National ™
STARPLEX

User’'s Manual

NSC Tiny BASIC

Microcomputer Systems

Publication Number 420306319-001A
Order No. 420306319-001

November 1980

STARPLEX™

NSC Tiny BASIC

User's Manual

©1980 National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

REVISTON

REVISION RECORD

RELEASE DATE SUMMARY OF CHANGES

11/80 First Release.

NSC Tiny BASIC, User's Manual
Publication No. 420306319-001

ii

SECTION 1

Charter |

1.1
1.2

Chapter 2
2.1

Chapter 3

wWwwww wl wi
VOISO AN —

Chapter 4

L] L]
~ O~ AhWN —

AAhADMAMDBBEBADADAN
BN

Chapter 5

Table of Contents

Page

Brinqinq UD The INSB@?B Systemo.oooo.ooooooooo.o.o.-.1-3
Baud Rates........O'.....‘.D............I.........l..l-‘3

Introduction...O................'..I..l..'...........‘-5

INtrodUC t 10N . cecoosscasessoscccccsssssssssssscascsssel=’

TTY/CRT Terminal...o...-..o..................-.......1-8

Beginning INStructionS.eecceececesccsccscsssssscsssassnssel =10
StATt UD eeecccoosceassnssssoeasscsscscsassscscsscccacecasl=1D
The Print INStructioN.ceecesecccccccscessscssesseccsscel=ll
Using The Computer AS A CalculatOr.eeeesesessssccnssesli=l3
Use Of ParentheSeS.ceceeccsescececccscscsssscsssossesseseel=l7
MIGtAKES coeeoecesacnosssscasscsccssasscssosscsscncsascnseel=20

Exercises...o...o.o.o.........O......O.o..-0........."’2‘

VATIAD]CS e e eeveeooasesssssssacsacssesssssssssssscssssel=23
ExerciseSnoo..oo.oooooo-ooo.ooooooo-o.ooooo..o.--o--.l’25
The Stored Proqram...................................1—26
EXCYC IS CS cescoscocscassesnssscssscssscssasssscsssnssasssl=29
The = GO TO = StatemenNteeeeseccccsscsssssssccsccsscsal =37
The - INPUT - Statement..............................1-32
EXerCiSE...1-33
Informative Printing..ceeceecccecscsecscscsscsssssssccseel =34
Multiple Statements Per Lin@.ceececscencscssssccscsaesl =36
Exercises..1-38

Bits And Rytes.....-.......-.........-.......-.......|-39

EXGTCiSeS..l-4ﬂ
Memory Address...............I.......................1-40
Hewadecimal Number System.............0. ceccsscseses =47
MOTP Abol]t HRY_HdeCimal........-..-...................|-43

EXErCiSe..u..-.o.-...........loct..o...o001-0010.000.1—48

The IF Statement.l.......Q.........l.................'-49
Exerciseoonotllocccooi..C...Q..C...........Q...l....01—5‘
AMOTG COMDBCt P!"OQY’am...........o..-oa.--..-........‘-56
Random Numbers And Computer GAMmeS.ccececsccscscsasssccscsl =60

ExerCiSe.uoo-......lo.o...l.....l..l.o.l..-..........I-él

TABLE OF CONTENIS (Cont“d.) Page

Chanter 7

Program LOODS cececesccsescoscasscscscscsssossossssssscssscel =03
EXPrCIiSOeieseeasseceacesosssscassssoscscsssscosasscascsscsl =00
IF LOODSouoooo-o-noooo-o-ono.o.-..ooooo..ooooco l.....‘—éé
EXPrCiSES.............-..-..............-.....-...-..1“63
FOR NFXT LOODSoooooo.--.coo-.ooo-.-.no--..-ooo--o-o..l—ég
EXCYCiSeSuueeenoasooseosccanccsssscscscosscscsssoscassscacsanel =12
The DO Gtatempnt.....................................1-73

NNN NSNS
~NON A W —

Chapter 8

Sljbroutines e 0 0 6 B 00 % & 0 00 O OO 00 P O SO OO SO O SO OO NSO O PO oS ..I>—77
LINK Instr!.’ction. ® ® 6 06 & 06 8 ¢ 8 O 00 5 0 00 O OO0 S O T OO O S0 S OO s .Ql-79
DFLAY........................'.....................Q.l—s‘m
The ON Statement.........-...........................]—8]
Tt]e STAT Function ® @ 6 0 0 0 0 0 0600 600 0 50 09 6 O =000 00O 60 6 e 1—82
MlJltiOTOCE‘iSiHO, INC (X). DEC (X)........I....I.l"..]—83

CLEAR.....I..O.......ol....ol..o....l.o..o.....o..o.'l—83

DDD XD DD
~NO U RWwN—

Chapter 9

Memory Organization.eceeecececescceccscccsscsssacsssnseccasl—85
TOP LOCation.....O..l.l............I......l...'......l—87
Strinqs Of CharBCt ers ® ® © & © 0 0 & 0O O OO OO 00 6O O SO S SO PO S BSOS ..‘—9@
EXErCiSe......l...........................‘..........1—94

00 00
HwN—

Chapter 190
lﬂ.l Interfacinq Other DeViceS TO NSC Tiny BASIC..........]'97
'ﬂ.? Hardware Interface....l.......‘......................'-98
180.3 Example System LED Flasher .ceececcccosesccscscsascncsassesl =137

IQ.A PTOQrRmminq The CirCUit.............-..-a-......o....l-lﬂ'
I@.5 ExerCiseSoooo.-oooooo-o.oooooa.n-.oooooooooooo.oo..o.'-lg?

SECTION 11
Chapter |
l.l IntrOdIJCtion...................‘...‘................'2‘—3

Chanter 2

N
.

Language EXDressioNSeeceecccecccscscsscaccscscascsscascsccsr
Variables ,,. coeewe-os e ececcoceeseecencancccacsonsecesenss P
CONStANY S e iiaeeavsesassocsacscsoscassansssascsscsscssscssssssl
Relational OperatOrS .eesecsescscsscccoscssscsscascsscscsocnessel—
Arithmetic ONeratOrSceescscccccccscnccssacssasoscssnscsensncs’ ™
Logical OperatoOrSeeececscsccccscesescsocescsscsasescssncsssssanl=
?
2
2=

N
.

\J\Joo«mmmmm

LoGifAl AND i iveeveeoeoeseoscacoescscasssosncscscassassssce

LogicAl OR ieieaectcsscccscscsoscscscscsscscscsncossnas sassssl
LOQiCal NOT.....l..l."........l.....-l.......-......

FUNCtioNS.eeeeeeseesescecsoscsonscssssssssssscscsscccasnel=/
ol MOD (A,b) FUNCLIiON.eeeetsecccossocasscsccccccnoasocecealm
2 DBND (a,b) FUNCtiON.:seessosccccssscsacccsssnsncscscsssl—8
e3 STAT FUNCLION teeeetesecssecccsscsscascsnsosnsccessssse’=8
.4 Status Register Bit FUNCLIONS ... veececcncocscocsncseal=8

* e s o o o o
DO hN—

~

® & 5 o o @ s o+ o
PRIPONI NN ==t e it e s s s

PNNONNMNON VU O N

iv

e o
o

NroN VNN DN NN
e o e o L)] - [} L]

Whwwhwwww wwih
L] [] L] L []

[]
—— == QDO LN —

wNh —3R

www

® @ L]
BN —

ISESENESENIHVESENESE SIS VISR
e o ® » 6 5 o » ® & o o o & o
WA =

QN NNYQOrRO NS

TABLE OF CONTENTS (Cont’d.) ‘
Page

TOP FUﬂCtion...Z‘IW
INC (X) And DEC (X) FUNCtiONSeeeasacssssasasascsssese?=l?
Statements..................‘...................I....?.-]ﬂ
INPUT Statement............-....................-....2-|ﬂ
PRINT Statement (OUtDUt).............................2"1
LET Statement (Assiqnment)...........................2-12
The GO TO Statement.................;...-............2'12
GOSUB/RETURN Statements............a.................2-12
IF/THEN Statement............................a.......2-|3
DO/UNTIL Statements..................................2—‘3
FOR/NEXT Statements...............-.-.........-......2‘]4
LINK Statement.............-........-................2“4
ON Statement...2-]5
STOP Statement..............................1........2-|5
DELAY Statement......................................2-16
CLEAR Statementa.....................................2—16
Indirect Ooerator....................................2-!6
Multinle Statements On A LIN€eevsesacescsssessacsasses=l?
String Handlinc......................................2—18
Strinq OUtDUt...............o........................2-]8
String Assiqnment....................................2-18
String Move..2—18
String Examoles......................................2—19
Commandc...2—!9
NEw expr...l....I..OI...II..0.0.....D....O....Q......2"9
RUN...............,..................................2~19
CONT.}...o.oooo.-o...ooo.oooooo-oo.oo-oooo--oo-o.oooo2-2ﬂ
LIST (exor)..2-2%

SECTION III

Chapter

N) =

l.
L

W

[
l.

NN NON NN
e ® o @ e = ¢ o
DI BN —

Introduction..3-3
An NSC Tiny BASIC Example System, Functional

.Specification.........3—6
Hardware Desian Of A Small INSB#73-Based Systemaes.es3=9
Addressing Requirements/Caoabilities Of Each

System Component «eesee3=12
Memory Mappina Constraints For All Svystem

COMPONENtSeecassosacesd—l3
System Generated Interruots...........a,............3~l3
RS-232/Current Loop Interface.......................3-!6

MM2716 EPROM Proaramming Software...........,........3—
COPY Command.o.o.o.oo.oc-ao..oooooo-o-oeoonn.oooooooo3’
PROGRAM Command......................................3—
VFRIFY Commandoooo.o-o.oo-ooooooooo-aooo@ooooon00-0-03‘
ERASE CHECK Command.....................E..,.........3-
FILL Command...3—
DUMP Command...o..o-oooooooooo.uoooonnoonon..ocn000.03—

3=

7
7
s
9
9
1G]
]
LOAD COMMANA 4 e ececescoscosssssssssssassscccosccnessccnns |

|
1
|
i
|
2
2
2

TABLF OF CONTENTS (Cont“d.,)

Page

Chapter 3
3.1 Loading The EPROM Programming Software Into EPROM....3-23
3.2 [Loading NSC Tiny RASIC Programs Into PAM ... ceecescesaseld=23

3.3 Using The FPROM Programming Sof tware To Program
MM?7'6 FPROMS........-3-23

vi

Section 1

CHAPTER 1
lel Bringing Up The INS8#73 System

All the examples are based around the example system shown in Section
3, Figure 1-4,

For those of you who have designed your own system, with heln from
Section 3 of this manual, it is assumed that vou have the experience

to internret the following instructions to suit your own system. The
sequence below tells how to hook the standard NSC Tiny BASIC card shown
in Section 3, Fiqure 1-4, to A power sunply and TTY or CRT to get it
running.

Things needed:

Power Supplys +5,
. =12V (For serial communications)
Optionally +25 (For PROM oroarammer)

A power supoly cable can be connected directly to the board at
the Pl mounting, or stake pins can be inserted and the power
supply can be connected throuah a suitable ccnnector, i.e.,
MOLEX MXI-9 6471, A cable or connector is attached to Power

Sunply in the following order:

CONDUCTOR PIN# | 2 3 4
VOLTAGE +5 | =12 | +25 | GND

If you’re using a TTY, it must be connected for 2¢mA current
loon, as described in its own manual, and will connect to the
edge connector fingers in the following manner:?

SIGNAL XNT+| XNT-| RCV+ | RCV=- RD RLY+|] RD RLY-

Pin numbers are etched onto the board, remember that Pin 6
is the one closest to the edge of the card on the side with
the comnonenets.

If you’re using a CRT terminal, you should hook it un with a
standard MALE-MALE cable, (National”’s 601305491891 will do
just fine), to the RS-232 (D-tyne) connector on the board,
Make sure your terminal is set to RS=232 (if that‘s a switch
selectable option, if not, just assume it is an R5-232 termin-
al)s and make certain unper case and full dunlex are selected.

1.2 Baud Rates

‘Generally, the hiagher the Baud Rate, the better, as it means less
waiting time for yous however, if you are usinag a TIY you have no
choice. The Baud Rate must be set to 114,

1-3

The way vou set the Baud Rate is with the two Jjumpers EI18-~FI19, Fl16-Ei17.
Ne can call EI18-FE19 D#, and F16-FE17 DI, Set the Baud Rate on a ‘
terminal to the highest rate, or 482%, which- ever is lower, set the
Jumpers to match it as shown in the diagram below. A "I" signifies
that the jumper is missing, A "A" means that it is installed.

Fl16=F17 FE18-E19
N2 D1
e | o | o
E R o | 1
200 | | e T
(e | 1 | 1

After you have done all of this, and double checked it, connect the
board to the CRT terminal or TTY, warm up the terminal, hook up the
opower supnly, then turn on the power.

If all went well, you should aet a right oointing caret (>) promot.

Push the RESET button and the brompt (>) should aonear again. You are
now ready to begin using vour 8873 system.,

1-4

CHAPTER 2

2.) Introduction

The INS8@#73 is a single-chin computer that directly executes NSC Tiny
BASIC, a high—level language. Writing oroagrams in NSC Tiny BASIC
offers the following advantages over writing programs in assembly
languaget

Programs written in NSC Tinv BASIC eliminate the need for memory
consuming FEditor, Assembler Monitor/Debug nrograms. All of these
functions are built in. :

Programs may be written and debugged using a small, inexpensive
system. Purchase of an exnensive development system is not
required,

Program debuaaging is fast and simole, Program execution may be
susovended, variables and other parameters examined/altered, errors
corrected, and execution resumed at the point where it was
suspended - all without the need to reassemble or reload the
program, (NSC Tiny BASIC programs doc not have to be assembled.)

Programs can be written in one tenth the time of eguivalent assembly
language proarams due to the power of the NSC Tiny BASIC lanquage,
its English-like simplicity and built in edit/debug capability.
Programs are also easy to maintain because they are self documenting.

Programs are relocatables they may be loaded and executed anywhere ir
memory without modification,

Program memory can be quickly checked for valid code because NSC Tiny
BASIC programs are stored as a seauence of ASCII characters.
(Executable assembly language proagrams are considerably more
difficult to check because they are stored in memory as a sequence of
binary numbers).

NSC Tiny BASIC was designed for use on the INS8@&73 single-chio micro-
interpreter, a nroduct of National Semiconductor Corporation. NSC
Tiny BASIC is a simplified version of the computer language, BASIC,
"Beginners All-nurpose Symbolic Instruction Code®, develoned by

Dr. John Kemeny and Dr. Thomas Kurtz at Dartmouth College in 1963.
BASIC has become the "People’s Computer Lanquage" because it is
easy-to-learn and easy~to-use by people who are not computer
scientists or professional orogrammers. The users of BASIC are
engineers, technicians, scientists, statisticians, business peonle,
hobbyists, teachers, college students, and a vast multitude of
youna people in elementary and secondarvy schools.

The original NSC Tiny BASIC was desianed for aopplications such as
integer arithmetic problems, computer games and teaching beaginners
how to program computers. NSC Tiny BASIC has extended capabilities
that make it a powerful design tool for developing control aoplica=-
tions.

1-5

Information on NIBL upon which NSC Tiny BASIC was first nublished in
People’s Computer Company, Volume 3, Number 4 (March 1975) and Volume
4, Number | (July 1975). The best source of information on Tiny BASIC
is Dr. Dobb“s Journal of Computer Calisthenics and Orthodontia,
beainning with Volume 1, Number | (January 1976) and continuina through
several 1ssues,

This book is designed to help you teach yourself how to use NSC Tiny
BASIC and the INSBA733 it consists of three major sectionss

SECTION 1* A primer designed for self study. This self teaching
nrimer presents the elements of NSC Tiny BASIC in a step-by=step
manner. It is assumed that the reader has access to an INS8A73-based
system and will try out the examples and exercises as thev are
presented in the orimer., It is Aalso Aassumed that the reader has no
previous computer proaramming training or exoverience, but is
exnerienced in 2lectronic hardware desian using non-comonuterized
technigues,

SECTION 231 A guide that provides quick reference to information for
people who have worked through the primer, or, who already know how to
program in some form of BASIC.

SECTION 33 A descriotion of a typical INS8973 system$ details on
setting uo the computer system and getting NSC Tiny BASIC running.
Section 3 assumes that the reader has a prior knowledge of digital
electronicsy and, this section gives schematics and a descrintion
of an example RA73 NIRL-II demonstrator card.

1-6

CHAPTER 3
3.1 Introduction '

The INS8473 is a #task-oriented® microinteroreter, NSC Tiny BASIC is
the language that instructs the system to perform various and sundry
functions.

The use of microcomputers to control electronic, electrical and

el ec tromechanical devices is very much an enaineer”s dream come true.
A computer works from a written out specification of what the
completed device is supposed to do. This specification, written in

a very exact and unambiguous style, is called a program. As with
specifications and schematics there are conventions about exactly
how a program is to anpear. This set of conventions is called a
language. The language used on this computer is a version of

BASIC called NSC Tiny BASIC.

When setting out a schematic for someone who is not up to your back-
ground in electronics, you have to spell everything out in more detail
than you would for a colleaqgue who is rioht with you. Until a computer
knows as much as you want it to know, everything must be spelled out

in a meticulous and precise manner. Once these instructions are
spelled out - that“s its the computer will henceforth do it right

every time.

Figure 3,1, INS8373 Based System

1-7

3.2 TTY/CRT Terminal

You will probably be using a Model 33 Teletype or a CRT (Cathode-
Ray-Tube) terminal to communicate with your INS8873. In the follow-
ing text, TTY (Teletype) and CRT (Cathode-Ray-Tube) are used inter-

changeably.

The letters of the Roman alphabet and Arabic numerals were invented
long before computers when. nobody .cared that the letter 0" looked
just like a zero. It is, however, very important for the computer to
tell them aparts therefore, the numeral zero is written as an "O%
with a slash through it (@). The letter #0% is left alone. Most
Teletypes will print the zero character with a slash and an *0%
without a slashi check your teletyoe to make sure it observes this
convention, S ,

When programming, sometimes you will type to the computer, sometimes
the computer will type to you. When it is the computer’s .turn,

it just goes ahead and types, When the computer is "thinking* it
acts as if you were not there. When it is your turn to type the
computer prompts you by typing the character ">" on the left margin
of the paper/screen. The right pointing caret (>) is called the
"orompt® character. After typing the prompt, the computer will

wait patiently until you type something.

NSC Tiny BASIC recognizes only CAPITAL LETTERSs lower case letters are
not used at all. (The Model 33 Teletype doesn’t have any lower case
letters.) Your CRT may or may not have lower caset if it does, switch
the upper/lowercase switch to upper case.

" 1-8

Fiqgure 3.3 A Typical TTY

Figure 3.2. A Typnical CRT

1-9

3.3 Beginning Instructions

Think of something you know how to do like bicycling, skiina, nlaying
oiano or designing circuitry, One thing is certains there are no
books in the world that can teach someone how to do any of these
things. Books can heln, but without getting on a bike, putting on
skis, practicing scales, or designing hundreds of circuits and trvying
them out, a novice can’t do any of these things. Same way with
orogramming.

The only way to learn orogramming is by doing it. With bicycling or
skiing you may end up with skinned shinst with nrogramming you may
experience a dented ego. People don’t like to be told they“’re wrongs
unfortunately for the novice programmer, error messages are what he/she
will get most frequently from the computer.

For your reference, the NSC Tiny BASIC FRROR CODF SUMMARY is listed
oelows what it means is that if NSC Tiny BASIC encounters an error

condition in RUN command mode; it will orint out ERROR followed by an
error number., FError numbers ares

Table 3-1. NSC Tiny BASIC Error Code Summary

ERROR NBR. EXPLANATION

Out of memory

Statement used imorooerly

Unexpected character (after legal statement)

Syntax error

Value (format) error

EFnding aquote missing from string

GO target line does not exist

RETURN without previous GOSUB

Exoression or FOR=NEXT or DO-UNTIL nested too deepnly
) NEXT without previous matching FOR
1 UNTIL without nrevious DO
2 Division by zero

e = OO WN—

3.4 Start Up

Before vou power-up, be certain that your system is properly connected
and that the Baud Rate Selector is set. Once you have turned on your
INS8A73 system, the TTY or CRT will type a orompt character (>) to
indicate that it is ready to beain. When vou are ready to enter a
nrogram with line numbers, type the following:?

>NEW #address (hexadecimal address location)
NEW

The above command (NEW #address, NEW) is used:
l. To prepare the computer for a new program with line numbers.

2. For initial power-up.

3. If you RESET your system in the middle of a programming session
you may have to use this command. Try to avoid this because vyou can
easily lose all oroagrams in your system“s memory.

4. If you wish to store several oroarams in memorv. Fach orogram
will have a different hexadecimal address location, for examplet

Program | - NEW #1001 N NP (P
NEW @!}‘M \‘_\;-w:m(-t" @ (5/)0@ #
Jsyret ©. &8 o0 - < BN
Program 2 -~ NFEW #4859 / Tan &S00 ——2 M By
NEW

Tne NEW (carriage return) command erases an old programs the LIST
command lists your onrogram and the RUN command runs your orogram.

Important: when you are finished typinag/talking to the computer, vou

signal by pressing the RETURN key. This indicates that vou are
finished with your turn,

Tyne vour name and then press the RETURN keys the followina is what
should happen:

ERROR 4 The computer responds with FRROR 4. FERROR 4 is
listed in this chanter and in Apperndix C under the
Frror Code Summary and is a "Syntax Error®. This
is because NSC Tiny BASIC does not recoanize vyour
name as a command,

> NSC Tiny BASIC then types a prompt (>») to let vou
know it is still listening and that it is still your
turn to communicate.

This is the first example of an error message. It is the one you will
see most often, and it means only that vou have typed somethina that
NSC Tiny BASIC doesn’t understand. NSC Tiny BASIC does not understand
your name simply because it is not in its repertory of commands,
Fxamine the followinag legal commands,

3.5 The Print Instruction

The computer gets jobs done by following instructions. If an in—-
struction is correctly tyoed, the comnuter will execute it immediate-
ly. (Nhen a computer follows an instruction it is said to obey,

or execute that instruction.) One of the most useful instructions is
the one that tells the computer to PRINT a desired result or message.

In English we say that antelopes have four legs, but we say that
“antelopes" has nine letters. One of the things we do by putting words
into auotes is to indicate that we are referrina to the words
themselves and not their meanings. The computer uses aquotes the same
way.

For example, suopose, in a boiler installation that the computer is
monitoring the water level. If the level! begins to get low (but not
low enough to warrant automatic shut down) you might want the computer
to oprintt "Warning, the water level is low.". The instruction you
desire to give the computer is:

>PRINT "WARNING, THE WATER LEVEL IS LOW#

Don’t forget to press the RETURN button to make the computer execute
the instruction.

You typet PRINT "WARNING, THE WATER LEVEL IS LOW®
The microinterpreter typest WARNING, THE WATER LEVEL IS LOW

NSC Tiny BASIC tyoed what you told it to type: note that the message
was enclosed in acuotation marks, but they were not printed.

Suppose that the onerator in the boiler installation was away from the
terminal, or taking a nao, or having a coffee break. In any of these
instances he may not see the warning message. The TTY has a bell which
may be used as an alarm. (Other terminals may have different audible
alarms - a click, been, buzz etc.) To sound the bell, hold down the key
marked CTRL, CNTRL or CONTROL and, while holding it down, press the G
key., On most TTYs, the G key has the word BFLL on it as a reminder.

Fe Fedede J Jede g de A Fede deFdede gk ok dedk ke ke ok ke ek ek ek ok ok keok

* *
* To ring the bell, hold CTRL down and *
£ oress G *
* *

Fe ek Je ke deok de e e ok sk S e sk T ek Fe kb ok e ek ke de sk sk sk ok bk

)

Hold the CIRL key down and oress the G key several timess this will
allow you to ring the bell several times. You will note that the
bells are heard yet nothing is printed on the TTYs (Appendix shows
other non-printing characters which may be useful,)

Bells (CONTROL/G) can be included in a PRINT instruction. Let”’s
use the example of the boiler installation aqgain and orint the same
warning message, only this time add the bell to be certain that the
ooerator knows there’s an important message?

You type:?
PRINT “WARNING, WATFER LEVEL IS LOW (CTRL GGGGGG)"

Don’t forget to press the RETURN key so that NSC Tiny BASIC knows vyo
are through with your instruction,

NSC Tiny BASIC tvnest

WARNING, WATER LEVFEL IS LOW and then rings the bell six times,

3.6 Using The Computer As A Calculator
NSC Tinv BASIC can do integer arithmetic. Try the following example

on your INS8@73. Remember to oress the RETURN to finish a line of
tyoing.

ADDITION

You typet PRINT 2+3 Use "4 to add.
NSC Tiny BASIC types:t 5

SUBTRACTION

You typet PRINT 7-4 Use =" to subtract.
NSC Tiny BASIC tyoest 3

MULTIPLICATION

“You tynes PRINT 4x7 - Use 444 to multinly.
NSC Tiny BASIC typest 28 '

DIVISION

“You type:? PRINT 48/6 Use /8 to divide.
NSC Tiny BASIC tyoest 8

I'f you made no typing errors, the above four examples should actually
Apoear on your TIY page as followst

>PRINT 2+3 The prompts (>) were typed by NSC Tiny BASIC
5 ,

>PRINT 7-4
3

>PRINT 4%7
28

>PRINT 48/6
8

Now try the following divisions.

>PRINT 23/4
5

>PRINT 3/2
1

>PRINT 4/5
%

I's NSC Tiny BASIC giving wrong answers? No. It is simply doina
integer arithmetic. In division, NSC Tiny BASIC nroduces the integer
part of the quotient,

Using the first example above, >PRINT 23/4, this is what happens:

5 Quotient. This is what you get when you
4 / 23 tell NSC Tiny BASICt: PRINT 2374
20 T T
3 Remainder. You will be instructed later

' < on in this manual how to compute the
- remainder, : -

Most industrial control applications, as well as tasks such as word
processing and aven the programs thaet make thls language work, need
only integers. A valve in a refinery may need to be set to one of a
hundred pnositions (many annlications only require resolution 6f two
positions - opened and closed), These hundred nositions can be
represented by the integers 7 to 193 with @ being closed, 54 being
half opened, and 10¢ allowing full flow.

In NSC Tiny BASIC, integers can range between the limits of -32768

and +32767, inclusive. This allows any measurement or control to be
accurate to one part in over 65,03, Few electrical or mechanical
devices in control systems require more accuracy. Yet, by anpropriate
orogramming, greater accuracy can be obtained if it is necessary.

A good way to learn more about how NSC Tiny BASIC does arithmetic is
to use it as an integer desk calculator. As with any desk
calculator, it is possible to overflow if you calculate a number too
large or small. :

NSC Tiny BASIC handles the problem in two wayst

t. If you try to type, not calculate but type, a number greater than
32767 or less than =-32767, NSC Tiny BASIC will print an error
message. For example:

>PRINT 32768

ERROR 5 Error 5 Value (format) error

>PRINT -=32768

ERROR 5 Error 5 Value (format) error

2. If you calculate a number outside of this range, no error message
will be generated: the numbers just “wrap around", This method
of handling overflow is handy on some occasions, but distressing
at other times. For examplet

>PRINT 32766+]
32767 This is the expnected answer

>PRINT 32767+1
-32768 This is NOT the expected answer

>PRINT =32767-1
-32768 This is the expected answer

>PRINT =32767=2 .
32767 This is NOT the expected answer

>PRINT -32768-1
ERROR 5 Remember, you can’t type =32768

Think of NSC Tiny BASIC numbers being arranged in a circlet

-1 a2 1
-2 2

-32764 . 32764
=-32765 32765
=-32766 32766
-32767 32767
-32768

From the circle you can see that 32765+7 = -32764, (Moving in a
clockwise direction start at 32765 and count off seven placess
you should end un at =32764,) Try it on your system.

>PRINT 32765+7
-32764 - Correct

To subtract, move in a counter~clockwise direction. For example,
-32766-5 = 32765. Again, verify this on your system.

>PRINT =32766-5
32765

NOTE: NSC Tiny BASIC didn“t print the “"correct® answer (-32771)
because -32771 is less than -32768. Calculated values will be
correct only if the correct value is in the ranqge of -32768 to
32767, inclusive.

Up to this point vou have been shown simple problems with one
oneration. The following examples are a bit more complicated., The
formal rules for how exnressions are evaluated are in this chanter in
section 3.7% you will understand them better if you exoeriment on
these examples first,

>PRINT 2%3+4
12

>PRINT 2#3-4
2

>PRINT |2%3+445
26 | DO S

>PRINT 2%3=4%5
-14

>PRINT 2*3%4*x5%x6
2

SPRINT 2%3%4%5%6%7
5040

>PRINT 2%3%4%x5%6%x 7R

~252] memm e e e --The correct answer is 49328, too big
for NSC Tiny BASIC. NSC Tiny BASIC
does not tell you that an incorrect

answer has occurred,

If you use only +, - and *, NSC Tiny BASIC will give correct results
unless the true result is less than =32768 or agreater than 321767.
Try some division problems:

>PRINT 7268/2/3/74/5/6
1 Correct. 720/2 = 360, 36A/3 = 120,

120/4 = 3@, 3/5 = 6, and 6/6 = 1.

S>PRINT 1/2+1/3+1/4

a The integer cuotients are all zero.
A4+ = (A4,

>PRINT 2/3%1 030

@ - Incorrect. Two thirds of 1293 does
not give zero. Try it a different
way.

>PRINT 1900%x2/3

666 Correct.

3.7 The Use of Parentheses

The following examoles illustrate the use of parentheses in numerical
expressions. Verify them on your INS8273.

>PRINT 2%(3+4)
14

>PRINT { 2+43)%(4+5)
45

>PRINT (2%3+3)*8+7
19

>PRINT (47-23)/6
4

>PRINT (2+43)/7(445)
0

NSC Tiny BASIC does not tell you that a computed answer is incorrect
because the true result is outside the range, -32768 to 32767. For
examples

SPRINT 100@%x(39~72)
-32536 The correct answer is 33000

An incorrect result can occur even if the true result is in NSC Tiny
BASIC’s range. This will haopen if an intermediate calculation lies
outside the range -32768 to 32767. For examoles

>PRINT 2001 %x20@/2 | .
-12668 The correct answer is 2710@.

In the above example you got an incorrect result because NSC Tiny
BASIC first comouted 231%x2@7# which has a true result of 4@20% and
"this is outside its ranace. NSC Tiny BASIC obtained -25336 for this
result, then divided by 2.

SPRINT 23 1x(204/2)
22100 Correct.

Parentheses were used to cause NSC Tiny BASIC to first compute 20@/2,
then to multiply by 201,

3.7 Rules For Evaluating Expressions
Division by zero (@) stops everything and gives the message:
ERROR 12

Expressions are evaluated (in the absence of parentheses) by doing
all multiplications and divisions from left to right. After they are
comnleted all additions and subtractions are done, again, from left
to right. Any fractional results from a division are simoly ignored
(truncated). The results are not rounded. For example:

2/ 3% A0&

is evaluated to zero, since the integer part of 2/3 is zero, and zero
times 1029 is zero. Rut? '

| O0B*2/3

evaluates to 666 because 1080*2 is 20080 and 2000/3 is 666.66666, (the
fractional sixes to the right of the decimal point are dropoed).

The expression 4+6/2+3 evaluates to 1% because the division is done
first yielding 4+3+3, and then the additions are done from left to
right. In other words, 4+6/3+3 is evaluated: . :

446/2+3 = 443+3 = 743 = @

The order in which onerations are done is shown below in still
another way. The numbers in the circles show the order:

221

4+46/2+3
Parentheses override the normal rules. Anything inside a pair of
narentheses gets evaluated before that which is outside. This is the
normal algebraic convention. Thus?
(445)/7(243)
evaluates to 2, thuslyt (4+6)/(2+3) = 18/(2+3) = 10/5 = 2

Shown below is the order in which operations are done by the use of
numbers in circles.

(4+6) /7(2+3)

Parentheses may be nested as needed. This means you can have paren-
theses within parentheses.

12/2%12/2%3 = 6%12/2%3 = 72/2%3 = 36% 3 = 108
12/(2%(12/(2%3))) = 12/(2%(12/6)) = 12/(2%2) = 12/4 = 3
Or, using the circles:
12/2%) 2/2%3 versus 12/7(2%(12/7(2%3)))

Check these in your head, and then on the computer.

Good programming practice avoids expressions like 12/2%12/2%3 as they
are hard to read, It is clearer (and thus less error orone) to write
(C12/2%x12)/2%3) using spacing and narentheses for clarity even if
they are not technically necessary.

Algebraic notation is used in NIBL, modified as necessary to fit on a
single line and, of course, to use prooer NSC Tinv BASIC arithmetic
symbol s. _

ALGEBRAIC EXPRESSION NSC TINY BASIC FXPRESSION
36 36/(9+3)
9 + 3
12 x 58 (12%58)/(7%25)
7 x 25
1200 x 60 (120%6A)/ (| 20+60)

1200 + 60

There are l1imits to the orders of precedence allowed in any one line.
These, however, are hard to exnlain, or even find. The rule of thumb
is that if you get an “ERROR 9 occurring after a oarticularly long
expression, try to break that expression into two or more parts.

3.8 Mistakes

Perhaps the deadliest assumption in engineering design is that any-
body using the eguipment will use it correctly. NSC Tiny BASIC
orovides error messages after it is too late. If you are working on
a TTY and are lucky enouah to catch yourself in the middle of a
statement, havina just tyoed an incorrect character, you do not have
to throw away the good part and retype the whole thing.

The first mistake correcting facility is a sort of backspace. Say

that you tyoed "PRINR" instead of M"PRINT", 1If, after the "R* you

held down the SHIFT key and nressed the letter "0% you would get a left
vointing arrow or underline. This means that the last letter you

typed (the YR") is deleted and you can now type the correct letter
("T"). Try it a few times,

>PRINR 2+3
ERROR 4 PRINT misspelled
>PRINR_T 2+3 After tyning R, type __(SHIFT 0), which

erases the R. Then type the rest of the
line., Everything is OK to NSC Tiny BASIC,
although it looks wrong on your TTY.

The backspace feature can be used repeatedly. It is up to you to
keep track of just how many letters have been obliterated.

>PRINT 342___5%98 5
25

A true backspace feature is provided for use with CRT terminals.
Pressing the backspace key (or Control H) will erase the last
character from the screen and memory.

If you want to cancel an incorrect line entry without having to wait
for the error message, hold the CTRL button and strike the letter "U",
NSC Tiny BASIC will type U, do a carriage return line feed, then it

will tyne the prompt (>).

>TYPE AN INCORRRCT LINE ENTRY AND PRESS “RETURN" and get
ERROR 4

>

>TYPE AN INCORRECT LINE ENTRY AND PRESS CONTROL U"U

> ‘_____No syntax error.

IT you are lucky enough to be using a CRT, just backspace and retype
the offending character.

3.9 Exercises
Complete the followings

1. In NSC Tiny BASIC, numbers are integers in the range
to s Inclusive.

2. If you type: PRINT “TURN SWITCH NO 3 ON™
NSC Tiny BASIC will types

3. If you types PRINT 77

NSC Tiny BASIC will tynes

4. If you typet COME ON NSC TINY BASIC. GET WITH IT!

NSC Tiny BASIC will types

Do the following in vour head or with paper and nencil, as you think
NSC Tiny BASIC would do them. Then, verify your answers.

5. 2%*3+4%54+6%7 =

6. 123%(42/127) =

T. 1000%] 0300

i

"

8. 22/7%1 304

9. 1000%22/7

You will find the answers to these exercise questions in Appendix A,

1-21

CHAPTER 4

4,1 Variables
[f, instead of typings
PRINT 120/4/5
vou typed:
A=12074/5
the result (which is 6, as the expression is evaluated from left
to right) would be given the name A, A is called a variable. The
instructiont
PRINT A
would result in the value 6 being printed. The following is the en-
tire sequence of instructions as they might anpear on your TTY page

or CRT screen.

>PRINT i2a/4/5

6
>A=120/4/5
>PRINT A

6

Try another one.

>A=7 The value 7 was assigned to the variable
A and the value 5 to the wvariable B.
>B=5 Since A=7 and B=5, A+B will be 12.
>PRINT A+B
12

NSC Tiny BASIC now is instructed to know A=7 and B=5.

