the <BUILDS
-+« DOES> construct to put new defining words into the
dictionary and the : ... ; construct to define new
words. CREATE is there for advanced uses if you need
it, however.

dl d2 --- d3)
This word adds the two double numbers on the stack and
leaves the double number sum on the stack.

diiw=si)

This word prints all significant characters of the
double number on the stack according to the current
base. If the number is negative, a minus sign is output
before the first character. In order to print single
numbers, use the word S->D , which transforms single
numbers into double numbers while preserving the sign.
A very useful word you might build in this regard is
the word . which prints single numbers. It can be
defined as

¢ 8=>D D, €3

(dl =-- d2)

This word takes the double number on the stack and
tests it as a two's compliment number. If the double
number is negative, DABS negates it. Otherwise it is
left positive. 1In short, it leaves the absolute value
of the double number on the stack. One of its uses is
in the formation of pictured numeric output using the
<# # # ... #> structure. This works only with positive
valued double numbers. See SIGN , # , and HOLD for more
information.

(nl === n2 1)

{ B o= g)

This word takes the number on the top of the stack and
attempts to convert it to a digit according to the
current base. If it succeeds, it leaves the digit as a
single number on the stack and leaves a flag equal to
the number one on the top of the stack. If it fails, it
leaves a zero on the stack but does not leave anything
else.

Page A - 13

DLITERAL

DNEGATE

DO

DOES>

DROP

DUP

ELSE

DO
DO

(d =---) or

{ 4 mmag)

If the system is in compilation mode, DLITERAL takes
the double number from the stack and compiles it into
the current position in the dictionary as a double
literal. This takes six bytes, two for the double
literal primative address and four for the number
jitself. If the system is in console mode, DLITERAL
merely leaves the double number on the stack without
taking any other action.

(dl === 42)
This takes the two's compliment of the double number on
the stack.

l i ===)
This is the beginning of the indexed loop construct.
There are two variants of the loop

s+ LOOP
e e 0 +LOOP

which differ only in that LOOP adds one to the index
while +LOOP (qv.) adds whatever value is on the stack
when it executes. The value of the limit should be on
the stack with the value of the initial index on the
top of stack before DO executes. DO removes these
values from the stack and puts them on the Rstack for
the duration of the structure. The index is kept
topmost on the Rstack.

The index of the innermost loop is accessed by the word
I while the index of the next outer loop is accessed by
the word J . In general, loops can be nested as deep as
you wish, although you only have easy access to the two
innermost indices at any given point in time. Thig
structure can only be used inside a colon definition.

(3~
This is the companion word to <BUILDS (qv.).

(nl n2 =--- nl)
This word removes and discards the top of the stack.

(n ==--nn)
This word duplicates the number on the top of the
stack.

(===

This word is used as part of the IF ... ELSE ... THEN
structure and also as part of the CASE ... OF ... ELSE
... ENDCASE structure. See IF and CASE for more
information.

Page A - 14

EMIT

ENDCASE

EXECUTE

EXPECT

FIND

FORGET

[8 ==

This word causes the character on the top of the stack
to be output to the serial port. Remember that the top
of the stack is treated as a byte character by EMIT
even though it is actually a 16-bit number. Only the
least significant 8 bits are output, and all eight bits
are output. This makes it very easy to transmit control
codes or anything else in the way of binary data.

(===)
This is the end of the CASE structure. See CASE.

(8 ==)

This word takes the address on the top of the stack and
assumes that it contains a pointer to a machine-code
routine. FORTH gets the value of that pointer and
executes the code at that address.Let me stress that
the address on the top of the stack is NOT the address
of the machine code which will be executed, it is the
address of a POINTER that contains the address of the
machine code. This indirection allows you to define a
set of words, then build a table of execution
addresses. The addresses of the entries in the table
can then be wused in another word that calls out the
addresses and EXECUTEs them. The value of doing this is
that it allows the activity of the executing word to be
redefined by changing the values stored in the table to
point to other words, some of which may have been
defined after the table was compiled. It is possible to
define the operating system of a smart machine this way
So that the system hooks are always easily accessible
to upgrades without total recompilation.

