Z8671 Seven Chip
Computer

Hardware

© 1981 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced without the written permis-
sion of Zilog, Inc. The information in this publication is sub-
ject to change without notice.

Z8671 Seven Chip
Computer

/
7

Zilog

Hardware
Application Note

September 1981

INTRODUCTION

The Z8601 is a single-chip microcomputer with four
8-bit 1/0 ports, two counter/timers with asso-
ciated prescalers, asynchronous serial communica-
tion interface with programmable baud rates, and
sophisticated interrupt facilities. The 78601 can
access data in three memory spaces: 2K bytes of
on-chip ROM and 62K bytes of external program
memory, 144 bytes of on-chip Register, and 62K
bytes of external data memory.

The 78671 is a 78601 with a Basic/Debug Inter-
preter and Debug monitor preprogrammed into the 2K
bytes of on-chip ROM. This application note
discusses some considerations in designing a
low-complexity board that runs the Basic/Debuq
Interpreter and Debug monitor with an external &K
bytes of RAM and 2K bytes of ROM. The board
stands alone, allowing users to connect it with a
terminal via an RS232 connector and run the
Basic/Debug Interpreter.

The user of this board can run Basic/Debug with
little knowledge of the 78601. The board, how-
ever, derives its power through its ability to
execute assembly lanquage programs. To use the
board to its full potential, the Z8 Technical
Manual (document #03-3047-02) and the 8 PLZ/ASM
Manual (document #03-3023-03) should be read. The
28 Basic/Debug Software Reference Manual (document
#03-3134-00) provides general information, state-
ment syntax, memory allocations, and other mate-
rial regarding Basic/Debug and the Debug monitor
provided by the 78671. There are also two docu-
ments describing the Z6132; these are the 76132
Product Specification (document #00-2028-A), and
the Interfacing to the 76132 Intelligent Memory
Application Note (document #00-2102-A).

Basic/Debug

Basic/Debug is a subset of Dartmouth Basic, which
interprets Basic statements and executes assembly
language programs located in memory. Basic/Debug
can implement all the Dartmouth Basic commands
directly or indirectly.

One advantage to programming in Basic/Debug is the
interactive programming approach realized because
Basic/Debug is interpreted, not assembled or com-
piled. Modules are tested and debugged using the
interactive monitor provided with Basic/Debug.
Using Basic/Debug saves program development time
by providing higher-level language statements that
simplify program development. Using the INPUT and
PRINT statements simplify debugging.

The 78671 Microcomputer

Basic/Debug controls the memory interface, serial
port, and other housekeeping functions performed
by the assembly language programmer.

The 78671 uses ports 0 and 1 for communicating
with external memory. Port 1 provides the multi-
plexed address/data lines (ADU-AD7); port 0 sup-
plies the upper address bits (Ag-A15). The 78671
also uses the serial communications port for com-
municating with a terminal. Serial communicat ion
takes two pins from port 3, leaving six 1/0 pins
from port 3 available to the user. The serial
communication interface uses one of the two
counter/timers on the 28671 chip.

All other functions and features on the 78601 are
available with the Z8671. The user may recon-

figure the 78671 in software as a 78601 1if
desired.

Applying the 78671

Applications of the 78671 range from a low-

complexity home microcomputer that is memory
intensive to an inexpensive, I/0-oriented micro-
controller.

For home computer users, Basic/Debug is used like
other available Basic interpreters. The 8671,
however, has many advantages over other computers.
For example, the programmer can use the available
functions such as interrupts to perform sophis-
ticated tasks that are beyond the scope of other
computer products. There is also a counter/timer

751-1927-0002

6/18/81

that is used as a watchdog counter, a time-of-day
clock, a variable pulse width generator, a pulse
width measurement device, and a random number
generator.

As an inexpensive microcontroller, Basic/Debug
speeds program development time by calling assem-
bly language subroutines (for time critical
applications) and by supplying high-level Basic
language statements that simplify the programming
of noncritical subroutines.

ARCHITECTURE

Two major design goals were set for this 78671
Basic board. First, the board was to be simple.
Second, the board needed to allow the user to
write Basic programs and to utilize the features
of the 78601.