>PRINT AxB
35 A=7 times B=5 = 35

In NSC Tiny BASIC there are 26 variables, the letters of the alphabet
A through Z. Fach variable may be best considered as a pigeonhole in
which exactly one number can be stored. When it is stated that
K=4325, it means to replace any prior value that K may have had with
the new value 4325. The old value is lost. The instruction G=T
tells the computer to make a copy of whatever value is in T and to
nlace that copy in nigeonhole G, In computer jargon the pigeonholes
Aare called "memory locations® because they can "remember" wvalues.

1-23

Later vou will see that many more locations are available to store
data in, but for now there are only 26 variables in NSC Tiny BASIC:

ABCDEFGHIJKLMNOPQRSTUVHWXY?Z

Before a variable has been assigned a value (iargon for putting a
number into a pigeonhole), NSC Tiny BASIC gives it the value A. It
is as if just before you sat down to use the computer someone had
tyoeds

A= B=0# C=7 etc.

When you first start NSC Tiny BASIC all the variables will contain
the value of zero (#).

Skeptical? Try it out on your system.

>PRINT A
?

>PRINT B
7
>PRINT C
]
and so on, if you wish, up to PRINT Z.

Up to now you have used PRINT statements that print only one thing.

>PRINT 7 One thing (7).

7 One thing (7).
>PRINT 2+3 One thing (2+3).

5 One thing (value of 2+3),
>A=13
>PRINT A One thing (A).

13 One thing (value of A).

The PRINT statement can print more than one things

>PRINT 7,5 Two things (7 and 5).
7 b5 Two thinaos (7 and B).
SPRINT 7+5,7-5 Two things (7+5 and 7-5).
12 2 Two thinas (values of 745 and 7-5).
>A=7
>B=5

>PRINT A,B - Two things (A and B).
7 5 Two things (values of A and B).

>PRINT 7+45,7-5,7%5,7/5 Four things.
12 2 35 1 " Four things.

NOTEt PRINT 7+7,7=-5,7%5,7/5
COMﬁkS
You can print two or more things orovided you separate each thing
to be printed with a comma in the PRINT statement.
4.2 Exercises
Pretend for a few minutes that you are the INSB@73 and that NSC Tiny

BASIC is the language you understand. Show what would hanoen if your
user typed the following:?

ONE TWO

>A=T7 >M=47

>B=5 ' >N=9

>PRINT A+B,A-B,AxB,A/B >Q=M/N
>R=M-N*Q

>PRINT M,N,Q,R

THREE FOUR

>A=2 >A=37
>B=3 >Q=A/10
>C=4 >R=A-10%Q
>D=5 : >B=12*R+Q

>PRINT A*B+C*D, (A+B)*(C+D) >PRINT A,B

s L T -t e—————

FIVE

>R=32

SPRINT R*x22/7,(R*R)Y*22/7
You will find the answers in Appendix A
4,3 The Stored Program

Compute the souares of 23, 37, 53 and 83, That is, computes

2 2 2 2
23 4, 37 , B3 and 88 ,
2
>PRINT 23%23 23 = 23 % 23
529
2
>PRINT 37%37 37 = 37 x 37
1369
2
>PRINT 53%53 : 53 = 53 x 53
28a9
o 2
>PRINT 88%88 88 = BB % 88
7744
>

You can give more of the work to NSC Tiny BASIC3 do this by storing
a program to compute the square of a number...don’t do it vyet.

12 X=23
If you did type this is and got an ERROR
270 PRINT X=X | message here, it’s because your RAM is

not at the default location. To remedy
this situation, vou must tell NSC Tiny

BASIC where your RAM is with a NEW
statement. If your RAM is at

hexadecimal 107@, then you would enter
NEW #1op¢ then NFWN again. For examolet

SNEW #1200
NEW

1-26

Notice that the above nrogram consists of two statements and that
sach statement beains with a line number,

1A X=23

Line Number., A line number can be an integer from
A to 32767. '

When statements with line numbers are typed, the statements are not
executed immediately. Instead, the statements are stored in memory
for later execution.

Refore yvou store the above program, clear out - or erase - anv old
nrogram that might be in memory. To do this types

NEW #1000
NEW

NOTF: NEW #1007 sets the start of nroaram pointer at location #1207
hexadecimal. The number symbol (#) is important, this will
be fully discussed in Chapter 5.

It is important that the start of proaram nointer is set to the
beginning of available RAM, This allows the program lines to be

stored as they are typed in. If vour 8873 system differs from
the one descrihed at length in Section 33 determine the start
address of the RAM in your systems then, use that address in
your UNEW" command.,

NSC Tiny BASIC will erase any old orogram in its memory and qget ready
to accept your new program. :

>NEN

> NSC Tiny BASIC is ready for a new
program,

Store the nrogram to compute the square of a number. Type the
following (except for the promots = NSC Tiny BASIC does that for
you.).

>NEW

>17 X=23
>20 PRINT X=*X
>

The orogram is now stored in memory. To verify thist

Type LIST and press the RETURN key.

>LIST When you type LIST, NSC Tiny BASIC
17 X=23 lists the program.,
20 PRINT X=X

>

1-27

To get a copy of the nrogram currently stored in the
memory, type LIST and press the RETURN key. RUN the

>RUN

520

>
First NSC Tiny BASIC did this ' !0 X=23
Then ' _ p28 PRINT

That’s all, so the INS8A73 stooned.

Look over the last few inches of TIY papert you may
something like the following. (Line spaces have been

it easier to read.)

INS8@A73“s
program.

XX

find it looks
added to make

>NEW First you erased any old orogram in the
system, :

>19 X=23 Then you tyoed in this two line nrogram.

>268 PRINT X*X

>LIST Then you asked NSC Tiny BASIC to tvoe
the bprogram out. .

14 X=23 NSC Tiny BASIC obliged. (Notet No

200 PRINT X=*X prompts.)

>RUN Then you qave the RUN command.

529 NSC Tiny BASIC ran the programs: this

was the result,

> _ Having done its appointed task, NSC
Tiny BASIC typed a prompt...ready for

more work.,

Change the value of X. To do this, type in a new Line 14. This will
replace the old Line 1# with the new Line 18. After making this

~hange, LIST the modified program. Don“t tyoe NEW.

>1% X=37

>LIST

14 X=37 This is the new Line 14,
2% PRINT X*X and the old Line 29.

>

You can replace any line in the program by typing a new line with the
same line number, To delete any line from a proaram, simoly type in
that line’s number followed by a carriage return. When the nroaram is
listed, that line will no lonager remain. RUN the modified nrogram,

>RUN
1369

>
4.4 Exercises

l. Change Line 1@ to 10 X=53 then LIST the modified program and RUN
it. '

2. Chanae Line 10 to 1?2 X=838 then LIST the modified bprogram and RUN
it.

If you did everything on the previous two pages without making any
typing errors, the TTY page will look like the following. (Again,
line spaces have been added for readability.)

REMEMBER
NEW 1. To erase any old program and get NSC Tiny
BASIC ready for a new program, tyne NEW and

>10 X=23 press RETURN.

>274 PRINT XX

>LIST 2. To get a typed copy of the nrogram currently
>17A X=23 in the INS8#73’s memory, type LIST and

28 PRINT X=X nress RETURN,

>RUN 3. To tell NSC Tiny BASIC to execute the program

529 in its memory, tvpe RUN and press REFTURN,
> X=37 4, To reolace any single line of a program in
>LLIST memory, tyoe A statement with the same

line number.

13 X=37
23 PRINT X=X
>RUN

1369
>18 X=53
>LIST

1A X=53

200 PRINT X=*X

1-29

>RUN
2809

>1@ X=88
>LIST

13 X=88
2% PRINT X#X

>RUN
7744

4.5 The - GO TO - Statement

If you typed the instructions
>PRINT MTHF BOAT IS SINKING. MAN THE PUMPS!*
and pressed the RETURN key, the computer would prints
THE BOAT IS SINKING., MAN THE PUMPS!

and then stop. In a situation where a boat was actually sinking, the
computer should be more insistent and repeat the message (complete

with bells) until somebody pays attention. There is a way to do
this. Type in the following program. First tyoe NEWN. (Don“’t RUN

the program yet.) :
>NEW
>1@ PRINT "THF BOAT IS SINKING. MAN THE PUMPS! (CTRL GGGGGGG)H M

>2¢ GO TO 14
>

Before you RUN this program - you must know how to stop it. When you
type RUN and press the RETURN key, the TTY will begin running the pro-
gram and ringing bells. To stop a runaway computer, Dress BREAK (or
any other key) until the computer stops.

Type RUN and press RETURN.
>RUN

THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells

To STOP the orogram, press BREAK.

The following is a short analysis of the above program. Each line

has a nunber. The first line is numbered ten, the second twenty.

When you say "RUN" the comoputer starts to execute lines beginning

with the lowest numbered line, In this case that is Line 143 the
computer prints "THF BOAT IS SINKING. MAN THE PUMPS! Bells" When it
is done with Line 1@, it then executes the next higher numbered line.
In this case it is Line 28. Line 2% has a new instruction, the GO TO
instruction, it does the obvious thing and tells the comouter what line
to go to, i.e., what line to execute next. The computer executes Line
1@ again, then looks for the next hiaoher numbered line, and so forth,
The computer will not stop until it is either turned off, or you stoo
it by pressing the BREAK button. '

If you are still unsure about how the GO TO proaram works, follow the
Arrowsst

>RUN

1@ PRINT “THE BOAT IS SINKING. MAN THE PUMPS. Bells"

20 GO TO 19

This program is in the form of a loop. The computer goes around the
loop until you nress the BREAK key.

After you’ve stopped the program by pressing the BREAK key, you can
start it again by typings

CONT (for continue) then press RETURN

The program starts where it left off and continues to print the message
over and over again until the BREAK key is again pressed.

The implications of this little program are fmportants It is a little
program, yet it produces a lot of outout! Tell a computer to write,

n] will do my homework® a thousand times and it will do it uncomolain-
ingly. In an automobile, a microcomputer can be proagrammed to check
the air pressure in the tires, the manifold pressure, fuel flow,
battery voltage, the timing and so forth, a hundred times a minute,
every minute the car is in oneration. Repetitive jobs, however many
times they must be done, are usually no more difficult to orogram than
jobs that must be done only once or twice.

4,6 The - INPUT - Statement

2
Revert back to the problem of computing the value of X for various

values of X. The INPUT statement is a handy method for feeding
values into variables, Follow along with the program to compute?

2 , 2 2 2 P
X , then use it to compute 23 , 37 , 53 , and 88 .
>NEW
>1@3 INPUT X (This is the INPUT statement)

>270 PRINT X#*X
>3m GO TO 14

The above is a three statement program, including a new type of
statement called INPUT. RUN the programs

>RUN
? (A new .kind of prompt.)

NSC Tiny BASIC is now doing the INPUT statement. It types a guestion
mark, then waits. You must type a number and oress RETURN.

>RUN
? 23 (Tyoe 23 and press RETURN.)
529
? (NSC Tiny BASIC tyned another question mark to
show it“s ready for more values of X. Continue
with 37, then 53, then 83.)
>RUN
? 23
529
? 37
1 369
? 53
2809
7?7 88
7744
? NSC Tiny BASIC will keep promoting with ? until
you let it know that you are finished. To do
thiss

Press and hold CTRL and, while holding CTRL down, press C.

1-32

~—

? CTRL/C ~ NSC Tiny BASIC has stopped running the program

STOP at 1@ and waits for the next command.
>

Remember, NSC Tiny BASIC statements are done in line order number,
unless a GO TO breaks that order. In the preceding orogram, the
statements are done in the order shown below. Agaliln, follow the

aArrows?

>RUN

1?3 INPUT X Program loops around until vou stop it
' by typing CTRL and C together — CTRL/C

27 PRINT XX
37 gg TO 19

The following program computes the value of AX+B for INPUT values
of A, X, and B.

>NEW

>1 INPUT A

>2¢ INPUT B

>3 INPUT X

>4@ PRINT A*X+B ‘

>57 PRINT un . This prints an "empty line". You could also
>6@ GO TO 1@ use the expression without the quotes., They
>RUN .only serve to make the output prettier.

e

————— —B

SR

———————— Ak X+B
~w—=——--[_ine space printed by Line 5@.

W) W W
D w N WwWIwhn

"D) D

19
? CTRL (™)/C
STOP AT 1o
>

4,7 Exercise
How would you modify the program so that, arter typing RUN, you

could supply one set of values for A and B, followed by several
values of X? ‘

See Appendix A for the answers.

4.8 Informative Printing
A program to print sguares of numbers could print answers thuslys:
>RUN

? 23
529

?7 37
1369

?7 53
2809

7 88
7744

? and so forth

The following would be more preferables
>RUN
COMPUTE X SQUARED

WHAT IS X? 23
X SQUARED = 529

WHAT IS X? 37
X SQUARED = 1369

WHAT IS X? 53
X SQUARED = 2869

WHAT IS X? 88
X SQUARED = 7744

WHAT IS X?
...and so on until someone types CTRL/C.

This program identifies the desired input and the comouted and orinted
output.

The following are the first two statementss

1@ PRINT "COMPUTE X SQUARED®
23 PRINT nn

Line 13 causes NSC Tiny BASIC to print the message COMPUTE X SQUARFD.
Line 27 orints a Line Feed.

The two statementst

33 PRINT “WHAT IS X?%"3$ —=----—Note the semicolon.
4 INPUT X

Cause NSC Tiny BASIC to typet

WHAT IS X?
and wait for a value of X. The question mark is the prompt from the
INPUT statement. Did you observe the semicolon at the end of the

PRINT statement? It orevents a carriaage return and line feed from
occurring. If vou don’t use a semicolon the following would happens

37 PRINT "WHAT IS X" —————=—~ —No semicolon.
47 INPUT X

Wi thout the semicolon, NSC Tiny BASIC tynes?

WHAT IS X
?

For this orogram, remember to use the semicolon at the right end of
the PRINT statement.

53 PRINT X SQUARED ="§ ==-——=——Semicolon.

67 PRINT X*X
Together these two statements cause NSC Tiny BASIC to print the
message "X SQUARED =" followed by the value of X*X, For examole, if
X = 23, NSC Tiny BASIC will typet '

X SQUARED = 529

Demember to note the semicolon on the right end of Line 5¢. Had it
been omitted the following is what would happent

53 PRINT "X SQUARED =" =------——No semicolon.
6% PRINT XX

If X = 23, NIBL will tyne

X SQUARED =
529

One more statement?

7% GO TO 24

The following is everything put together in a complete programs

1@ PRINT “COMPUTE X SQUAREDY
200 PRINT wa

30 PRINT “WHAT IS X¥3

49 INPUT X

5@ PRINT #X SQUARED="3

6@ PRINT X%xX

7% GO TO 20

Load the above program into your INS8473 and RUN it. Try it for
X = 23, 37, 53 and 88.

4,9 Multiple Statements Per Line

‘The following instructions explain how to put two or more statements
on one line. "

Instead of: 3@ PRINT “HHAT IS X3
4¢ INPUT X

You can put both statements on one linet

30 PRINT MWHAT IS X% s INPUT X
(first statement) (second statement)

(The statements are separated by a colon)
To put more than two statements on a single line, follow the same
format as above and be certain to separate each statement with a

colon (t),

Instead of:
22 PRINT u#
3% PRINT WWHAT IS X"
4@ INPUT X

Put all three statements on one lines

2@ PRINT mwn s PRINT #WHAT IS X#3 s INPUT X

Ist 2nd 3rd
statement statement statement

colon colon

1-36

The following is an example of four statements on one line.

47 INPUT X3 PRINT "X SQUARED=%3: INPUT X t PRINT X*X ¢ GO TO 29

Instead oft

47 INPUT X

57 PRINT "X SQUARED=#%
65 PRINT X*X

7% GO TO 24

_ 2
the following is a “compact® program to comoute X , featuring the use
nf multinle statements per lines

19 PRINT "COMPUTE X SQUARFED"
20 PRINT w» 3 PRINT #WHAT IS X"3 ¢ INPUT X
5% PRINT “X SQUARFD =%"3 : PRINT X*xX t GO TO 2@

Try it on your INS8a73.,

Follow the arrows to see how the program works.

RUN
1% PRINT “COMPUTE X SQUARED*

206 PRINT "™ : PRINT “WHAT IS X"s ¢ . INPUT X
54 PRINT #X SQUARED ="3 ¢ PRINT XxX ¢ GO TO 2

As per standard, NSC Tiny BASIC does lines in line number order,
first Line 18, then to Line 2@, then Line 54. NSC Tiny RASIC does
all statements on a line in left to right order before moving on to
the next line. Since Line 57 ends with a GO TO 20 statement, NSC
Tiny BASIC, indeed, goes to Line 2@ and continues, after finishing

Line 57,

In order to emphasize that multiple statements per line are separated
by colons (t), a space on each side of the colon has been addeds this

is ontional and Line 2@ could have been typeds?

28 PRINT "w:PRINT "WHAT IS X"3::INPUT X

1-37

Some statements such as ‘PRINT and INPUT can take multinle arguments.
This allows several statements to be added together into one. Ffor
examples

I@PRINT X3sPRINT 43sPRINT "DOMINO"sINPUT AsINPUT B
can be shrunk tost

13 PRINT X,Y, "DOMINO"sINPUT A,B

4,19 Exercises

I. WNrite two programs to compute the value of AX+B for input values
of A, X and B, as illustrated by the following RUN of our orogram.

>RUN

PROGRAM TO COMPUTE A%X+B

=2

*X+B = 13
X=2 8
AxX+B = 19
X=2 12
AxX+B = 27

X=? Je..and so on...oress and@to abort program.

A. Program No. |. Do not use multiple statements pner line.

B. Program No, 2. Use multiple statements per line.

Answers are in Apoendix A

1-38-

CHAPTERS

5.1 Bits and Bytes

We assume that you are using an INS8873 with at least 256 memory
locationst this is the minimum confiquration to run NSC Tiny BASIC.

o Each memory location holds, or stores, one byte of
information.

o One byte consists of eight binary diagits commonly. called
hits. BIT = BINARY DIGIT

o One byte = B bits.
o A binary digit (bit) is either @ or I.

You can think of a memory location as shown in the following diagram:

The number, 73, is stored
in binary. :

! BYTE = 8 BITS = | MEMORY LOCATION

Each bit must be @ or |. Below are some numbers shown stored in bytes?

NUMBER (DECIMAL) STORED AS A BYTE (BINARY)
a sla|la|le|d|B|O]|D7
1 pnlola|la|la|ala]l
2 alalajala|| V|2
4 alo|ja|la|la|l |70
B ajlala|lalt|a|(2|a
16 glo|2|V|2|a |67
32 aloall |a|lad|B0|@
64 al1|o |6 |00 0
128 1jog|lajle|ad|d|2]9

5.2 Exercises

Figure out how 3, 6, 7 and 29 would be stored. What is the largest
that can be stored in one byte?

Answers are in Appendix A
5.3 Memory Address

Fach memory location has a unique numeric address. The NSC Tiny
BASIC program in the INSR#73 system occupies locations with addresses
2 to 2559.

An expanded INS8A73 system might have more memory locations. For ex-—
ample, your system may have 8192 locations, or 12288 locations... and

so on, up to a maximum of 65535 locations, which includes nlocations®
that are really ports for perioheral devices.

Memory addresses might run from @ to 4495 or @ to 8191, or @ to | 2287,
and so on.

o Memory locations @ to 2559 hold NSC Tiny BASIC in the
on-chip ROM (Read Only Memory) of the INS8473.

o Addresses 2563 throuah 65471 are yours to use. When you
type in an NSC Tiny RASIC orogram, you use some of these, The

longer your nrogram, the more you use. If you wire up some
interesting electronic gadgets to the system, you will most

likely use some of these addresses., Not all of these memory
locations will actually be there in a typical svystem.

5.4 Hexadecimal Number System

To understand the literature, you are going to have to learn hexa-

decimal. The hexadecimal (base sixteen) number system is a handy
shorthand for talking about bits and bytes and memory addresses.

In hexadecimal, addresses range from #9732 to #FFFF.
The number sign (#) is used to tell you that the number is hexadecimal
instead of decimal. This is the notation used in NSC Tiny BASIC: other
notations exist in other literature.

This is a decimal numbers 28673

This is a hexadecimal numbers? #7001
The hexadocimal system has more diagits than the decimal system,

Decimal digitss A1 23456 7829

Hexadecimal diqitss @1 23456789 ABCDETF

1-40

Just as in the decimal system, each hexadecimal diait has a positional
(or place) value. The digit occuoying any oosition is multiplied by
the value of that particular nosition. These nroducts are then added
together to obtain the value of the number.

Hexadecimal position values are expressed as powers of sixteen (rather
than 1@ as in the decimal system). Positions are numbered from right
to left according to the increasing powerss

POSITION POSITION POSITION POSITION
3 2 1 2
3 2 1 ?
16 16 16 16

The decimal values of the powers of sixteen are?

a

1

2

3

256 16

16 =1 16 =16 16 4096

Check the decimal equivalents of the the following hexadecimal numbers.

3 2 I &
#7021 = (7 x 16) + (3 x 16) + (B x 16) + (1 x 16)
= (7 x 4096) + @ + 3 + |
= 28672 + A + A + 1 = 28673
#7002 = 28672 + @ + 3 + 2 = 28674
#7004 = 286712 + A + 7 + 4 = 28676
#7010 = 28672 + A& + 16 + O = 28688
#7020 = 28672 + O + 32 + 0 = 28704

(Remember, # in front of a number means it is hexadecimal.)

You will notice that in Section 3 a hexadecimal number is referred to
by preceding the number with an "X<#" instead of the "#" sign, for ex-
ample:?

X/ 8200

This is a more standard notation for hexadecimal numbers, but NSC Tiny

BASIC does not like it.

1-41

[f we ask the INSR@73 in NSC Tiny BASIC to print a hexadecimal number,
NSC Tiny BASIC orints the decimal equivalent.

>PRINT #7021
28673

>PRINT #A
19

>PRINT #B
1!

>PRINT #C
12

>PRINT #D
13

>PRINT #E
I4

>PRINT #F
15

>PRINT #10
16

And sO On...

The following is a table of hexadecimal digits vs. decimal values.

HEXADECIMAL DECIMAL
DIGIT VALUE
7 ?

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 10
B 1"
C 12
D 13
E 14
F 15

1-42

You may wish to use the following small program for further exoeriment-
ation:t :

SNEW

>1 7% RFMARK HEXADECIMAL TO DECIMAL

>11@ PRINT #w

>122 PRINT M"HEXADECIMAL NUMBERt"ssINPUT H

>130 PRINT “DECIMAL FQUIVALFNT IS",H — This is a multiole PRINT

>4 GO TO 112 statement, see section
4.8,

>RUN

HEXADFCIMAL NUMBER? #7021
NDECIMAL EQUIVALENT IS 28673

HEXADECIMAL NUMBER?...And so on. I[If you type a decimal number
(without #), vou will get
the decimal equivalent of
your decimal number.

You may have noticed something new in Line 18@. Any line that beains
with the word "REMARK® is ignored by NSC Tiny BASIC, even if it

contains another statement preceded by a colon. These REMARKS are used
to help document the orograms and, REMARK statements will be found in

areat Aabundance in the programs that follow in this primer,

5.5 More About Hexadecimal

The hexadecimal numbers #7 to #YFFF, inclusive, are equivalent to the
decimal numbers, @ to 32767, inclusive. You can obtain the decimal

equivalent of any hexadecimal number in the above range bv usina the
proagram aon this naaqge.

To find out about the hexadecimal numbers from #8390 to #FFFF, use the
nrogram on this page. FEnter that orogram and type RUN.

>RUN

HEXADECIMAL NUMBER? #8000
NECIMAL FEQUIVALENT IS -32768

HEXADECIMAL NUMBER? #8001
DECIMAL EQUIVALENT IS -32767

HEXADECIMAL NUMBFER? #FFFF
DECIMAL EQUIVALENT IS -1

HEXADECIMAL NUMBER? #FFFE
DFCIMAL EQUIVALENT IS -2

And so on...

Remember the number circle in Chaoter 3? It works in hexadecimal too:

#0
#FFFF #1
FFFE #2
#FFFD #3
#FFFC #4
#FFFB #5
#8005 .
#800 . # TFFC
#8073 #TFFD
#8002 #TFFE
#8001 #7FFF
#8000

- Compare the hexadecimal number circle with the decimal circle in Chap-
ter 3. Below is a table showing some of the equivalences between
decimal and hexadecimal NSC Tiny BASIC numberst?

POSITIVE NUMBERS NEGATIVE NUMBERS
Hexadecimal Decimal Hexadecimal Decimal
#1 i #8000 -32768
#2 2 #8001 -32767
#3 3 #8472 -32766
#4 4 #8007 3 -32765
#TEED 32765 #FFFD 23
#7FFE 32766 #FFFE -2
#TFFF 32767 ' #FFFF g

NSC Tiny BASIC automatically converts numbers from hexadecimal to
decimal during print outs however, there is no built-in method for
printing numbers directly in hexadecimal. The following examples
illustrate the method used to convert decimal numbers @ to 255 to

hexadecimal:

4
16/ 73”——_~\\\\|
= 49

4 Checks 4 x 16 + 9 = 73
9
16/ 95——‘—‘-\\\‘
Check:t 5 x 16 + 15 = 95
|5-_w_,,,)'

16/ ?5 _—_“\\\ﬁi
Checkt 15 x 16 + 5{\= 255
13—-————”/}’ 15 #F = |5

1-44

You can convert any decimal number, @ to 255, to hexadecimal as

follows?

2.

Divide the decimal number by 16, obtaining the quotient Q
and.remainder R.

For decimal numbers in the range 9 to 255, the auotient Q
and the remainder R will each be numbers in the range 7 to
15, inclusive.

The hexadecimal number is #Q“R’ where Q/ and R’ are the hexa-
decimal digits (@ through F) corresponding to the values of
Q and R.

The following 1s a program to compute @ and R, this program features a
new function, called MOD, for comouting R.

>NEW

>1 @7 REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
>112 PRINT "4:pPRINT "YOUR NUMBER#j3;¢INPUT N

>12# R=MOD(N, 16)

>13¢ Q=N/16

>14% PRINT "*HEXADECIMAL DIGIT VALUESs*,Q,R

>154 GO TO 11a

>RUN

YOUR NUMBER? 73

HEXADECIMAL DIGIT VALUES: 4 © Therefore, 73 = #49
YOUR NUMBER? 95
HEXADECIMAL DIGIT VALUES: & 15 Therefore, 95 = #5F

YOUR NUMBFR? 255
HEXADECIAL DIGIT VALUES: 15 5 Therefore, 255 = #FF

In Line

123, the function MOD(N,16) computes the remainder on division

of N by 16,

The following 1llustrates the method used to convert decimal numbers
in the range @ to 32767 to four diait hexadecimal numbers. Check it
over very carefullys

16 /4—&6’7‘/—267“\&@234

146 131 2
144 128

20 3

16 .

a

The above 1s the conversion for 4663 to #1234

16 16 112

179?————-*_|12 —""““~\\Q
16 /28673 1792 16/112~§~_—_—“’///);ww1

126 19
112 16
147 32
144 32
33 A
32
b

The above is the conversion for 28673 to #7001

You try to convert 6844 to hexadecimal.

16/ 6844 16/ 16/ 6844 = #

(The check your conversion of 6844 to hexadecimal,

program,)

look at the next

The following program will work for numbers in the range A to 32767,
inclusive.

>LIST

103
Ha
120
130
149
150
169
173
1.80)
190

>RUN

REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
PRINT "“:PRINT “YOUR NUMBER™:tINPUT N
X=MOD(N, 16)

N=N/16

W=MOD (N, 16)

N=N/16

V=MON(N,16)

U=N/16
PRINT “HEXADECIMAL DIGIT VALUES:#U,V,W,X

9% GO TO 114
YOUR NUMBER? 4660

HEXADECIMAL DIGIT VALUES: 2 3 4Q—4667 = #1234

YOUR NUMBER? 28683
HEXADECIMAL DIGIT VALUESt 7 @ 0 14—28673 = #7001

YOUR NUMBER? 6844
HEXADECIMAL DIGIT VALUES: t 13 11 124-6844 = #1ARC

YOUR NUMBER? 255

HEXADECIMAL DIGIT VALUES:t @ @ 15 154— 255 = #Q@FF =

1-46

#FF

YOUR NUMBER? 32767
HEXADECIMAL DIGIT VALUESt 7 15 15 154-32767 = #TFFF

YOUR NUMBER? -1
HEXADECIMAL DIGIT VALUES: @ 3 @ -lq@—Beware of negative numbers!

YOUR NUMBER? =-32767 ,
HEXADECIMAL DIGIT VALUES: -7 -i15 =15 -15

YOUR NUMBFR? #7091

HEXADECIMAL DIGIT VALUES: 7 @ @ | - Hexadecimal is converted to
hexadecimal, provided. the
number is in the range ## to

#7FFF.,

YOUR NUMBER #8009

HEXADECIMAL DIGIT VALUES? -8 8 @8 @ Other hexadecimal numbers give
funny results. A complete ex—
planation will not be attemot-

ed in this primer,
YOUR NUMBER? (No GO TO statement at end of program)

In case you haven’t fiagured out how the program works, follow along as
the program for N = 46697 is traced. The following trace shows the

values of variables after the statement on the same line has been
executed.,

STATEMENT N u v W X
114 INPUT N 4660
128 X=MOD(N,16) 4660 4
1308 N=N/16 291 4
14G W=MOD(N,16) 291 3 4
158 N=N/16 18 3 4
168 V=MOD(N,16) 18 2 3 4
170 U=N/16 18 1 2 3 4

18 Prints the values of U,V,W, and X

19 REPEAT THE PROGRAM AD INFINITUM

1-47

5.6 Exercise

Trace the program for N = 68441

STATEMENT
11g INPUT N
120 X = MOD (N,16)
130 N = N/16
144 N = MOD (N,16)
153 N = N/16
168 V = MOD (N,16)
176 U = N/16

Answers are in Apbpendix A

1-48

N

CHAPTER 6
6.1 The IF Statement

The useful and powerful IF statement oermits programs to be written
in which the computer makes simnle decisions.

The followinq is an IF statement?
IF P=14 THEN PRINT "AIR PRESSURE IS NORMAL®"

This statement tells the computer "IF the value of P is equal to four-
teen, then print the message "AIR PRESSURE 1S NORMAL.". Not stated,

but implied, is that IF P is not equal to fourteen, the message is
not orinted.

The following is an example of the IF statement used in & short
nrogramt

123 REM AIR PRESSURE MONITOR

113 PRINT "vwsPRINT “WHAT IS AIR PRESSURE": t INPUT P
126 IF P = 14 THEN PRINT "AIR PRESSURE IS NORMAL#
13 GO TO 110

You may have noticed that an abbreviated form of the "Remark" state-
ment was used in Line 18@. NSC Tiny BASIC only needs the first three
letters to recoanize the wordis "REMM can be used as an abbreviation
for the word REMARK.

Next, run the program and supply several values for air oressure,
P.

>RUN

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 23 |
WHAT IS AIR PRESSURE? 2@ —-No message is printed

WHAT IS AIR PRESSURE? 7

WHAT IS AIR PRESSURE? ©~ C4—(Control/C was pressed)
STOP AT 11

>

It would be better to have NSC Tiny BASIC print messages and ring
bells when the air pressure is NOT normal. Repnlace Line 120 with the
following IF statements

128 IF P <> 14 THEN PRINT M#ATR PRESSURE IS NOT NORMAL bells"
In NSC Tiny BASIC, <> means...not equal to...
The following is the complete program:

127 REM ATR PRESSURE MONITOR AND ALARM

113 PRINT "#:PRINT “WHAT IS AIR PRFESSURE"3:INPUT P

120 IF P <> 14 THEN PRINT #AIR PRESSURE IS NOT NORMAL bells"
13 GO TO 11@ '

>RUN

WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 14

WHAT IS AIR PRESSURE? 5@ (Trouble!)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRESSURE? 12
AlIR PRESSURE IS NOT NORMAL Bells

And so on.

In a situation where air oressure was actually being monitored, Line
117 would be reolaced with a a method for automatically acaquiring the
value of the air pressure P3§ probably by means of an analoag to digital
converter wired into the INS8A#73/s memory. For now, however, you will
simulate the acquisition of data by means of INPUT statements and
concentrate on the structure of the oprogram itself.

Requiring P to be exactly 14 is a tight controls loosen things uo a
little and let normal bressure be anything from 13 to 15, inclusive.
You want a warning printed whenever P is less than 13 or greater than
15,

1%@ REM AIR PRESSURE MONITOR AND ALARM

11 PRINT "d:PRINT "WHAT I3 AIR PRESSURE®$ s INPUT P

128 IF P < 13 THEN PRINT “AIR PRFESSURE IS NOT NORMAL Bells*"
133 IF P > 15 THEN PRINT "AIR PRESSURE IS NOT NORMAL Bells*
14 GO TO 11¢

I[If P is less than 13, Line 120 will cause a warning/alarm to be

nrinteds and, if P is agreater than 15, Line 137 will cause the
message to be printed. If P is 13, 14 or 15, no message will occur.

1-50

>RUN
WHAT
WHAT
WHAT

WHAT
AIR

IS AIR PRESSURE? 14
IS AIR PRESSURE? 13
IS AIR PRESSURE? 15

IS AIR PRESSURE? |24—(Pressure is less than 13)
PRFSSURE IS NOT NORMAL Bells

WHAT IS AIR PRESSURE? |164—(Pressure is more than 15)

AIR
And
6.2 Exercis
Modify the
pressure is
high or too
orogram to
>RUN
WHAT

WHAT

WHAT

WHAT
WARN

PRESURE IS NOT NORMAL Bells
SO ONgsae

e

ahove program, with just two small changes, so that when air
not normal NSC Tiny BASIC will tell you whether it is too
low. A RUN might look like the following, change the last

do this. Answers are in Aonendix A

IS AIR PRESSURE? 14
IS AIR PRESSURE? 13
IS AIR PRESSURE? 15

IS AIR PRESSURE? 16
ING! AIR PRESSURE T0QO HIGH

WHAT IS AIR PRESSURE? 12

WARN
And

Since you a
program to
limitse

4%
1o
120
130
14¢
157
169
170
1392
190G
200

ING! AIR PRESSURE TOO LOW
50 on...

re monitoring air pressure between limits, change . the
give yourself a little more flexibility in setting the

REM AIR PRESSURE MONITOR AND ALARM

REM L=LOWFR LIMIT, U=UPPER LIMIT FOR NORMAL PRESSURE
=13

U=15%

REM ACQUIRFE ACTUAL AIR PRESSURE, P

PRINT wnspPRINT #wWHAT IS AIR PRESSURE*js: INPUT P

REM IF P IS OUTSIDF NORMAL LIMITS, PRINT MESSAGE
IF P<L THEN PRINT "WARNING! AIR PRESSURE TOO LOW"
IF P>U THEN PRINT “"WARNING! AIR PRESSURE TOO HIGH"
REM GO GET ANOTHER VALUE OF P

GO TO 154

1-51

Try the preceding programi then, change the lower limit (L) and upoer
limit (U) in Lines 128 and 132 and try the program again.

Also try thist Combine Lines 198 and 203 as followss
199 GO TO 15@sREM GO GET ANOTHER VALUE OF P

Line 192 now contains two statements, a GO TO which tells NSC Tiny '
RASIC what to do, and a REM (remark) which tells you what is haooening.

You may wish to change Lines 120 and 137 to INPUT statements. In that
case, a RUN might look like the following?

>RUN

LOWER LIMIT FOR NORMAL AIR PRESSURE?
UPPER LIMIT FOR NORMAL AIR PRESSURE?

W

WHAT I5 AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRFSSURE? 16
WARNING! AIR PRESSURE TOO HIGH

WHAT IS AIR PRFSSURE? . 1.2
WARNING! AIR PRESSURE TOO LOW

And sO ONe..
In general, the IF statement has the form of THEN ¢
IF condition - THEN statement
For example, the following are two IF statements you’ve already seent

IF P = 14 THEN PRINT "AIR PRESSURE IS NORMAL™"
e

Condition Statement

IF P<L THEN PRINT “WARNING! AIR PRESSURE TOO LOW"
—T

I
Condition Statement

The following is an IF statement that you will be using soon.

IF F>2 THEN GO TO 5173

Condition Statement

1-52

The condition is frequently a comparison between two guantities. Here
is a handy table of comparisons that can be used in IF statements?

NIBL Symbol Meaning Math Symbol

Is equal to

< Is less than <
> Is greater than >
<= Is less than or equal to <
>= Is greater than or equal to 2
<> Is not equal to, i.e., greater

or less than #

The guantities being compared can be numbers, variables or algebraic
expressions. The comparison can be TRUE or FALSE.

