A fast GOTO routine for the
INS8073 NSC Tiny Basic Microinterpreter

Bruce J. Edmundson
National Semiconductor Corp.

April 28, 1983

-——-.—..__..__—_..__._....___..___—-_—-————--——-—___—-——__—-—-—-_———-——_———--———

In many control applications the speed of the "GOTO" routine in the
8073 is unacceptably slow. This is due to the fact that the GOTO (and
GOSUB as well) will search for the "target" or ndestination" line with
a character-by-character search starting from the beginning of the
program, regardless of whether the reference js 1is a forward or
backward direction. Therefore, a GOTO with a destination that is many
lines 1into the program may take a considerable time. If interrupts
are used, some interrupts could be missed and data lost since they
would not be processed during the execution of the GOTO.

For those cases with a fixed program 1in which the destination
addresses can be calculated . in advance, the following assembly
Janguage vroutine will prove useful. In this routine, Tiny Basic will
put the address of the destination into the "A" variable, then call
the routine to "GOTO" the line at that address.

The routine would be called from Tiny Basic like this:

10 LET A=#9000:LINK #A00O
or, compressed:
10LETA=#9000:LINK#A000

where the variable A contains the address of the target line, 9000 in
this case, and the assembly language GOTO routine is located at
address A000 (hex). Note that an assignment statement will be
somewhat faster if the word LET is used, at the expense of three more
bytes of code.

The assembly language GOTO routine is:

A0O00 3A POP EA : Remove return address from stack
AOO01 8200 LD EA,0,P2 ; Get data from "A" yariable

AOO3 5F POP P3 : Restore P3 (arith expr stack ptr)
A004 5E POP P2 . Restore P2 (text pointer)

AQ05 46 LD P2,EA : Put destination address into P2

A006 24F701 JMP 01F8h GOTO new line

Any method of passing the destination address the the routine is
acceptable; two "pokes" with the n@" function could also be used.

Notes on the
INS8073 NSC Tiny Basic Microinterpreter

Bruce J. Edmundson
National Semiconductor Corp.

May 3, 1982

——.——-—————.——————-———_—————-————__—————_—_.———..—...————.—————-——————-————————_—,_—

1. Introduction

This paper describes how to implement single-character input and output
routines for the NSC Tiny Basic Microinterpreter chip, the INS8073. The
internal I/O0 routines are shown along with the assembly language code
needed to reference them. All assembly routines shown here are shown
assembled at 1location 9000 for example purposes; a real system would
obviously have each routine at a different location (probably in a ROM).
The Tiny Basic code shown is similarly fragmentary.

Tables of some useful internal subroutines and memory locations are also
given.

2. Sending a single character using strings

Sending a single character from the 8073 to the outside world is
possible without any additional .code, by making use of the built-in
string facilities. For example, suppose that we want to send the Ascii
code for "BEL" (hex value 07) to ring the bell on the terminal. One way
to do this would be to run this program: '

10 @#9000=#87
20 PRINT $i#9000;

Line 10 stores the (hexadecimal) wvalue 87 into (hexadecimal) location
9000. Line 20 then prints a string which starts at location 9000. This
method takes advantage of the design of the built-in string processing
routines.

The internal string output routine has two methods of detecting the end
of the string to be printed: first, it stops sending characters if it
encounters a carriage return ("CR", hex value 0D); the CR is treated as
a delimiter rather than part of the string and is not sent itself. This
is the normal string processing mode and is used when storing strings
into memory (with $X = "string", for example).

INS8073 Notes Page 2

The second method of string termination is to set bit 7 (the most
significant binary bit) in the last character of the string to a "1".
Thus the normal code for "BEL", which is 07, becomes 87. Transmission
of the string is terminated after this final character 1is sent.
Therefore in the example, only one character is sent. Note that the
semi-colon ";" is necessary at the end of the PRINT statement to
suppress the carriage return and line feed which would otherwise be sent
at the end of any PRINT statement.