Overview
The board has seven IC packages:
e 78671 (Z8601 preprogrammed with
Basic/Debug)
e 76132 (4K bytes of pseudo-static RAM)
® 2716 (2K bytes of EPROM)
e 1488 (RS232 line driver)
e 1489 (RS232 line receiver)
e 74LS04 (Hex inverter)
e 7415373 (octal latch)

With these chips, a complete microcomputer system
can be built with the following features:

® 2K byte Basic/Debug interpreter in the inter-
nal ROM.

e 4K bytes of user RAM.

2K bytes of user-programmable EPROM.

Full-duplex serial operation with programmable

baud rates.

e RS232 interface.

e 8-bit counter/timer with associated 6-bit
prescalers.

® 124 general-purpose registers internal to the
8671,

e 14 I/0 lines available to the user.

e 3 lines for external interrupts.

e 3 sources of internal interrupts.

e Sophisticated, vectored interrupt structure
with programmable priority levels. Each can
be individually enabled or disabled, and all
interrupts can be globally enabled or
disabled.

e External memory expansion up to 124K bytes.

e Memory-mapped 1/0 capabilities.

This microcomputer can be used as a microcon-
troller, in which case a terminal is attached,
via the RS232 interface, and Basic/Debug is used
to create, test, and debug the system. When the
system is debugged, the program is put into the
EPROM, the terminal disconnected, and the board
run standing alone. The terminal can be reat-

tached at any time to monitor the subroutines
running on the board.

This proposed board meets the design requirements
of simplicity and of allowing the user to write
and debug programs in Basic while maintaining
access to the 78671 on-chip features.

Interfacing the Z8671 with External Memory

Both RAM and ROM are used in this application for
program development and to demonstrate the use of
components with and without address latches.

The RAM interface is easy to implement when using
a 76132 (Figure 1). No external address latch is
needed because the Z6132 latches the address
internally. The Z6132 signals WE (Write Enable),
DS (Data Strobe), and AC (Address Clock) are wired
directly to the 78671 signals R/W (Read/ Write),
DS (Data Strobe), and AS (Address Strobe). The
only other signal required is CS (Chip Select).
CS is provided by the Z8671 by decoding the upper
address bit of port 0. This board uses address
bit 15 to select the chip. Since there are two
memory chips on this board, the upper address bit
ensures that the 76132 is selected for addresses
800-7FFF (Hex) and that the 2716 is selected by
addresses B000-FFFF (Hex).

There are two major advantages to
26132. The interface to the Z8671 is uncompli-
cated because both components are Z-BUS'™ compat-
ible, and it provides 4K bytes of RAM in one
package.

The ROM interface is not as simple as the inter-
face to the Z6132. Nevertheless, the circuit is
common in microcomputer applications. The ROM
does not latch the address from the Z8671 and
therefore needs an external address latch. The
74LS373 latches the address for the 2716 EPROM.
The Enable pin on the 74LS373 is driven by the AS
signal via an inverter. The EPROM is also
selected by the upper address nibble of port 0.
Figure 2 shows the Z8671-to-2716 interface.

Interfacing the 78671 with RS232 Port

The 78671 uses its serial communication port to
communicate with the RS232 port. Driver and
receiver circuits are required to supply the
proper signals to the RS232 interface. The circuit
of Figure 3 shows the interface between the 78671
and the 1488 and 1489 for serial communication via
the RS232 interface.

The serial interface does not use the control
signals Clear to Send, Data Set Ready, etc. It
uses only Serial In, Serial Out and Ground, so it
is a very simple interface.