Below are comparisons and their truth values, TRUE or FALSE?
3 +5 > 6 is TRUE, always.

3%, then 4%pA <= B is FALSE

If A=8 and B =
If A =8 and B = 32, then 4%A <= B is TRUE
If A=8 and B8 = 40, then 4xA <= B is TRUE

If the comparison is TRUE, then the next statement on the same line as
the IF is executed. It can be any kind of statementt A PRINT, a GO
TO, another IF, or even those kinds of statements yet to be introduced,

If the comparison is FALSE, then the statement following the comparison
is ignored and the next highest numbered statement is executed. -

IF P<L THEN PRINT “WARNING! AIR PRESSURE TOO LOW"

Do this if the condition P < L is TRUE.
Don’t do this if P < L is FALSE.

That’s all there is to IF statements, except that the word THEN may
be omitted if you wish, For example, instead of writingt?

IF P=14 THEN PRINT "AIR PRESSURE IS NORMAL™M
vou can omit the word THEN and writet
IF P=14 PRINT HAIR PRFSSURF IS NORMALY

Sometimes the word THEN makes the program easier to read. Use it if
it feels comfortable.

Re careful to avoid making multiple statements separated by colons

on a line with an IF statement. Remember that when an IF condition
is found to be FALSE, the entire rest of the line is ignored. There—
fore, for the following program, a zero will be printed.

14 A=03B=99
23 IF B> 1300 THEN PRINT “BIG B#tA=]
30 PRINT A

The following program has several REM’s to help you read and under-—
stand itt

1@ REM DIALYSIS FLOW MONITOR PROGRAM

11# REM GET FLOW RATE, F ,
200 PRINT "“:PRINT "FLOW#3sINPUT F

13 REM CHECK IF FLOW RATE CRITICALLY HIGH
140 IF F>2% THEN GO TO 510

15 REM CHECK IF FLOW RATE CRITICALLY LOW
16¢ IF F<1# THEN GO TO 510

17% REM CHECK IF FLOW RATE ABNORMALLY HIGH
18 IF F>17 THEN GO TO 719

19 REM CHECK IF FLOW RATE ABNORMALLY LOW
209 IF F<13 THEN GO TO 712

21% REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
22 PRINT “FLOW OK":GO TO 12%

53% REM FLOW RATFE CRITICALLY HIGH OR LOW, SOUND BELLS
517 PRINT “DANGER! FLOW RATE CRITICAL Bells:GO TO 120

7@ REM FLOW RATF IS ABNORMALLY HIGH OR LOW, PRINT MESSAGE
71@ PRINT “"WARNING: FLOW RATF ABNORMALY:GO TO 129 —

Try this nrogram, make sure it works for all possible conditions. Try
the following flow rates as test cases.

FLOW OKs 13, 14, 15, 16, 17
ABNORMALs 144, 11, 12, 18, 19, 2@

After you have convinced vourself that this orogram works, read the
following analysis of it.

Follow along and trace through the porogram for a few specific values of
F. First, supoose F = 25. The condition in Line 148 (F>20) is TRUE3
therefore, NSC Tiny BASIC will co to 51%. Line 519 directs NSC Tiny
BASIC to porint the message “DANGER! FLOW RATE CRITICAL", ring the TTY
bell several times, then GO TO 127 for a new value of F, This will
continue to hapoen for as long as F remains greater than 20.

1-54

Suppose F = 9. The condition in Line 14@ (F>20) is FALSE, so NSC Tiny
BASIC qoes on to Line 16@#. In Line 160, the condition (F<13) is TRUE,
so NSC Tiny BASIC will go to 513, print the danger messace, ring the
bell, then GO TO 127 for still another value of F.

Suppose F = 18, The condition in Lines 140 and 16@ are both FALSE.
(Check them yourself.) Therefore, NSC Tiny BASIC arrives at Line 184,
The condition in Line 184 (F>17) is TRUE, so NSC Tiny BASIC does GO TO
713 and, as directed by Line 710 prints the message, "WARNING: FLOW
RATE ABNORMAL®", then goes back to Line 12@ for another value of F.

The above has traced three possible paths throuah the nrograms there
are two more, try these for F = 12 and F = 15, As there are five
nossible paths in all, you may wish to choose your favorite colors of
felt tip pens and actually draw the paths,

Flowchart

START

120)
INPUT M

149
GO TO 5t@ B

510

DANGER! FLOW
~»| RATE CRITICAL —¥»
(BELLS)
GO TO 120

163 \/'~
GO TO S1@{

180 -
GO TO 710

[RL%

WARNING! FLOW
®| RATE ABNORMAL >

| GO TO 120
@ TRUE 200
cO TO 71a [

FALSE

220
FLOW OK >
GO TO 129

1-55

In the flowchart, or logic diagram, of the Dialysis Flow Monitor Pro-

ram,

the diamond shaped boxes correspond to the IF statements.,

The numbers at the top of each box corresoond to line numbers in the
nroaram. Compare the flowchart with the program. Trace through the
flowchart for several values of F., Make sure you trace each of the

five possible paths through the program. For example, try it for F =

25, 9,

18, 12 and 15, (Again, please note that it would be heloful to

mark each path with a different color.)

6.3 A More Compact Proqgram

In looking over the Dialysis Flow Monitor Proaram, we note the
followings

2.

3.

If F>23 or F<i@, the program should have a danger message plus
alarm,

If the above is not true, and if F>17 or F<13, then the orogram
should have an "abnormal® message, but not an alarm.

If neither of the above are true and everything is 0K, a "FLOW
OK" message will suffice.

NSC Tiny BASIC permits the use of logical opberators AND, OR and NOT.
Use is made of the OR operator in the following revision. of the

dialysis nrogram.

199 REM DIALYSIS FLOW MONITOR PROGRAM

113 REM GET FLOW RATE :
12 PRINT "": PRINT "FLOWM3sINPUT F

13% REM CHECK IF FLOW RATE CRITICALLY HIGH OR LOW
14@ IF (F>28) OR (F<l1@) THEN GO TO 519

170 REM CHECK IF FLOW RATE ABNORMALLY HIGH OR LOW
18 IF (F>17) OR (F<13) THEN GO TO 7i9

21% REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
22@ PRINT "FLOW OK"3GO TO 122

503 -REM FLOW RATE CRITICALLY HIGH OR LOW, SOUND BELLS
5124 PRINT “DANGFR! FLOW RATE CRITICAL Rells:GO TO 120

70@ REM FLOW RATE IS ABNORMALLY HIGH OR LOW, PRINT MESSAGE
718 PRINT “"WARNINGs FLOW RATE ABNORMAL":GO TO 120

1-56

Suppose F=25. Then the compound condition (F>20) OR (F<1?) in Line 147
is TRUE. In this case NSC Tiny BASIC will GO TO 5198. If F=9, the
compound condition 1is also TRUE and NSC Tiny BASIC will GO TO 512,

Suppose F=18. The compound condition (F>2@) OR (F<1@) in Line 144

is FALSE, so NSC Tiny BASIC continues on to Line 1884. Remember, F is
now equal to 18, so the condition (F>17) OR (F<13) in Line 132 is TRUE.
NSC Tiny BASIC does a GO TO 71@.

* * *The parentheses enclosing F>2@, F<I@ and so on,
are necessaryi without them, the proqgram will
not work, because logical overators, as arithmetic
operators, are evaluated from the left side of the
expression to the riaht. Parentheses are used to give
precedence.* * *

The following is a flowchart of the condensed dialysis orogram.

START

1 203
INPUT

510
DANGER! FLOW
RATE CRITICAL
(BELLS)

GO TO 120

710
WARNING! FLOW >
RATE ABNORMAL
GO TO 122

220

FLOW OK !
GO TO 120

Have you noticed that both programs tested for the most danger-—

ous condition first? Then tested for the second most dangerous,
simply as a matter of life-saving priorities. In this case, a few
milliseconds probably won‘t make much differences however, in many
real time applications, a few milliseconds do make a difference.

To illustrate to you that programs usually can be improved upon, the
following is a super-condensed Nialysis Flow Monitor Program:?

12 PRINT "wsPRINT #FLOW"3tINPUT F
14¢ IF (F>23) OR (F<1@) PRINT "DANGER! FLOW RATE CRITICAL"*

GO TO 129
168 IF (E>17) OR (F<13) PRINT "WARNING? FLOW RATE ABNORMAL*3
GO TO 120

224 PRINT "FLOW OK":GO TO 120

The AND, OR and NOT operators need not be limited to use in IF state-
ments. They are logical operators and onerate Bi t-by-Rit on any con-
stant or variable. This will be illustrated later on in this manual
with an example on some I1/0 bits.

The following program implements the function indicated in the graph
beneath itz :

1@¢ REM HASTILY CONSTRUCTED PROGRAM TO ILLUSTRATE USE OF "“AND"
113 PRINT "wePRINT "X="3:INPUT X

120 IF (@<=X) AND (X<=1¢@) PRINT "Y=",X2GO TO 110

1330 1F (19¢3<X) AND (X<=203) PRINT wy=4_1043GO TO 112

143 1F (203<X) AND (X<=423) PRINT "y=",15@43G0 TO 112

154 PRINT ny IS NOT DEFINED FOR X=%,X

NOTE: The parentheses around @<=X, X<=10», and so on in the
IF statement are necessary. Without them, the program
will not work. This is because of the multiolicity in the
conditions being checked.

Y = f(x)
150
1 34
199 200 400
X for 0 < X < 104
y = f(x) = 1234 for 100 < X < 200

15 for 200 < X < 400

The following is a RUN of the precedina program. All critical points
have been checked.

RUN

X=? -I
Y IS NOT DEFINED FOR X=-I

X=? @
Y= @

X=? 37
Y= 37

=? 99
= 00

?2 109
K%

X=? 1241
= 101

=? 199
Y= 100

X=? 200
= 109

X=2? 23|
= |50

X=? 299
Y= 150

X=?2 300
Y= 150

X=? 331
Y- 150

X=7 399
Y- 152

X=?7 429
Y- 159

X=? 401
Y IS NOT DEFINED FOR X = 401

And so on...

6.4 Random Numbers and Computer Games
Another useful feature in NSC Tiny BASIC is a random generator.

Sometimes it is useful to generate random numbers between.specific
limits. A trivial use is to imitate a pair of dice. The statement?

D = RND(1,6)

will make D some number between | and 6 inclusive, with equal
orobability for each of the possibilitlies. The following program
simulates a oair of dices

{# PRINT RNDC1,6), RND(1,6)
20 GO TO 1@

RUN the program for a while:

RUN

—-—whh Vv

Ww—-w—=wbUdbww
NWOWEBBRION =N =W

STOP AT 10
>

In general, the expression:

RND(A,B)

is a random integer between A and B, inclusive. A and B may be
algebraic exoressions, simole variables or constants. RND may be
used wherever a variahle may be used.

Random numbers are widely used to test nrograms, and to do Monte Carlo
method solutions to problems. Many games Use a random number genera—

tor.

1@ REM GUESS THE NUMBER. GAME

20 X=2ND (1,1@0)tREM X IS THE SECRET NUMBER FROM 1 TO 109
33 PRINT"w:PRINT #WHAT IS YOUR GUESS"3

49 INPUT G:REM G WILL BE THE GUESS

5@ IF Ge<X THEN PRINT "YOUR GUESS IS TOO SMALL*

6@ IF G>X THEN PRINT “YOUR GUESS IS TOO BIG*

7% 1G G=X THEN GO TO 99

83 GO TO 3@:REM NOT A CORRECT GUESS, GET NEXT GUESS

9@ PRINT "YOU WIN, LET“S PLAY AGAIN."

160 GO TO 2@*REM GET A NEW SECRET NUMBER

>RUN

WHAT IS YOUR GUESS? 50
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 25
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 12
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 18
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 24
YOU WIN. LET“S PLAY AGAIN.

And SO ON...

6.5 Exercise

Rewrite Line 7% to combine the functions of Lines 74 and 8 making the
program one statement shorter,

Answers are in Appendix A

7.1 Program Loops

" CHAPTER 7

This section of the orimer deals with Program Loops. The following
orogram causes NSC Tiny BASIC to orint out the first ten positive
integers and the sguares of those integers. While not exactly
intriguing in its mathematical subtlety, it helps point out a few
useful techniques in nrogramming.

The following is an example of a cumbersome way to achieve the results
described aboves -

The foregoing
or, a

mentst

>PRINT |

>PRINT

1

>PRINT 2

2

>PRINT

4

>PRINT 3

3

>PRINT

9

And so

>PRINT 19

12

>PRINT 10
1 ¢

>

12
29
32
A0
50
60
70

B3

2%2

3*3

on until...

*1 0

would get the results, interspersed with PRINT state-
nrogram could be written as followst

REM PRINT THE FIRST TEN NUMBERS AND THEIR SQUARES

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

1
1%}
2
2% 2
3
3*%3

And so on until...

180 PRINT 9

193 PRINT 9%9
200 PRINT 10
213 PRINT 10%19

RUN the programs the following is what vour RUN should look like?

>RUN

d so on until

O O AN o=

81
§%]
1 A7

>

Not a very readable chart, is it? Results that are hard to read or
interpret decrease the value of the outnut. The answer must be
communicated to those who need the results. By using a comma to keeo
the number and its square on the same line, and by using a PRINT
statement you can write a much imoroved orogram.

Note, in the followina, the .use of a comma in PRINT statements to
ceparate the number and the number saquared?

1% REM TARLE OF NUMBERS AND THFIR SQUARES
5> PRINT ® N N SQUARED *
3% PRINT 1,11

40 PRINT 2,242

574 PRINT 3,3%3

61 PRINT 4,4%4

70 PRINT 5,5%5

8% PRINT 6,6%6

9B PRINT 7,7+7

193 PRINT B,8%8

113 PRINT 9,9%9

127 PRINT 10, 10%12

If vou store the above nrogram in the INS8873“/s memory and RUN it,
the results would be:?

1-64

>

X
c

N
N SQUARED
1
4

9
1.6
25
36
49
64
81
3 174

VW NdONBRWNN—Z2

A4

The above program is much easier to read than the first two presented
in this chapter. FEach number is printed side by side with its square
in the order they appear in the PRINT statement. For examole?

The statement, PRINT 7,7%7

Causes NSC Tiny BASIC to orint, 7 49
You now have enough tools to write a very short program to print
numbers and their squares. The idea is to write short orograms that do
a lot of work. Read the following nrogram, and then try it on your
computer. Type in all of the REMarks as they will help to explain what

is happening. Remember, REMarks are for peonle3 the computer simnly
ignores them.

I# REM A PROGRAM TO PRINT SUCCESSIVE INTEGERS AND THEIR SQUARES
15 REM PRINT A HEADING

t7 PRINT » I I SQUARED*

27 RFM USE A VARIABLE, I, TO HOLD THE VALUE OF THE NUMBER
3@ RFEM TO BF SQUARED. START THE VALUE AT ONE

49 I=1

5¢ REM NOW THAT I HAS A VALUE, PRINT IT AND ITS SQUARE

6@ PRINT I, IxI

74 REM ADD ONE TO THE VALUF OF I, TO CREATE THE NEXT LARGER
82 REM FINTECEQ, SO THAT IT AND ITS SQUARE CAN BE PRINTED
9% REM UP IN LINE 60

1200 I=1+1

11 REM NOW THAT THE VALUE OF I IS ONE LARGER, GO TO LINE 60
126 GO TO 64

After you understand how it works, type in the program (or at least
this abbreviated form) without the REMarks.

Try the following short form of the program on your INS8A73¢

17 PRINT » 1 1 SQUARED*
4@ 1=1

64 PRINT 1,11

100 1=1+1

126 GO TO 64

Do you see what is going to happen? Did you remember to clear out any
old program with NEW?

Do you have the program figured out? If not, folloﬁ the arrows?

>RUN
17 PRINT » I I SQUARED™"
46 I=1 Lines 17 and 48 are done once.

60 PRINT I ,I*I Lines 6@, 19@ and 120 are "in the
\loop’®. They are repeated again
and again ...(until you press the

100 I=1+1 BREAK key).

120 GO TO 6@
7.2 Exercises

{. If Line 17 is changed to read 17 PRINT " N N SQUARED" how would
this change the results? o

2. When you RUN the program, does NSC Tiny BASIC automatically stop
after printing the first ten positive integers and their squares?

3. What is the largest value of I for which the program will give the
correct answers?

Answers are in Appendix A

7.3 IF Loops

The program does not satisfy the initial requirements, that is, to
print the squares of the first ten positive integers. Agreed, it does
nrint the ten positive integers and their squarest but then it just
keeps on going. You want it to stoo automatically after printing 10
and 1@ squared. The IF statement will help you to achieve your goal.

1-66

Instead of 120 GO TO 6@
Use 120 1F I < 11 GO TO 64

17 PRINT » I I SQUARED#
43 1I=1I

67 PRINT I,I*l

100 I=I+]

123 IF 1<t GO TO 69

The IF statement (Line 12@) can be readt #If I is less than eleven
then GO TO Line 62.% Not stated, but implied, is that if I is not less
than 11, in particular if it is 1l or more, then DO NOT GO to Line 64,
but just go on to the next line. There is no next line, so the program
will stop. ~

To make the program more compnlete, add the STOP statement. This
statement, when executed, stops the program. Of course, as vyou have
seen, the program stops if there is nothing else to do. Occasionally
it is necessary to deliberately stoo a program. It is also useful to
nut a STOP statement at the end of a program just to mark the end of
that program. Add a STOP statement to the end of the orogram to
compute sguares.

17 PRINT # 1 I SQUARED#*

4@ PRINT I=l

6@ PRINT I,IxI
100 I=1+]

128 IF I<1t GO TO 64
999 STOP <4 - The STOP statement.

Any line number from 121 to 32767 could have been used for the STOP
statement, 999 was arbitrarily chosen. It is often used to save the
programmer“/’s having to retype the entire YSTOP" statement if he wants
to add to the bottom of the existing oroagram. The following is a RUN
of the above program.

>RUN

I SQUARED
1

4 .
9 NSC Tiny BASIC computed and orinted I and I squared
16 for I=1, 2, 3...12 and then stopped automatically.
25 =

36

49

64

81

12 107

STOP At 999

OO NN D WNY — =

7.4 Exercises

|. What will hapoen if you change Line 120 to 120 IF I < = 13 GO TO 60
and RUN the program again? (Try it on your system,)

2., What will happen if you chanage Line 129 to 12 IF I < 17 GO TO 62
and RUN the program again?

3. What will haopen if you mistype Line 12@ as 128 IF 1 < 11 GO TO
4@ and ran the program again?

4, What would be the results of RUNning the following nrogram?

18 I=1
2@ PRINT I,I*xlsI=1+1tIF I<11 GO TO 2%
99 STOP

For answers, see Appendix A

7.5 FOR NEXT Loops

When a nrogram contains a statement that is executed more than once,
then that program contains a LOOP. Nearly all the orograms in this
book contains loops. In fact, it is the loop that makes programming
so powerful, I1f each statement could only be used once,.then pro-
agramming would be exceedingly tedious. As has been seen, programmers
tend to write statements that can be used repeatedly rather than only
once.

The very simple loop:?

12 PRINT 4
20 GO TO 1@

will run and print 4¢s indefinitely. Most loops have some facility for
endina aracefully. What does the following program do?

12 1I=0

20 I=1+1

3 PRINT I

49 IF 1 < 1@ THEN GO. TO 20

The following program does the same thingt?
18 I=l1
27 PRINT I3

30 I=I+1
47 IF 1 < 11 THEN GO TO 2@

1-68

Loops are so common that NSC Tiny BASIC provides a shorthand for
writing them. The next program does exactly the same thing as the

previous two?

18 FOR I=1 TO 1@ STEP 1
208 PRINT I3 P—-—This is a FOR NEXT looo.
30 NEXT 1

RUN the FOR NEXT loop:

>RUN
1 23456 789 1@ The FOR NEXT loop caused NSC Tiny

> BASIC to print values of I for:
I equals one (1) to

I eauals ten (10)
in steos, or increments, of one.

The numbers go across the paage instead of down because the PRINT
statement ends with a semicolon (3). Try the program with a PRINT
statement that doesn’t end with a semicolon and you will get the

followings

>RUN

=0V JONH WN —

2

>

The FOR statement sets up the loop. It soecifies what tne variable
(often called the control variable for the loop) is to have for its
initial value, then the final value and finally how much it is to be

incremented each time through the looop.

The NEXT statement is the bottom of the loop, and says to find the next
value of the control variable and continue execution at the statement

immediately AFTER the corresponding FOR statement, if the control
variable has not yet passed the final value,

To print the odd numbers from | to I# (obviously 14 itself will not be
one of them) the following loop could be used.

1% FOR I=1 TO 7 STEP 2
Semicolon causes numbers to be printed

20 PRINT I3 <4
33 NEXT I“/////////////'across the line,
1 35679 < NSC Tiny BASIC is STEPning by 2.

>

1-69

The step size can be negative?

14 FOR I=

28 PRINT

3% NEXT 1

56 TO 42 STEP -3
Is

Refore running this proaram, figure what its outout should be. The
rule iss the FOR NEXT loop always starts exactly at the first value,

and will not go
is added to the
heen the index.
index makes the

beyond the second., Each time through the loon the STEP
index. In these simple programs the variable I has

(0f course, if the STFP is negative, adding it to the
index smaller.)

The last program printss

56 53 5a

47 44

You don“t always have to use I. You can use any variable in a FOR
‘statement as long as you use the same variable in the corresponding

NEXT statement.

13 FOR K=1 TO 3 STEP |

27 PRINT

3a NEXT K

>RUN

MHIP HIP HOORAYM

HIP HIP HOORAY
HIP HIP HOORAY
HIP HIP HOORAY

>

If the STEP size 1s one, the STFP clause can be omitted.

12 FOR A=

200 PRINT

32 NEXT A

>RUN

@1 23
>

@ ToO 7
A3

4 5617

The FOR NEXT looo makes it easy to run off tables, such as the table
of I and I SQUARED.

1@ PRINT » T I SQUARED® v

208 FOR I=1 TO b ===—ee——-— —=Since STEP size is |, it’s omitted.
3¢ PRINT I, IxI

4@ NEXT I

>RUN

I I SOUARED

1 To get a table for I-1, 2, 3,.¢..,17,

2 4 change Line 29 tot 20 FOR I=1 TO 1@

3 9

4 16 To get a table running from 1023 to 129
5 25 change Line 20ht04 20 FOR I=108@ TO 129

>

Additionally, the starting and endina values can be variables or
expressions., Here are two examoles:?

13 A=| 19 L=2
23 B=5 2A U=3
- 3@ FOR X=A TO B 3 FOR S=L*L TO UxU
4A PRINT X3 43 PRINT Ss '
57 NEXT X 5@ NEXT S
>RUN - >RUN
1 2345 4 56 7829
> ' >

The STEP can also be a variable or an expressiont

13 A=]

27 B=13

39 C=2

49 FOR X=A TO B STEP C
5@ PRINT X3

60 NEXT X

>RUN
1 3579 11 13
> .

Although the applications may not be readily apparant, FOR NEXT loops

may be "nested" up to four levels. This means that you can have four

layers of loops within loops. An example of this is shown below. The
loops interact to orint the numbers # to 99 in a square arid.

1@ REM SQUARF MATRIX GRID. NUMBERS | TO 9 ARE PRINTED
2% REM ACROSS THFE PAGE, THEN A CARRIAGE RETURN,

33 RFEM THEN NUMBERS 12 TO 19 ETC.

47 FOR 1= TO 9@ STEP 1AtREM TENS LOOP

54 FOR J=¢@ TO 9:REM UNITS LOOP

6% PRINT I + J3:REM PRINT ACROSS PAGE

70 NEXT JtREM END OF WINNER® T.0OP

84 PRINT:REM CARRIAGE RETURN

90 NEXT ItREM END OF OUTER LOOP

999 STOP

>RUN

2 1 2 3 4 5 6 1 8 9
13 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
39 31 32 33 34 35 36. 37 38 38
43 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
64 61 62 63 64 65 66 671 68 69
76 71 72 73 74 75 16 11 18 19
89 81 82 83 B84 85 86 87 83 89
93 91 92 03 94 95 96 97 98 99

>

Loons cannot cross each other for obvious reasons$ therefore, if you
writet

1@ FOR I=1 TO 19
200 FOR J=1 TO 19
383 NEXT I
4% NEXT J

you will get a FOR NEXT error message (ERROR 174) upon execution of
Line 34.

7.6 Exercises

For each program, first figure out what you think NSC Tiny BASIC will
do, then RUN the orogram and verify your thinking.

1. 10 S=2 2. 19 P=1
23 FOR K=1 TO 5 20 FOR K=1 TO 5
3% S=54K 3 P=PxK
47 PRINT K,S 4@ PRINT K,P
5 NEXT K 5@ NEXT K
3. 19 5-@ 4. 13 p=i
274 FOR K=1 TO 5 2 FOR K=1 TO 5
3@ S=5+K 30 P=pP*xK
49 NEXT K 43 NEXT K
5@ PRINT S 53 PRINT P

Each of the following programs requires an INPUT value for the
variable, N. For the values outguess NSC Tiny RASIC then verify
your results,

5. @ INPUT N 6. 10 INPUT N
20 S5=@ 200 p=1
3% FOR K=1 TO N 3% FOR K=1 TO N
43 S=S+K 4@ pP=P*xK
53 NEXT K 5@ NEXT K
6@ PRINT N,S 63 PRINT N,P
Try it for N=7 Try it for N=7 and N=9

1-72

7. Write a short program to comnute and print the value ofs

2 2 2 2
"""2 +3 +000+N

for an. INPUT value of N.
>RUN

N=? 5
SUMSQUARED = 55

>
Answers are in Appendix A

7.7 The DO Statement

This is a simple statement that instructs NSC Tiny BASIC to DO a
function UNTIL another condition is met. It has only one forms

>349 DO

Nothing ever comes after the word “DOM3 somewhere later on in the
program there is a statement UNTIL, for example?

>57@ UNTIL (some arithmetic instruction goes here)

The line numbers are only examnles. The UNTIL statement acts just
like a GO TO which causes execution to proceed from the DO state-
ment - whenever the value of the arithmetic expression ejuals zero.
The following program:

>1a DO

>20 PRINT “HELLO®
>25 N=|

>33 UNTIL N=g

prints the word HELLO over and over until you stop the program.
If instead, you had said:?

>1@ N=bH

>20 DO

>33 PRINT ¥THIS ONE STOPS SOON*
>4 N=N-]|

>5A UNTIL N=@

the message is orinted out five times. It is interesting to try this
program with Line 3% changed to PRINT N. To understand how it works
you must remember that an expression such as N=@ has a numerical value.
It is @ as lona as it is false. Thus, when N is not zero it is false
to say that N=;A, So the expression N=9 has the numerical value 4.

The UNTIL acts like a GO TO back to Line 24, but when N is indeed zero
then the expression N=@ is true. When an exoression is true its value
is not zero, but =1, So the UNTIL does not act like a GO TO and the
program ends.

1-73

NSC Tiny BASIC uses the notations
X=6

in two different ways. If it is a statement, where the X is the first
item on the line it means "let the value of X be 6" but if the notation
X=6 1s used as part of an expression - that is, not as the first item —
on the line - then it means "see if X is equal to six" and if X is

aqual to six then the whole expression (X=6) takes on the value -1.

This is similar to the test in an IF statement.

The converse of this is also usable, that is, a NO...UNTIL looo can
terminate in any of the following with the same effects

UNTIL K=N

UNTIL K-N=@

UNTIL #=K-N

UNTIL K=N (which automatically has a value of zero allowing
the loop to be terminated)

For reasons of clarity, only the first and third examples should be
used. In the following?

>18 G=3
>273 G=G=3
>33 PRINT G

(would be a very confusing thing to write and not at all recommended)
the value -1 would be oprinted, as Line 27 would make the value of G
equal to (G-3) which is true, and thus has the value -1,

For the most part, the ambiquity mentioned can be safely ignored,

and the UNTIL statement taken at Yface value" where you know that the —
loop will be done over and over again until the indicated condition is
satisfied. The pair of statements? :

DO

UNTIL K > (N/2)

will execute whatever is between them until it hapnens that K is great-
er than half of N, (Remember that NSC Tiny BASIC only does integer
arithmetic so that N/2 means the integer nart only, any remainder or
fractional part is ignored.) DO UNTIL loops, like FOR NEXT looos, can
be nested, but where FOR NEXT loons can go four deen, (four layers of
of loopns) DO UNTIL is allowed eight levels of nesting.

7.8 Powers Of Two

The followihq are three programs to compute and orint the powers of 2
from | to 64, inclusive.

1-74

P rogram number one uses an IF loon.

193 REMARK POWFRS OF TWO, PROGRAM ONE
1173 P=1

120 PRINT P3

137 P=2%P

149 IF P<—64 GO TO |20

999 STOP

Program number two uses a FOR NEXT loon.

129 SEMARK POWERS OF TWO, PROGRAM TWO
113 P=1

128 FOR K=8 TO 6

137 PRINT P3

143 P=2%P

15 NEXT X

999 STOP

Program number three uses a DO UNTIL loop.

1% REMARK POWERS OF TWO, PROGRAM THREE

e P=i

128 DO

130 PRINT Ps

143 P=2%p

154 UNTIL P>64 - - = (Also try UNTIL P=128 here.)
999 STOP

These three programs produce exactly the same results. If you enter
any of the above and type RUN, here is what hannens?

>RUN

1 2 48 16 32 64
> :

Try to modify each proaram to aet oowers of 2 from 1 to 128. Then do
it backwards, cet oowers of two from 64 to I.

IF Looo
170 RFMARK POWERS OF TWO, PROGRAM FOUR
113 P=64
128 PRINT P3
130 P=pP/2
149 IF P<1 GO TOI129
900 STOP

FOR NEXT Loop

|a% REMARK POWERS OF TwWO, PROGRAM FIVE

1@ P=64

12 FOR K=6 TO @ STEP -1 =-—--(or FOR K=0 TO 6)
134 PRINT P3

14% P=P/?

158 NEXT K

999 STOP

1-75

DO UNTIL Loopo

179 REMARK POWERS OF TWO, PROGRAM SIX
119 P=64

124 DO
133 PRINT P3

149 P=pP/2
154 UNTIL P<{ =-=-—(Also try UNTIL P=# here)

999 STOP

The three programs all produce the same results.

>RUN
64 32 16 8 4 2 |

>

Modify each program so that NSC Tiny BASIC tyoes powers of 2 from 128
to t.

1-76

CHAPTER 8

8.1 Subroutines

As you learn to orogram, you will find that your programs will in-
crease in size until they become unmanageable. When that hanpens,

it’s time to break them up into functional blocks. Often, you will
find that some of those functional blocks are used in several nlaces

in your nrogram. Rather than repeat them each time, a "subroutine®

can be used. A subroutine is just a section of NSC Tiny BASIC
statements performing some operation required at more than one place in
the program. The GOSUB statement is used to transfer control to the
subroutine and the RFTURN statement is used to return control to the
‘place where the subroutine was called.

As with FOR and NEXT, and the DO and UNTIL statements, GOSUB and
RETURN are a pair that are always together. The statementt

125 GOSUB 91@
acts exactly like the statement:
125 GO TO 91a

exceot that the computer remembers the line number (in this case 129)
of the statement that made it ao to Line 918, so that after the sub-
routine is finished the computer can resume where it left off. For
example, when the orogram executes a RETURN statements

324 RETURN

the computer knows to jump back to the statement immediately after
Line 125 - wherever it is,

The followina is a short nroaram to demonstrate the use of the GOSUBR
and RFTURN statements. Try it on your INS8073.

1834 N=1 = —e—ee—eee- -
125 GOSUB 200 -
11 N=? -
115 GOSUR 20@ -
123 N=3 -
125 GOSUB 270 -
137 N=4 - Main Program
135 GOSURB 209 -
1404 N=? -
145 GOSUB 260 -
153 N=3 -
155 GOSUR 20@ -
168 END ~ ——=—m———e-

200 PRINT ®THIS IS NUMBER ".N:r ——————— -—Subroutine
217 RETURN

AUN the above program,

the results should Jlook like thiss

>RUN
THIS IS NUMBER 1
THIS IS NUMBER 2
THIS IS NUMBER 3 S
THIS IS NUMBER 4
THIS IS NUMBER 5
THIS IS NUMBER 6
>
The statements 1123 GOSUB 200
tells NSC Tiny BASIC: GO TO line 200, but remember that you
came from Line 11#. When you come to a
RETURN statement, return to the line
next after Line 11% (which is Line 115).
The statement:? 123 GOSUR 229
tells NSC Tiny RBASIC: GO TO Line 20@, but remember that you
came from Line 1208, When you come to a
RFTURN statement, return to the line
next after Line 129,
The rest of the GOSUBs operate in a similar fashion. GOSUB, when
used properly, can eliminate the tedium of having to retype a routine
wherever it may be used in a large orogram. Subroutines may call other
subroutines, this is called nesting and may look like thise
13 I=12 —
2% GOSUB 2 9¢
38 I=5
43 GOSUB 27
5 A=2
60 B=3
79 GOSUB 3920
8% STOP
9@ REM END OF MAIN PROGRAM
2727 REM SUBROUTINF TO COMPUTE NUMBER OF STARS TO PRINT
212 B=1
2204 A=1=2
23 GOSUB 302
247 RETURNSREM RETURN TO MAIN PROGRAM
307 REM SUBROUTINE PRINTS B—-A STARS
31 FOR J=1 TO B-A
3200 PRINT Hxtg
330 NEXT J
340 PRINTtREM PRINT A CARRIAGE RETURN
35 RETURN
—

Notice that sometimes the subroutine at location 32 is called by the
subroutine at location 203, and it is called once by the main program.
Whomever calls that subroutine is where the nrogram returns on a
RETURN statement.

Subroutines may be nested up to eight deepn.

8.2 LINK Instruction

The LINK instruction allows vou to transfer control from an NSC Tiny
RASIC nrogram to an INSB@#73 assembly (machine) lanauage subroutine.

Suppose Rill Counter has given you an assembly language subroutine that
is perfect for counting widaets. You could convert Bill’s orogram to
NSC Tiny BASICs but since vou don’t understand Bill’s system for
counting the widaets, and since Bill“s system works, and since assembly
langtiage runs faster than NSC Tiny BASIC, etc., all you have to do is
use the LINK instruction to transfer control from your NSC Tinv BASIC
rrogram to an assembly languaqge subroutine.

A statement such ast

>17 LINK #1807

causes transfer control to the routine that starts at address location
hexadecimal 18@3%. There is a RET instruction at the end of the routine
that returns you to your NSC Tiny BASIC program. RET is an assembly
languaae instruction that acts like the NSC Tinv BASIC RETURN
instruction: it returns vou to the line number following Line 10 (the
[LINK statement),

Example?
>1% LINK #1800 «4— NSC Tiny BASIC trans-
>208 IF A= THFEN PR WSENSE A IS LOW“"4- fers to address #1300
>3 IF A=1 THEN PR MSENSE A IS HIGH* i to read sensor.
>09 STOP
>RUN ~-—Program transfers back
SENSE A IS HIGH to NSC Tiny BASIC
STOP AT 99
>RUN
SENSF A IS LOW
STOP AT 99
1 .TITLE SFENSFE Assembly Lanqguaage
2 A0en =0 183A tHEXADFECIMAL n "
3 183008 06 I.D A,S " “
4 1801 D41@d AND A,=16 _ - u
5 1843 &C@2 BZ LOW " "
6 1845 C4al LD A,=1 " "
7 1807 CAP® ST A,B,P2 " "
B 1829 5C RFEFT4#~-(This gets vou back) 0 "
9 aapad L END n n

3.3 DELAY

Often, A program needs to give itself a pause to allow some external
event to occur, or just to let you think for a moment.

For example, take the case where you have written a routine to ring
the bell when your results are back from another nrogram. If the nro-
gram is a long one, you can qgo talk on the telephone until it is fin-

ished and you can hear the bell ringina. If the program is ended in a
loopte

987 PRINT "CNTRL G"s:RFEM RING BELL
992 GO TO 98A:REM DO IT AGAIN

the terminal will continue to ring the bell, or the TTY will sound like
an alarm clock, until you get away from the “phone and stop the pro-
gram,

A better way to handle this situation is to waste some time before the
bell is rung again. Many programs do this with loons that waste time:

98@ PRINT "CTRL G"3::REM RING BFLL

90 FOR I=1 TO 1a22sNEXT ItREM WASTE TIME
199 GO TO 98@:RFEM RING RELL AGAIN

unfortunately, this kind of time wasting is not precise énd the number
of times you ago throuah the loon must be worked out bv trial and error.