{ A »m=)

This word takes the number on the top of the stack and
obtains characters from the serial input port, storing
them in order from the address on the stack in
increasing memory. The characters are echoed to the
serial output port. The character 08 hex is treated as
a backspace character and deletes entries as it moves
backwards over them. You are not allowed to backspace
past the address given. The attempt causes the output
of the character 07 hex, which 1is the ASCII bell
character. The value stored at the address left by the
variable >IN is the current offset of the input.

(=--a) or (=== 0)

FIND <word>

The execution address of <word> is left on the stack
if it has been previously compiled. Otherwise, the
value zero is left on the stack.

(===
FORGET <word>

If <word> exists in the dictionary, it is forgotten,
as are all the words that were compiled after it. If
<word> does not exist in the dictionary, an error is
issued. Be very careful with this word.

~Page A - 15

HERE

HOLD

IF

(

A1 3
IF

n =-=)

This word translates the number on the top of the stack
to a four digit hex number and outputs the characters
to the serial port. The value of the number stored in
BASE is not changed. This word has the advantage of
running much faster than D. if all you need is speed
and information.

{ === & |

This word leaves the address of the next location in
the dictionary that will be wused when you compile
something In effect, this is the same as stating 12 @
because because register pair 12 hex contains the
dictionary pointer.

o Gy ===ty)

This word is wuseful only inside the <# ... #>
structure, which is used for pictured numeric output.
Its effect 1is to take the character on the top of the
stack and store it in the output string which was
initialized by <# and which is growing downwards
towards the dictonary. For example, the expression 2E
HOLD when used inside the pictured numeric output
structure will cause the printing of a radix point (a
period) at that location.

.——_n)

This word leaves the current index of the innermost
loop on the stack. It has a secondary use as well,
which is that it copies the value of the top of the
Rstack on to the top of the stack without otherwise
affecting the Rstack. This can be most helpful when
using the Rstack as temporary storage.

£ o===)
This is the opening word in the structures

ees THEN
ees ELSE ... THEN

In general, if the number on the top of the stack is
non-zero, the statements immediately following the IF
are executed. If the number on the top of the stack is
zero, the statements immediately following the THEN are
executed. If ELSE is used and the number on the top of
the stack is zero, the statements between the ELSE and
the THEN are executed. Note that these structures can
only be used inside colon definitions. It |is
interesting to observe that the words IF , ELSE , and
THEN do not really exist in compiled code. Their
function is to compile branch instructions into the
words being defined. The word THEN has the sole
function of resolving the address offsets which are
setup by IF and ELSE. The class of words which perform
in this way (that is, words which execute while another
word is being defined) 1is called IMMEDIATE. See the
definition of IMMEDIATE for more information on this
class.

Page A;=;16

IMMEDIATE

Th

(weni)

This word sets a bit in the dictionary header of the
word most recently defined. The bit set is called the
precedence bit. Words that have their precedence bits
set will execute even when the system is compiling.
That is, a word that has its definition followed by the
word IMMEDIATE will not be compiled into other
words under normal circumstances. Instead, when the
word is used, it will execute whether or not the
system is compiling.

Words of this type are called IMMEDIATE WORDS. They are
most often used to increase the power of the compiler
by allowing new structures to be defined. A good
example of immediate words is the definition of the
CASE structure words.

e word CASE is defined as
CASE FE @ 76 | ;s IMMEDIATE

The present value of the stack pointer, which is kept
in register pair FE hex, is saved temporarily in
register pair 76 hex, which has been reserved for this
purpose. Remember that this occurs while the word in
which the case structure is used is being compiled, not
when this word executes. The word CASE merely sets up a
condition. The word OF is defined as

OF COMPILE OVER COMPILE = [COMPILE] IF COMPILE
DROP ; IMMEDIATE

(Note: the word ([COMPILE] is not part of the kernel
dictionary. Its purpose is to enable the compilation of
immediate words. 1Its definition is described below,
and [COMPILE] is itself an immediate word.)