The Z8671 uses one timer and its associated pre-
scaler for baud rate control. When the 78671 is
reset, it reads location FFFD and uses the byte

751-1927-0002

2=

6/18/81

using the

y

~

Z8671

28671 26132
PORT 1o 21__ADo 10] Ag o1
PORT 1;] 22 AD1 e Y p, |12
PORT 1, 23 AD2 8] A; b, 113
PORT 13] 24 _ADs3 7] A3 Ds |15
PORT 14|25 AD4 8] A4 D4 |16
PORT 15|26 ADs 5] As ps |17
PORT 15| 27__ADs 4] As Dg |18
PORT 17|28 AD7 3] A7 o, |18)
PORT 0p 13 Ag 25] Ag
PORT 0, |14__As 24] Ag
PORT 0] 15 A10 21} Ao
PORT 03|16 __ A1 23] A1
PORT 07 20 Ass 20 s
RW |- 2T Y WE
o L 22| 5=
AS 9 26 AC
Ves
2 :-]Eo.m F CERAMIC
Figure 1. The 7Z8671 and Z6132 Interface
bs 8
20
74L8373 OE
PORT 1o f2L_ADo 3o LA |2 8] a P K
AD
PORT 14 |22 AD‘ Aa LA |5 4 V¥ o 2
PORT 1, 23 ADZ 7 Az LA2 |6 (1 'V 02 1;
24 9 5 1
PORT 13 AD’ : A LA3 : As o4
25 4 1 12 14
PORT 14 I e AD, 14 i i 15 3 i - 15
5
dui, Tha 17 i ¥ 16 “ %l
6
i ™ AD 18 g .- 19 1 . - 17
7
PORT 1 a7 - A7 o7
s >0 1 ENABLE ﬁ'—_L 2716
A —
PORT 07 |22 Dc A“ CE
1 23
PORT 0g |-~ 2 25
14 Ag 22| 5,
PORT 04 [~ = =
PORT 0, Ao
Figure 2, The 78671 and 2716 Interface

751-1927-0002

wik

6/18/81

stored there to select the baud rate. The board
described in this application note uses EPROM to
select the baud rate. On reset, the ZB671 reads
FFFD, which is in the EPROM, and decodes the baud
rate from the contents of that location. The baud
rate can be changed in software.

Figure 4 shows the full board design implemented
for this application note.

Uncommitted I/0 Pins and Other Pins

Using the above design, port 2 is available for
user applications. Any of the port 2 pins can be
individually configured for input or output. There
are also six pins in port 3 available to the user.
The port 3 input pins can be used for interrupts.

SOF TWARE
Getting Started

The 28671 board needs +5 V and ground to run all
components on the board except the 1488 EIA line
driver. The 1488 needs +12 V and -12 V in addition
to the +5 V and ground. (If using no terminal, the
FIA driver/receiver circuit is disconnected.
Consequently, the +12 V and -12 V lines are not
required.) The test board ran at 200 mA.

+5V

1488
so

INPUT

CUTPUT S

Z8671 RS.232
2 CONNECTOR

1489

SI OouTPUT

INPUT

XTAL2 XTAL1

£

7.3728 MHz

Figure 3. 78671 Interface
for Serial Communications

The RS232 port can interface to any ASCII terminal
if the baud rate setting is matched to the value
programmed into the EPROM. With power supplied to
the board and the terminal connected to it, the
reset button resets the 78671 and the prompt char-
acter appears (":").

The board is ready for a Basic command when the
":" gppears. The following sequence is a simple
1/0 example:

-12v lss
+12v Vee —
Hvee e e
Al
4 vee Dofit A?
o, |12 '
1 o |13 AD2
1488 [X] 26132 2
Heno EIA - ves 800-7FFF O R
_[- DRIVER 14} anD RAM e |18 ADs
el P L1 ADs
—outeut inpuT 2 DA%
o, 12 AD;7
WE DS AC As_Ag A10A11 Ao A1 A2 A3 A As As A7
26]25]24]21]23]10[0 |8 |7 |6 |5 |4 |3
= o| 2| 2| 8|S S| 8|S|8| 8|8
= 2| 2| <| <|<|<|<|2] <|=|<|<]| ADo-AD;
> >
e =
~PPEE
45V 7 |8 o [13[ra 15 {16 {21 zz{gu 26 27|28 | 20|23 |22| 19 |21 |24
l& 4| RIW DS AS P0g P01 PO2PO3P10P11P12P13P14P1sP1sP17 |31 2 o OF As & AuVesvec]g
: Vee) P2of > LAo| A Oo}
GND GUTPUTL> Ssi AD-AD; P2, | %> A Ha o,
3 3 6] 1
L XTAL1 P2y | LA Az 0
= 34
1489 &P 28071 Lol e 7418373 * ?z i “ 2716 ::
T = MICROCOMPUTER oy P OCTAL LA A B00O-FFFF O
RECEIVER 22 pl== = P2 | LATCH . [S 3, ROM o |15
= 7
2 xraL2 P2s} i 7o L 2 ae os}E.
5 7.3728 ey 38 1s 1 17
INPUT MHz l_ P27 f— u Ar 07!
Yvee _ ENABLE = =
GND PO7 POs P05 PO RESET GND [CE GND
1 20[19[18[17 6 0 T ® 7z
= . = =
+5V
= 3 l1a 4
RS-232 v
CONNECTOR < peact
1 [2 1K
am P
74LS04 1.F '_
INVERTER s e
GND o =
7
Figure 4. The Z8 System with Basic/Debug
751-1927-0002 4= 6/18/81

-

:10 input a
:20 "a=";a
trun

?5

a=5

:list

10 input a
20 "8:";8

When a number is entered as the first character of
a line, the Basic monitor stores the line as part
of a program. In this example, "10 input a" is
entered. Basic stores this instruction in memory
and prints another ":" prompt. The Run command
causes execution of the stored program. In this
example, Basic asked for input by printing "?". A
number (5) is typed at the terminal. Basic
accepts the number, stores it in the variable "avs
and executes the next instruction. The next
instruction (20 "a=";a) is an implied print state-
ment; writing an actual "print" command is not
necessary here. This line of code produced the
output "a=5". The command "list" caused Basic to
display the program stored in memory on the ter-
minal.

Reading Directly from Memory

Basic lets the user directly read any byte or word
in memory using the Print command and "@' for byte
references or " A" for word references:

:print @8

10
:printhex(@8)
A
:printhex(4 8)
AF6

The first statement prints the decimal value of
Register 8. The next statement prints the hexa-
decimal value of Register 8 and the last statement
prints the hexadecimal value of Register 8 (0AH)
and Register 9 (F6H).

Writing Directly to Memory

Basic lets the user write directly to any register
or RAM location in memory using the Let command
and either "@" or " A",

1@%a=%ff
: 40962255
:print@10

255

:printhex(4 %1000)
Ep

.

The Let command 1s i1mplied to save memory space
but can be included. The first statement loads
the hexadecimal value FF into register 10 decimal
(AH). The next instruction loads the decimal

value 255 into register 4096 decimal (1000H). The
print commands write to the terminal the values
that were put in with the first two instructions.

Memory Environment

Table 1 gives the memory configuration for the
28671 application example. Chip Select is con-
trolled by the MSB (most significant bit or Ats)
of port 0. Therefore, the RAM is selected for all
addresses between 800H (2048 decimal) and 7FFFH
(32767 decimal). Addresses 8FF, 18FF, 28FF, 38FF,
and 78FF address the same location in RAM in this
application because of Modulo 4K. EPROM is
selected for all addresses from 8000H to FFFFH
and, like the RAM, several addresses point to the
same location in the PROM.

Table 1
The Memory Environment
Decimal Hex Contents
0-2047 (0-7FF) Internal ROM
(BASIC/DEBUG)
2048-32767 (800-7FFF) RAM (Z6132)
32768-65536 (BOOO-FFFF) EPROM (2716)

Switching from RAM to EPROM

Register 8 and Register 9 contain the address of
the first byte of a user program or, if there is
no program, the address where the 78671 will put
the first byte of a user program. In this appli-
cation example, when the 78671 is reset, Register
8 and Register 9 contain 800H, which points into
RAM. EPROM is selected by changing the contents
of register 8 from 08H to 80H (See Table 2).

Table 2
The Registers
Decimal Hex Contents
22-23 (16-17) | Current Line Number
8-9 (8-9) Address of the First
Byte of User Program

For more details on the register assignments,
refer to the Pointer Registers-RAM System section
of the 78 Basic/Debug Software Reference Manual.