NSC Tiny BASIC has an inherently more precise method of generating time
delays. This method is the use of the DELAY instruction, which can
stop the processors oneration for | to 1947 time units. If your INS
8473 is clocked by a precise 4 MHz timebase, these time units will be
exact milliseconds, The examnle system in Section 3 of this manual
uses such a crystal.

[f you wanted your end-of-program bell to rina only once per second,
as a gentle reminder for you to go to the system, all vou need do is
to chanae the initial example orograms

987 PRINT "CTRI. G"3:REM RING THE BELL
985 DELAY 1023@:RFM WAIT ONE SECOND
997 GO TO 98AtREM DO IT AGAIN

Notice that the number (or expression) that follows a DFLAY instruction
is enqual to the number of milliseconds required. If, however, vou tvype
"CELAY A" the microinternreter will default to the laraest possible de-
lay of 1240 milliseconds.

8.4 The ON Statement

Sometimes a program can’t respond quickly enough to a stimulus through
normal program operation. For example, take a system which must count
widgets while calculating Pi to a million decimal olaces. The calcu-
lation of Pi will obviously take the U“smartest¥ computer hours of cal-
culations of Tavlor series pnolynomials., The widgets are passing bv on
a conveyer belt at the rate of three oer minute, Should the orogram to
calculate Pi take a neek during every stage of its calculations just to
look for a widaet? The ohvious answer is no as this would waste too
much time$ and the hours—long orogram might end up taking A week to
execute,

The INTERRUPT can break into a program, perform some time intensive
function, then allow normal operation to continue without any inter-
ference with the main program, An interrupt operates the same way vyou
would if vou were reading a hook and the “phone rang. First vou’d
save your olace in the book, then you’d talk on the “phone until vour
business was done, then you would hang un and go back to your book to
the place where you left off,

The INS8273 handles interrupts with the ON statement. When you says#
117 ON V 254

vou’re saying, "If something (widget detector) puts a ¥ on inout SENSA/
INTA on the INS8#73, act like you first encountered a GOSURB 2604,

There are two inputs on the INSB273, INTA and INTB. Corresnondingly,
there are two ON statements, ONi and ON2?. Unfortunately, the INTA in-
nut is also used for serial input for the RS-232 or TIY terminal. This
means that the ON statement can’t be used if vou want to use a terminal
with an NSC Tiny RASIC system., The ON instruction is, however, very
useful in a ROM-baser direct executing system.

An interrupt may be disabled at any time by executing the command:
ON 1 &

which acts only on INTA. This can be used to put the microinterpreter
into a "on“’t bother me, I’m busy" state,

The followina is a nrogram that counts how much time has elansed until
an interrupt occurs, and, how many times it has been interruoted:

14 REM TURN ON INTB

200 ON 2 207

37 A=A+l iREM HOW LONG SINCE LAST INTERRUPT?

4% GO TO 37:REM KEEP COUNTING

57 REM END OF MAIN PROGRAM

2@7% REM START OF INTERRUPT ROUTINE ‘
212 REM A "GOSUR"™ TO THIS LOCATION IS GENERATFED
227 REM BY A HIGH TO LOW TRANSITION ON INTB

239 B=A:REM STORF TIME BETWEEN INTERRUPTS

247 C=C+1:REM COUNT HOW MANY INTERRUPTS HAVE OCCURRED.
257 A=#tREM INITIALIZE THE COUNTER

267 RETURN:REM KFEP WATCHING THE TIME

1-81

Although this program has no practical apnlication, it should show you
now to use the ON statement well enough to enlighten vou about the

basics of interrunts.
8,5 The STAT Function

There is a function in NSC Tiny BASIC which allows you to operate
directly on the Status Register of the CPU. The status register can be
loaded, or examined, through the use of the STAT function. This is
another way of settinag the interrunt enable bits on the nrocessor, al-
though it does not allow the assignment of a line number for the inter-
runt service routine. Therefore, the STAT function is not recommended

for interruont servicing.

The bits of the Status Register are defined as follows?

BIT NUMBER ‘ FUNCTION. .

7 CARRY Not recommended for use

6 OVERFLOW in NSC Tiny BASIC

5 SENSE A/INTA \ May be examined as sense

4 SENSE R/INTB./ lines by the STAT onerator

3 FLAG 3 May be set using the

2 FLAG 2 STAT operator

] FLLAG 1

@ INTERRUPT Not recommended for use
ENABLE with NSC Tiny BASIC

The SENSE A and SENSE B lines may be used as inouts and are read-only.
If a serial terminal is being used to program the microinterpreter,
SENSE A will already be occupied and SENSEB will have to be used.

The FLAG 1, ? and 3 outputs are write-only, and FLLAG 2 and FLAG | are
used for the Read Relay and RS-232/TTY outputs respectively. There-
fore, only FLAG 3 is available. You can see how they operate if vou
connect simple devices tn one SENSE input and one FLAG output.

Assume that you have a source of slowly chanaging "1“4s" and "#“s" coming
into SENSF B, A simple switch would be a fine examnle. Also assume
that an audio amplifier is attached to FLLAG 3 so that vou may hear the
output. With the following nrogram you can detect the switch nosition
with your ears:

17 REM SENSE B TO FLAG 3 PROGRAM

2% A=STAT AND #17tREM SENSE B BIT ONLY

3% IF A>@ THEN GO TO 2@0tREM SWITCH OPEN, NO SOUND
am STAT=STAT OR #8:REM SFET FLAG 3

54 DELAY StRFM 102 HFRTS HALF WAVELENGTH

6 STAT=STAT AND #F7:REM CLEAR FLAG 3

7% DELAY 5:G0 TO 2AsREM TEST SWITCH AGAIN

thus, you can use the STAT function to control minimal [/0 in your
system,

At o

’,/)\y/(gr‘;'f'é AN e g S ot R

-

If you insist on using STAT to set the Interrupt Enable bit, be aware
that that bit will not be set until after the end of the next in-
struction. This gives you some time to prepare. '

8.6 Multipnrocessing, INC (X), DEC (X)

The INC and DEC, or Increment memory location and Decrement memory
location 1anruct10ns Are nrovided to fac1litate using NSC Tinv BASIC
in a multiprocessor environment.

Multiorocessing is an art in itself and is considerably beyond the
scope of this orimer. If you require more information on multibrocess-
ing, refer to the W70 Series Micronrocessors User’s Manual®,

If you are familiar with the techniques of multinrocessing with the
INSBAT7? series of microprocessors, then you are familiar with the
attributes of the ILD (Increment and LoAad) and DLD (Decrement and LoaAd)
instructions., INC and DFC provide the same function in N5C Tiny BASIC
format. The instructions are non-interruptable and can be used for
semaphores between microprocessors,

If you choose to use the INS8A73 in a bus-coupled microprocessor syst =
one precautionary note is givens the variable RAM at location X‘’I@ui-
X?1AFF must be separate for each processor on the bus. If this is not
observed, FOR loops, subroutines, and even the variables A through Z
will become hopelessly garbled. All other external memory may be
shared,

8.7 CLEAR

The CLEAR statement is used to zero all variables, and terminate all
pending interrupts and loops. This statement should be used with ex-
treme caution as it can terminate program execution. When prooerly
used, it can be a boon in setting up initial conditions within a pro-

aram.

9.1

CHAPTER9

Memory Organization

In order to use NSC Tiny BASIC, you must have an INS8BA73 system with a
minimum of 256 read/write memory locations needed to store the
variables from A to 7 and to accomplish other housekeeping functions,
In most cases more memory is needed$ a typical system should have at
least 2K (204R) bytes of RAM. Fach memory location stores one bvte,
and in a typical system with 2K (2448) bytes of RAM, each location has
a unigue memory address runnina from 4096 to 6143. The microinteroreter
will only see RAM locations that are contiguous (non-ston with RAM
starting at the location 4094.

The memory is oruanized as followss

‘ L]

The first 2567 locations consist of NSC Tiny BASIC, in on-chio ROM
(Read Only Memory) on the INSB8#70 chip. In other words, NSC Tiny
BASIC consists of 2560 bytes of pre-programmed memory occubnving
locations 4 to 2559,

The next 1536 locations are unassigned and can be used for ROM,
data RAM or I1/0 devices,

The next 256 or more locations, with addresses from 4796 to 65474
if desired consist of RAM (Random Access Memory, also called Read/
Write Memory). This part of memory serves two purnosess

a. Locations 40945 to 4351 are used by NSC Tiny BASIC as a
Yscratchpad memory#, They are not available for your use.

b. Locations 4352 to your last RAM location are yours to use.
Khen you type:

NEW #1930¢
NEW

then store a program (with line numbers), your program is
stored in memory, beaginning at location 4352.

If automatic ROM execution is desired after a RESET, the ROM oro-
gram must start at location 8192, and can extend uo to 65471.

1/C Aevices may be memory-maopned in any unused memory locations in
the ranges 2563-4%95 and 4352-65474,

No RAM or [/0 device can occuny memory location 65471, 170 devices
should not be maoned contiquous with RAM frorm 4096,

65,535

65,471 or -64

ON-CHIP RAM

)

MEMORY-MAPPED

/)

64,767 or -768

LI

FFFF

FFCO

(Any address locations
between 1100 and FFBE or
0A00 and OFFF which are not
used by memory)

FDOO ®

(UP TO FFBF)

8192

4096 :::///// 1000 @
2559 //// 09FF

ROM
FOR AUTOMATIC
EXECUTION AFTER
A RESET

2000

RAM (MINIMUM
= 256 BYTES)

NSC TINY
BASIC

VLI D vo e

0000

NOTE 1. RAM or I/0O devices must not occupy location

X'FFBF.

NOTE 2. The microinterpreter will assume the only
available RAM is that which starts at location
X'1000 and ends at the first discontinuity en-
countered above that address.

NOTE 3. Location X’FDOO must be used to set the baud
rate of the console device. If no console is
used. this location may be used as desired.

Figure 9-1,

NIBL Memory Diagram

The followina table summarizes the memory organization in a minimum
NSC Tiny BASIC system.

Table NSC Tiny BASIC Memory Organization
[LOCATIONS CONTENTS
@ - 2559 NSC Tiny BASIC System (ROm)
4096 - 4351 Scratchpad Memory, (RAM)
4352 - 6143 | User Space. Your programs are stored
here.

User space, locations 4352-6143 will hold 1792 bytess this 'is enough to
store aporoximately sixty NSC Tiny BASIC statements. Additional memory
can be added: and, if your system has 4096 bytes of RAM, the user space
locations run from 4352 to RI91,

The memory layout for the example board is given in Section 3.
9.2 TOP Location

The first location that is free for your use has a special name, it“s
called TOP. The statementt

>PRINT TOP
will cause the address of the first free location to be printed.

To see how TOP works, clear away any old program by typing NEW #1027
then NEW, print out the value of TOP, then store a line or two of any
program and try printinag TOP again.

SNEWN #1020
S>NEW
>PRINT TOP
4353 &--————=Remember 4352 is the beginning of "user space".
A program (even with no lines) takes up one byte.

>1@ REM THIS TAKES UP SPACE

>PRINT TOP
438 €-------Locations 4352 through 4379 are in "use®. First
available is now 4389.

A longer program will use up more sopace.

SNFEW #1A0@

>NEWN

>PRINT TOP

4353 4-~———== TOP points to the beginning of NSC I'iny BASIC”s
user space.

>1 00 REMARK POWERS OF TWO
>119 P=1

>1270 PRINT Pg

>130 P=2%P

>1400 1F P=64 GO TO 129
>999 STOP

>PRINT TOP
444 &-----—~Next available location is now 4444,

Remember, the value of TOP is the address of the next available memory
location beyond the last byte of your NSC Tiny RASIC nrogram,

Choose A safe location far away from the small program that you will
write shortly, for example location 57A%, You want to store a number
into location 5729, that is, vou want to nut a number (say 55) at 50799,

> 85 @aR=55

The @ is the familiar "at" symbol and means "at the location". Re-
member, location 50@@ is an actual memory location and not an outout
nort. If you could peek into location 5323 you’d now find the number
55 resting theres$ however, since vou cannot "see into" locations,
tell NSC Tiny BASIC to print a copy of whatever is stored there.

>PRINT e5aan
55

Try some more.
>05001=37 4--——-—=Put 37 into location 5091

>PRINT 5021
37

> @507 2= a5 NG+ a5 30 |

>PRINT @507%2
92

NDid you follow the last examnle? You previously had out 55 into lo-
cation 5080 and 37 into 5471, you can add them (85003+a5201) amd ptt

the result into 50am2,

You can use @54%0, 85071, @502 and so on just as vou use varlables
A through Z, exceot for one thingt

Numerically addressed locations can store one byte onlyv.
They accept numerical values from 2 to 255, inclusive,
You cannot store negative numbers or numbers laraer than
255 in these locations.

As you may suspect, the variables A through Z each occuny two bytes
in the INS8MA73’s memory.

The following illustrates what would happen if you tried to put a
number larger than 255 into a numerically addressed locationt

>050R4=256

>PRINT 65024
A

>ab AP5=257 Try some negative numbers
‘ and see the results.

>PRINT €5045
A

>85906=511

>PRINT @5006

255
Attempting to put a number into a memory location that is too large or
too small for that memory location will not result in an error message.
The number will be treated modulo 256 (that is, it will be divided by
256 and the remainder put into the location).

One trick to using memory locations is to call them ToP+1, TOP+2 and so
oni as your proaram changes size, a notation such ast

>a(TOP+23)=211
is always above your proaram. A check for the top of memory can be

done easily using the IF statement (assuming that M is the number of
the memory location you were about to use, and that your memory went up

to location 5143):
>73 IF M>5143 THEN PRINT "OUT OF MEMORY"

In summary: to put a value "W" into a memory location M write
>QM=V

and the value of the memory location M is given by the exoression @M.

. The at sign (@) should be used with caution. Placina a value in memory

used by your oroaram (At a location less than TOP) can cause the pro-
gram to "blow un"., This means that it refuses to work, and there may
be no way to LIST or otherwise preserve it. Fven Iif it doesn’t blow
up other insidious changes that can be hard to find can occur, Be
careful. : .

The following lists the locations that should not be used:

LOCATIONS

%7 to 2559 ROM (on-chip)

~-64 to -1 ‘RAM (on-chin)

4096 to (TOP-1) nrogram in our typical system

9.3 Strings of Characters

An important feature of NSC Tiny BASIC is its ability to input, outnut
and manipulate characters as well as numbers. As you have already
seen, the statement:?

>22¢ PRINT ®FLOW OK*
will cause NSC Tiny BASIC to print the words:
FLOW 0K
The information between guotes is called a string.

The computer can store strings, recall them and do other operations on
them as well. These abhilities are especially handy where the user of a
orogram should communicate in something resembling natural lanqguage.,

It might he more convenient to have a user tyme YES as an answer to a
question rather than have the computer type MENTER 1 IF YOU MEAN YES

OR @ IF YOQU MEAN NOW,

To have a user of your program utilize string inout, you have to first
decide where the computer will put the string. The previously de-
scribed TOP function aives the first location in memory that is avail-
able to the user, I[If the program assigns:

S=TOP

then S will be the address of the first location in memory that can be
used. In the following case it will be used for storinag a string.
Ahen you want to work with strings instead of numbers, use the dollar
sign (38) to tell NSC Tiny RASIC to exnect a strina. The statement:

INPUT sS

stores whatever string the user tymes beginning at location S. The

first character of the string goes right at location S, the next
chavracter at location S+4+1 and eo on. Innput storms when the RETURN kev

i« nressed. The code for the RFTURN key is stored at the last charac-
ter of the string. This is important as it allows you to find the end
onf the string later.

1-90

Try the following orogram, note the $ sign in Lines 28 and 30,
>NEW
>1?% S=TOP+10@:tRFM SET S TO POINT AT A FREE SPOT IN MEMORY
>24 INPUT $SsREM GET SOME CHARACTERS

>33 PRINT $S:REM TYPF THFE CHARACTERS JUST OBTAINED

>RUN

?7ARC 4———AB(is the inout string.

ABRC ’ :

>RUN

? SAM 1273 €#4—————This is a California license plate number.
SAM 123

>RUN

%OTHQ+* ! 4——————You can use just about any TTY character in
%S T#Q+! a string.

> And so on. Try some of your ouwn.

In the second RUN above, we typed SAM 123 and pressed RETURN.
Therefore, a string of eight characters will be stored, beginnina at
TOP+19203, Aas followst

LOCATION CONTENTS

TOP +1 0@ S

TOP+1@1 A

TOP+172 M

TOP+13A3 soace

TOP +104 1

TOP+1@5 2

TOP +1046 3

TOP+107 RETURN key code

Remember, each location stores one byte, so each character or key code
is stored as one byte code.

In the following program, we use a string variable SRt
>NEW
>60 R=TOP+!@3REM SET R TO POINT AT FREF SPOT IN MEMORY
>77 SR="ABCDEFGHIJKLMNOPQRSTUVHWXYZ#
>3@ PRINT $R
>RkRUN
ABCDEFGHIJKLLMNOPQRSTUVWXYZ

1-91

In the preceding nrogram, $R is a strina variable. In Line 78, vou
assign it a string value consisting of the 26 letters of the alohabet.
Note that these letters are enclosed in quntation markss however, the
quotation marks are not stored Aas part of $R. The strina in the SR
will be stored in TOP+]@ through TOP+35 and a RFTURN key code will be
nut into TOP+36 to mark the end of the strina.

Add the following lines to the above program, (don’t type NEW!)

>0¢ $R="HELLO"
>10¢ PRINT sR

>RUN '
ABCDF FGHI JKLMNOPQRSTUVAXYZ

HELLO

[t is your responsibility, as a orogrammer, to see that there is enough
space for strings. For examnle, add the following lines to the program
we are develoning:t

>110 E=TOP+12

>120 SE="123"

>13¢ PRINT sR$RFM YES WE DO MEAN s$R AND NOT s$E
>RUN

ABCoosen

HELLO

E123

Note the strange result when this part of the program is. RUN. This
demonstrates that you have to be able to auess about how long strings
are going to be when vou decide where to out them in memory.

Try other strings for $R and $E in this orogram, and see what con-
Hitions cause overlap, and by how much. Change the constant in Line
119 as well. A few experiments will teach more than a thousand words

of text.:

String characters are actually stored as numbers. There is a standard
numerical code for each TTY character, called ASCII (American Standard
Code for Information Interchanage). This code is used by all manu-
facturers of computers and communication equioment. There are other
codes in use too, but orly by a small number of manufacturers, and they
make ASCII available to their equipment. It is easy to write a orogram
that will show the ASCII code that NSC Tiny BASIC uses to store string
cnaracters. This program will print the ASCII code for a character as
3 Aecimal number after vocu have typed in the character and hit the
RETURN key.

>LIST

1A% REM PROGRAM TO PRINT ASCII CODES FOR TTY CHARACTERS
110 A=TOP +509m:RFM LOCATION TO PUT CHARACTERS

1284 PRINT “FACH TIME I TYPE A QUFESTION MARK, YOU TYPE"
133 PRINT "A SINGLE CHARACTER AND HIT THF RETUKRN KEY®
140 PRINT ""sINPUT SAsREM GET A CHARACTER

154 PRINT @AsREM PRINT ASCII CODE

1600 GO TO 143sREM DO IT AGAIN

1-92

>RUN
EFACH TIMEF 1 TYPE A QUFSTION MARK, YOU TYPE A
SINGLE CHARACTER AND HIT THE RETURN KEY

?A
65

?B
66

2C
67

? &————This is CONTROL G (used ring the BELL). It is A
7 non-printing character.

?7%
37

9
48

21
49

72
50

?7 ... Your turn, exneriment,

UYsing this program, look at the ASCII codes of the letters, numerals,
and special characters on the TIY keyboard, Remember, NSC Tiny BASIC
stores the RETURN character at the end of each string. How would you
nrint out the ASCII code for the RETURN key? (See Anpeniix C)

Using the program as written, find the ASCII codes for CONTROL A, CON-
TROL B and so on. There is a oroblem tryina to print the code for
CONTRCOL C. Can you deduce its value? (See Apoendix C)

The last string feature in NSC Tiny BASIC is string replacement. If P
and Q are suitably defined (as pointing to memory) then a statement
such ass?

>500 $P=sQ

will take the string starting at location Q and make a copy string
starting at location P. Remember, it is up to the programmer to be
sure that there is enouah room for this to occur. A real disaster can
occur if P=Q+1. For instance, when Line 500 is executed, the character
at location 7 is placed in location P. But, location P is the second
location of Q! (Remember P=0+1.) This means that the first character
of Q is now also the second character of Q. Since this is a string
copy instruction the next thing that happens is that the second char-
acter of QU is conied into the second character of P, The second

character of Q was just copied from the first character Q, so the
second character of P is the same as the first character of Q. Now,
since P=Q+1 the second character of P is the same as the third char-
acter of 2. And so it goes, with the first character of Q being copied
over and over again. The process will never stoo} if there was a
RETURN somewhere in P it will be "clobbered® by the constantly coonied
character. Soon all memory will be filled pv this one character,

your oroaram will be destroyed, and, NSC Tiny BASIC will come to a
grinding halt. Be careful to avoid round robin situations like this

one, Try it once.

To compare strings in an IF statement you must compare the ASCII values
since NSC Tiny BASIC doesn’t allow direct comparison of strinas. This
merely means using @ instead of $, and doina the comparison one memory
location at a time,

9.4 Exercise

Arite a program to compare two INPUT strings and orint “THE STRINGS ARE
EQUAL" if they are, and "THE STRINGS ARE UNEQUAL" if that is the case.
The following is a nmart of the programt

>LIST

1% REM PROGRAM TO COMPARE TWO STRINGS

11® PRINT "THIS PROGRAM COMPARES TWO STRINGS AND TELLS*
1200 PRINT "YQOU WHETHER THFY ARE FQUAL OR UNEQUAL.™

130 A=TOP+106

1402 B=TOP +203

153 PRINT "“Mi:pPRINT MFIRST STRING%::INPUT SA

168 PRINT WSECOND STRING"s ¢t INPUT sB

170 GOSUB 1#@123sREM GO COMPARF STRINGS

180 GO TO 15A:REM GET TWO MORE STRINGS

1 9@ REM SUBROUTINFE TO COMPARE STRINGS AND PRINT MESSAGE
1212 Your work beagins here...

Write the subroutine to compare the strinas and nrint the approoriate
message. A RUN of the complete orogram might look like thist

>RUN
THIS PROGRAM COMPARES TWO STRINGS AND TELL YOU WHETHER THEY
ARE EQUAL OR UNEQUAL,

FIRST STRING? ABRC
SECOND STRING? ABC
THE STRINGS ARE EQUAL

FIRST STRING? ABC

SECOND STRING? DEF
THE STRINGS ARE UNFQUAL

1-94

FIRST STRING? AB
SECOND STRING? ABC
THE STRINGS ARE UNEQUAL

FIRST STRING? ABCD

SECOND STRING? ABC
THE STRINGS ARE UNEQUAL

FIRST STRING? A BC ===—=—- The space is a part of the string
SECOND STRING? ABC

THE STRINGS ARE UNEQUAL
FIRST STRING?

See Appendix A for answers

1-95

CHAPTER 10

14.1 Interfacing Other Devices To NSC Tiny BASIC

~— Dpevices other than the TTY or terminal can be attached to the example
system via the memory bus. The INS8A73 Data Sheet contains the nin
assignments and interfacing data needed to talk to it via the bus.
This chanter describes a simole circuit for you to wire un and olug
into the INS8373. Then vou will be aquided in writinao several simnle

control nrograms to exercise the circuit. Our circuit is very
simnle, consistina of a switch and a LED, with the INS8A73 in
between,

SWITCH ——| INSB8373 [—®»| LFED

An 1/0 device looks like a memory location both in hardware and in
software. It decodes an address and accents or sends a byte of data.

For this chaoter, the reader is assumed to be familiar with digital
logic, the various forms of binary and hexadecimal notation and the
other mental eauipment usuallv acquired by those who desiqgn diaital
electronic circuits,

In NSC Tiny BASIC the 16 bit address corresponds to the signed
numbers from —-32768 to 32767. The high-order bit, instead of being
treated as a sian bit, becomes simply the high order bit of the
address. The simolest way to address locations above 32767 is to use
__ the hexadecimal format. 32767 = #7FFF., Neqative decimal numbers
in NSC Tiny BASIC where the high order bit is the sian bit, are twos
complement 16 bit binary representations. Thus -1 (in binary 1
1111 1111 1111) used as an address would access the same memory
location as #FFFF. All in all, it is clearer to use hexadecimal
notation in NSC Tiny BASIC for addressinco high memory locations.

The timing considerations for address and data set un and strobes can
be found in the INS8@#73 Data Sheet. Usually the NSC Tiny RASIC proqgram
itself does not have to be concerned about outnut timing as NSC Tiny
RASIC is very slow with respect to TIL or any other semiconductor
technology. Almost any circuit can easily follow the output from an
NSC Tiny BASIC program. On the other hand, it is easy to feed data to
the computer too quckly for NSC Tiny BASIC to follow. For many control
aoplications, a response time cn the order of a second is adequate, and
in thoce cases NSC Tiny BASIC can be used in an on-line device. Faster
response can be obtained by using interrunts or nrogramming in the
INS8373 assembly lanauage. National Semiconductor Publication Number
UP3=-4203%6255-A%1 Aescribes the facilities of the assembler,

Even if the assembler is to be used, NSC Tiny BASIC is still a cood
way to check out the algorithms and the interfaces quickly and
inexpensively., Use of the assembler is considerably more time
consuming and costly than writinag in NSC Tiny BASIC.

1.2 Hardware Interface

The circuit, shown below, is in two parts. The first part lights an
LED when the apnropriate NSC Tiny BASIC command is given. Instead of
an LED the circuit could have a relay, or other device that is to be
controlled. The LED, of course, could also be part of an onto-isolator
or the input to a solid state relay.

The NSC Tiny BASIC statement:
>s@#7FFF=1

puts the value | at location (in hexadecimal) #7FFF. This location,
instead of beinag a memory location, is used for 1/0. The hardware

vou are constructing has to recognize when it is beina addressed., This
occurs when the number #7FFF appears on the address lines, labelled A2
throuah A15 (nins 9 through 19 and 21 throuah 25 on the INS8®73 As it
haopens #7FFF in binary is @111l 1111 1111 1111 so you want to recoanize
when all address lines are hich. There are Aa number of ways to do
this., Three DM8131 bus comparators would do, but vou may choose the
more elementary method of ANDino the lines toaether. To do this two
UM74LS37 eight input NAND gates are used. The output of the DM74LS30
is low only when all eight inouts are high. Thus the address is
correct for the device when the outouts from both DM74L.S334S are low.

The two outputs from the DM74LS3%“S go into one NOR gate of the quad
NOR (a DM74LS22). This NOR is high when both inputs are low. You will
need a low when the outputs from the DM74LS33“S are lows therefore,
ADM741.674 is used as an inverter.

Now the circuit can detect its address, but all kinds of signals Aapoear
on the address bus when a program is running. Therefore, another line
NADS (pin 6) is on the bus. This line is normallv high but goes low
when the CPU puts an address on the bus as part nf a memory write in-
struction. This is the only time that you want the circuit to "look
at" the address lines. Another section of the DM741.S0?2 detects when
the address is #7FFF at the same time NWDS is low. At such times the
output of this NOR gate goes hich. This signal clocks one of the flip-
flops of a DM74LS74, This is a D type flio-floo so that when the clock
makes an uoward transition the logic level at the data input is cooied
to the Q outputy it is held at that level until the next positive edge
on the clock triagers the flin~flop. Thus the DM74LS74 captures the
data from the bus on data line D@ (oin 33). Any of the data bits could
have been used, this is an arbitrary choices in fact, by using four
DM74LS74%s all eight bits could be used,

This half of the circuitry can be summarized as followst when the
nroner address annears on the address bus, and NWDS is active, the low
srder data bit appears on the output, and is held there, This bit is
itsed to light an LED.

1-98

—

DM74LS04

ms———£:>0——

A14

A13

A12

Al1l

A10
A9

A8

A7
A6

A5
A4

A3

DM74LS30

DM74LS30

A2

Al

A0

NRDS

DM74LS02 DM74LS04

DM74LS02

1

DM74LS126

DO

0 >

NwWDS

Vce

5K

DM74LS02 -

Figure

75

PRE

CLK [¢)
CLR

1#~t. LED I/0 Schemati

< |

DM74LS74

¢ Diagram

Inout to a computer is simoler. A pullup resistor and a switch puts a
logic @ (switch closed) or a logic | (switch open) on the input of a
TRI-STATE buffer (DM74LS126). This is the desired logic level we wish
to communicate to the comouter. The output of the buffer is fed to the
same bit # of the data bus. This demonstrates the hi-directional
nature of the bus., The same nin (oin 33 which was {ust used for output
is now used for input. The comouter knows which is which by putting
another signal NRDS (pin 4) on the bus whenever it wants data.

Ahen NRDS is low the comouter expects the circuit you are huilding to

~lace data on the data lines. The TRI-STATE buffer is in its high-
imoedance state, thus not affecting the bus, until a signal aates 1it.
The sianal is the NOR of NRDS and the address circuit already de-
scribed. Thus the value of the switch is put on the bus only when
NRDS is active and the correct address is on the address bus. Another
method is available to the user of the example system shown in Section

3.
1#.3 Example System LED Flasher

An easy way to attach a switch and LFD to the example board is shown
below., The LED is connected to the output of the 8154“s 1/0 oort,
and a switch is connected to a different nort.

connector P3-5@—__} 5K \
+ —Q

connector P3-33 connector P3-48
connector P3-50 connector P3-1

il

3efore any programs are operated, the INS8154, which controls these
nins, must be initialized. Reasoning behind this can be found in the
Data Sheet for that device. To set the INS8154 to outout to the LED,

tynes
>0#9 AA2=71

Changes will also have to be made in the orecedina programs to reflect
thatt

t. The switch is now read as bit ¥ of Aaddress #9AAl

5. The LED is now bit @ of location #9AA]

3. The LFD now lights when given a # inout and goes dark when its bit
is set to a 1.

Nnce these few changes have been made, the LED flasher problems can be
implemented for tne circuit the same as the other.

There are many other ways of implementing these functions, and this
manual is not intended to instruct in hardware design, This circuit is
oresented as material for a orogramming exercise onlyv.

Placing an inverter between any of the address lines and the inouts to
the DM743775 will require that bit to be zero in order to address this
Aevice. Thus any address can be used if #EFFF is not annropriate for
your system,

1-100

14.4 Proaramming the Circuit

It is assumed that you now have the circuit wired uo, ready to test.
To test the circuit, type the following NSC Tiny BASIC statements and
watch the results.

Turn the LED ON

>O#T7FFF=1 ———=- ~-The LED should come ON
Turn the LED OFF

>8#TFFF=A ——===—- The LED should go OFF
Ooen the switch and tyne

>PRINT @#7FFF
| em—e———————— If the switch is onen, you should get |

Close the switch and tyoe

>PRINT @#7FFF
A eem——————— If the switch is closed, you should get 9

If the above didn’t hanoen, double check your 1/0 circuit before
proceeding.

The following program senses the position of the switch and makes the .
light behave accordingly?

>1 A% M=#7FFF:REM PUT THF DEVICE ADDRESS IN M
>11@ S=eM:RFM SAVE THE VALUE OF THE SWITCH IN S
>13% @M=S:REM SEND THE VALUE OF THE SWITCH TO THE LIGHT
>143 GO TO 11@sRFM REPEAT, KFEP CHECKING SWITCH
This orogram could be shortened tos
>57 @#TFFF=@#TFFF
>3 GO TO 59

but it is not as clear that way. Going back to the first proqgram, you
can see one of the advantages of software over hardware. If you want
to change the sense of the switch, have it on when it used to be off
and vice versa. all vou need to do is change LLine 136 tot

>13% @M=NOT (S)

and the switch works the other way around, without changinag a single
wire. Now the liaht is ON when the switch is closed and OFF when the
switch is open. While it is not hard to change a wire, if this were
part of A device committed to a printed circuit board, it miaht be
quite exoensive to either modify all the boards or have a new design

nut into nroduction. The software change is often far simoler.

1-101

Suppose you want the light to be OFF when the switch is closed and
blink ON and OFF when the switch is ooen.

1o M=#7FFFsREM PUT THE DEVICE ADDRESS IN M

110 S=eM:REM SAVE THF VALUE OF THE SWITCH IN S

{34 -REM IF SWITCH OPFN, BLINK LIGHT ON AND OFF

140 @M=S:GOSUR 217MtRFM LIGHT FOLLOWS SWITCH ON AND DO A TIME DELAY
150 @aM=A:GOSUB 21@tRFM TURN LIGHT OFF AND DO A TIME DELAY

1686 GO TO 111

207 REM TIMF DFLAY SUBROUTINE

21@ T=1@@tREM MAKF T BIGGFR TO INCRFASE DELAY

220 DFLAY T

23?% RFETURN

iA.5 Exercises

Rewrite the above nrogram so that the lidht blinks when the switch is
closed and the light is OFF when the switch 1is open.,

Write a nroaram so that the switch must be closed for several seconds
before the light comes ON, If the light is ON, ooening the switch
turns it OFF immediately. However, if the light is OFF and the switch
is closed, several seconds must elaose before the light comes ON. If
the switch is opmened during this time, the 1iaht will not come on, OFY
even blink,

Answers are in Anppendix A

1-102

Section 2

CHAPTER 1

1.1 Introduction

This reference quide is intended to provide yvou with information

on the use of NSC Tiny BASIC lanquage. This section will also
provide you with information on NSC Tiny BASIC commands, statements,
grammar, error messages, and control characters. A brief descrintion

of each is given along with a short examnle or two to demonstrate their
use,

This reference auide will provide a quick method of locating basic
information on NSC Tiny BASIC. For a more detailed descriotion, and
examples of NSC Tiny BASIC”’s use, Section | should be consulted.

To learn how to use NSC Tiny BASIC, you will need an INSS8#73 system
and a teletyne or CRT terminal.

2-3

CHAPTER 2

2.1 Lanquage Exoressions

2.l.1 Variables

There are twenty-six variable names which can be used with NSC Tiny
BASIC. These are the letters of the Enalish lancuage alohabet, A

through Z. The values assianed to these variables are 16-bit signed
integers. There are no fractions or floating point numbers.

2.1.2 Constants
All numeric constants are decimal numbers excent when oreceded by a
oound sign (#), If poreceded by #, the number is interpreted as a
hexadecimal number., The symbols 55 wnuld be treated as a decimal
number, while #55 would be treated as a hexadecimal number (eaual to
25 in decimal value). Decimal constants may be in the range of
=-32767 to 32767.
?.1.3 Relational Onerators
Pelational Onerators are the standard BASIC symbolss:

= equal to

> qreater than

< less than

<= less than or eaual to

>= greater than or eaual to

<> not equal to

The relational onerators return either a # (FALSF) or -1 (TRUE)
as a result., NOTEs »>< 1is an illegal operator.

2.1.4 Arithmetic QOoerators

Standard arithmetic onerators are nrovided for the four basic Aarith-
metic functions,

+ Addition

- subtraction
'/ division

* multiolication

2-5

aArithmetic is accomplished by standard 16-bit twos—-comnliment arith-
metic. Fractional quotients are truncated, not roundeds therefore,
16/3 will qive 5, 17/3 will also agive 5 as a result. Remainders re-
sulting from division are dropped. No attempt is made to round off

the quotient. As usual, division by zero is not nermitteds it will
result in an error break.

The usual algebraic rules for order in evaluating exoressions is
followed. The order of evaluation is controlled by narentheses, and
their liberal use is advised. They provide clarity and avoid confusion

in complicated exnressions.