OF compiles a conditional test into the word being
defined. That test is to see if the number that is on
the stack when the word being defined executes is equal
to the number that was compiled into the definition
just before the word OF was used. If they are equal,
the number being tested is dropped and the statements
between OF and ELSE are executed. Note that the word OF
contains the word IF in order to set up the test. IF is
an immediate word, so special action had to be taken to
compile it into the definition of the word OF ;
otherwise, the IF would have executed instead of being
compiled. The special word [COMPILE] was used to do
this. This is defined as

(COMPILE] FIND , ; IMMEDIATE

What this does is to find the dictionary entry for the
word that follows it and compile its execution address
into the currently compiling definition. [COMPILE] is
itself an immediate word and that it does not end up in
the definition of the word in which it appears.

Page A - 17

The last word in the CASE structure is the word
ENDCASE. This word is defined as

ENDCASE BEGIN FE @ 76 @ -
WHILE [COMPILE] THEN
REPEAT

IMMEDIATE

e

Remember that the word [COMPILE] is wused only to
compile the word THEN into the definition of ENDCASE.
what happens here 1is that the words OF and ELSE have
l1eft addresses on the stack which need to have branch
offset values stored in them to resolve the conditional
branches. Since we have preserved the value of the
stack pointer that the structure opened, we now use
that value to test to see that all of the branches are
resolved. The word THEN is wused to resolve the
branching set up by the words IF and ELSE , and this
word is repeatedly executed when the word ENDCASE
executes. I realize that all of this |is rather
confusing, but I have presented it in the hope of
showing the kind of power which is present even in
short definitions . Immediate words can greatly extend
the power of the compiler. In turn, an expanded
compiler can be wused to make very sophisticated data
structures and manipulate them easily.

J (====n)

This word leaves the index of the second outer loop on
the stack. That is, if you have nested loops, J leaves
the current index of the loop in which the present loop
is operating. Loops may be nested as deep as you have
Rstack space for, which could be as many as 100 decimal
times, but it is only easy to get at the indices of the
two innermost loops through the use of I and J . Of
course, you can always pass outer indices to inner
loops by using I or J before beginning the next inner
loop.

KEY (===-c¢c)

This 1is the basic serial input port word. A character
is obtained from the serial input port at the present
baud rate and is ANDed with 7F hex, then put on the
stack. Note that this restricts the use of KEY to only
ASCII values. The actual value of the byte received is
present in the serial input port buffer (Z8 register FO
hex) and the phrase FO C@ will put all eight bits on
the stack for processing if you desire. Remember that
the word EMIT outputs all eight bits of the character.
KEY will wait until a character is received, and the
character is not echoed to the output port. If you are
making a full duplex link, you must explicitly output
the character using the word EMIT . Remember to DUP the
character before you EMIT it or you'll lose itc.

Page A - 18

LEAVE

LITERAL

Loop

MIN

NEGATE

NUMBER

OF

OR

{ =)

This word causes the index of the innermost loop to be
made equal to the limit of the loop. When the word LOOP
or +LOOP is next encountered, the loop will exit. The
loop does not exit until the word LOOP or +LOOP is
encountered.

(n =--n) if executing or in console mode

(n =--) if compiling

This word behaves differently whether the system is
compiling or executing. If LITERAL is used inside a
colon definition, it compiles the number on the stack
as a literal number in the definition. If it is used
when the system is executing or in console mode, it
merely leaves the number on the stack. One of the uses
of LITERAL is to compile numbers left on the stack
before the definition is started.

(===

This is one of the words used to close a RO s oo LOOP
structure. See the word DO .

(nl N2 === n)

This word leaves the smaller of the two top numbers on
the stack. The numbers are unsigned. That means that -1
(FFFF hex) is much bigger than 1 (0001 hex). Be
careful., ,

(nl === n2)
This replaces the number on the top of the stack with
its two's complement.