After the instruction "‘B:%BUOD" is executed, the
28671 accesses the EPROM on the Basic/Debug Board.

The example below shows how to switch from RAM to
EPROM. The example uses two separate programs,
one in RAM and one in EPROM. The RAM program is
listed first, then the EPROM.

751-1927-0002

25

6/18/81

:printhex(4 8)

800

:list

10 "executing out of RAM"
: §8=%8000

sprinthex(4 8)

8000

:list

10 "executing out of EPROM"

Baud Control

The baud rate is selected automatically by reading
location FFFDH and decoding the contents of that
location when the 78671 is reset (the 78 Basic/
Debug Software Reference Manual contains the baud
rate switch settings in Appendix B). This appli-
cation example holds the baud rate settings in its
EPROM. The least significant bits of location FFFD
hex will provide baud rates as follows:

Baud Rate Value Read
110 110
150 000
300 1M
1200 101
2400 100
4800 011
9600 010
19200 001

After a reset, the baud rate is programmed by
loading a new value into counter/timer 0 (see the
Z8 Technical Manual, section 1.5.7). A Reset
always changes the baud rate back to the rate
selected from the contents of location FFFD.

Burning an EPROM

The EPROM contains the baud rate selection byte in
location 7FDH. The other locations in memory are
used for program storage. See section 6.3 of the
Basic/Debug Manual for the format used to store
programs in memory. This format is used to store
programs in EPROM.

Example

The following is a printout of the

Mastermind written in Basic/Debug.

game

10
20
30
40

@243=7
@242=10
@241=14
x=usr(84) :a=@242-1:x=usr (84) :b=@242-1

50 x=usr(B4):c=@242-1:x=usr(84) :d=@242-1
55 a0

100 "guess ",:in e,f,qg,h

110 i=zi+]

300 j=%7f22:k=%7f2a

301 1=0

302 r=0:p=0

310 if A j= Akp=p+1

320 j=j+2:k=k+2:1=1+1:if &4 > 1310

330 J=%7f22:k=%7f2a

331 1=0

340 1F A j=h kr=r+1gf: A j= h j+10:1=3

341 j=j+2

350 1=1+1:if4 > 1340

351 j=%7f22

352 1=0

360 k=k+2:if%7f31>k340

363 j=%7f22:k=%7f2a

366 if b j>9 A j= 4 j-10

367 j=j+2

368 1f%7f29>j366

370 "right ";r;" place "sp

380 if4>p100

390 y=999

400 "right in "ji;" guesses;";"play another
y/n":inputx

410 ifx=y10

Lines 10 through 50 comprise the random number
generator for the program. The three lines:

10 @243=7
20 @42=10
30 @241=14

initialize counter/timer 1 to operate in modulo-10
count. Refer to the Z8 Technical Manual for com-
plete information on initializing timers.

The "usr(84)" function waits for keyboard input,
the ASCII value of the key is returned in a
variable with the following command:

:10 x=usr(84):""
:15 printhex(x)
trun

5

35

In the above example, the program waits at line 10
until keyboard input, in this case the number 5.
The input value is stored in ASCII format in the
variable "x". The line:

40 x=usr(B4):a=@242-1:x=usr(84) :b=@242-1

waits for input, reads the current value of timer
1, subtracts 1 (to get a number between 0 and 9.
and stores the number in variable a. Then it
waits for keyboard input at the second user func-
tion call, reads the current value of timer 1,
subtracts 1, and stores the number in variable b.
Line 50 of the example program gets two more ran-
dom numbers and stores them in variables ¢ and d.
The four-digit random number is located in
variables a, b, c, and d.

Line 300 assigns the location of variable a to
variable j and the location of variable e (the

751-1927-0002 -6-

6/18/81

4

first variable 1n the guess string) to the
variable k. The strateqy is to access these
variables indirectly and to increment pointers j
and k to access the variables.

A colon is used to separate commands on the same
line. This is useful in packing the program into
a small amount of memory space. The code, however,
is harder to read. See section 5 of the Basic/
Debug manual for more information on memory
packing techniques.