2.1.5 Logical Ooerators

NSC Tiny BASIC provides Logical Operators AND, OR and NOT in addition
to the arithmetic onerators. These perform bitwise loaical onerations
on their 16-bit arauments Aand produce 16-bit results. The AND and OR
onerators are called binary ooerators because they nerform an oneration
on TWO arguments (or operandsj). An examnle follows with binary inter-

oretationt

>LIST

19 A =75 A = G009 AnR3 @100 1311
27 B = 99 R = AGAA AAAA A11G A1
32 C = A AND B C = 2000 AR08 A1ea a1l
4% PRINT C

>RUN

67

2.1.6 Logical AND

>LIST

12 INPUT A

27 INPUT B

3@ IF (A>5@) AND (B>53) THEN GO TO 60
A@ PRINT "ONF OR BOTH ARE SMALL"

52 GO TO 19

64 PRINT "BOTH ARE BIG"

7% GO TO 1@

>RUN

? 51

?7 52

BOTH ARE BIG

? 51

? 49

ONE OR BOTH ARE SMALL
7 49

? 49

ONF OR BOTH ARE SMALL
I?AC

STOP AT 1@

>

2-6

2.1.7 Logical OR

>LIST

14 INPUT A

2A INPUT B

3% IF (A>5@) OR (B>5#) THEN GO TO 64
4 PRINT “BOTH ARE SMALL"

52 GO TO 18

6% PRINT MONE OR BOTH ARE BIG"

73 GO TO 10

>RUN

?7 51

? 52

ONE OR BOTH ARE BIG
? 51

? 49

ONEF OR BOTH ARE BIG
? 49

? 49

BOTH ARE SMALL

?°C

STOP AT 1o

>

2.1.8 Logical NOT

The third logical operator (NOT) is a unary operator. It performs
an operation on only ONFE araument, as followst :

>LIST
>12 A = 11 A = GAOG APOG AA2a @11 = 11

12
»2¢ B = NOT A
>34 PRINT B ' B= 1111 1111 1111 21 = =12
>RUN 1A
-2

2.2 Functions

There are several functions that may be used in arithmetic exnressions
in NSC Tiny BASIC. These are described below.

2.2.1 MOD (a,b) Function
Returns the absolute value of the remainder a/b, where a and b are

arbitrary expressions. If the value of b is zero, An error break will
occur as in any division operation. As an examnlet

>I1? A = 95 2

>4 B = 44 44/ 95

>3% PRINT MOD (A,R) 88

>RUN T ———— MOD (95,44)
7

2-7

2.2.2 RND ta,b) Function

Returns a pseudo-random integer in the range of a through b, inclusive,
For the function to perform correctly, a, should be less than, b, and
b-a must be less than or equal to 32767 (base 16). A typical examole
iss

>173 PRINT RND (1,100)
>RUN
27

5.2.3 STAT Function

Returns the 8—bit value of the INS8273 Status Realster. STAT may
appear on both sides of an Assianment Statementt so, the programmer
can modify the Status Recister as well as read it. The Carry and
Nverflow Flags of the register are usually meaningless, since the
NSC Tiny BASIC interpreter itself is continually modifying these
flags. The Interrupt-Fnable Flaa may be altered by an assignment to
STAT these flags. The Interrunt-Fnable Flag may be altered by an
assignment to STAT (such ast STAT = #FF). Location of individual
flags are shown below?

Most : Least
Significant ‘ Significant
Bit ’ Bit
7 6 5 4 3 ? 1 %]
CY/L ov SB SA F3 F2 F1 IE

Example of uses

>1% LET A = STAT
>2¢ PRINT A
>RUN
176 =————- -—-The decimal number, 175, translates to?
1 311230 A binary.

2.2.4 Status Register Bit Functions
The function of each bit in the Status Register is described below?
BIT DESCRIPTION

7 CARRY/ZLINK (CY/L): This bit is set to | if a carry occurs
from the most siagnificant bit during an add, a compliment-and-
add, or a decimal-add machine lanauage instruction. This bit
may also be set by the operations performed by the SHIFT RIGHT
WITH LINK (SRL) and the ROTATF RIGHT WITH LINK (RRL) machine
language instructions. CY/L is input as a carry into the bit @
nosition of the add, compliment-and-add, and decimal-add machine

language instructions,

2-8

2.2.5 TOP Function

Returns the address of the first byte above the NSC Tiny BASIC nrogram
in the current page which is available to the user. This will be the
address of the highest byte in the NSC Tiny BASIC oroagram plus I. All
the memory in the RAM above and including TOP can be used by the NSC
{iny BASIC orogram as scratchpad storage. As an examole?

>13 PRINT TOP
>RUN
44030 2 —m—m——— 4400 is the first address of unused RAM
2.2.6 INC (X) and DEC (X) Functions

These statements increment or decrement a memory location X.
Fxamplest

>\ A A32

LET X
>20 (

=|
INC (XD

>50
>60

(X)
(6004)

DEC
INC
>77» DEC

These instructions are used for mul tinroc

able. This means
aver one executes
must remain idle.
nications between

(60a1)

essing and are non-interrunt-
that if two 8@737s are used on the same bus, when-—

an INC (X) or DEC (X) instruction, other brocessors
These instructions are used, generally, for commu-
nrocessors in a multinrocessor system,

2.3 Statements

2.3.1 INPUT Statement
Data can be input to an NSC Tiny BASIC orogram by using the INPUT
statement. One or more items (variables, exoressions etc.), secara-=

ted by commas, may be entered according to the followinag formatss

17 INPUT A
27 INPUT R,C

1% is executed, NSC Tiny BASIC opromnts the
The user types in a number which is assign—
ad to the variable A after the RETURN key is oressed. NSC Tiny BASIC
then promnts the user with another question mark. The user tvoes in
two exnressions, separated by commas, which will he assigned to B Aand

C in that order.

When the statement at Line
user with a question mark.

RUN
? 45

? 237, 4455

2-10

(G2

N

OVERFLOW (0OV): This bit is set if an arithmetic overflow occurs
during an add (ADD, ADI or ADE) or compl iment-and-add (CAD,

CAI or CAF) machine language instructions. Qverflow is not
affected by decimal-add (DAD, DAI or DAE) machine langquaage in-
structions.

NOTE: The above two hits may be of little or no use in an
NSC Tiny BASIC orogram.

SENSE BIT R (SB)t This bit is tied to an external connector
pin and may be used to sense external conditions. This is

a "read-only" biti therefore, it is not affected when the con-
tents of the accumulator are copied into the status reagister

by a STAT instruction. It is also the second interrunt inout
and may be examined by the "ON® command.

SENSE BIT A (SA): This bit is also tied to an external connect-

or pin. It serves, as does SENSE BIT B, to sense external con-
ditions. In addition, it acts as the interrupt inout when the
INTERRUPT FNABLF (see bit 3 of status reaister) is set. This
bit is also a "read-only" bit. The same HON" command may be
used to sense this innput. This flag is used by NSC Tiny BASIC
as the serial input bit from the TTY or CRT.

USFR FLAG 3 (F3): This bit can be set or reset As A3 control
function for external events or for software status. It is
available as an external outout from the INSB#AT3.

USFR FLAG 2 (F2): Same as F3. This flaa is used by NSC Tiny
BASIC to control the paper tape reader relay.

USFR FLAG 1| (F1): Same as F3. This flag is used by NSC Tinv
BASIC as the serial outout bit (with inverted Adata) to the
TTY or CRT.

NOTE:s The flag 1, ? and 3 outputs of the status register serve
as latched flags. They are set to the specified state
when the contents of the accumulator are copied into the
status register. They remain in that state until the
contents of the status reaister are modified under oro—-
gram control.

INTERRUPT FENABLF FLAG (1E): The processor recoanizes the inter-
runt inputs if this flag is set. This bit can be set and reset
under proaram control. When set, NSC Tiny BASIC recoanizes ex-
ternal interruot requests received via the SENSE A or B inouts.
When reset, it inhibits the INS8473 from recoanizing interrunt
requests.

2-9

NSC Tiny RASIC would now continue with execution of the nrogram.
String input is also allowed. See the String Handling section in this
chapter for more information.

NSC Tiny BASIC accepts both numbers and expressions typed in resoonse
to an INPUT request. For examplet

>12 A=A
s2¢ INPUT B,C
>3 PRINT B,C
>RUN
2A4+] A*2

11 20

The comma between the entered expressions is not mandatory and can be
renlaced by spaces if the second exnression does not start with a nlus
or minus sian. ‘

There must be at least Aas many expressions in the input list as vari-
ables in the INPUT statement. If an error occurs when NSC Tiny BASIC
tries to evaluate the tyned-in expression, the message?

RETYPFE

ig printed along with the error me ssaqge, and the question mark (?)
orompt will appear aoain so that the user can type the aypressions
correctly.

The correct response to an “MINPUT sfactor’ statement is a string,
terminated by a carriage return. Quotation marks are not used for
inout.

INPUT may not be used in the command mode.
2.3.2 PRINT Statement (Output)

The PRINT Statement is used to output information from the program.
Quoted strings are displayed exactly as they anpear with the auotes
removed. Numbers are orinted in decimal format. Positive numbers will
he precered by a snace, and negative numbers will be preceded by a
minus (=) sign. There is a trailing space for all numbers. A semi-
colon (3) at the end of A PRINT Statement suppresses the usual carriage
return and line feed with which NSC Tiny BASIC terminates the outout.

Strings stored in memory (such as those aenerated by a String Inout
Statement) may also be nrinted. Refer to the String Handling Section
in this chapter for more information. Typical examplet

>PRINT “THIS IS5 A STRING"
23 A=10¢

>37. B=2A

>4@ PRINT "1@ PLUS 20=", A+B
>RUN

THIS 15 A STRING

14 PLUS 20=30

2.3.3., LET Statement (Assignment)

The word, LET, may be used or omitted in an Assignment Statement.
The execution of an assianment statement is faster if the word LET is
used. The left portion of an Assignment Statement may be a simnle

variable (A=Z), STAT or a memory location indicated by an 8 followed
by a variable, number or an expression in parentheses, (refer to

Indirect Operator for more information). Fxamnles?

LET X=7

X=17

LET E=I*R
E=1*R
STAT=#70
LET @A=255
€(T+36)=#FF

Conditional assignments may be made without using an IF statement.
The method hinges on the fact that all nredicates are actually evalu-

ated to yield -1 if true, and @ if false. Thus, if a nredicate is
enclosed in parentheses, it may be usad as a multiplier in a statement
ast

LET X= =A*x(A>=R)+A*x(A<P)
which would assian the absolute value of A to X.
2.3.4 The GO TO Statement

NSC Tiny BASIC allows GO TO Statements to allow program branches to A
specific line number or a line number called by an arbitrarv ex-
nression. As examples?

19 GO TO 59
would cause the nroaram to jumn from Line 1@ directly to Line 57, but
14 GO TO X+5

would cause the proagram to jump from Line 14 to Line Xx+5, Thus, the
value of X is variable allowing dynamic control of program execution
at this point.

2.3.5 GOSUB/RFTURN Statements

Theee instructions are useful when a computation or operation must be
cerformed at more than one nplace in a program. kRather than writes the
routine at each place where needed, a GOSUR instruction is used to
neall® the computation or operation (referred to as a SURROQUTINE).
After the subroutine has been executed, a RETURN instruction (the last
instruction of the subroutine) causes the nrogram to resume exectition
at the next line number following the oriainal GOSUR instruction. As
an examnle: .

MAIN PROGRAM

12 LET X=5
27 B=X+8
. . SUBROUT INE
54 GOSUB 209 —» 203 Y=X+B/A
6@ X=A/B o, .

7

. L

133 GOSUB 20@”° __ ——=253 RETURN

113 X=X*R&——"""""
On the first GOSUB call, the order of execution follows the solid
arrows. At the second GOSUB call (Line 148), the order of execution
follows the dashed arrows.

NOTE: GOSUBs may be nested up to 8 levels deen (including interruot
levels).

2.3.6 IF/THEN Statement

This instruction allows for orogram control to be modified by a logical
test condition. The test condition follows the IF clause of the state-
ment. When the test condition is true (non—-zero), the THEN portion of
the statement will be executed. When the test condition is false
(zero), the THFEN oortion is ignored and execution continues at the next
numbered line of the oroqram.

53 IF X>J THEN GO TO 144

NSC Tiny BASIC allows the omission of the word THEN from an IF/THEN
Statement. This omission, also allowed on some larger BASICs, enhances
the clarity of the program. The above statements then become?

54 IF X>J GO TO 140
2.3.7 DO/UNTIL Statements

This instruction is not available in standard BASICs. This statement is
used to program loops, keeoing GO TO statements to a minimum. The
overall effect is to greatly improve readability and clarity of NSC
Tiny BASIC proarams. The following example shows the use of DO/UNTIL

Statements to print numbers less than 106

14 PRINT {2t PRINT

2% PRINT 2

3% I=3 tREM I IS NUMBER TESTED
4 DO

54 J=1/2 tREM J IS THE LIMIT

6@ N=i tREM N IS THE FACTOR

73 DO tREM SEEKS A DIVISIBLE FACTOR OF I
87 N=N+2

9@ UNTIL (MOD(I,N)=@ OR (N>J))

1@ IF N>J PRINT I tREM NO DIVISIBLF FACTOR
o I=I+2

1224 UNTIL (I>102) tREM ENDS THE SEARCH

Ry enclosing a zero or more statements between the DO and the UNTIL
<condition> statement (where the <condition> is any arbitrary ex-
oression), the statements between will be reoeated as a arouo until
the <condition> evaluates to a non-zero numher (a true condition). DO/
UNTIL loops can be nested, and NSC Tiny 8ASIC will reoort an error if
the nesting level becomes too deen, (more than eight levels).

2.3.8 FOR/NEXT Statements

These statements are identical to the FOR/NEXT Statements in standard
BASICs. The STEP in the FOR statement is ontional. If it is not in-
cluded, a STEP value of +! is assumed. The value of the STFP may be
sither nositive or neagative. Starting and ending values of the FOR/
NEXT loop are included in the FOR statement. The loop is repeated
when the NEXT statement has been executed nrovided the upper limit of
the FOR statement has not been reached, When the upper limit is
reached, the nrogram will exist from the FOR/NEXT loop. NSC Tinv
RASTC causes an error break if the variable in the NEXT statement is
not the same variable as that used in the FOR statement.

FNR/NFXT loons may be nested, and NSC Tiny BASIC will renort an error
if the nesting level becomes too deep3 a deoth of four levels of FOR
loop nesting is allowed. A FOR looo will be executed at least once,
sven if the initial value of the control variable already exceeds its
hounds before startina. The following nrogram would do nothing but
print the odd inteqgers less than 104,

1A N=120 tREM UPPER LIMIT

2% FOR I=1 TO N STEP 2 sRFM START AT | WITH STFP OF 2
3 PRINT 1 tREM PRINT A NUMBRER

40 NEXT I tREM REPFAT (at Line 200)

2.3.9 LINK Statement

Control may be transferred Trom an NSC Tiny BASIC orogram to an INS
A?73 machine lanauage routine by means of a LINK Statement. This
allows the user to make use of routines which may be more efficientlyv
nerformed in machine lanquage. A statement of the form L INK <address>
will cause control to be transferred to the INS8A73 machine languaqe
routine starting at <address>. (ontrol is transferred by execution of
a JSR instruction. The nmointers may be modified by the routine. P37’s
value is unnredictable, and P2 noints at the start of A-Z variable
storage. Variables are stored in alphabetically ascendinag order, two
bvtes each, low order byte first then high-order byte.

Examplet

>1m LINK #1809 NSC Tiny BASIC transfers to
>23 IF A=@ THEN PR MSENSE A IS LOW" address #1872 to read
>3 IF A=1 THEN PR MSENSE A IS HIGH" sensor,

>99 STOP Program transfers back to
>RUN : NSC Tiny RASIC

SENSE A IS HIGH

STOP AT 99

>RUN

SENSE A IS LOW

STOP AT 99

| .TITLE SENSE

2 AA0A «=A1827 sHEXADECIMAL

3 18000 06 I.D A,S

4 1801 D4l AND A,=16

5 IR8A3 6CA2 BZ LOW

6 1805 C401 LD A,=!

7 1807 CA@ ST A, P2 $ STORES ACCUMULATOR INTO LOCATION
8 1829 5C RET OF VARIABLE A :
9 aana JEND

2.3.1@ ON Statement

This statement is used for processing interrupts. The format of the
statement ist

ON interrupt-#1, line-number

When numbered interrupt (interrunt-#) occurs, NSC Tiny BASIC executes
a GOSUR statement beginning at line number #] i ne=numberh, If "line~
number® is zero, the corresponding interrupt is disabled at the soft-
ware leval. Interruot numbers may be 1 or 2. Use of the ON statement
disables console interruots (BRFAK function). Interrunts must also be
enabled at the hardware level by setting the Interrupt Enable bit in
the status register (for examnle, using STAT=1).

2.3.11 STOP Statement

Althouah the. last line of a nrogram does not need to he a STOP state-
ment, it is a useful debuggina tool for programs. The SIOP statement
may be inserted as breakpoints in an NSC Tiny BASIC orogram.

When NSC Tiny BASIC encounters a STOP statement, it prints a stoo

me ssage and the current line number. It then returns to the edit mode.
Thus, the programmer can see whether his program reached the desired
point. Any number of STOP statements may Aapnear in the program. By
removing the STOP statements, one by one, a program can be tested by
narts until the debuagina process is completed.

Execution of a stonned nrogram may be continued after the STOP by a
CONT (continue) command,

2.3.12 DELAY Statement

This statement delays NSC Tiny BASIC for "expnr” time units (nominally
milliseconds, 1-134®). Delay @ gives the maximum delay of 1#42 milli-

seconds. The format is:
DELAY exnr

Example?

>1? DELAY 100 Delay 149 milliseconds. .

2.3.13 CLEAR Statement

This statement initializes all variables to @, disables interruos, en-
ables BREAK capability from the console, and resets all stacks (GOSUR,

FOR-NEXT, DO-UNTIL).

Examplet
>I1# ON 2,257 Break is disabled, Interrupt 2 is enabled.
>300 CLEAR Break is re-enabled, Interrupnt 2 is disabled.

2.4 Indirect Operator

Tre Indirect Operator is an NSC Tiny BASIC exclusive, at least in the
realm of BASIC. It accomplishes the functions of PFFK and POKE with a
less cumbersome svntax. The Indirect Ooerator is a wav to access abso-
lute memory location althouah its anolications are not limited to that.
Its utility is especially significant for microprocessors, such as the
INSBA73, where interfacing is commonlv nerformed through memorv ad-

dressing.
An M"at" sign (@) which preceeds a constant, a variable or an exnression
in parentheses causes that constant, variable or exnression to be used

as an unsigned 16-bit address at which the value is to be obtained or
ctored. Thus, if an innut device has an address of #6807 (hexadecimal),

the statement:
LET X=@e#s800

would input from that device and assign the value of the inout to the
variable X. If the address of an outoput device was #6841, the state-

mentt
BHGBAL =Y

would outnut the least significant byte of Y to the device.

The indirect operator accessing memory locations only one byte at a
time. An assianment such as @A=248 chanaes the memory lnocation point-
ed to by A to 248 (1111 109%) binary, since 248 can be exnrasced as one
byte. However, an assianment such as @A=?58 changes the memnry location
nointed to by A to 2 because the value of 258 cannot be exoressed by A
single byte, as shown below?

258 = | AR%D G210

12 7 ;:::]“_‘ :
extra bit one byte (stored into location to which A would noint)

Only the least sianificant byte of 258 (which is 2) is stored at that
location. The extra bit would be lost forever,

Any place that a variable, such as B, would be legal, the construct
"aBY would also be legal. The meaning of @R ist the byte located at
the memory location whose address is the value of B, Other examnles?

47 LET R=6009 Assigns 60343 to B.

5% LET @ B=120 Stores decimal 10# in memory location 6009,

67 LFET C=@B Sets C=to 124,

7% PRINT @6009 Prints 100.

8a LET D=@(A+|A*D) Sets D=the value stored in memory location
(A+10%xD) .

Parentheses are required when aonlying @ to an exoression.
2.5 Multinle Statements On A Line

More than one statement can bhe placed on one program line. This is
accomplished by placing a colon between the statements. Readability
of the program can be improverd, and memory space CcAan he gsaved by usina
this technique. As an example of the use of multiple statementss?

243 PRINT “MY GUFSS IS",YtPRINT #INPUT A POSITIVFE NUMBER"3§?
INPUT XsIF X <= GO TO 200

If X is negative or zero, the user will be instructed to enter a
nositive numbher, and the nroagram returns to Line 207 for a new qQuess.
If the user had entered a positive number correctly, the oroaram

would have oroceeded to the next numbered line after Line 209,

Care in use of multiple statements per line must be exercised, The
above examnle shows that if the condition of the IF STATEMENT is false,
control is passed to the next program 1ine. Anythina else on the line
containing multinle statements will be icnored,

2.6 String Handling

String input may be accomolished by executing a statement of the form

INPUT s F, where F is a Factor syntactically (see Grammar). When the
orogram reaches this statement during proaram execution, NSC Tiny BASIC
nrompts the user with a auestion mark (?). All line editing characters

may be used (back space, line delete, etc.). If a control=U is tyoed —
to delete an entered line, NSC Tiny BASIC will continue to promnt for a

line until a line is terminated by a carriage return. The line is

stored in consecutive locations starting at the address nointed to by

Fy un to and includina the carriage return. Fxamplet

283 INPUT $ A may also be written 20 INPUT sA

and inputs a string to successive memorvy locations starting
at A.

2.6.]1 String Outout

An item in a PRINT statement can include a string variable in the form
of $B, where B is a factor, When the print statement is encountered
durina orogram execution, the string will be printed beainning at the
address B up to, but not including, a carriaage return. A keyboard
interrunt will also terminate the printina of the strina if detected
before the carriage return. FExample:

5@ PRINT s$R nrints the string beainnina at the location
pointed to by HWRH,

2.6.2 String Assignment

String variables can be assigned to characters in quotes just as other
variables are assigned numerical values. A statement of the form S$C= —
"THIS STRING IS A STRING" (when encountered during nroaram execution)
would cause the characters in quotes to be stored in memory starting at
the address indicated by C up to and including the carriaage return.
Example:

7 sD=%THIS IS A STRING WITH NO INPUT STATEMENT.®
A WTY is stored at location "D", and H at location "D+i" etc.

§.6.3 String Move

Strings can be moved from one memory block to another memory block using
this feature. A statement of the form $A=$B (where A and R are Factors)
will transfer the characters in memory beainning with the address B to
the memory beginning with adidress A. The last character, normally a
carriaae return, is also conied. Also. a statement such as S(A+i)=$4
worrld be disasterous since it causes the entire contents of the RAM to
e filled with the first character of S$A.

2.6.4 String Examnles

13 A=TOP tRFEM A POINTS TO EMPTY RAM ABOVE TOP OF
PROGRAM

2% C=TOP+100 tREM C POINTS TO RAM 102 BYTFS ABOVE A

37 D=TOP +27% tRFEM D POINTS TO RAM 199 BYTES ABOVE C

47 INPUT $A tDEM STORFES CHARACTFRS WHERE A POINTS

57 PRINT $A

60 LET $C= “IS THE STRING INPUT AT LINE la*

77 sD=sC tREM STORES CHARACTERS WHERE D POINTS

8¢ PRINT s$D

2.7 Commands
2.7.1 NEW expr

This command establishes a new start-of-program address equal to the
value of “expr®. NSC Tiny BASIC then executes its initialization
sequence which clears all variables, resets all hardware/software
stacks, disables interrupts, enables BRFAK capability from the console,
and performs the nondestructive RAM search described in nart one. If
the value of Yexpr" points to a ROM address, the NSC Tiny BASIC nroagram
which begins at this address will be automatically executed. Program
memory (includina the end-of-nroaram pointer used by the editor) is not
altered by this command,

Examnlet
>NEW 1 00¢

NEWN used without an argument sets the end-of-program pointer equal to

the start-of-program pointer so that a new program may be entered, If
a orogram already exists at the start-of-nrogram address, it will be

lost.

Examnles

SNEW 1900 Sets program pointer to 1000

NEW Sets end-of-program oointer to 1829
2.7.2 RUN

Runs the current program,
Examolet

>RUN Execution begins at lowest line number

2-19

?.7.3 CONT

Continues execution of the current program from the point where

execution was suspended (via a STOP,

console interruot, or reset).

An NSC Tiny BASIC program that is executing can be interrunted by
oressing the BRFAK or RESET keys on the keyboard. FExecution can
be resumed by enterina the CONT command .

Examole:?

>RUN

THIS IS THE
THIS IS THE
THIS 1S THE
THIS 15 THE
~C

>CONT
. THIS IS THE
THIS IS THE

ANd SO ON..s

2.7.4 LIST (expr)

STRING
STRING
STRING
STRING

STRING
STRING

INPUT
INPUT
INPUT
INPUT

INPUT
INPUT

Lists the current proaram (ootionally starting at the line number
specified by (exor)).

FExamples
>LIST 10

12 INPUT sA
20 PRINT SA

3% LET s$C=¢1S THE STRING I

4@ $D=sC
5@ PRINT sD

_
AT LINFE 10
AT LINE 12
AT LINE 18
AT LINE 1# Press BRFAK or RESET.
AT LINF 19
AT LINE {2
NPUT AT LINE ip# —

2-20

Section 3

CHAPTER 1

l.1 Introduction

The desian of an INS8@73-based system is quite straightforward., Figures
{-1 through 1-3 illustrate this voint. Fiaure I-1 shows A minimum size
RAM-based system$ this is the kind of system used in engineering labs
for software development. For stand—alone program oneration a =system
like the one shown in Figure 1-2 can be used, provided %56 bytes of RAM
are available for variable storage. Fiaqure 1-3 is Aan exnansion of this
system to allow a 32-bit parallel 1/0 interface,

ADDRESS

ouT —®»| BUFFER __K. ADDRESS
RS-232 |SAZ INTA

TERMINAL ? DATA |<QEPP{DATA
>
H—

NRNS READ
IN ‘——‘BUFFFR“—W NWDS WRITE
| EXTERN AL
INS8273 PROGRAM RAM
{Includes the
ouT —®| BUFFFR 256 bytes used
hy NSC Tiny BASIC)
TITY IN 4—BUFFER |[¢—@—F! SR/ INTB |€—
~USER [/0
F3e—
RDR
RELAY 44— BU FFFR |4— Fi

NOTE:t It is not necessary to have a TTY and an RS-232 terminal,
Either one may be omitted.

Figure t-t., Minimum RAM-Based System

3-3

USER I/0

Figure

INS8773

—®|sA/INTA ADDRESS

—»|SB/INTB DATA

<+—|F1 NRDS

<+—i{F>

<—{F3

NWDS

-2 . Minimum ROM/EPROM-Based System

PROGRAM
ROM/EPROM

ADDRESS
DATA
ENABLE

RAM
{256 BYTES
MINTIMUM)

3-4

ADDRESS
DATA

READ

| WRITE

INS8373
—pSA/INTA Da-D7

_—»(sB/INTB AB-Al5|

MM2716

Da-D7

AD=AlD
cS

Fi NRDS Ok

F2

111

F3 INSB154

AG-A6

M/10 PAZ-PA7 0

1%
CS1

DA-D7
pr-pr7 |

NRDS

NWDS

NWDS —
! 32 1/0
LINES

INSB154

AA—AL
M/10 PAA-=PAT
CcSh

CS1

¢

Da-D7

PRA-PB7

L

NRDS

NWDS

Figure 1=3. I/0 Expansion of the Minimum ROM-Based System

3-5

1.2 An NSC Tiny BASIC Fxample System, Functional Snecification

It is obvious, from the nreceding examnles, that by usina only A small
number of ICs, an extremely powerful and flexible system can be easilv
develoned. To illustrate this noint, we will design a system 0
satistfy all of the following reauirements?

|. To allow the user to enter, debug and execute RAM-based NSC
Tiny BASIC proarams un to 137 lines in lenath.

2. To interface to a tesrminal or TTY for oroaram entry and
debua. Multirle data rates (110, 329, 1234 and 48047 Raud)

should be sunncrted.

3, To allow the user to transfer RAM resident pnrograms into
EPROM, ‘

4, To allow an FPROM nrogram to be run in a real-time control
aoplications where a terminal is not present.,

5. To have ample I/0 canmability flexible enouah to interface to
most user systems.

6. To nrovide the user with "scratchpad® RAM for use when assem-
bly language subroutines are invoked via the "LINK" statement

7. To supnort at least two interruots.
8, To fit the entire system on a sinagle 5" x 7% PC card.
9. To satisfy all desian requirements using a minimum number of
IC’s. Fxpansion of the minimum system should he accomplished
by simnle addition of “optional" RAM, FPROM and I/0 devices
on the PC card.
Although meeting all of the ahove requirements may at first seem diffi-

cult, these objectives are easily attainable, as the following para-
aranhs will show,

3-6

Z
7415368 | ya.g
7
[
b
3 o M
+sV 3_”“ o :
P + -
+3V R Joo K =
) ¥, ol ~_°k pm
w55, T N ¥
St ¢) == 330F 9 MM 2114
4 vz & MN -
e -y 2329
e———T— 12V = 2egRivIes I3 Sua
ol bl el of o oers
r3-|
L&&_i 3 NBREQ s
p3-49 Ao ::. -
?’;—5’0 sy :.’L 23)
22
£3-32 Zienm Al
£l é Sops
9 o Aud
Xy T’ L A7 .'2
= Ag T4
- A L
pay.1) "2
| o AR 1]
<£3° NENOWT - ::: o
73 AS] k] -
i :
2
K n 1] -
& 2l
€3 o be 1-21
A}
;) R3 S
€4 0 e
100K News
R4 Y 16
] 2 Xouf e
13 4.0 Mi2 3 p
€2 == 27F, 5% + Y P P A 190 VT B Lt o ca I P4 4 Y B Y% ~
| =
L o .or‘l_ 273R¥L42Iqx RABENRES W2 £
NS 20713 $ % MMZ1lb (LPTICNAL) Vi6 Cetgnay []
U\ Ya i § i
L 6 5§ ¢ z £ g ¢ ~
u9 P o U © 5 §
S R \ A rep T L% =l 3 © jv “
INPUT 62K cpy R AL 2y i +
2
x .
INAA
—_—
A 2 Sh
RP2 N
b 8 €10
U4-N +5Y I
Ty , Ti-24 e 9 |
AT+ Pa-l 1 745368
c3 -l—-\uf CRAZS N4 2
[
GNY e 741502
(887]
T2 RS = En £ 3
-
::\Z -2 v 2%
' bk Fi ®S-232 00T o
© ~N
- &0 [1
Com «I—\—l—j— ¥V ———— V(O o b ‘
— i
NoTES
YEXCEPT FOR (S (PINQ), AL DTHER |
?3-3) 3¢ 7) EXCEPT Fox (S (PING), AL DTHER
< F3 I)EXCERT FoR PDIpeM (PN W) CS (P
4) UNLESS OTHERWISE ADTED:
13 (OE20 * ALL RESISTORS ARE % W, 10
) { 35 4 e ALL CAPACITPRS ARE 25Vy %
€21 F2 5 RDR RELAY + 5) THE FouomiNG RESToRg ARSI
: __L R £ 22K T4L5368 s
= oy -.1v—33,1 . > RDR RELAY -
K 2o pr-e !

\&\N
Rﬁnérm_ B

3-7

+sY

1%

=k o W L =)
) { s G 7] 9 g, ¢
4 % 1| mmus Mk 214 MW 214 MM Zhé M 24 MM 204
(0esioNAY loPTional) (8PTIonNAL) (ofTioNAY {otTren ALY (oemis NAL)
s Uto ou viz urs uia oS
<

U

U

r

U

y:

1gs

Rp1 HSV
2| ko
oty
WW 3%
3 an 6.2K
7|0
~of s YVW
g v 3 ? ook
¥ 41536 1 (RN 4l501 ©
y .-FTL:[| 8 o SERAANNS Jd 7 Asttetelal @ ofelzi=leleleld 8 5
L - u e
O | e ¥ lelE 2zsazxndiaa o F g ¥ 2:3TteiIg AREEBIAS FQ]
i AU . o X -
RLLE IN6 $255A (oPTIONAL) VUIg INS 3154 (ofnoNal) U1
U7
~d ot PET AT PR T D A ¢ Ceavtnw —9Q Mg ms o8 bt e
& R i R S I = <TFEFEEE EBFEFEPY U %
S RAMEREREREEE NEE cjal el =| el PEEEERED EEREREES :,l \:‘9
+SY > :
v o =% soYNTaIr Jut lzerw a1 0 P v
PSR PEP RS PR EE B AV R SN FYFIEER FERFIIIY
fopdpepp b iadadip| Y] Yoze fhriphpap DeRRegrT
-4 - Pl (0
il % PP YAEW) {
~ i Ve fl+sy 3
T [-V »
3§ o [{+sV N SV
41 9 GND
Y m/ e
P24}
= PART OF
-WF . S [7415368
. LSOD
q74 .
FEfompt e

i
i

ALL OTHER PiNs ON UW, VI3 4 VIS ARE CONNECTED SAME AS CORRESPONDING PINS ON VU3
) AL DTHER PINS ON UMD, V12 q V4 ARE CONRELTEY SAME AS CORRESPIADING PINS

on V2

NE P
PIN 1Ry |, €S (P 20) $ Vop (v 21), AL ©THER PINS oN UIT ARE CONNECTE) SAME RS CORRESPCAD! NS ON N6

oTED :

E YW, tw%h
ARE 25V, & Z0%
Tows ARE INSIDE

~

TWe g PIN S1P5: R, R7, Rig, RIZ, RIS, R20,R2) R22) R23) RZAR &5

.3 Hardware Design of a Small INS8@73~-Based Svstem'

— A system that meets all of the above design requirements is shown in
Ficure 1-4. The tyne, designation and function of each IC shown is as

followss:

IC TYPE IC DESIGNATOR FUNCTION

INSB@AT3 ul NSC Tiny BASIC processor.

MM2114 uz2, U3 U2 and U3 provide 1K bytes of
static RAM, (Each MM2114 nro-
vides 1Kx4 bits.)

74LS 368 . J4 A Inverter for TTY input inter-
face.

U4B Inverter for TTY reader relay
interface.

uy4ac Inverter for RAM address manning
logic.

u4D Inverter for power-on reset of
INSB255A.

UAE, U4F TRI-STATE inverters for selection
] : of multinle Baud rates.
T41L.S%2 . Us A Two input NOR gate. Used for

‘address maoning of the FPROM
programmer.

UsB Two input NOR gate. Userd to N
select interrupt source(s) to
INSS8AT73.

Usc Two input NOR qgate. Used in RauAd

T O e rate selection logic.
Ush Two inout NOR gate. Used for
address mappinag of the INS8154,

s

. EeRE

3-9

LM747

74LS123

14L507

7415139

MM2114

MM2716

INS8255A

UbA

U6R

UuTva

U7R

uga.,.B,C

usDb

ue

ulg-uts

ure,ut7

uia

The LM747 is a dual OP ame. U6 A
buffers the positive/negative
voltage levels received from the
RS-232 comnatible innut to the
TTL levels reauired by the
INSR®73,

UsB buffers the TTL levels gen-
erated by the INS8273 to the pos-
itive/negative voltage levels re-
quired to drive the RS-232 com-
patible output.

The 74LS123 is a dual One-shot.
U7A provides adeqguate address/
data setup time to program the
MM?2716 FEPROM,

U778 orovides the 57 msec oro-
aramminag pulse required to write
data into the MM2716 EPROm.

U8 is a quad NAND gate, USA, UBR
and U8BC are used in the Baud rate
selaction logic.

Used in the RAM address maoping
logic. :

Dual 2 line to 4 line decoder

with active low outputs. Pro-
vides address mapping for RAM,
EPROM and 1/0 ICs,

Provide an additional 3K bvtes
of ootional RAM proagram memorv.

Provide un to 4K bytes of option-
al ©“PROM program memory. (Each
M2 716 contains 2K bytes,)

Ontional Programmable Perioheral
Interface chip., Provides 24 1/0
lines that may be used to inter-
face with the user’s system. 1/0
oins may be programmed as inouts,
outnuts or bidirectional, in-
cluding the required handshake
signals. (Refer to the INSR255A
Data Sheet for additional infor-
mation.)

INS8154 uto Ontional 178 byte RAM=I/0 chin.

: Provides 128 bytes of scratch-
pad RAM for use in assembly
lanqguage subroutines. Also pro-
vides 16 1/0 lines that may be
individually nroarammed as in-
put or outout, includina strobe
mode with handshake. (Refer to
INS8154 Data Sheet for addition-

al information.)

Note from the above tabulation that the minimum system consists of only
nine IC’s Ul - U9. Together they orovide 1K bytes of RAM program mem-
ory, an RS=232/TTY interface, an MM2716 FPROM programmer, automatic
Baud rate selection and complete decodina for the fully expanded
system. The fully exnanded system consists of 19 IC’s.

Figure 1-5 Photo of NSC Tiny BASIC Card

1.4 Addressing Requirements/Capabilities of Fach System Comoonent

Each of the system components shown in Fiqure |-4 must be assiagned
to address locations in memory. The built-in address decoding cao-
ability of each system component can be summarized as follows?