[- g)

This takes a string that has been left at HERE by WORD
and attempts to make a double number out of it
according to the current base. If all of the characters
are valid, the conversion is successful; otherwise, an
error is issued. The characters "." and "-" are
permitted. If the radix point is found, register pair
10 hex will contain the number of digits to the right
of it after the conversion. Remember to define register
10 as a constant before attempting to fetch the place
number value from § 4

If you simply state 10 @ you'll find that the value
will always be -1 (FFFF hex) because the number 10 will
have been converted and it has no radix point.

N ===n)or (n ===

This word 1is part of the CASE structure. If the value
being tested is equal to the number on the stack, the
words which are between the OF and its associated ELSE
are executed and the number remains for testing. See
CASE for more information.

nl n2 === n3)
The top two numbers on the stack are bitwise ORed
logically, and the result is left on the stack.

Page A -~ 19

OVER

PAD

QUIT

(nl n2 === nl n2 nl)
The number second on the stack is copied and pushed
onto the top of the stack. All other stack entries are

pushed down.

(=== a)

This leaves the address of HERE plus 44 hex on the
stack. It is used most often as the starting point for
pictured numeric output which grows from PAD down
towards HERE .

(===

This is the default startup word if there 1is no
autostart program or if there is there is an error that
has not been trapped by a user-defined trap. The Rstack
is initialized to the value contained in register pair
22 hex; the stack is initialized to the value contained
in register pair 20 hex; BLK is initialized to 0, which
means that the input stream must come from the serial
input port; finally, a carriage return and line feed
are output. There is no "OK" until a carriage return is
received from the input stream. Of course, if words are
input before the carriage return they are interpreted
first. Eventually, unless some form of endless loop is
encountered first, the system will always return to the
endless loop in QUIT.

R> R-FROM (--- n)

REPEAT

ROT

This word pops a number from the Rstack and pushes it
onto the stack. If this has not been balanced by a
previous >R there is a great likelihood that the syster
will crash. Be careful.

(¢ ===)

This word is used to end a BEGIN ... WHILE ... REPEAT
construct. When it executes, its function is to resolve
the branch addresses set up by BEGIN and WHILE . Its
effect is to cause the branching of the program to the
word which immediately follows BEGIN .

(nl n2 n3 =-- n2 n3 nl)

This word takes the third number down in the stack and
brings it to the top of the stack. The top two numbers
are pushed down.

(- By s T

This word takes the number on the top of the stack and
converts it into a double number while preserving the
sign. Remember that the word D. only works on double
numbers, and that pictured numeric output only works on
positive double numbers. To output a single number
using the pictured numeric ouput including the sign,
use the following phrase

5->D OVER SWAP DABS <# # # # # # SIGN #> TYPE

This will output a five digit number with a leading
minus sign if it is negative.

Page A - 20

SIGN

(n2 4 --- g)

This word means something only when used in a pictured
numeric output structure. Its function is to place a
minus sign into the output string if the number third
on the stack is negative. In this case, negative means

any number greater than or equal to the number 8000
hex.

SMUDGE (---)

SPACE

SWAP

THEN

TYPE

U*

u/

This word is used to clear a bit in the dictionary
header of the word most recently defined. The cleared
bit is called the smudge bit. Its function is to allow
the interpreter to execute the word. The smudge bit is
automatically reset by the word ; but if you're using
CREATE to make a word you'll have to keep track of
these things vyourself. A word that is not completely
defined would crash the system if executed, so when
CREATE defines the dictionary header for the word and
links it into the word list, it sets the smudge bit to
prevent the word from being executed. It can be found
using FIND and can be forgotten using the word FORGET
without problems even if the smudge bit is set. This is
because most often the reason that a word's definition
is not finished is due to some error which prevents the
i from executing. If you don't FORGET the word, you'll
get non-unique warnings when you try to redefine it,
and you'll clutter up the dictionary with useless code.,

(===)
This outputs an ASCII 20 hex, a space, to the serial
output port. L

(nl n2 === n2 nl)
This exchanges the top two numbers on the stack.