Below 1s a sample run of the Mastermind program:

sTun
(<RETURN>
times here)
guess 7 0, 1, 2, 3
right 2 place 0
quess ? 4, 5, 6, 7
right 2 place 1
guess ? 0, 2, 4, 6
right 3 place 2
quess ? 4, 2, 1, 6
right 4 place 4
right in 4 guesses
play another? y/n
n

on the keyboard is entered four

F VW RONDN D

CONCLUSION

The design of this application example met the
major design goals of simplicity and functional-
ity. The first goal is accomplished by prudent
selection of support components, excluding any
unnecessary chips. The board allows the user to
exercise the full power and flexibility of the
features of the the 78601 not used by Basic/Debug.
The user can write and debug Basic programs with-
out detailed knowledge of the Z8601.

The Basic application example demonstrates a
memory interface that is applicable for all 78
Family members. The case where there is no
address latch on the memory chip was discussed,
and an example of how to interface the multiplexed
address/data bus of the Z8 Family through an
address latch was shown.

The software section explains the memory environ-
ment and gives several examples of Basic/Debug.
These examples are a good introduction to the
board and to Basic/Debug.

The Z8671 is a customized extension of the Z8601
single-chip microcomputer. The simplicity of the
Basic application example demonstrates the flexi-
bility of the Z8601 microcomputer in an expanded
memory environment.

751-1927-0002

T

6/18/81

Zilog
Sales
Offices

Zilog, Inc.

West

Sales & Technical Center
Zilog, Incorporated

1333 Lawrence Expressway
Suite 400

Santa Clara, CA 95051
Tele: (408) 446-9848
TWX: 910-338-7621

Sales & Technical Center
Zilog, Incorporated
18023 Sky Park Circle
Suite J

Irvine, CA 92714

Tele: (714) 549-2891
TWX: 910-595-2803

Sales & Technical Center
Zilog, Incorporated
15643 Sherman Way
Suite 430

Van Nuys, CA 91406
Tele: (213) 989-7484
TWX: 910-495-1765

Midwest

Sales & Technical Center
Zilog, Incorporated

890 East Higgins Road
Suite 147

Schaumburg, IL 60195
Tele: (312) 885-8080
TWX: 910-291-1064

Sales & Technical Center
Zilog, Inc.

28349 Chargrin Blvd.
Suite 109

Woodmere, OH 44122
Tele: (216) 831-7040
FAX: 216-831-2957

South

Sales & Technical Center
Zilog, Incorporated

2711 Valley View, Suite 103

Dallas, TX 75234
Tele: (214) 243-6550
TWX: 910-860-5850

Zilog, Incorporated
7115 Burnet Rd.
Suite 207

Austin, TX 78757
Tele: (512) 453-3216

Technical Center

Zilog, Incorporated
1442 U.S. Hwy 19 South
Suite 135°

Clearwater, FL 33516
Tele: (813) 535-5571

10340 Bubb Road, Cupertino, California 95014

East

Sales & Technical Center
Zilog, Incorporated
Corporate Place

99 South Bedford St.
Burlington, MA 01803
Tele: (617) 273-4222
TWX: 710-332-1726

Sales & Technical Center
Zilog, Incorporated

110 Gibraltar Road
Horsham, PA 19044
Tele: (215) 441-8282
TWX: 510-665-7077

United Kingdom
Zilog (U.K.) Limited

Babbage House, King Street

Maidenhead SL6 1DU
Berkshire, United Kingdom
Tele: (628) 36131

TELEX: 848609

West Germany

Zilog GmbH
Zugspitzstrasse 2a
D-8011 Vaterstetten
Munich, West Germany
Tele: 08106 4035
TELEX: 529110 Zilog d.

Japan

Zilog, Japan KK

Linden Sky Heights

Bldg. 1F

13-2 Sakuragaoka-Machi
Shibuya-Ku Tokyo 105
Japan

Tele: (813) 496-4428
TWX: 781-23723 Lawright

Telephone (408)446-4666 TWX 910-338-7621

00-2151-02

Printed in USA