4K Bytes of RAM

Fach of the four nairs of MM?2114 chips fully decodes |3 bits and
can be selected via one active low select per pair.

4K Bytes of EPROM

Each of the two MM2716 FPROMSs fully decodes 11 bits and nrovides
two active low select lines per device for reading of data.

INS8255

The [INS58255 contains three 1/0 ports and one control word register,
all of which are decoded on chipo via twn Aaddress inout lines. The
device is enabled via a single active low select line.

INS8154

The INS8154 contains 178 bytes of RAM, two [/0 ports and two data
direction registers, all of which are decoded on chio via eight
address lines. The device 1Is enabled via one active hiagh select
line and one active low select line.

Baud Rate Selection Loagic

The INSB#73 selects the Baud rate by reading the contents of memory
location X/FDA?. To program the Baud rate, this location must be
decoded via external logic, and the aopropriate loaic levels supolied
on data lines 1, 2 and 7, (Refer to RS5-232/Current lLoon Interface
section for Aadditional details.)

FPROM Proagrammer

To proaram an MM2716 FPROM, address/data are suoplied by the IN$8#73
to the 2716 socket Ul6 in Fiqure 1.4, When VPP = +25V and adiress/
data are valid, a sinagle byte may be written by nroviding a 5% msec
Droqramming pulse to nin 18 while the chip is deselected via a logic
I on nin 20. A byte which has been written may be subsequently read
by simply supplying the correct address and providinag a loagic @ on
nin 29, (Refer to MM2716 Data Sheet for additional details.)

.5 Memory Mapping Constraints For All System Components

The components described Aabove can be mapped into memory in a variety
of ways. The system constraints imnosed upon this mannina are the
following:

!. The decodina hardware will be impnlemented using a minimum number
of ICs. This implies that the system comoonents will be only
partially decoded, resulting in multipnle images of each com-
ponent in memory.

2. Althouah multiple memory images of each system component may be
nresent, the manning hardware will be designed such that it is
imoossible to enable more than one system component at a time,
This restriction eliminates the possibility of causing data bus
conflict as the resiilt of a programmina error. (A data bus Lon-
flict could cause transmission/receiot of invalid data and chio
damage.)

3. NSC Tiny BASIC oroaram RAM will be decoded as a contiaquous block
so that the INS8A73 can sucrcessfullv identify the beginning and
the end of the nroaram RAM that is Aactually pnresent.

4., The RAM and the 1/0 norts of the INS8154 will bhe located in the
adiress range X’FFA% - X*FFBF. This allows INS87273 assembly
lanquage subroutines to address the INSRI54 using the DIRFCT
addressing mode, (Use of DIRECT addressinag eliminates the need
to dedicate or multiolex a pointer in order to address the
INS8154, For additional details on DIRFCT addressing, refer to
the INSB@3774 Data Sheet.)

5., When on-card FPROM is present, it will be located starting at
adiress X¥’8an34, This allows the system to be used in real-time
control Anplications where a terminal is not nresent.

All of the ahove constraints are satisfied by the memory assianment
shown in Figure !-5 and Fiaqure 1=6. Fiqure 1-5 shows how the 54K
addressing space of the INSB#73 is to be nartitioned. Figure 1-6
shows the address bits (in boldface) that are actually decoded by the
l,hardware shown in Figure 1-5, resulting in multiple (but not over-
lapping) memory images of each comnonent. The locations of these mul-
tinle images are also shown, with address bits Al12 = AlS specifying
one of 16 possible memory "nages", each of which contains 4K bytes.

1.6 System Generated Interrupts

NSC Tiny BASIC supports interruots via the "ON" statement. As shown
in Figure 1-5, interrupts generated by the INS8154 and/or INSR255 may
be connected, at the user’s discretion, to the SB/INTR oin of the
INS8373. When this is done the INSR#73 SR/INTB pin may be used to
detect interrunts under control of the user’s program, If interruots
are disabled, the SB/INTR pin mav be employed as a sense oin that can
be examined via the NSC Tiny BASIC "STAT" Function or the "ON® State-
ment.,