-=-)

This is the terminating word for IF ... THEN and P oo
ELSE ... THEN structures. See IF for more information.

(&0 ===)

This takes n characters from the address second on the
stack and emits them to the serial output port. The
characters need not be ASCII, and all eight bits are
output. '

nl n2 --- g)

This takes the top two single numbers on the stack and
performs an unsigned multiply on them, leaving a
double-number unsigned product.

d nl === n2 n3)

This takes the double number second on the stack and
performs an unsigned divide by the single number on the
top of the stack. The unsigned remainder is left as the
second on stack with the unsigned quotient left as the
top of stack. If the divisor is 0, both the remainder
and the quotient will be equal to the value FFFF hex
as an indication of this. No error is issued.

~ Page A - 21

UNTIL (£ ===
This is the termination word of the BEGIN ... UNTIL
structure. If the number on the top of stack 1is zero,
the program branches back to the word which immediately
follows BEGIN . Otherwise, the program continues with
the word which follows UNTIL .

WHILE (£ ===)

This is the word which tests the condition in a BEGIN
... WHILE ... REPEAT structure. 1f the value on the
stack is nonzero, the words that fall between WHILE and
REPEAT are executed and the program branches back to
the words between BEGIN and WHILE . 1f the value on the
stack is zero when WHILE is encountered, the program
branches to the words that follow REPEAT .

WORD (¢c === a)

This searches the input buffer for the first occurrence
of the character C that was on the stack when WORD was
executed. Leading occurrences of the character are
ignored, until the first occurrence of a character that
doesn't match or the end of the buffer. From this
point, all characters until the next occurrence of
the target character are transferred with the length
byte located at HERE . The address equal to HERE is
left on the stack by WORD .

XOR (nl n2 === n3)
This word performs a bitwise xor (exclusive or)
(operation or) the top two numbers on the stack and
replaces them with the result.

{ LEFT-BRACKET (---)
This changes the system from compilation mode to
execution or console mode. It is automatically invoked
by the word ; but can also be used to compute values
during the compilation of a word that can then be
compiled into the word as a literal. For example, the
definition

DO-IT 1234. [FIND D.] LITERAL EXECUTE CR

we oo

would type out the value 1234 when DO-IT is invoked.
This can also be used to input values into active data
structures by invoking words which obtain input from
the terminal and using the input to affect the
compilation of the word.

] RIGHT-BRACKET (=--)
This word puts the system into compilation mode. It 1s
invoked automatically by the word : but can also be
used in conjunction with the word [as shown above.

Page A - 22

APPENDIX B

The following is the source code for the full screen

Note that 1in most cases extra spaces have been added to
the clarity of the code.

ee wo

®2 oo we

%0 ee oo o0 wo

SCR 74
POS 72
LN# 70
HOME 1E
CLEFT
CDOWN
cup
CRIGHT
CRETURN D E
ESC 1
BELL
LC
DC
ucC
RC
DR
;S BLK @ IF R> DROP THEN ; IMMEDIATE
LSCR >IN @ POS ! 0 >IN |

SCR @ 0 400 U/ SWAP DROP BLK !

662 EXECUTE

POS @ >IN 1

0 BLK !

QW >» o

W Ne Ve N Ve Ve Ve K W N0 Ne N we we wo wo

IT A ;

CQwpouw

.CLEAR SCR @ 20 OVER (!
DUP
DUP 1+ 3FF CMOVE
3FD + 3B53 SWAP |
0O POS !
0 LN !