HEX ADDRESS MEMORY CONTENTS HEX ADDRESS MEMORY CONTENTS
APAB -39 FF INS8?73 ON-CHIP RAAA-BTFF ROM @& (2K BRYTES)
NSC TINY BASIC
INTERPRETER
.] 88078 FFF ROM 1 (2K BYTES)
T et - . .
1907 -1 3FF BAM & (1K BYTES) | |rommmmmmmmm e e e o
---------------------------------- F737-F 703 INS8255A
1406 -17FF RAM 1 (1K BYTES) | |rmmmmmm e - i
1803 —-1BFF RAM 2 (1K BYTES) : .
"1 1cea-1FFF DAM 2 (1K BYTES) | |rmmmmmmmmmmmmmmmm oo mmmmmmmm e —
~~~~~~~ ettty I R UL BAUD RATE %FLECT
2003 -27FF MM2716 EPROM | frmmmmmmm e e
PROGRAMMER . o
: - : FEAA-FFT7F INS8154 RAM
e (128 BYTES)
FERA-FFA4 INSR154 1/0
PORTS/CONTROL
FFCA-FFFE INSS373 ON-CHIP
RAM (64 BYTES)

Fiqure 1-6 Partitioning of the INS8273 64K Addressing Space



ADDRESS BITS
e e e o e e e e T s It
T AT E e s e st
15 14 13 12 Ity 19 9 8 7 6 5 4 3 2 1 @
I O e L L T up Founp G e P o i i o> S e S > s o o ——— o — o o]
2 X X @ 2 X X X X X X X X X X X | EPROM PROGRAMMER
(X?2000-X227TFF)
a X X 1 @ 3 X X X X X X ¥ X X X! RM @ (X71000-
X211 3FF)
g X X 1 a1 X X X X X X X X X X | Rad 1 (X21470-~
X’V 7FF)
A X X 1 1 & X X X X X X X X X X | RAM 2 (X/1820-
X1 XFF)
a X X 1 | 1 X X X X X X ¥ X X X |Rm 3 (X21CO0-
' X721 FFF)
I X X @ g X X X X X X X X X X "X |ROM @& (X’8BA0A-
X*’87FF)
I X X 0 1 X X X X X X X X X X X |ROM | (X837~
' ‘ X’8FFF)
1 X X 1 g X X X X X X X X X X X | INSB8255A (X’F794—
X?F723)
§ 1 X X 1 1 X a X X X X X X X X X | BAUD RATF SELECT
S~ ' (X’ FDOR)
X X 11 XY X X X XX X X X X | INSBI54 RAM
(X’ FFAA-X’FFTEF)
X X 1 X 1 X 1 X X X X X X X | IN3S8I54 [/0 PORTS
(X’ FFBA=Y* FFA4)
NOTES:t 1. WuX® refers to an address bit that may be zero or one.
2. Rits that are actually decoded by the hardware shown in
Figure 1-4 annear in boldface tyne.
Table 1-1, Address Bits



Decoding only the indicated address bits results in the following
multiple memory images of each component. This list is organized in
three columns. The first column shows the component, the second shows
the page in memory into which that component is mappoed, (page numbers
ranae from 4 to F, each nage beinqg 4K bytes)s and the third shows how
the elements of a shared page are subdivided,

COMPONENT PAGES ADDI TIONAL
—_— — CONDITIONS
EMPROM PROGRAMMER A, 2, &4 6

4K RAM Iy 3, 5, 7

4K ROM 8. A, Cy F

INS8255A 9, B, D, F All = @

BAUD RATE SELECT 9, B, D, F All = 1, A9 =0
INS8154 9, B, b, F All = 1, A9 = 1

Figure 1-6 Address Bit Decoding for the System
1.7 RS-232/Current Loop Interface

The described Baud rate is automatically selected when the INS8A73 is
initialized, or when a "NEW" command is 1issued. Initialization is

automatically accomolished at VCC nower-on by R1 and ClI in Fiqure 1-5.
(Pressing switch S1 also causes the INS8473 to he initialized.) The

Raud rate is jumner selectable as follows?

BAUD Fl16=F17 F18-E19

RATE JUMPER JUMPER D7 N2 D1
119 PRESENT PRESENT | 1 1
300 PRESENT ABSENT | 1 7
1 20¢ ABSENT PRESENT | a |

4800 ABSENT ABSENT | 2 )

If only the 119 Baud rate is reqguired, nullup resistors on data lines
D1, D2 and D7 reoresent the only external hardware required to select
this rate.

As shown in Fiqure 1.5, the INS8@73 F1 flag is double buffered to oro-
vide an RS—232 cemmatible voltaae outnut and a 24ma current outout.
positive and neqgative RS-232 levels are generated by the LM 747 on
amn. The 27 ma current drive is oroduced by transistor switch Q1 and
Resistor RI5,

ihe INSB®73.R2 flag is used to enable/disable the TTY reader relay via
transitor switch 02 and current limiting register R2. These components
will supply 2% ma of current to a 12V (62%) relay.

The IN5387#73 will accent serial ASCII input data in its SA/INTA input.
As shown in Figure 1.5, the RS—-232 inout. signal is selected via a
iumper between E5-F6, or the TTY innut sianal may be selected via a
jumper between E6-E7.



CHAPTER 2

2.1 MM2716 EPROM Programming Sof tware

An NSC Tiny BASIC utility program that programs MM2716 EPROMs, and one
that will work with the system shown in Figure 1-4 is shown in Apoendix
D. A PROM with this proagram must be pluoged into socket Ul7 to operate
these utility programs. The programmina software is called from NSC
Tiny BASIC by tynings

SNEW #8R70
This proagram decodes and executes the followinag ten commandst

COPY
PROGRAM
VERIFY
FRASE CHECK
FILL

DUMP

LOAD

ASCII LOAD
WRITE

READ

Fach command is desiagnated by a single command letter followed by -3
address and/or data fields. The user is prompted for a command inout
by the message "“"COM?Y, In resnonse to this, a legal command in the
oroper format must be entered. If an illegal command letter or im-
nroner format are employed, the user will be promoted to re-enter an-
other command by the messaget "INPUT FRROR. TRY AGAIN." Addresses
and data should be entered in hexadecimal, without the precedinag "#*
sign. Address and data fields should be delimited by slashes (/) or
by commas (,). Snaces are ontional and are ignored. For convenience,
"default" addresses and/or data are associated with each command.
These defaultvalues allow the user to enter only the command letter,
followed by a carriage return. When this is done the default values are
substituted for the address/data that was not entered. The default
values are preset to the most commonly used address/data for each
command. When the default values are unsuitable, the desired address/
data must be entered.

Thne commands are discussed in detail in the following paragraphs.

2.2 COPY Command
FORMAT ? C source-startina/source-endina/destination-starting
FXAMPLE: C R7AA/8200/1400

DEFAULT
VALUES: C 11aa/71104/1100



The COPY command "C» copies the source to Hdestination, which must be
RAM. The source is spmecified by its starting and ending address. The
destination is specified by its starting address. To insure that the
source 15 correctly conied, each byte is read after it is written, If
a mismatch is detected between source and destination, an error messaqe
is printed for each incorrect byte. The messace format is similar to
that described for the PROGRAM command.

In order to prevent accidental destruction of RAM based nrograms, the
default values for the COPY command are oreset to cony the first byte
of available program RAM to itself.

2.3 PROCGRAM Command

FORMAT?® P source-startinq/source-endino/destination-startinq
EXAMPLESs P 1122/ 204/ 200%

DEFAULT
VALUES? P 1120/18FF/200¢

The PROGRAM command "P" transfers an NSC Tiny BASIC source program to
the MM2716 EPROM (U16 in Figure 1-4), The source program is smecified
by its starting and ending address. (The endino address of the source
may be easily obtained by examining the NSC Tiny BASIC TOP variable.)
The source remains unchanged by the proaramming oneration. Since the
FPRCM proaramming hardware is mapoed into address 2, the startinrg
sddress of the Aestination must always beain with hexadecimal upn,  The
Hefault values for the PROGRAM command fills Ul6 with the NSC Tiny
3ASIC program located in the first 2K bytes of available orogram
memory (X7119# - X<18FF). If a oreviously programmed EPROM contains a
sufficient number of unprogrammed bytes, new programs may be added
without erasing the program(s) previously written.

To insure that NSC Tiny BASIC orograms are correctly written into
FPROM, the PROGRAM command automaticallv reads each byte after it is
written. If a mismatch is detected, the following error message will
be printed for each byte?

ADDRESS 8XXX SB XX IS XX

The X’c above represent hexadecimal digits. The "SBY is an abbreviated
notation for “should be®, Since the Ul6 EPROM is mapped into address 2
for READ operations (refer to Figure 1.5), the first digit of the FEPROM
address will always begin with hexadecimal "8", (The address actually
nrecented on the FPROM address lines is given by the three least sig-
nificant address diaits in the error message.)



2.4 VERIFY Command

FORMAT 2 V reference-starting/reference-ending/destination-
starting

EXAMPLE: V 820G/87FF/8820%

DEFAULT
VALUES? vV 11926/718FF/8000

Tne VERIFY command "V# verifies the destination against the reference.
The reference is specified by its starting and endina address. The
destination is specified by its starting address. The reference and
destination remain unchanged by the verify operation.

The default values for the VFRIFY command cause the Ul6 FPROM to be
verified against the first 2K bytes of available RAM memory (X/1100 -
X?18FF)., If a mismatch is detected during verification, an error
message will be printed for each incorrect byte. The message format is
similar to that described for the PROGRAM command.

The VERIFY command is useful to check the contents of nrogrammed PROMS
which may have lost their identification, or may otherwise contain data
of doubtful accuracy. It does not need to bhe used after a “COPY" or a
"PROGRAM" command because a verification is performed automatically at
the end of each of those functions.

2.5 FRASE CHFCK Command

FORMAT F source-startind/source-end1nq/hexadecimal-value
FXAMPLE: V 1103/11FF/09

DE FAULT
VALUES? VvV BAA/8TFF/FF

The ERASE CHECK command “EY verifies that all bytes contained in the
source are equal to the two diagit hexadecimal value specified in the
last field of the command. The source remains unchanged by the erase
check operation.

The "E" command may be used to test whether or not all or poart of an

MM2716 EPROM is erased. The default values for this command are oreset
to test that the entire MM2716 FPROM (Ut6 in Figure 1-4) is erased. If
an incorrect byte is located, an error message is printed. The messaqge

format is similar to that described for the PROGRAM command.
The "E" command may also be used to locate a specified byte in a glven

address range. In this case all bytes that are different from the
specified hexadecimal value will be flagaed as errors.

3-19



2.6 FILL Command

FORMATs F destination-starting/destination-ending/hexadecimal~-
value

EXAMPLES F 1200/1490/30

DEFAULT
VALUES: F 119@/18BFF/FF

The FILL command *F" writes the two digit hexadecimal value specified
in the last field of the command to the destination. The destination
is specified by its starting and ending address. Since the FILL
command reads each byte after it is written, an error message is print-
ed wherever the byte read does not match the bvte written. The messaqge
format is similar to that described for the PROGRAM command.

The FILL command may be used to fill all or oart of available orogram
RAM with the erased value (X/FF) for the MM2716 EPROM. This would

normally be done prior to entering a orogram into RAM. The default
values for the FILL command fill the first 2K bytes of available RAM
with X“FF. If the FILL command is issued after a bprogram has entered,
care should be taken to correctly specify the proper address range or
the program may be nartially or totally destroyed.

[he FILL command may also be used to verify that the orogram RAM is
functioning. This can be accomplished by executing this command sev-
sral times, using the hexadecimal values X’FF and X/@@. This procedure
will verify that a logic & and a logic | can be written to and read
from each memory bit.

2.7 DUMP Command
FORMAT ¢ D starting/ending
EXAMPLE: D ROAA/8B8AFF

DEFAULT
VALUES? D 11AA/18FF

The DUMP command #D" nrints out the contents of the snecified arddress

ranage in hexadecimal and ASCII format. NMNonpbrintable ASCII characters

are desianated by a period. The hexadecimal/ASCII equivalents of six-~
t een memory bytes are orinted out on each line, in the following for-.
matse

BFAG 3@ 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 @1234567894BCDEF
SF1 OD 7F OA 51 54 59 11 12 2A 2B 2C 54 48 49 53 17 ...QTY..»+, THIS.

The four hexadecimal digits at the beginning of each line represent
the address of the first (left-most) byte. Memory contents are not
affected by the DUMP command, The default values cause the first 2K
bhytes of available program RAM to be pnrinted out.

3-20



2.8 LOAD Command
FORMAT ¢ L displacement
EXAMPLE: L 1090

DEFAULT
VALUES: L 92

The LOAD command "L* loads an assembly lanquage load module (LM) into
memory from a paper tape. (For a detailed description of the LM tape
format refer to Anpendix E.) The starting memory location where the LM
will be stored is specified on the LM tape. If a different starting
location is required, an ootional disolacement (X/a002 - X/ FFFF) may

he snecified in the LOAD command. In this case the starting address
will be equal to the address specified on the LM taoe olus the dis-
nlacement specified in the LOAD command, The default value of the dis-
olacement is @.

The GET routing built into the NSC Tiny BASIC interpreter receives 7-
hit ASCII characters which are then stored in memory as 8-bit bytes.
These bytes have the most significant bit, R7, set to @#. Since assem-
bly lanarage LMs raquire receint/storage of 8-~bit bytes, the GET rou-
tine cannot be used to receive assembly language LMs. This problem
can be easily overcome by writing an 8-bit GET subroutine in assembly
lanauage. This subroutine can then be called, when required, via the
NSC Tiny BASIC "LINK" statement. The subroutine requires less than

5@ bytes and is shown in Apmendix D. The bytes that combrise this
routine may be entered into RAM, one byte at a time, using the "a“
onerator.

READ COMMAND
FORMAT: R DISPLACEMENT

EXAMPL.E: R 1000
DEFAULT VALUES: R 0

The READ command "R" reads a cassette resident program and stores
it into memory. The memory locations at which the program will be
stored are specified on the tape as previously described. TIf it
is necessary to read a program into memory at locations other than
those specified on the tape, a optional displacement (X'0000 -
X'FFFF) may be specified in the "R" command. In this case the

starting address for each DATA record will be equal to the address
specified on the tape plus the displacement. The default value of

the displacement is zero.

If a checksum error is detected when a cassette resident program
is read into memory, the user will be alerted by the nessage
"CHECKSUM ERR". '



WRITE COMMAND

FORMAT: W STARTING / ENDING
ADDRESS / ADDRESS

EXAMPLLE: W 8000/80FF

DEFAULT VALUES: W 1100/1EFF

The WRITE command "W" writes the contents of the specified memory
address range onto audio cassette tape. The memory address range
to be written is specified by its starting/ ending addresses.
NIBL2 source programs and/or assembly language IM's may be stored
on cassette. Stored programs begin with approximately 5 seconds
of 0's which serve as leader so that the tape speed has time to
stabilize on playback. The leader also serves as an interprogram
gap and allows the receiving program to achieve synchronization
with the clock pulses.

The tape format consists of one or more DATA records followed by a
single END record. A DATA record is organized is as follows:

1) A single character (X'AS5) which identifies the start
of each record.

2) A byte which specifies the record type. (DATA
record=X'01l: END record=X"'03).

3) A byte which identifies the total number of data
bytes in each record. The number of data bytes in a
: single data record can range from 1 to 255.

4) The least significant byte of the starting address
where the data record is to be stored.

5) The most significant byte of the starting address
where the data record is to be stored.

6) 1 to 256 data bytes.

7) A single byte checksum (in 2's complement form) of
all bytes contained in the data record except for
the start of record character, X'AS5.

An END record simply consists of the start of record character

(x*'a5), followed by the record type (X'03) and the 2's complement
checksum.

3-22



CHAPTER 3
3.1 Loading the FPROM Programming Software Into EPROM

The EPROM programming software shown in Appendix G may be transferred
to paper tape so that it can be conveniently used without having to
retype it each time it is used. This can be accomnlisched by initially
tyning in the program and then turning on the TTY paner tape punch
after the LIST command has been entered. This procedure will oroduce
a nroaram listing nlus a paner tane version of the program.

Since the EPROM programming software occunies less than 2K bytes, it
can be readily oroarammed into a 2716 FPROM, The resulting FPROM
could then be placed into socket Ul7 in Fiaqure 1-4, so that the FPROM
rroaramming software would always be available without having to load
a paper taoe. If this is done, the contents of one FPRO¥ can still be
conied to another using socket Ul6 only. This can be accomolished by
nlacing the source FEPROM into socket Uls and then using the COPY com-
mand to transfer the FPROM contents to the first half of RAM (X711 o9—
X718FF)., Followina this, the source EPROM may be removed from socket
U6 anD an erased EPROM put in its olace. The erased EPROM may then be
erogrammed in the normal manner,

3.2 Loading NSC Tiny BASIC Proarams Into RAM

Since the first 2K bytes of available brogram RAM (X“1383& - X/18FF)
are not required by the FPROM orogramming software, they may be used

to store a user’s NSC Tiny BASIC nrogram,

Note from Apnendix G that the NSC Tiny BASIC variables J, D, M and P
all ooint to scratchpad RAM. The RAM utilized in proaram memory X-1F23®
X?1FFF. (Only A fraction of the bytes in this range are actually
used.) If desired, the RAM which is present in the INS8154 may he sub-
stituted, making the entire proaram RAM available for storage of user
programs, -

2.3 Using the FPROM Proaramming Software to Program MM2716 EPROMs

The EPROM programming software allows NSC Tiny BASIC programs to be
written into FPROM from the keybord, RAM, oaper tape, or from another
FPROM.

After the user has committed the EPROM nrogramming software to EPROM
and placed the latter into socket Ul7, this software may be executed
hy entering the followinag commands

SNEN #8800

After this is done the "PROGRAM" command, P, may be entered to write
the user’s RAM resident nrogram into a blank EPROM located in socket
U116 shown in Figure 1-4,

3-23






Appendices






APPENDIX A

Answers to Exercises
Page |=21
1., =32767 to 32767, inclusive.
2. Turn switch No. 3 on.
3. 49
4, ERROR 4

H5:. 2%3 + 4%5 % 6%x7 = 6 + 200 + 42

68

123%(42/127) = 123 » 3 = @

2277+ 337

3%l A0A = 3007

6.
7. 169608 The true result, 1.7908,080, is larger than 32767.
8.
9.

1200%22/7 22000/7 = 3142
Page 1-25

le 12 2 35 1

.2. 47 9 5 2

3. 26 45

4, 37 73

Page 1-26

5. 103 3218

Page 1-33

1. Simply change Line 6@ to read: 6@ GO TO 30



Page

Page

Page

1-48

STATEMENT N U \% W X

11%3...INPUT N 6844

124 X = MOD (N,16) 6844 12
13 N = N/16 427 12
142 W = MOD (N,16) 427 R 12
153 N = N/16 26 11 12
160 V. = MOD (N,16) 26 % 11 12
1768 U = N/16 26 1 1% 1 12
Therefore, NSC Tiny BASIC prints | IS 7 B T B B

In hexadecimal the number is #1ARC

1-51

1A% RFEM AIR PRESSURE MONITOR AND ALARM

{1 PRINT " wsPRINT "WHAT [S AIR PRESSURE"s:INPUT P

123 IF P<13 THEN PRINT YWARNING! AIR PRESSURE TOO HIGH"
133 IF P>15 THEN PRINT "WARNING! AIR PRESSURE TOO LOW#
14 GO TO 119

1-61

74 1F G<>X THEN GO TO 3@:REM NOT A CORRECT GUESS, GET NEXT
GUESS

This replaces both Line 7% and Line 80 in the proaram,

The followina is an even shorter way to write the program,
Try 1it.

1" REM GUESS THE NUMBER GAME '

27 X=RND (1,143)tREM X IS THE SECRET NUMBFR FROM t TO 109
3% PRINT " :PRINT "WHAT IS YOUR GUESS"3

4% INPUT G:REM G WILL BFE THE GUESS

5% IF G<X THEN PRINT ®YOUR GUESS IS TOO SMALL"eGO TO 37
63 IF G>X THEN PRINT "YOUR GUFSS IS TOO BRIG":GO TO 3%

70 PRINT ®YOU WIN. LET’S PLAY AGAIN.":GO TO 27

A-5



Page 1-38
I (a).
1@ PRINT "PROGRAM TO COMPUTE A*X+BM
IS PRINT un
20 PRINT W»
300 PRINT nA=#g
4 INPUT A
57 PRINT #wp=tj
6@ INPUT B
T3 PRINT ww
80 PRINT ¥"X=¥3
o INPUT X
100 PRINT “AxX+B ="3
11@ PRINT A+X+B
128 GO TO 7@
1 (b).
13 PRINT “PROGRAM TO COMPUTE A*xX+B"
274 PRINT "ngpRINT "WwspPRINT wA=M s INPUT A
30 PRINT wB=#3:INPUT B
400 PRINT v PRINT "X=43tINPUT X
574 PRINT "AxX+R =432PRINT A*xX+B:GO TO 47
Line 54 can also be written as followss
5@ PRINT “AxX+B =4, A*X+B:GO TO 40
The comma separates the string "A*X+B"
and the expression AxX+B,
Page 1-40
Number (Decimal) Stored As A Byte (Binary)
3 AAa A1 (2+1)
6 anap a11a (4+42)
7 paaa ALl (442+1)
29 Al 1131 (16+8+4+1)

The largest number that can be renresented in a sinagle bvte
is the "all ones" states

A1 11
(128B4+64+32+16+8+442+] = 255 )



Paage

I =66

{. The results of the RUN will be the same as those shown on page |-67.

2. No.

3.

Page
1
2

3

4

Page

RUN
I

>
I
2 4

Lo
C

181

1-68

Try it.

See below.

SQUARED

. The program will run the same as before.

. The program will now print values and squares for numbers

from

1 to

16.

. The program will not work.,
, the program will not stop by itself. You will have to
press BRFEAK,

more

Every line will be | 1. Further-

. The results will be the same as_for the program on page |-69.

=72

>RUN

M bhwn—
—_ -
U

RUN

>
|

2
3
4
5

4
20
120

7 5049
8 ~25216 Correct answer > 32787



Page 1-73

T

Page 1-94

1710
1229
1230
i A43

1950
1A6H
1370
| A8A
1996

Page 1-1M2

12 A

>1@ PRINT "wspPRINT "N=4s:INPUT N
27 S=0

30 FOR K=1 TO N

4% S=5 +K*K

5@ NEXT K

6 PRINT "SUMSQUARED =%3:PRINT S

I.Line 64 can also be written as follows?

6@ PRINT "SUMSQUARED =",S

Note the comma

REM STRING COMPARISON SUBROUTINE

REM SFT-UP STRING ELEMENT POINTERS, C AND D

C=A:D=8

REM COMPARE PRESFNT C & D LOCATIONS. IF UNEQUAL, FRROR
RETURN

IFeC<>faD PRINT “THF STRINGS ARFE UNFQUAL®sSRETURN

REM 1S THIS THF LAST CHARACTFR IN THF STRING (CR)?

[FeC=#2D PRINT ¥THFE STRINGS ARF FQUAL":RFTURN

REM NONE OF THE ABOVE, CHECK NEXT LOCATION.

C=C+1:D=D+18GO0 T2 1059

=#FFFF

27 @a=1:REM TURN LIGHT OFF

3% B

=0

44 DO

50 1

F @A=1 THEN GO TO 2@:SWITCH IS OFF

63 RB=R+l

7 D
874 U

FLAY 1
NTIL B=2000tRFEM SWITCH MUSF BE CLNSFD 2 SEC

9% @A=7A3GO TO 3@tREM TURN LIGHT ON



Flowchart

G
;

TURN LIGHT
OFF

!

PRESET
DELAY

ON

l SWITCH
INCREMENT
DELAY

l

NO

YES

TURN LIGHT
"~ ON




APPENDIX B

Error Code Summary

Frror Number Fxplanation

Out of memory

Statement used improperly

Unexnected character (after leqgal

statement)

Syntax error

Value (format) error

Ending quote missing from string

GO target line does not exist

RETURN without nrevious GOSUB

Expression, FOR-NEXT, DO-UNTIL
or GOSUB nested too deenly

NEXT without previous matchina FOR

UNTIL without previous NO

Division by zero

N - RoRe JJENINS JNY ) N2 W) -

S






APPENDIX C
ASCII Codes

The following table contains the 7-bit hexadecimal code for each
character in the ASCII character set,.

ASCII Character Set in Hexadecimal Representation

T-bit 7-bit 7-bit 7-bit

Hexa— Char- Hexa- Char- Hexa- Char-~ Hexa- Char-

decimal acter decimal acter decimal acter decimal acter

Number Number Number Number
1] NUL i 2@ SP i 40 e 7. 6@

A1 SOH 22 ' 4] A 61 a
a2 STX 22 " 42 B 62 b
23 ETX 23 # 43 C 63 c
A4 EOT 24 s -5 44 D o 64 d
as ENQ 25 % ‘45 E ., 65 e
a6 ACK 26 & - 46 F . 66 f
At BEL 27 ’ 47 G 567 g
78 BS 28 ( 11 48 H ~ 68 h
A9 HT 29 ) " 49 I 69 i

o @A LF 2A * 4 J - 6A i

v @B VT 2B + " 4B K 6B k

1w, @AC FF = 2C . - 4C L 6C 1

iz @D CR 2D - 4D M 6D m
AE SO 2B . - 1) N 6E n
aF SI 2F / - 4F 0 6F o}
14 DLE 30 2] - BA P <70 D
B DC! 31 ! = 5] Q 71 q
12 nC2 32 2 .52 R 72 r
13 DC3 33 3 53 15) 73 [

e 14 DC4 <134 4 54 T -4 t
15 NAK 5735 5 - B5 U 75 u
16 SYN 7« 36 6 - B6 v 76 v
17 ETB =37 7 57 W yir 17 w
18 CAN -7.38 8 58 X 2878 X
19 EM 339 9 59 Y 179 y
1A suB 27 3A t 54 Z (ETA z
IB ESC = 3B H 5B [ 7B
iC FS = 3C < - BC \ C
1D GS 3D = - 5D ] D ALT
{E RS < 3E > - 5E 7E ESC
I F us 3F ? BF TF DEL,

RUB



Definitions of Non-printing Characters

Character Definition
NUL Null
SOH Start of Heading (also start of message)
STX Start of Text (also EOA-end of address)
ETX End of Text (also EOM-—-end of message)
FOT End of Transmission (aalso END)
ENQ Fnquiry (also ENQRY, WRU)
ACK Acknowledae (also RU)
BEL Bell
BS Backspace
HT Horizontal Tab
LF Line Feed
vT Vertical Tab (VTAR)
FF Form Feed
CR Carriage Return
S0 Shift Out
Si Shift In
DLE Data Link FEscape
DCI Device Control 1
DC? Device Control 2
DC3 Device Control 3
DC4 Device Control 4
NAK Nenative Acknowledqge
SYN Synchronous Idle
FIB End of Transmission Block
CAN Cancel (CANCL)
EM Fnd of Medium
SURB Substitute
ESC Escape
Fs File Separator
S Group Sepnarator
RS Record Separator
Us Unit Separator
SP Space
ALT Alt Mode
ESC Escape
DEL,
RUR Delete or Rubout

- ——— — - A - — A — . T SO S - d— - — S — i i S D G G G S S G T — S — S — - —



APPENDIX D
NSC Tiny BASIC Language Summary

STATEMENTS (except for INPUT, may be used as commands)

T NEW exor Fstablishes a new start-of-orogram address
equal to the value of “exor”’. NSC Tiny
BASIC then executes its initialization se-
auence which clears all variables, resets
all hardware/software stacks, digsables in-
terrunts, enables BRFAK capability from the
console, and performs the nondestructive
RAM search described in Chapter 2, Section
2. 1If the value of “expr” noints to a ROM
address, the NSC Tiny BASIC oroaram which
beagins at this address will be automatic~
ally executed. Program memory (includina
the end-of-program pointer used by the ed-
itor) is not altered by this command.

NEW : Sets the end-of-program pointer equal to
the start-of-program pointer so that a new
nrogram may be entered. If a program
already exists at the start-of-program
address, it will be lost.

RUN | Runs the current proqgram.

CONT Continues execution of the current program
from the point where execution was sus-

p— pended (via a STOP, consnle interruot, or

reset).

LIST (exor) Lists the current program (ootionally
starting at the line number soecified by
(exnr).

REM anything Remark (no operation).

CLEAR Initializes all variables to 4, disables

interruots, enables BRFEAK capability
from the console, and resets all stacks
(GOSUB, FOR=-NEXT, DO-UNTIL).

[LET] var = exor Assians exoression value to variable.

[LET) STAT = expr Sets the STATUS word equal to the least
significant byte of “expr”’. When the
STATUS word is used to enable interruots
at the hardware, processing will be
deferred for one statement.

[LET] @factor = expr Sets the memory location pointed to by

“factor”’” equal to the least significant
byte of “expr”,



[LET] sfactor = M"string"®

[LET} factor = factor
PRINT exor
PRINT M"string¥

PRINT sfactor

[F expr [(THEN]
statement(s)

FOR var = expr TO expr
[STEP exnrl

NEXT var

DO

UNTIL expr

GO TO expr

GOSUBR expr

RETURN
INPUT vAar

INPUT s$factor

LINK expr

ON expri, expr?

Assigns a string in RAM starting at the
address “factor’. Strings are terminated
by a carriaages return.

Memory to memory string assignment,(cooy). -
Prints the value of “expr”.
Prints the string.

Prints the string starting at the memory
address “factor”’.

Remainder of the program line is executed
if expr is true (non-zero).

FOR loop initialization. FOR loops mav be
nested unp to four levels deep.

FOR loon termination.

DO loop initiation. DO loops may be nested
up to eight levels deep.

DO loop termination.

Transfer control to statement number
“4expr’, -

Call subroutine at statement number “expr”.
Subroutine (including those servicing in—
terruots) may be nested up to eight levels s
deen.

Return from subroutine,
Read value from console into variable.

Read string from console into memory be-
ginning at address “factor”’.

Links to an assembly lanauadge subroutire
which begins at the address “expr”.

Interrunt processing definition. When

interrupt number expr! occurs, NSC Tiny
BASIC will execute a GOSURB beginnin at

line number expr?, If exor 2 is zero, the
corresponding interrupt is disabled at the
software level. Interrupt numbers may be
1 or 2. Use of the ON statement disables
console interrunts (BREAK function). In-
terrupts must also be enabled at the hard-—
ware level by setting the Interrupot Enable
bit in the status register (using STAT=1,
for examole).



DELAY expr

STOP

OPERATORS

Arithmetic operators:?

Relational operatorst

Loaical oneratorst

@éfactor

FUNCTIONS
STAT
Top

INC (X)), DEC (X)

MOD (X,Y)
RND (X,Y)

Delay for expr time units (nominally milli-

seconds, 1-1¢14%),

Delay @ gives the max-

imum delay of 1240 milliseconds.

Terminate proaram execution.

A messaqe is

nrinted and NSC Tiny BASIC returns to

COMMAND mode.

addition
suhtraction

multiolication
division

less than

agreater than

egual to

no equal to

less than or equal

to

greater than or

equal to

logical AND
logical OR
logical NOT

N* b+

At VA

AND
OR
NOT

Read a byte from memory/perinheral, or
write a byte to memory/peripheral.
Factor is the memory/peripheral address.

Status Reaister contents.

Too-0f-Proaram address (first available
memory address after end-of-nrogram byte).

Increment or decrement a memory location
(non-interruptable for multiorocessing).

Modulus function (remainder of x/vy).

Random number generator (in interval x,vy).

D-3



COMMANDS (cannot be used as

NEW expr

NEW

RUN

CONT

LIST exor

statements)

Establishes a new start-of-program address
equal to the value of expr. NSC Tiny

BASIC then executes its initialization
sequence which clears all variables, resets
all hardware/software stacks, disables in-
terrupts, enables BREAK capability from the
console, and nerforms the non-destructive
RAM search described in Section II. If

the value of expr noints to a ROM address,
the NSC Tiny BASIC orogram which bejins at
this address will be automatically executed
and orogram memory (includina the end-of-
program pointer used by the editor) is not
altered by this command.

NEW followed only by a carriage return sets
the end-of-proaram pointer enual to the
start-of-program nointer so that a new
proaram may be entered. If a orogram
alreadyvy exists at the start-of-program
address, it will be lost.

Runs the current proaram.

Continues execution of the current nrogram
from the point where execution was sus-
pended (via a STOP, console interruot or
reset).

Lists the current oroqgram (cotionally
starting at the line number specified by
exnr).



APPENDIX E
NSC Tiny BASIC Grammar

All items in single quotes are actual symbols in NSC Tiny BASIC: all
other identifiers are symbols in grammar, The eauals sign ¥=", means
vig defined as"i oparentheses are used to aroup several items to-
gether as one item$ the exclamation point, "!¥, means an exclusive -
or choice between the items on either side of its the asterisk, "*",
means zero or more occurrences of the item to its left: the plus
sign, "+", means one or more repetitionss the question mark, 424,
means zero or one occurrences: and the semicolon, "i¥, marks the end
of a definition.

Immediate—-statement

NSC Tiny RASIC - line =
! Program=line
$

Immediate-statement = (Command ! Statement-list) Carriage-returng
Program=line = [Decimal-number] Statement-list Carriage-return)si
Command ’NEWZ Decimal=number?

'\ #LIST” Decimal-number?
! YRUN~’
$ -“CONT~

Statement-1ist = Statement (/3”7 Statement) =*j§

Statement = “LET” ? Left-part /=7 Rel-exp

! /LET” ? %+ Factor #=* (String ! /%7 Factor)

't GO’ (“T0O” ' 2SUB“) Rel-exp

! /RETURN”

! (PR’ ' #PRINT”’) Print~list

' 2IF<+ Rel~exnr “THEN” ? Statement-list

t /DO~

t #UNTIL”’ Rel-exp

! /FOR# Variable =7 Rel-exp “TO” Rel-exp (STEP* Rel-expn)?
! sNEXT” Variable

! 2INPUT” #$# Factor ! Variable-list

t 7LINK” Rel-exp

! /REM# Any-Character-Exceot—Carriage-Return *

t #STOP~

! “CLEAR?’

t 2DFLAY” Rel-exp

! /0N’ Rel-exn 7,7 ? Rel-exp

:

E-1



Factor = (Variable ! Number ! Function ! “(7 Rel-exo
(Variable ' 7@ Factor ! ~“/STAT’) 3
HEL=-EXP = Term rel-oo term

STRING = #%/ Anvy-character—except-"-or-CR7/"7

f.eft-part

VARIABLE =

IAI !

VARIABLE-LIST =
= (Rel-exp ' 7/$’factor ! String)
= PRINT-ITFM (7,4 PRINT-ITEM)*(’37)?

PRINT-ITEM
PRINT-LIST
Function

0 s rem emm |}

/MOD”
IRNDI
/INC/
/DEC/

’B" ! n-.on-”Z"

Variable (7,7 Variable)x*

4(# Rel-exp “,7 Rel=exp “)“
7(+ Rel-exp 7,7’ Rel-exp %)~
4(7 Rel-exp )’
2(+ Rel-exp 7))’

Term = Factor Termop Factor

E-2

7373



APPENDIX F

‘ o .19
»(ﬁ . ‘/7K /7¥€
2 8 £ H E’ " -
75 fDEF“'B—J+17 M=L0+512 P=H+208 FR"CM
. an =75 GOSUBS0: C=T: GOSURSQ: F=T: F= 18

I
1= 7¢-A.$J~"01Au 5
ZINEUTEE YeAms T Y= ? e T=H#FF 8 =2

AFC=6A7Y=435R21 =Y, FTJ}H
AIFL“:éTr OO0 GOTIND
SIEC=AD Y =RE0001 Y=RET7FF & G=23 21 GOTOLS
AIFC=700G=31: GATOLS

7TFF 1% e G=R2SGOTOLS

IFI'7r K=(s Y 1 7_0.“=1.G—:d:hDTm15

:-h~4j'hﬁTn1=

IJIFF Tyl Pl s S Gegat GOTOLS
12IFC=02Y=0: 2=015=13 G=47 2 GOTOLS
1%FH"INFUT ERR" 2 GOTOL
1APRYTIOME " s GOTON

PEN=1: IFF=8DGE0TOGE

1 &R=0

17GOSUES0 IF (T=4#DD0OR(T=47)0OR(T=44)GOTOL
LET=T-422 IF(T<OYOR( T2 ORC (TP ) AND( T 17))hU1H1
12IFT2T=T-7

FOR=1A#R+TSGOTOL7
P1IFN=1 X=R: GOTO24
TFN=2Y=R1GOTOZ4

=R

2AN=N+1 IFN>SGEOTOG
FERIFT=#0G0TOLE

PEGOTOLA

PIFORI=XTOY: IFC=A7@2Z=E]

i.IF@Z RIGOTORG
FoR=7t B=RT D=7 : GOSLIR4AE
BOZ=24+1 e NEXTIsGOTOLS
ZIFORI=XTOY: IFC=70RI=1
ARIF@I=ZGOTNES

SEA=ITR=70 =@ GOSLIR4S
J4VFXTI-GﬁTH14

;LQ #Luuu+2+[ B= @(X+I) Lm@(#euuo+z+1>-nnnua4u
ATNEXTI = GOTOLI4 '

ZEPRYTURN READER ON":LINES#S0S1: GOTO40

STRPROCONNECT RE-222% 0 L ITNE#SDE

4OIFZ=1PR"CKESUIM ERR": GOTOL

A1GOTOL 4

ASFORI=XTOYSTEF14:HaI s LINKS#SEAE: SM=" . . v o v vawunnesnaan
AZFORL=TTOT+15 H=@l_ ¢ L ITNKHIESF

AATF (H>Z1)AND(HCH#7BY@ (M+L.~T ) =H

ASNEXTL FPR&MINEXTI s GOTI1L4

4#LINF#6FﬁF GOT14

A7 INE#SF &S GOTO40

4~PR“ADHRE.4 "r i H=ALLINEH#SE4E: FR"HB "3 s H=R: LINr#'E:F FRYIS "s5iH=L
AL INEHSESF PR "1 RETURN

EOT=@P: P=P+1: IFT=3200TO50

F1IRETURN

F-1



VARIBLE

158

4 —— 00

e 10 R

_ e
o
F
¢ —
. P’ »M
—
X -
el
¢«
L e
i J—
rd
N /——-

04
106
oY
oRf
¢
ok
e

/%

\:Q/r,‘

2 T %
24
6 3
T [ o fp
y A%

or
0.3
0g
07
09
o8
s
QOF
i

@
H

-~
]

il

[

t g

W e ac 2D
X e —  2E o F

<
r‘; e \2 e 2 1
e 03 33

TR STARTS THE TEXT EOITING

ﬁF DY «S = Beannea s 2o2n
BIFD6 471 5 Evh ot grogean Vi

%?WEC*'D QB‘“L ‘3&\\0\; Cot Tronzar Reca @\OJ“"\‘M&’\ . LS8 3 Mﬁ%,

L)

O
7\

‘/:‘1 H ;.
Dot odTine .

A

’

-
}\v &

A

LER

FEEE 5

f’;i?‘.iA\;{ “. Lﬁ% 3 M ch

S8
¥

AN



'

SN

APPENDIX G

EEM g BO70 UTILITY PROGRAM #####
REM ####% BY RON PASGUALINT . NSO ®3w#s

REM This version af the prosram has bheen expanded for
pEM jeaikilitv. Tt will not run as shown since some
REM lines do pot have line numbers. The campresged
FEM version of tha eooaramn i fymctionally identical
REM and will run propaerliyv. -

FEM Initialize variables and Frompt for commarnd

ST ens 8 &m0 RRARATEYARCDER RIET
=417 3 M=D+s 8 PsRelo Lo
FROVCHMD"S I
INFUT P

X=qame 2 Y=AZPY § 7=#FF @ =27 & GOSLE =0
C=T o GOEGUR S0 8 F=T o Fempel 2 S=E

REM Test commarnd letter. setting default valuas
RFEM as needed for the antered command.

IF
1F

Yy @ oGOTOO1S REM

oL : REM
REM
REM
REM
REM
REM
REM
REM
REM

Z=#2000 ¢ GOT

IF w=#HO00 @ Y=#S7FF 8 G=31 08 GOTO 15
IF T AT
IF DS Ze=Sler @ G=35 2 GOTO 15

I 7 Tw=() 8 Sml o8 G GOTO 1S
IF Z : i ® GOTO 15
iF
IF
1F

(e 8 GOTO 15‘
T o1 G=d4d 0 GOTO 1S
Sy o8 G478 GOTO LS

s m@ ®n @ a8 9N pom DPe B

REM Error messages

FROTINFUT ERR" & GOTO 1
PR O"OONE" & GOTO 1

REM Frocess command aorerands

=1 & IF F=#D GOTO G

s =)

SOSUE SO0
TeT—48
IF Tx9 T=

IF (T=#[) 0OR (T=47) OR (T=44) GOTO &1
: T
T=
R=1aeR/+T
¥ =
Y

F.“
-7

GO V7
:OGOTO 24
POmnTO 24

=
IF H=1 =R
IF MN=2Z
Z=R
MN=N+1 # IF HN»=
IF T=#0 GOTC
GOTO 14

I
=R

REHM Frocess "0Y, "U" Dommands

FOR I=X TO Y
IF O=467 @7=@I1
IF @7=@1 GOT 30

H!:: 1¥
1 K./ 11
“E_,: H
Ly =1

1 L—”
Hé "
HI:'H
L1} N 1]
H R i

Too) ORO(TEEE) OR (CTH2) ANMDU (T<17)) GOTO 13



0l
"

X

by

.
L
gy

an

1

43

44
45

47

ﬁJX T H=@1 @ =07 @ GOSLUR 4%
7=7+1
WEY T 1
GOV 1A

REM Frocess “"gn®, npn Commands
FOR I=X T ¥

IF =70 @I=

IF @10=Z GOTO 34 :

A=] : B=7 1 =01 1 GOSUER 43
NEXT 1
GOTO 14

REM Frocess "FY Command

FIIR I=0 T (Y-X) .
RUZ+T )= (X+1) 2(I)-fiso0)
IF @(#LDQ0+Z2+]T)=@(X+I) GOTO 27
A=HA000+7+T 1 B=@(X+T1)
D= #ADO0+Z+I) 8 HDEHB 43
NFXT T f\/ 2L G
GOTO 14 (245~ Bipo?)

REM Froacess "L" Cammand

FR O"TURN READER ON" @ LINK #3D81 @ GOTO 40

REM Frocess "A'" Command

FROMCONNECT RE-232" ¢ LINE #280Es

REM Fost processing for "L, "AY Commands

TF 7=1 PR "CESUM ERR® @ GOTO 1L
GOTO 14

REM Frocess "IO" Command

= FOR I=X T Y STEF 14
H=T 2 LINE #2BE4E @ $M=".....ccuunennnas

FOR =1 T3 I+1%5
H=@. & L INK #IEZIF
TF (H>3Z1) AND (HE#7B)Y @ (M+.~T)=H
MNEXT .
FR %
MEXT I
GOTO 14

REM Process “"W" Command
LINE #IESF ¢ GOTO 14
REM Frocess "R" Command

LINE #8F&S @ GOTO 40

REM Subroutine: FPrint verification errar

G-2

"



A9 pE TANGRESE M5 1 He=A o LINK #3E4E
Fio o tEr s s H=R oD LINE #EZERF
FrocTm s H=C
A% LRk HRERF o FROYT . RETURN
FEM Sunroutine: Get next character fram input buffaer
S0 T=0F : F=fPel o2 TR T=3E2 GOTO 50
B RFTURN






SO70 ARSEMBLER REV-A  0&/Q&/T7%
EO70 SO70 UTILITY SUBRROUT INES APPENDIX H

SO70 UTILITY SURROUTINESS

1  TITLE
2 ZF SLTET

SHSEYLANG T FROGRAM
BY
RION FASGLIALLTNT
MAT TONAL SEMTCONDUCT R

~
9w am o uE

SATRSYLANGS INCLUDES ALl 0OF  THE  ASSEMELY L ANGLAGE
SUBRCUTINES  REGUIRER BY THE NIRLZ FPROGROM CUTILITY .

~u e

1&0 QOO0 » OIS

1 L INCLD ASCTLD



0000

OO0

OO0%
D003

QOQO0d

RTRInL

BIRIST

I T RV RERYT RV R L T

LI T I Y ]

MR ME MR 8B SE dB JE U NN o WE Jn

&E 9x

ICLIREY ST

]
3

SEEMBLER  REV-O Q&L/OL/TY
SO70 UTTLITY

SLBROGLIT TNES

- FPAGE TRTZILDS

CASCILDT DOWNLOADS AN ASSEMBLY LANGUAGE LM OR NIBLZ SHURLhJ)
FROGRAM AT 4300 RALD IN RESPONSE TO THE COMMAMD 747, IT 1%
ALSD FENTERED TO LOAD AN ASSEMELY LANGLUAGE LM FROM FAFER
TAPE AT 110 BAUD IN RESFONSE TOO THE COMMAND 717, FOR  BIOTH
COMMANTIS THE  DOWNLOADED  FROGRAM  MUST  BE IN THE FORM OF
AECIT CHARACTERE. THIS  SUBROUTINE Callls THE NTHL.Z
SURBROUTINE “GREOCOC, )

TW ASCTTI CHARADTERT  EAL ONE BYTE. WITH  THE MIO=T
STGMIFICANT  NIRBLE  (MSN)  LOCATED AT THE  LOWER MEMOGRY
ADDRESS. THE LEAST SIGNIFICANT NIBRLE (LESN) IS LOCATED AT

CTHE HIGHER MEMORY ADDRESS.

THE FILE FORMAT FOR A DATA RECORD IS AR FOLLOWES:

START OF RECORDD CHARACTER (X702)
CORD LENGTH. X 701-X7FF. (32
SR OOF RECORD LOAD ADDRESS (2 A
SRR RECORD LOAD ADDRESS (2 A
RECORD TYPE (2 AZCIT CHAFRD
(DATA RECORD=X"00, BENII RECORO=X"01)

230 DATA BYTES (2 ASCIT CHAR FER BYTE)
RO CHECKSWUM OF THE HEXADECIMAL
ECHAIVALENT OF ALL BYTES IM 2) THRLL &)

IM 278 COMPLEMENT FORM

LT CHARD
IT CHAR)
ECTT CHAR)

1 IR
R N . )

THE RALID RATE FOR DOWNLOADING CAN BE 110 OR OR 4300  BALID,.
OEFEMIGIMG UPON THE SUBROUUTINE EMTRY POINT.

THE “ASCTLDS SURBROUTINE RESUIRES & BYTES OF STACE MEMORY %
DESTROYE A B, P2 & F3.  THE NIBLZ SUBROUTINE “GECOT T
CaLLED.

OISPLACEMENTS RELATIVE TO P33

HMBYTESR = O MUMBER OF TATA BYTES INM
DATA RECORD

FOCRSUM = 1 CHECKESLM FORMED TN mMEFORY

RECTYF = 2 RECORD TYFE

MmN = FICET SIGMIFTCANT NIBBLE

OF 2 BIT BYTE IN “GETRYTS
SUBROUT INE

CTR OFOR DELAY & END OF SRR
BYTE TR FOR “HEXZASS SLRR

CTH =
BYTOTR =

NE 9E uB 3@ YNGR JE 9B a4

o P

OISFLACEMENTS RELATIVE TO P22

CONTENTS OF NIELZ VARIARLE
ODPOINTS TO MEMORY LOCATION
WHERE ASCII EQUIIV OF 2/4 /
DIGIT HEX NUMBER 135 STORED.

LEET I &

ETE IRV SRV QP! }



2070 ASSEMBLER  REV-A

Q&/OH/TI

ASROTO 8070 UTILITY SUBROUTINES
AT

R

anst
=rsg

Bhims

SR

anaEn

=t
2 1A
)
ahes
) I )

=R

OO0OE

QOZE

QO30

FFEL

AZCTLD:
B110:

45202

TIEC

e 7405

240400
SLEC

BRAZO0:

2YFE

NEXT:
Fo9F '

S0aF 2700FF

i1 s

0&
O410
HCFR

NETORL:

40

E40Z

CEET

« BET

il

EET

< SET

«EET

FRELAY

=T
BRA
1.0
=T
AND
LI
JER
LI
AN
BZ
L0

XR

H.14
bR 18

Y. 48

2,50

SZRAM, OFF OO

Ef, =X 232
EA.FDELAY

NEXT
Ef. =04
EA. FOELAY

R =OFE

o, =SRAM

SECO
.3
A,=010
N=TOFL
A.E

A, =02

H-3

EYT R IR T BT )

FTEE LI

B uN uaz <8 dE ua

-» U ur ux

ND o uN un

'L}

w2 <4 Mo 13

T )

PP T ST RN ST RETY B L

’

MS CHAR IS AT LOWEST MEMORY
ADDRESS, TO WHICH D POTNTES
CONTENTS OF NIBLZ VARIABLE
H EoUAL STARTING ADDRESE OF
EACH DATA RECORID
DISPLACEMENT FOR RECORD
STARTING ADDREZE

(NIBLZ VARIABLE X)

BAUD RATE INDICATOR FLAIG
WHICH ALLOWS PRINTOUT OF
STARTING ADDRESS OF EACH
RECORD AT 110 BALID ONLY.
(MIBL2 VARIAEBLE Y)

CHECKESUM ERROR FLAG

(NTEBL.Z VARIARLE 7)

STARTING LOCATION
OF SCRATOH RAM TO
WHICH F3 POINTS

LOCATION WHERE DLY CONST
FOrR 1 BIT DLY I5 STORED
(REGIUIRED BY NIRLZ “GECOC
SLBRDUT INEDY

ENTRY FPOINT FOR

NIELS “GECO” SUBROUTINE

BAUTY RATE =110
STORE DELAY COUNT FOR 1 EBIT
LELAY @ 110 BAUN

CONT INLUE
EALD RATE =43500

STORE DELAY COUNT FOR 1 BIT
DELAY @ 4200 BALID

1}

DISARLE INTERRUFPT!

i

FOINT P2 TO ZCRATCH RAM

ASCII CHAR-->A REG ¥ E REID
SAMFLE SA & WAIT LINTIL
Sh=1., (FARITY BIT=1 OR
STOF BIT=1 HAS OCCURREDD

BA=1

ASCTI CHAR-—>A REG

LOOF IF CHAR < X702



2070 ASSEMBLER  REV-A Q4704779
ASSOT70 SO70 UTILITY SUBROUTINES
=CILD

a2oeh ENZ

aF

SheF 201658E xR
2 CROO =

R

i’

RGOl : =T
A

20142E

SO 0OA

JER
FiEM

SIAN
ST

Fzol AL

CRO1 . =T
ar

2Ol ARE

olaE JER

=R
ShRE

Faol AL
CROL =T

SDRS 3
sLRA

PP
XiZH

SORT7 2AC
SOBRA

1.0
AL

=URC BAQE =T

e BIARE
Sl

201 &SE JER
CROZ =T

Faol AL
CRO1 =T

RS NI

) A
BUCT7 40 (R

b SIS

TR0 BINZ

2004

=

HEE0 L.I
E401 X
7060 BMNZ

LR 1
GETRYT

Ay NBYTES, P32
A, MCESLM, P32

GETRYT
A

A, MICEELIM, P2
A MCKSLIM, 32

GETBYT

A MOCESLA, P32

P2, =01000
EQ, X.F2

EAH. P2

GETBYT
R RECTYF. F2

B MOESLM
&, MCEE

2 P
LiM, F

WL

~. E

NOTOTA

EAY.FZ
f.=01
DTARED

a8 uR uw

~u

PPUIRY )

a3

INT JRNT e e gn g an wn [ET T} TR

we

RALID RATE=110

(START 0OF RECORDD

N

X702 FOLND
GET RECORD LENGTH (IN HEX)
AND SAVE IT

INITIALIZE MEMORY CHECKSUM

ADDRESS
oM THE STACK

GET MIR OF LOAD
(ATORH) & SAVE

LIFDATE MEMORY CHECEDSUM

GET LSB OF LOAD ADDRESS

(AODRL) IN A REG & E REG

LFDIRTE MEMORY CHECKESUM

ALDRH- -0 REC

ADDRH—-~E REG. ALDORL-—>A REG

FOINT P2
ADD DISFL

TO MIRLE VARIARLES
(NIBLEZ VAR X

SAVE RE ALDE

IN NIRLZ

CORD STARTING
VARTIARLE H

FCORD TYRE IN A REG
L OZAVE IT

LIFOATE MEMORY CHECESELIM

RECORD TYPE---68 REG

IF RECORD
IT IS A

TYFE = O
OATA RECORID

A REG=0, RECORD IS
& DATA RECORD

IF BALID RATE=110 FRINT
OUT RECORD STARTING
ANDRESES

IF ¥=1 BAUD RATE=11i0

FRINT OUT RECORD -
STARTING ADDRESS



2070 ASEEMBLER  REV-A

SO0

=

“nng

=Oes

=T

none 5

E00A
S0

- BT
SDED

SBOEZ
=OE4

SNEA
SDES

~ BOEA
=SDET
=[EE
SLEF

=00

BOFE

e = L S
sFE7 S
=0OFA =

ShFC

SNFE E

D MEQQ T

HEOE DTAREC:
AL

FOLASE NXTBYT:
DEOL

FI0O1
CROL

SHROOQ
JLER

201463E NOTDTA:

RECTET:

We /06T

CALL

Fi.1

AL

LT3
LI
5T

L.
XK

BNZ

=

Fi& s =ADRMEE

14

FRT4

F

EA.H, P2
F2, EA

GETEYT
An@+1, P2

AL MCESUM. P2
A, MOESUM, B3

AL NBYTES, P33

NXTRYT

GETRYT

DI

AL MCESLM, P2

RECTST

F2,=01000
EA, =01
Ea,Z.F2

A RECTYF. P2
A.=01

LOOF1L

H-5

gp e &8 un

aE e um B

aE SW wn um

L]

e uwa

am ~a IFTRRET T | un

9B uE uk uE uR

~e

~t

~p

FRINT CR/LF TO PUT RECORD
ADDRESS ON A NEW LINE.

(NECESSARY BECALEE “GECD,
NOT “GETC . MUST BE USEID.

FOINT P2 TO 1ST CHAR OF
ADLDR MSG & SAVE OLD P2
FRINT OUT THE MESSAGES:
CANDOR=X """ WITHOWIT CR/LF

FRINT OUT 4 CHAR ASCIT
EQLIIV OF 14 BIT HEX
STARTING ADDRESS,
WITHOUT CR/LF

FRINT CR/LE

RESTORE OLD P2

RECORD
RECORD

START ADDR--EA
START ADDR—--ZF2

REG

GET DATA BYTE

STORE BYTE & INCR FTR

UPDIATE MEMORY CHECESUM

DECREMENT BYTE COLINT
2 LOOFP IF COLINT <> 0O

GET RECEIVED CHECKHZUM

SAVE CHECE:SUM O STACK
FRINT CR/LF
RESTORE CHECKSUWN TO A REG

ADD MEMORY CHECESELIM

TEST =M FOR ZERD

S 9 O, CHECESLIM

FRROR HAS QCCURRED

FOINT FZ TO NIBL2 VARIABLEES
SET NIBLZ VARIABLE ZI=1

T INDICATE CHECKSUM ERROR

LOA0 RECORD TYFE & TEST
FUR END RECORD = X701

GET NEXT RECORD IF CURREMT
RECORD T35 NOT AN END RECORT



070 ASSEMBLER  REV-A Q4704779
SEO70 2070 UTILITY SUBROUTINES
VECTL.D

CURRENT RECORD = END RECORD., —
DELAY AFFPROX .54 SEC IN (ORDER
T SLEW OFF NULLS AT END OF
ENMD RECORDL THISZ WILL INSLRE
THAT SA=1 UFON RETURN TO NIBLZ
FROGRAM @ 4200 BALD.  THIH
DELAY IS ONLY REQUIRED AT 43200
BALID, BUT DOES MOT HAVE AMNY
DETRIMENTAL EFFECT AT 110
BALID, LISING A TTY WITH A
REANER REL.AY.

SAVE # OF TIMER “DELAYS

WILL BRE CALLED

SEOZ C4ws . LI A =150
BEG4 CRO4 =T A CTR.F3

NE NN NI SE MD M JE S B MR N ue an

SEOQLH CAFF .1+ LI A, =0FF LOAD DELAY COUINT
TSRO 2OFT7EF SR DELAY 3 DELAY FOR Z&0% LIEED

¥t 3

SEOR wBHO4 DI AL CTR, P23 3 DECREMENT & LOAT LOOF COUNT
DEOD 7CFT7 ENZ .1 3 & REFEAT IF LOGOF COLINT < O

SEOF 18 CALL & : FPRINT CR/LF @ END OF RECORD
3 (FOR 110 BALID LIZING TTY)

RELO SO RET 3 RETLIRN

. EELl 4144  ADRMEG: LASCIT CADDR=" - 3 ADDRESS MSG FOR 110 RALD -
N BELL AT JEBYTE U 4 030



HO70 A5

SEMBLER REV-A
W70 SO70 UTILITY

AZCILD - GETBYT

SBEL7

SE1LA
SELR
sE1n

S’ I‘_DE::‘_(:)
T

EOEIOR

O
L4100
~LFR

40

ROERZOY

Qb
Laio
HCFE

« FAGE

: “GETEYT”
3 SINGLE &
s CGETEYT”
s (OF STACK
s DESTROYE
: THE BYTE

OL/OLS TS
SUBROUT INES

GETSE TWO ASCT
EIT BYTE.

TASCILD - GETBYTS

I CHARACTERS AND COMBINES THEM INTO A

REGUIRES 1 BYTE 0OF

MEMORY . CALLSDS
REGISTER A AN

THE

WHICH I% GOTTEN IS
3 THE E REGISTER.

§ SUBROUTINE FARAMETERS

GETBYT:

NETOF e

ATOF1:

SZHIFTL:

N=TORS:

=

LI
AN
RZ
1.
BN
BRG

SUR

=i
EL
Sk
=T
JER
L.
AN
=¥ 4
L.
BN

BRA

MM

GECO

(APR]

fi. =010
NETOF2
AE
ATIOF ]

SHIFT1

AL MEN, P2

GED

A.E

ATOFZ

ORMIBL

H-7

REGI

SCRATCH RAM (MEN). USES 4 BYTES
MNIBLZ SUBROUTINE “GECOT,  AND
STER E. ~

RETURNED IN THE A REGISTER AND

TN LDE S

DISFLACEMENT RELATIVE TO F=z

<a e

an

<n

ME uE dNe ub

<8 un N s

e

GET ASCII EGUIV OF MsN
IN A REG & E REG

SAMPLE 54 & WAIT UNTIL
SA=1. (PARITY BIT=1 OR
STOF BIT=1 HAS OCCURREDD

SA=1
AECTIT EQUIV OF MEN--2A REG

TEST FOR X7 20QC=MENC=X 739
X 00=h REGI=X"0%. CONTINUE

CONVERT ASCII A THRLF
TO HEX A THRUD F

SHIFT MEN 4 BIT:

TO THE LEFT. PLACING
ZEROE INTO LEN
FOSITION

SAVE MEIZN

GET ASCII EQUIV OF LEN
IN A REG & E REG

SAMPLE SA & WATT UNTIL
SA=1. (FARITY RIT=1 (R
STOF BIT=1 HAT OCCURREDD

SA=1
ASCII EGUIV OF LEN--3A REG

TEST FOR X7 30<=LSNC=X 7 3%

X< 00C=A REGS=X"0%, CONTINUE



HO70 ARSEMERLER  REV-A Q4706777
AZRO70 2070 UTILITY SUBROUTINES
ASCILD - GETBYT

CONVERT ASCIT A4 THRIY F
T HEX A THRW F

DEZY FOR7 ATOFZ2: SUR s =X RT

~E wam

OR MSN WITH LEN TO
s FORM & RIT CHARACTER

~u

SEIR DROZ ORNIRL.: OR Ay MEN, P2

PUT CHAR INTO E REG

e

SEED 43 LI E.A
RETURN

-an

: ZEZE SO RET
1% S INCLD HEXZAZCT

H-8



¥ SEEMBLER  REV-A
YRE070 @070 UTILITY

HE X 2RS0T

SERF
HE4E
ZE44
SE47

aE4E
SE4A

SEAC
o EEAE

SES1

BESE

S S

EEO010

H20L

B403200

4c

0401
CROY

74000

260010 FRT4:

meOb

B4OSO0

i

A0
RO

C4A0
CEFF

FEO010

e MB uE

TR BT ]

L IEVT ST BN )

Q&L QLT
SUBROUTINES

. PAGE THEXZAZCT

THEXZASCT T WILL  COMVERT A HEX  NUMEBER  TO IT=
EQUIVALENT  AND  FRINT  THE NUMBER WITH A TRAILING SFAC
AFFENDED. 2 DIGIT &% 4 DIGIT HEX NUMBERS MAY BE  CONVERTED
DEFENDING UPON THE ENTRY POINT.

STAGE  MEMORY. DESTROY
CALLES  THE  SUBROUT INES
(FRTLN) . :

THE
REGISTERS
TLONBYT

SURROIITINE REGIUIRES & BYTES OF
A E T» ¥ e AN
“CONNIBY, & NIBLZ CALL 14

T
HE X
T

CONVERTED IS ASSUMED TO BE  STORED
AMD THE ASCII EOUIVALENT OF THE
MEMORY LOCATION FOINTED TO BY
STRING CONSISTS OF 2 A
ANTI 5 ASCTT CHARAGDTE
STORED AT THE  LOWESD
OF THE GUTRUT

THE HEX NUMBER T BE
THE NIBLZ VARIARBRLLE H,
NUMBER I% STORED IN THE
NIRLZ VARIABLE I THE COUITRLUT
CHARACTERS FOR A 2 DIGIT HEX MUMBER.
FOor A 4 LIGIT HEX NUMBER. THE MED IS
MEMORY LOCATIGN. WHICH I35 THE  BEGINMING
STRING.

HEXZASITTE

FRTZ:

INIT:

L.n Fa. =01000 3 POINT P2 TO NIBLE VARIABLEZ

OF NIRLZ VAR T
STRING

LOAD CONTENTS
ADD OISPL TO END OF
+ 1

(|
ALL

Ef.IL.F2

m
D
~

i
i
- -~

.0 Faa Ef ¢ END OF STRING LT 4+ 1--P2
LI 2] s STORE # OF BYTES TO CONVERT
=T A-BYTCTR. P2

BRA INIT 3 CONTINLUE

1.1 FOINT P2 TO NIBLZ VARIABLEE

L. Ea. L. F2 : LOAD CONTENTS OF NIBLZ VAR T
AT Ed, =5 s ADD DISERPL TO END OF STRING
L

LD P EA ; END OF STRING LOC + 1--3F%

LI fo =2 1 STORE # OF EBYTES TO CONVERT

=T A BYTCTR. P

LI A =0RD 3 STORE AZCIT "ZPY WHICH WILL
= A B-1,.FE 1 AFPFEAR AT END OF PRINTED
2 STRING,. WITH B7=1 TO DENOTE
3 END OF STRING. DECREMENT F2
Fi.1 F2.=01000 H

FOINT F2 TO NIBLZ

VAR %
s SAVE OLD FE :

H-9



S070 ASSEMBLER  REV-A  O&/06/72
AZZO70 B070 UTTLITY SUBROUTINES
HEXZASCT

BEAZ BROE LI
SE&G 09 (.1

HEAS SE FOP

SE6G ZOTESE CINVIE: ISR

BEAY FROY m.n
BEAR A004 ‘ Bz

SEAD OR CONVES i1
SEAE 40 LI

=SEAF T4FS BRA
= S Rt
HET7L OLE

FRINT:  CALL

SE7E G0

EA>H.FZ
T-EA

Pz

CONBYT

A BYTOCTR. PR

FRINT

EA.T
. B

0NV

14

~e wm

B ww uE wE

an un

P w3 MB wB uw

PO JRET SRNT]

LAD HEX # TO RE DONVERTED

TO ASCTIT % SAVE IT INT

RESTORE LD F2

CONY HEX BYTE IN A& REG TO
ZOASCIT CHARACTERE. STORE
THEM TN THE OUTPUT STRTNG
% DECREMENT FZ BY 2

DECREMENT BYTE COUNT
& EXIT IF COUNT = O

TRAMSFER 14 BIT HEX
# TO EBE CONVERTED TO
T EA REG. & FLACE
MZR IN THE A REG

CONT INUE

FRINT QOUT ASCIT BTV
OF HEX # WITH TRAILING
SFPACE AND NGO CR/LF

RETLIRN

S



.-.
il
i
Lo

1
m

i
3

SSEMBLER REV-A
Q70 UTHLITY

CORBYT

y P
t o

2O07FEE

-
!"!
"

by

i,

GF D) D3 0
[

D ZO7FRE

D40F

e FiOA

a4 £404

. F4368

s 7402

Fa41

L CEFF

OD&/O0L/TS
SURROUTINES

. PAGE THEXZASCT ~

; CTCONBYTY CONVERTS THE HEX BYTE FRESENT

3 ITS ASCII EGUIVALENT. AND STORES THE TWi

s CREATED  IN THE MEMORY LOCATIONS POINTEDRD TGO BY Fi.
: BE SET TO AVAILABLE RAM BEFUORE THE SUBROUTINE

s AND P2 1% DECREMENTED RY 1 WHEN EACH AZCIT

5 STORED.

: THE SUBROLTINE DESTROYS REGISTERI A AND E,

s WITH P2 FOINTING TO THE M8 ASCII DIGIT,

5 THE LOWER MEMORY LOCATION.

COMBYT: LT E-A

CONNMTR

i
i
T>D D> >

CONNIE

CONNIE: AND Ay =0F

SUR A, =0A

RBF GE1O

LT10: AL A, =X IA

BRA ETORE

GELO: AT A,=X"41

STORE: =T A @1 ,F2

RET

« INCLIT WRTAFE

-

~n

~e

-a

CONBRYT

IN THE A REGISTER TO
AZCIT  CHARACTE
el
ENTERET -
CHARACTER 1=

I=

Iz EXITED
STORED AT

AN
WHIZH 1=

T EEF
IN E REG

SAVE BYTE
CONVERTED

CONVERT & STORE ASCII
EqUIV OF LS NIBRLE
REZTORE HEX RYTE TO A REG

SHIFT MS NIEELE TO LS
NIBRLE POSITION

ZTORE ASCII
ME NIBBLE

CONVERT &
EQUTY OF

RETLIRN

MATE OFF L% 4 BITS
SUBTRACT X A=10
TEST RESLLT

NIBBLE WAS O THRU 2
CONV NIBBLE TO AZCII

CONT INUE

NIBELE WAZ 10 THRLE 135
CONY MIBBLE TO AZCILI

STORE ASCIT EQUIV OF
NIBRLE & DECR Pz BY 1

RETLIRN



Q070 ASSEMBLER REV-A  O&/06/79
ARRO70 2070 UTILITY

WRTAFE

D000

alulaled
Q003

D004

aTalatan

QOZE

GO20

EEL BT T RIS RS

NN ME um | MB JE ME MB B @ ¥R gn

IET VT |

[N IERTT IR BT

SLBROLITINES

« FAGE "WRTAPE

| _
"WRTAFE " INTERFACES THE INS2072 TO A CASSETTE RECORDER  FUR
STORAGE /RETRIEVAL  OF USER FROGRAMS.  FPROGRAME WHICH MAY BE
SAVED INCLUDE NIBLZ FPROGRAME AND ASSEMBLY LANGLAGE LM77

WHEN THE “WRTAPE” SUBROUTINE IS USED IN  CONJUNCTION WITH
THE NIBLZ FROGRAM “UTILITY”, THE USER CAN SPECIFY THE BLOCK
OF RAM TO BE WRITTEN ON THE TAFE. THE TAPE FORMAT IS A%
FOLLOWS S ,

1) AFPROXIMATELY 5 SECONDS OF 0% WHICH SERVE A LEADER
Z00 THAT THE TAPE SFEED HAS TIME TO STARILIZE OM
FLLAYBACK. THE LEADER ALZD ALLOWS THE RECEIVING
FROGRAM TO PROPERLY SYNC T THE CLOCK PULSES.

2y 1D CHARACTER=X"A%S WHILDH INENTIFIEZS THE START OF
EACH RECORI.

) A BYTE WHICH SFPECIFIES THE RECORD TYFE:

OATA RECORD=X"01 ©END RECORD=X"03

4) A BYTE WHICH IDENTIFIES THE TOTAL NUMEER
OF DAaTA BYTES IN EACH RECORD. M.

N CAN RANGE FROM 1 TO 254, (0 - Z55H)

5) THE LSB OF THE STARTING AUDRESEZ WHERE THE DATA
RECORD IS T BE STOREL.

&) THE MsE OF THE STARTING ADDRESE WHERE THE DATH
RECORD IS TO BE STORED.

7y 1 - 254 PROGRAM BYTES ‘

=) A SINGLE BYTE CHECESUM (IN 275 COMPLEMENT FORM) -
OF ALL BYTESZ CONTAINED IN THE RECORD EXCERT FOR
THE I CHARACTER

DISPLACEMENTSE RELATIVE T P2

CEET WE, O 3 NBE=REMAINIMNG # 0OF FGM BYTES
5 Tl BE WRITTEN (2 BYTES)
. SET [ P 5 M=# DATA BYTESZ IN DATA RED
.SET CESLIM, 2 $ CESUM 12 THE RECORD CHECEZUM
3 ACCUMULATED In MEMORY
. BET WRIZTR, 4 5 BIT COUNTER FOR
5 THE “WROHARS SUBROUTINE
CEET LORCTR.S : LEATIER COUNTER FOR OTHE
s SNDLDR ROUTINE (2 BYTES?

OISFLACEMENTS RELATIVE TO P2:

EBET X 4& s LOC OF NIBLE VARIABLE X
3 (MEMORY STARTING ADDIR)
5 LOC OF NIBLZ VARTABLE ¥

(MEMORY ENDING ADDR)

LEET REX: &=



SOT0 UTILITY

SEFE

9F

Z7O0FF

SRR

ARG

W BA01L 00
E2F 2ROO

EEAL -
BEAT

- EEAT

SEAC

e BEAE

SER]
SERE

.............

QP4
QOSE

240409

BROS
i

O3S

CASE AF
ZOF 7&F

SR05

BCOLO0

Q&S QLT
SUBROLITINES

LSET SRAM, OFFOO0

WRTAFE: AND T =0FE

L. P, =mRAM

AND S, =0FR

OR 5, =0E

3 CALCULATE AND STORE NB = #

LI EA.Y.F2
SR EA. X. P2

AL
ST

EA, =01
EA.NE,FP32

5 SET PTR F2

]

ETARTING

LIFGs LIt Ef. X.F2

Lo Fz.EA

SENT LLEADER ROLUTINE

-

THIS ROUTINE
(AFPROX 2500
TO SETTLE ON FLAYRACE,
CLOCE FPULSES.

TRANSMITS
@

ANI

=R 2@ uE 2w

O OENDLOR ROUTINE PARAMETERS:

LEET LLORCNT , 2500
- SET BITOLY .24

SNDLOR: LI

=T

EA, =LIORCNT
EA. LIIRCTR, F3
LOOPAa: JER FLILEE

> =RITOLY
DELAY

EA, LIORCTR. 32
EfQ,=1

IE TP RT ¥

SCRATCH RAM TO WHICH FZ&
FOINTS FOR THE “WRTAFPE”
SURRILIT INE

DISABLE INTERRUPTE

FOINT P2 TO SCRATOH RAM
SET F2=0

SET Fa=i

OF OATA BYTES TO BE WRITTERN

Y LR T Y TREET RPT R |

ADDRESS

-
>
-
3
a
?

APFROXIMATELY 5
H|OO BAULDD TO ACT AL
T

L] -

PET N )

LOAD ENDING ADDRESS
(NIRLZ Y)Y INTG EA REG
SUBRTRACT =ZTARTING
ADDRESS (MIBLE X)

AL 1

SAVE NR

WHERE DATA I5 TO BE STORED
LA START ING
INTO EA REG

SET PE2=STARTING

GODRESS

ADDRESE

SECONDZ
LEADER, ALLOW
FROFER  SYNC

oF
THE
T

T
AL LW

# OF CLE PULEES IN LEADER
DELAY COUNT TO PRODUCE 1
BIT DELAY

LOAD LEADER COUNT
AND ZTORE IT
WRITE CLE PFULZE

LOAD DELAY COLUNT
OELAY 1 RIT TIME

LOAL LEALER COLINT
DECKR LEALDER COUNT

07
AFE
THE



8070 ASSEMELER

wﬁrgpm

2ERA

SERE
SEBRY

SERR
SERE
SECO
SECL

BEDZ &

SET4
SEDNT

SEDRY
SEDR
SED

SEDF
- EEE L

SEES
- BEE&

SEEY
SEER

P CROZ

= 2400

SROS

Sa

7CEE

B4FFO0
BEOO
aF
LHA40H

SEO0

S40000
SHROO

A 740R

RO

=O0
BLOOOL
SROO

RO

FAaal
CRO=

CAAS
EOEREF

REY~ ﬁ‘

FECORI:

LEZS5:

GTZ2S5:

NXT1:

LR D

ﬁﬁfﬂﬁ/?’

=T

IR
BNZ

LI
SUR
RRL-
BF

1.0
=T
Lo
=T
BRA

L.I3
=T

L.In
=R
=T

LI
AL
=T

ADD
=T

LI
LD
JER

ADD
oY

L.t
JER
AL

EA, LDRCTR,

A.E
LOCFA

Ef, =255
EA:NE.F3Z
A

GT25%

Efs NER, P
AL NL P
Ef, =0
EfANR. 3
NXT1

iad

2 =)

AN, P32

EA. NE, F2
EA, =254
EA) NB') F":: N

AR

AN, F3
A, =01
A, CESUM, P2

» =X TAS
WRCHAR

A, =01
WRIZHAR

AN F3
WRIOHAR

EA, Fe
WRCHAR

A, CESLIM, B3
[AYPRN a8 S~ I 1 R e

EA.FP2
AE
WRCHAR

A C+1,F2Z
WRIZHAR
A CESLIM, PR

P

-

ax

s

T T T

N uE wn

i -z

I T

-n

g oun

NE uB NE

STORE NEW LEADER COUNT

TEST FUOR LEADER COUNT
=0},

LOAn 255
SUBTRACT NR
GET CY INTO A7
AND TEST 1T

iy

MB =25

i

Y=1.
SET M=NR
SET MNB=O

CONT IMUE

=

Ly=0. NB>2BS
SET N==

SET NE=NE-254

LOAD M OINTO A REG
A00 RED TYFE=X"01
STORE INTO CHESLIM

LOAD I CHAR=X"AS
WRITE CHAR N TAFE

LA
=X"01 &

DaTA REL
WRITE

TYFE

0N TAFE
LOAD # OF BYTES IN DATA REL
L WRITE ON TAFE

LI STARTING ADDR INTO EA
WRITE LSRR ON TAFE

ADD CESUM TO LER OF STARTING
ANDRE S £ STORE MEW SRSt

LE STARTING ADDR INTO EA
MZR OF STARTING ADDR-->8 REG
WRITE MER ON TAFE

SO0 CESUM
ANDRESZS &

T MSR OF
ETORE

START THG
NEW CESUM

LIV DATA BYTE & INCR FTR
WRITE DATA BYTE ON TAFE
AN CHAR T CEEUM



#0070 ASSEMBLER REV-A  0&/0&/7%
AZEO70 070 UTILITY SUBROUTINES
WRTAFE

BFOA CBOZ - &T A, CREUM, P2 ETORE NEW CRIUM

“a

BFOE FBOZ oL A. NP3 ZET N=N-1
SFOA JOFE ENZ LODPT P& LOOF IF N3O

~B

SFOD CR0T (M A, CEESLIM. P 3 LOAD CESUM OINTO A
HBFOE E4FF XOR » =0FF 1 TAKE 278 COMPLEMERNT
AF10 F401 AL A =01 s OF CEZELUM AND

Lo BR1E 20LwEF JER WRCHAR s WRITE IT ON THE TAFE
HF LS 2300 LI EA.NE. P2 s LAD NB & TEST FOR O
ZF17 o= R A, E 2 WRITE NEXT RECORD IF
ZF1E 7061 ENZ RECORD 5 NBCO

s WRITE END RECORD ON THE TAFE

ZF1A C4A5 L0 A, =X A% 5 NBE=0O

o SmF1C zOozeoF ISR WRICHAR 31 WRITE ID CHAR ON TAFE

SF1F C403 LI AL, =03 s WRITE ENO RECORD TYFE
SFZ1 20290F JER WRCHAR s =X 03 ON TAFE

WRITE 2% COMPLEMENT OF
CESM ON TAPE
RETLIRN

EBF24 CAFD LI Ao =X FI
L BFZ& 20293F - B SR WRLCHAR
aFzy S0 RET

FLIEETL IS )



070 ASSEMRBLFR
SE070 2070 UTILITY

REV-A

RTAFE — WROHAR

Lo magn’

<% <n um um

3 SUBRILITINE FARAMETERS

O01A
Q014
OOSF

443 WRIHAR

L4053
ZRO4

40 SHIFT:

SOSIEF SENDIL:

2418

41a
ZOFT7EF

7A40E

AOSEIEF ZENDO:

CASF

ZOF7EF

YRO4

Fin

&40

1

TAFE.
FOINTER P32
AND CALLS THE

DECTNT =

Q&/OLSTT
SUBROUT INES

- FAGE

THE

LI
=T

.11
RK

1.0

BF

JER

L1
JER

BRA
J5R

LI
JER

H.T
ENZ
|.T

RET

FROGRAM
I POINTING TO

"WRTAFE ~ WRCHARS

“DELAY

WRICTR
HLLFIN.Y s 24

ENDGLY 2
FIRTILY » 25

E.f

A, =08
A WRCTR., P33

A E
A

E.a
HENTIO
FLILSE

Ae =HLFTILY
DELAY

FLILSE

A. =ENDDLY
NEL.AY

NECONT
FILSE

AL =FLULTILY
DELAY

A WRETR, F3
SHIFT

A.E

WRCHARY WRITES THE 2 BIT CHAR PRESENT IN THE A REG ON
DESTROYE
BYTE OF AVAILABLE RAM
SLBROLITINE.

<8 a8 us

“e

“n

[EL BT T ST

ua 2 s

s [T T} “e

'

e

AZEUMES THAT
(WRICTHY ,

REGISTER E.

INCLUDE

LD WHERE RBIT COUNT WILL
BE STORED RELATIVE TO P3
COUNT FOR 172 RIT DELAY
COUNT FOR EMD OF RBIT DELAY
COUNT FOR 1 BIT DELAY

SAVE CHAR IN E REG

SET BIT COHINT=3

XFER CHAR TO A REG
ROTATE LB TO RIT 7

- WHERE IT AN BE SENSED

SAVE ROTATED CHAR IN F
TEST RIT TO BE WRITTEN
BIT=1. SEND CLOCK PULSE

SET TLY COUNT=1/2 BIT TIME
DELAY TO MIDDLE OF BIT

WRITE DATA RIT=1

DELAY TO END OF
BIT TIME

CONT THLE
BIT=0, SEND CLOCE FLILSE

EET ODLY COUNT=1 BIT TIME

NELAY 1 BIT TIME

DECREMENT BIT COLINT

REFEAT LINTIL RIT COLNT=
RESZTORE ORIG CHAR TO A REG

RETLIRN

—_
THE



ZO70 ASSEMBLER  REV-H

ASEO70 =070 UTILITY
WRTAFE -~ FLLSE

H
3
H
H
OO0
QOOF
H
3
H
3
H
3
3
H
FS4 ZRO4
BFESA C40F
R = | 2OF73F

el o

CA0F
2OF7EF

2ROS

ZFA4 S0

PINSE: iR

Qb /O&/T? )
SURROUTINES

. FAGE

TFLILEE "
“DELAY* SUBROUTINE, AND
BEEN INITIALIZED TO THE

“WRTAFE - FLULSE”

WRITES 1 CLOCE OR DATA PULSE ON THE TAFE. CALLS
ASSUMES THAT FLAGE F2 & F3
STATE FE=0 AND FI=1.

SURROUTINE PARAMETERE INCLUDE:

L EET N, 1%

CSET Dz, 15

[YTRNY

T ]

DELAY WHICH
OF FOZITIVE
GELAY WHICH
UF NEGATIVE

SETS DURATTON
EXCURZION
SETS DARAT TON
EXCURSTION

CUTPUT FPULSE GENERATED EBY COMBINTNG
F2 & F3.OUTPUTS AFFEARS A% FOLLOWE::

+++++
+ i +
++++++ +
+ Dz +

“++++++

M. =04

LI A =T
JER DELAY
AN

=, =0F 3

LI A, =D

JER LELLAY
RN 5, =m0

RET
LSINCLD ROTAFE

+++++++

- NTIY )

uE ew

om

SET F2=1. (F3=1)

SET DELAY COUNT=L1
DELAY FOR Il

SET Fz=F3=0

SET DELAY COUNT=I:Z
DELAY FOR LOZ
SET F3=1. (FZ=0)

RETLIRN

THE
HAVE



SO0 ASEEMEBLER

AZE0T70 2070 UTILITY

~OTAFE

000
Oy

000

0004
O30S

OO2E

REV-f  O&AZODEH/T7

B wm uw g

N am

ME U3 uE um ua

MR @ NE D WUE m w3 aE N e

ae

8B wm 98 a8 gz

SUBROUT INES

. FAGE "RIOTAPE - -

"ROTAFE " INTERFACES THE INSS073 TO A CASSETTE RECORDER  Frpe
STORAGE /RETRIEVAL OF USER FPROGRAMS. FROGRAMS WHICH May BE
SZAVED AND RETRIEVED INCLLUDE NIBLE? PROGRAMS AN ASSEMRLY
LANGUAGE LM-S,

THE “ROTAFE” SUBROUTINE REQUIRES & BYTES 0OF SCRATCHRFAD  RAM
AND CALLE THE SUBROUTINES “GETRITS AND “ROVCHR

WHEN A TAFE RESIDENT FROGRAM I5 READ INTO RAM. THE LSER MAY
SFECIFY AN OPTIONAL DISPLACEMENT  WHICH 1S ADDED To  THE
STARTING  ADDRESS OF EACH DATA RECORD.  THIS FEATURE AlLLOWS
AZZEMBLY LANGUAGE M-S AND NIBLZ FPROGRAMS TO BE LOADED INTO
MEMORY AT LOCATIONS SFECIFIED AT LOAD TINE.

THE FORMAT OF THE DATA WRITTEN ON THE TQPEVIS AT FOlL s

1) AFFROXIMATELY S SECONDS OF 075 WHICH SERVE AT LEATER
=00 THAT THE. TAFE ED HAS TIME TO STARILIZE N
FL.AOYRACE, THE LEADER ALSD ALLOWS THE RECEIVING
FROGRAM TO FPROFERLY SYND TO THE CLOCK FLH_SES,

2) 10 CHARACTER=X-"A% WMHICH IDENTIFIES THE START
OF EACH RECORD. '

) A BYTE WHICH SFECIFIES THE RECORD TYFPE:

ODATA RECORD=X“01 END RECORD=X 03

4) A BYTE WHICH IDENTIFIES THE TOTAL NUMEBER
OF DATA BYTES IN EACH RECORD, N. S
MOCAN RANGE FROM 1 T 254, (D - Z55)

T) THE LZBE OF THE STARTING ADDRESS WHERE THE DATAH
RECDRD IS TO RBE STORFD.

&) THE MEBR OF THE STARTING ADDRESS WHERE THE DATA
RECORD TS TO BE STORED.

7301 - 254 FROGRAM BYTES

2) A SINGLE BYTE CHECESUM (IN 7o COMPLEMENT FLORF)

OF ALL BYTES CONTAINED 1IN THE RECORD
EXCERT FOR THE I CHARACTER

OISFLACEMENTS RELATIVE TO PTR P3:

CHECESUM FORMED IN MEMORY

# 0OF CHAR BITS RECEIVED

IN "ROVOHRS SUBROLITINE
RECORD STARTING ALDRESS

(2 BYTES)

# OF DATA BYTES IN DATHA RED
SAMELE COUNT (# OF SAMPLES
IN “GETRITY SUBROUTINE)

L SET CESLM, O
RCYVCTR =]

1

STADR =

LEET N, 4
SCOUNT = 5

i
"

5
NE B e NE Qe AR um IR

DISFLACEMENTS RELATIVE TO PTR P2 ‘ —

« GET X2 44 I OSTARTING ANDR DISFLACEMENT —



2OT70 ASSEMBLER  REV-A
BO70 UTILITY

ASEROTO
RUOTGAFE

‘
3 S

[

L BE&T

BFAA
SFAL
EFAD

. EF&F

EFTZ
SF74

2F7 8

SBFE7Y
oF 7R

SBFE7

BF7E

BFEQ

s

o
o
Bt
o]
Ly
]
]

e
oo

FFOO

EQFEWMNRHTAPE=
ETOO0OFF &

B
{400
4=
CROO

REFEAT:

ZOLLEF SYNCLF:

E445
TR
SOET7EF

Fmo0
mROO

40

E40Q1

TiEm

e ZOET7SF DREC:

iZBO4

F=00
ZROO

i FOETEF

af

FOFZO0

imROO

vE ZOETEF

v PR
L BROO