<L> S§=>D <§ # # #> TYPE ." <|" ;
LIST SCR @
F 0 DO
CRETURN EMIT
I DUP <L> 40 U* DROP OVER + 3F OVER + SWAP

DO
I C@ EMIT
LOOP
.ll ll'
LOOP
CRETURN EMIT DROP
?L POS @ 0= ;
?R POS @ 40 = ;
?20 LN¢ @ 0= ;

?F LN# @ F = ;

editor.
enhance

PAGE B~-1

2CTL
CASE
LC OF ?2L

ELSE
RC OF ?R

ELSE
DC OF ?F

ELSE
uc OF 20

ELSE
DR OF ?F

ELSE
DROP
BELL
0
ENDCASE

PAGE B-2

IF
BELL
0
ELSE
CLEFT
-1
THEN

IF
BELL
0
ELSE
CRIGHT
1
THEN

LE
BELL
0
ELSE
CDOWN
0
1 LN# +!
THEN

163
BELL
0
ELSE
CuP
0
-1 LN§# +!
THEN

IF
BELL
0

ELSE

CRETURN EMIT

0 POS !
1 LN§ +!
LN# @ <L>

CLEFT EMIT

CRIGHT
0
THEN

®s oo oo

s

?CHR 1F OVER >= ;

CHRADR LN# @ 40 y* DROP POS @ + SCR @ + ;

EDIT
LN# @ F AND LN§ 1
HOME EMIT
SCR @ 0 D,
LIST HOME EMIT CRETURN EMIT
LN# @ Dup
IF
DUP 1
DO
CDOWN EMIT
LOooP
THEN
<L>
POS @ 3F AND DuUP
IF
il
DO
CRIGHT EMIT
LOOP
ELSE
DROP
THEN
BEGIN '
KEY DUP ESC -
WHILE
?CHR
IF
2CTL
ELSE
?R
IF
DROP
BELL
0
ELSE
i}
THEN
THEN
SWAP DUP EMIT
?CHR
IF
DROP
ELSE
CHRADR C!
THEN
POS +!
REPEAT
DROP 3B53 SCR @ 3FD + |
F LN# @
DO
CRETURN EMIT
LOOP

PACE R

: MODIFY
FIND 2 +
FIND
OVER !
600 SWAP 2 + !

’

4F EMIT
4B EMIT
CR

1S

PAGE B-4

APPENDIX C

: get BS5SA8 EXECUTE ;

The word get obtains one ASCII character from the terminal
port. If the character is a valid ASCII hexadecimal character,
then the wvalue in hex is left on the stack with a non-zero flag
as top of stack indicating that a valid hex value was received.
If the character was not a valid hex character, then the
character itself is left on the stack and a 0 flag is left as top
of stack. (Valid ASCII hex characters are: 0123456789ABCDEF , If

any of these are received, the byte value is left on stack with a
non-zero flag on top.)

: *10 B5AC EXECUTE ;

The word *10 supposes that there is a valid hex byte on the
stack and that its value is from 0 to F . *10 swaps the nibbles
of the 1low order byte of the top of stack thus effectively
multiplying a valid hex value by 10 hex. Note that only the lower
order byte has its nibbles swapped. This word is meant to be used
in conjunction with get to perform a value shift function.

¢ *100 B5AA EXECUTE ;

The word *100 supposes that there is a valid hex number on
the stack and that its value is from 00 to FF . *100 swaps the
low and high order bytes of the top of stack thus effectively
multiplying a wvalid hex value by 100 hex. Note that this word
only swaps the high and low order bytes and does not perform any
other arithmetic function. It could be used to some advantage in
certain text editing applications, etc.

¢ BOOT 0 >IN | BLK | 662 EXECUTE QuIT

This word is part of the kernel vocabulary. Its purpose is to
allow the compilation of source code routines which reside in ROM
or RAM and which begin on some even 400 hex boundary. This word
can be executed from within a colon definition provided the
source code which it is 1loading contains a directly executed
program word. If the end of the source code is reached either by
the use of a word such as iS (see the full screen editor
vocabulary) or by the inclusion of a 00 byte (null) in the
source code listing, then the word QUIT will be executed and
control will be returned to the terminal.

~ PAGE C-1