~~~~~
Fim)

Q&6 T
SURROUTINES

- EET

< EET

XOR
BNZ

ISR

AL
ST

Lo

XOR
BNZ

JER
AT
=T

O

Z, 50

SRAM. OFF 00

%, =0FE
F3, =SRAM

5 =0

E. 6

A CESLIM. P32
GETRIT

Fa =X AS
SYNCLP
RIOVCHR

AL
fs G

=L, P
=L, P

AL E
f=01
EREI

RCVCHR

AN P32

Fro. CREELM, F3
Fy CRESUM, P

RICVCHR
&

ROCVCHR
B CEESLIM, P23
AL CRSLIM, PX3

-e

-t L] ~r

VT ERNT Y |

R WE gp wr e

dE MB QU NB M8

~u

[T ST R [T I YT JRT YUY | <R [T IERVT Y § ~e ww

T

(MIELE VARIABLE X)

CHECKESUM ERROR FLAG
(NIBLZ VARIABLE Z)

SCRATCH RAM TO WHICH FXE
FOINTS

DISABRLE
FOINT F3

INTERRUFTS
T SCRATOH RAM

LOALD O _
SET CHAR=0 IN E RED
EET CHSUM=0

SHIFT RIT INTO CHAR

WHICH T35 RETURMED IN

A REG AND E REG

TEET FOR CHAR=X"AS

GOTO SYNCLF IF CHARSX AT

CHAR=X"A5

GET RECORD TYFE IN
A REG & E REG

ADD CESUM TO RECORD
STORE WEW CEISLIM

TYFE

LOALDD RECORD TYFE INTO A& REG

FOR
XMITTEL

OATA RECORI
IF fA=01

TEZT A REG
DATA RECORDG
A=01. DATA RECORD BEING RECT
GET MN=# (OF DATA RBYTES IN
THE RECORD IN THE A REG

SAVE N

ADD CESUM TO N
STORE NMEW ZEEUM

AIDRL -2/ REG
SAVE ATDRL ON STACE

AND CESLM
STORE NEW

T ALDDRL
CREIELIM

REG & E REG
TGO ADDRH
kS

ADODIRH==-A
AIIE CREUM
STORE NEW
ADDRL.~ 20

REG. (ADDRH

=070 ASSEMBLER

REV~A

OL/QLITY

ASROT70 2070 UTILITY SUBROUTINE=:

ROTAPE

=SF AT
- 3BFAD
HBERO

SFR2

SFR4
SFR7
SFERY

o BFBA
SFED

SFRF

BZ2Z2E

pel)

H

ZOE72F GETDTA:
w TEOL

FRO0

- ROO
2 PRO4

ToFZ

b} =
ROETaF
FEO00

LCRE

240100 SERR:

SRS

S

FOE7SF EREC:
Fa00

TOFS

b1

F{F
JER

AR

RZ

(Y

RET
dER
ATITI

BNZ

RET

EA.X. P2

P
Pz, EA

RCVOHR

A, @+1.F=
A, DRSS
AL LF

GETOTA

P2
RECVCHR
AL CHEEUM, P2

REFEAT

Ef,=01
EA.Z.F2

RCVCHR
AL CEESLIM, P2

ZERR

H-20

"2 IR IENT I

[T)

97 R R T

[ELRNRVT JERYY REEVY BT Y

1]

8 wn PET IERNT T RV IIRFT IR |

e

FLIRNT Jv? B L]

1% ALREADY IN E REG)

ADD
{NIRL

& VARIARBLE X

IN DISPLACEMENT

)

ZAVE MIBLZ VARTARLE FTR

XFER

TAaTA
STORE

REC STARTING

BYTE——A REG
BRYTE & INCR

ALODR TGO F2

FTR

ADD CESUM TO DATA BYTE

STORE
NECRK
L.CIAT

NEW CESLM
CHAR COUNT N
INTO A REG

£ ii’

GET NEXT DATA RYTE IF

COLINT

CHOR
REZTO
TAFE
ADD O

SN. IS HNOT O
CrHINT=N=0

RE NIBLZ VAR
ChosLIM - REG

I
KELIM ETORED

TABLE FPTR
A

N

MEMORY TO TAFE CREZLM

IF A REG=0 BOTH CHECE:

MATCH

A REG <

SET E
NIBL.=2
RETLIR

A REG <

TAFE

ann o

MEMIIR
IF &

& REG
RETLIR

3 GET A NEW
> 0. CHECHK
RRIIR FL.AG,

VARIABLE Z-
M

0. ENID R
CESUM--6 RE
FSLM STORED
Y TGO TAFPE
REG=0 CHECES

=,

™

CHECE SLIM

S

RECORD

A RIE

OIFFER

=]

ECORD
(K]

IN
EARIR
M=

RELT

MATCH

5 MATOH

BO70 ASSEMBLER REV-A O&/0L/T
ASEOT70 RBO70 UTILITY SUBROUTINES
ROTAFE ~ GETRIT

S

L

AFC4A

SFCA

mFEC7

=SFEOY

=FCR
y*aFﬁn

SFTIO

HEI

aFDa

ot ol W)
HFI7

GOEw

o
CROS

420
TCFER

It YA
ZOF7SF

db

Ligz20

GO

SFROS
TIFT7

40

ICT RERCTRTY BERET] SR

e

~n

. FAGE “ROTAFE - GETBITS

SGETRITS RECEIVES 1 BIT INTG BIT 7 OF THE E REGISTER. ¢ Tk
E REGISTER MUST RE SET TO O BEFORE A CHARACTER AN B
FORMET . CGETBITS I5 CALLED & TIMER BY THE “RCVOHE
SUBROUTINE IN ORDER TO RECIEVE AN & BIT CHARACTER INTO THE
E REGISTER. SGETRITS IS ALSD REFPEATEDLY CALLED BY THE
YROTAFES FROGRAM SYNCHRONIZATION LOOF IN ORDER TO LOCATE
THE STORT OF RECORD CHARACTER (X7AS7).

INVERTED DATA AND CLOCK PULSES ARE RECEIVED ON THE SR INFLY
(WHEN SR=0 DATA/CLOCE ARE FREZENT).

TGETRITY ASSUMES THAT F3 IS5 POINTING TO 1 BYTE OF AVAILABLI
SCRATOCHRAD RAM (SCOUNT)Y . AND CALLS THE SUBROUTINE “DELAY .

GETRIT SUBROUTINME PARAMETERS:
HIM.Y1 = 57 s DELAY TO START OF FIRET SAMPLE

SOOUNT 15 THE SAMPLE COUNT (# OF SAMFLESD
TAKEN BEFORE A 707 DATA BIT 15 RETURNED)

“n ae

GETEIT: LD F,=12 3 SET SAMPLE COLINT=%

N~ wa

T A, BCOUNT. F3

GETOCLE: LI A, = : WAIT FOR CLOCE PLLSE ON
: 5 SR OINPUT
HER R 5, =04 s #R#FFULSE FRessdssas
553 ANTH ‘S,xDFB S ORHURHHEREFFRFRFRFRE

ETL RN)

ANTI A =020 5 MASE OFF SR
BNZ GETCLE 3 WAIT LUNTIL 5B GOES LOW

LI A, =HI.Y1 s CLOCK PULSE 1S PRESENT
JER DEL.AY s DELAY TO START OF
5 SAMPLE TIME
K] o | = L0 A T 1 SAMPLE INVERTED BIT ON 5B
2373 R o, =0s H ***PULEE Fas#srreres
R AN »=0F7 T RHANFFEREAFFFFHFES
AN B, =020
BZ RET1 5 TEST SAMPLED BIT =0 OR 1

3 SAMPLED RIT=0

SMFLO: T A, SCOUNT. P33 DECREMENT SAMPLE COUNT &

RETO: LI Ak

BNZ “MPL- : COMTINUE TF COLINTI 0

FINAL VALUE OF DATA BIT=0
Laal CHARACTER

Tt]

H-21

2070 ASSEMBLER REV-A

Q& Q6T

AZEO70 070 UTILITY SUBROUTINES

ROTAFPE — GETEIT

gl
)

SFDA

SFDE 45

2RO =D

SFOD Ok
SFDE D420
SFEQ ACFR

RET1

BFEZ 40
SFEZ 30
SFE4 s

m
I

A PR
A, =020
RET1

A E
(&)
AL =080

E.A

H-22

e um an

YL 1

I IEYT Y |

YL IRYT BT

s

U)

INTD THE A REG & SHIFT
IT RIGHT RBRY 1 RIT.
RIT 7 =0 RY DEFALLT

PUT CHAR
RETURMN

INTO E REG

FINAL VALLUE OF DATA BIT=1
WALT UNTIL SEB=ti
(DATA FULSE GOES AWAY)

LOAD CHARACTER

INTO THE A REG & SHIFT
IT RIGHT BY 1 BIT

ZET BIT 7 =1

FUT CHAR INTO E REG
RETLRN

S0T70 P

DEE0T70

ROTARFE

- ROVICHR

& 403

SFEA TRBOY

SFEC D400
wWFEE 4%

BFEF Z2OC18F
2FFE RO
SFF4 TOFY
HFF & 40

=SFEFT7 OB

-z

(Y CRNRTT RRVT) }

ur

EMBLER REV-A Q&/0&/7%
HOT0 UTILITY

SUBROUTINES

- FAGE “ROTAFPE -~ ROVOHRS

TROVEHR S RECEIVES ONE 2 BIT CHARACTER INTO THE A REGIZTER
AN THE E REGISTER.

TROVOHR Y ASSUMES THAT FTR P2 IS POINTING TO 1 BYTE OF
AVATLABLE SCRATCHFAD RAM (ROCVCTRY . AND CALLE THE SURBRROUTINE
TGETBRITS 3 TIMES IN ORDER T RECEIVE A COMPLETE & BIT
ZHARACTER.

FARAMETEREZ FOR “ROVOHRS INCLLDE:

5 RCVCTR IS THE COUNTER WHICH COUNTS
5 THE HUMBER OF BITS RECEIVED

ROVCHR: LD A, =05 5 SET BIT COUNT =2

=27 A, ROVCTR, B3

Lo Fa =0 5 CLEAR THE E REG WHERE
(Y E.A 5 CHAR WILL BE FORMED

LOgFz: ISR GETRIT 5 GET 1 BIT INTO E REG

O A, RCVICTR. P2 5 DECREMENT RIT COLINT

BNZ Loz

a=n

CONT INUE UNTIL COUNT=0
L.1 - ALE 5 FLT CHAR INTO A REG

RET
« INCLIDD DELAY

RETURN

-8

H-23

ELAY,

BFFE

EFFA

BFFC

FiZol
FOFC

b

GO0

B
?
1]
Kl

*
-
?
)
?
»
7
a
k3
=
?
a

2

3

DEL.AY: SR A, =01

070 AEZEMBLER REV-A6 0&/04/79
2O70 2070 UTILITY

SLBROUT ITNES

. FATGE “RELAY "

“DELAY" GENERATES A DELAY BY RECREMENTING A DELAY COUNT
WHICH HAS BEEN PREVIOUSLY LOADED INTO THE A REGIZTER.

WHEN EXECUTED FROM EXTERNAL MEMORY. THE TOTAL TIME DELAY
(UCYCLES) GEMERATED RY THE SUBROUTINE. INCLUDING THE
FREVIOUELY EXECUTED INSTRUCTIONS 7SR DELAY L2 “1.I
AL =DELAYCOLNT 7, 15 AT FOLLOWE:

TOTAL DELAY = 2% + 14 # DELAYCOUNT

WHERE DELAYCOUNT RANGES FROM 1 TO 255,

3 DECREMENT FPREVIOLIELY
s LOADED DELAY COLINT
BNZ LELAY 5 LOOF UNTIL COUNT = O

RET

~B

RETLIRN

- END

D00 — 200 o
Voo —3 Q00
1OC s ApOd

20O —s BOO
40O — oo
S0 — poc
CEe —e EO O
00— FO O

H-24

;
S

2070 ASSEMBLER REV-A
ASEO70 23070 UTILITY SUBROUTINES

ADRMEE SE1L
B110 anget
CESUM 0000
CONVE SE&DR
I DOOF
DTAREC DDA
FULDLY OOSF
GETRYT SE17
H OO0E
INIT SESR
LORCTR QOOS
LOOFAa 2EAY
M Q002
NEXT =Znan
NETORE SEZF
PRINT SE71
ROVOHR SFES
RECTST &OFC
RET1 HF DI
ZERR “FEe4
SMPLO BFLS
STORE SERC
WRTAFPE SESF

¥*

*

3#*

ASCILD
RA4ZOO
CONBYT
TR
DECONT
ENDOLY
GE1O
GETCLE
HIL.Y 1
L1
LEZTS
LOOFT

N
NOTDTA
NXTIL
FRTZ
ROVECTR
RECTYF
SCCLUINT
SHIFT
SNOL.OR
SYNCLF
X

NG ERROR L INES

SOLIRCE CHECK
ORMECT CHECE
INFLIT FILE
LISTING FILE
ORIECT FILE

i
M = ODAS

FEFZ

{

O01A
BESA
GFC&
QOE
REOSL
SECE
SEFF
0004
S0EA
REDY
BEIF
0001
QOOO7
QOOO0S
mFEF
SEA4
ZF&F
QO 2E

O&L/O06/7

¥ ATOF1

* BITHOLY
CONNIE
j
LELAY
EREC
GECD
GETOTA
HEXZ2A5
LoOFP2

* L.O0F 1
LT1O
NE
NETOF1
NXTBYT

* FRT4
ROTAFE
REFEAT

SENDO

EHIFTL

SRAM
WRCHAR
Y

18 ASSYLANG, SR ON UTRO70

15 A%

YLANG. LST ON UT2070

1: ASSYLANG. LM ON UT2070

ey
) Id
v
Co.'wmp ko=
o
N - %
o g <,

W

H-25

2EZ

OOSE
SESO
QOO
sFFa
BFRA
Q9=
SF9F
SEIF
=HEAL
apez
QOO00
=S
Snnn
SE4E
SF&S
BF&A
=SF44&
SE2E
FFOQOQ
HBF2A
QO=0

ATOFZ2
BYTCTR
CONV
It
DREL
FLELAY
GETRIT
GT25S
HLFOLY
LIORICNT
LOOFS
MCESLIM
NBYTESZ
NETOFZ
ORNIEL
FULEE
RECORD
RETO
SENDL
“SMPLL
STADR
WRCTR
z

aEmw
OO0
RE&E
QOOOF
aFoe
FFELC
SFCE
=SECE
O0iA
OF4
SFEF
[a]sInh]
o0 (818
2EL1A
SEZR
SFS4
ZERR
SFD
oF a4
ZFDo
OO0
QO04
QOE:

z 3 3 T4 S00
i
e g :
Lfar w3 pl—o
[
3 2P
e v pS =
+5V >
1A e :»—Lj 2 — 2
i i n| =L I I C I B m—— — e R\
RPY T . 2 = 5 = e 3 -
2 s J: TSI a 3 £ z 2 I 5 g b 4] . g
Bz 3K.ZK st = & 5 MM 2114 MM 2 MM Z 14 MM Z04 Mu Zi4 MM T4
€1 == 33uF ug MM 24 MM Zu4
ui u3 (0pTizNAY (oPTionaL) (sPTIeN ALY () {otTieN ALY (oemivNAL)
- ¥ -
13-4 as 5 w 283 Ut ol viz Uiz U4 0\s
o = sentvever ¥ SNaT fezsly Aadw | g
L o e e I "—'t‘g =|el=2fd U U' ‘U‘ U’ ‘L‘I' -L,E
rz-|
b —
«E‘—A_ . 3 bisre P
[1y
= Ao =
rr-49 F2a -
(::u-s’n i / :‘I.I. -;—: i
33 l L TP A3y
4 & 19
3] J :: 18
) j i
€1 0” A7
1
:_L R: T4
= Yy L
Al E
| o AR ;" Y
ol NENoT © :g i i
A
13 :
Do
9 31
Fm ;; 1l
b3 :: (3
.;“ Yy : /e Y
E3 gy »e |21 — z| ko
L ®3 S == bkt 34
E4 O 5| A L1K
s - W
jooK
R& Y —16 F.ER: H
| O i ¥ Nwp3| = = = x VW 1
1K 4.0 M2 ot + 1\‘1;-3“‘ b otin
- v for] = - S l H 2 b
CI-—l—z‘lfF,S‘f. elmlel-lols] c|eholel = "l—‘lr.#l ul @ el ‘,_,";',?.;‘g 3[1'-3! 3;3#;”:":4“ ==|4{mle] 2| & 14501
% = 2 =
L 2ELIT2IE 5RAVEANRESR B 8 ¥ |2 & 2z nAaxknN2 ¥ § ¥ 2:uTf2%13 R2RERIAR & 2
= 3 E.
NS 20713 MMZ1L (LPTICNAL) V16 (TN AY N6 3255A (oPTWNAL) U INS 3154 (oprianpL) W1
u\
= 2 n % . mu D - o
cBEi2eic gepasess spostusy| | & seysEiey pgussiEd @ &
= P = o3
2 MARRSECERCER ',1:1’;1“ _-‘-_-'si J ﬁ--_.-m.ut.l l" *1V1 "l B
v shestly MMM AR wn AARPFIS ?
‘ e Pt S Sl A p Ak FLPISAER FFIIT ¢
Shadhipp hPaningy| vl ¥azne P LhARphh PARDfgRD
= f Pl AP iEW) -
£ |2 v o T 5
| o = K
3| o |feasv
Sh 8 | i — SV
Y m)e
N‘::
o b PRRT oF
A T e
- 745368 ¥
€3 -l—-“l‘ ‘M%wms 3 g T4L5 %
GHND 3
=] uth) LT
rry T- B8 i _ uj:@o——
AMIT= T P2 gk e?*LSOt
“) v
117
c + SV ——— VL T4lsco
ok ana: L 8= : b
=] m
' NoTES
Y ROV WEXGEPT FOR €S (PINQ), ALL OTHEE PiNs od U1, U134 UiS" ARE CoMNECTED SAME AS CORRESPONDING PINS OGN U3 sy
?3-31 36) ELCEPT Fox (S (pINQY ML JTHER Ps 0N VIO, Wiz 4 UI4 NRE CONNELTED SAME AS CORRESPINDING rINE o UL
<€ L IVEACEFT FoR PD[pem (BN 1D, CS (P 20) £ Vo Lo 21}, AL OTHER FINS oM U7 ARE CONMECTE) SAME RS CORRESPCADING PINS oM ui6 s
l Loy IR 4) UNLESS OTHERWISE APTED:
13 (OE2 »ALL RESITORS AEE W, 0% 3
! X o ALL CAPACToRS ARE 28V, % Z20%
] EZ) :r‘z-: ~ RDR REWY + 5) THE FouvewiNg TesiToxs ARS INSDE Two § PN 5)P§: RE R7, Rig, RIZ, RIS, R1p, R, R22, R23) RIS
3 Rt £ 2.1k IN4001
R) - &
= “2; v ?11 2\ 5y RER RELAY =
Rzn%rm. s lze.0. pr-é !
¥
3-7

National Semiconductor Corporation

2900 Semiconductor Drive
Santa Clara, California 95051
(408) 737-5000

TWX: 910-339-9240

National Semiconductor GmbH
D-8080 Fuerstenfeldbruck
Industriestrasse 10

West Germany

Telephone: +49 08141 1031
Telex: 05-27649

NS Electronics (HK) Ltd.

4 Hing Yip Street, 11th Fioor
Kwun Tong

Kowloon, Hong Kong
Telephone: 3-411241-8
Telex: 73866 NSE HK HX

NS Intemational inc.

Miyake Bldg. 6F, 1-9 Yotsuya
Shinjuku-Ku

Tokyo 160, Japan
Telephone: 03-355-3711
Telex: J28592

NS Electronics Pty. Ltd.

Cnr. Stud Road & Mountain Highway
Bayswater, Victoria 3153, Australia
Telephone: 03-729-6333

Telex: 32096

ORDER NO. 420306183-001

Publication No. 420306183-001A

©1981 National Semiconductor Corporation/Printed in U.S.A.