3. Calling PUTC with LINK

Another method of sending a single character is to use the built-in
serial output routine ("PUTC") directly with an assembly language
interface called by the LINK instruction. This is necessary to pass the
character to be sent to the PUTC routine. The required interface
routine is:

9000 C200 LD A,0,P2 ; Get char from "A" variable
9002 17 CALL 7 s Call PUTC routine
9003 5C RET s+ Return to 8073

This routine would then be called from the 8073 like this:

10 a=7
20 LINK #9000

The LINK instruction calls the routine at the indicated address with
register P2 pointing to the beginning of the variable area for the Tiny
Basic program. - Variable "A" is at a displacement of 0, variable "B" is
at a displacement of 2 (remember, variables are 16 bits), and so on
through variable "2Z" which is at a displacement of 50. Another method
of passing values would be to store them in some fixed location in RAM
(somewhere outside of the program area) by using the @ function in Tiny
Basic to store the value into the memory or retrieve a result.

4, Receiving a single character

Receiving a single character from the serial input routine is very
similar to sending a character to the output routine. The interface
routine is:

Call "Get character and echo"
routine at 092B
Clear A (char still in E)

9000 202A09 JSR GECO
9003 C400 LD A,=0

we WO WP NE Wy b

9005 01 XCH A,E Exchange char to A register
9006 8A00 ST EA,0,P2 Store char into "A" variable
9008 5C RET Return to 8073

INS8073 Notes Page 3

This routine would then be called from the 8073 like this:
10 LINK #9000 : REM received char is now in A.

The GECO routine gets a character from the serial input (waiting as long
as necessary until one is received) and returns it as a 7-bit value in
both the A and E registers; the routine shown then stores it into the
low-order byte of the "A" variable with the high-order byte set to zero.

5. Checking serial input status

The built-in I/O routines use a software routine to process the
characters and do the proper time delays between bits. The on-chip
flags and sense inputs are used to transmit and receive the characters.
The serial input comes into the chip on the SENSEA line which is bit 4
of the status register (mask value 10 in hexadecimal). Testing for an
incoming character involves watching the serial input line for a start
bit (a "O"). This must be done often enough so that a character is not
missed or misread by starting the read routine too late. From the Tiny
Basic level, the serial input may be tested using the status register,
like this:

10 IF STAT AND #10 THEN GOTO 10 (Loop back if no start bit)

Unfortunately, the 8073 will take about 10 milliseconds to execute that
statement loop, which is really too slow even for 110 baud (which has a
bit time of 9.09 milliseconds). Therefore, an assembly language routine
is required in order to process the character without losing too much
time. A simple extension to the GECO routine shown above would be to
add a status check so that it would read a character if one was starting
to come 1in, or return a status value to indicate that no character is
yet ready. This routine would be as follows:

9000 06 LD A,S : Load status register

9001 D410 AND A,=SA ; Mask out all but SENSEA (10H)

9003 7C06 BNZ NC ; Branch if no char ready

9005 202A09 JSR GECO ; Call "Get character and echo"
: routine at 092B

9008 Ca00 RTN: ST A,0,P2 ; Store char into "A" variable

900A 5C RET : Return to 8073

900B C400 NC: LD A,=0 : Return a "NUL" (no char

900D 74F9 BRA RTN : ready value)

This routine would then be called from the 8073 in the same way as the
previous example. The value 0 would be returned if no character is
ready or if a null character is received. The routine could also be
written to put the status value into a different variable than the
received character.

INS8073 Notes Page 4

6. Useful built-in subroutines

Several routines which are built in to the 8073 Tiny Basic interpreter
may be called from user programs. These may be called from assembly
language as follows:

CALL 4 APUSH: push the contents of EA onto the arithmetic
expression stack (using P3). This is the stack used for
processing expressions within Tiny Basic (and is also used
by PRNUM below). This stack is reset at the start of each
Tiny Basic statement. Overflowing the stack will cause an
ERROR 9 (expression nesting error) and return control to
the command interpreter level.

CALL 5 APULL: pop the contents of the arithmetic expression stack
into the EA registers.

CALL 7 PUTC: Send the character in A to the serial output.

CALL 8 CRLF: Send a CR/LF character pair to the output routine.

CALL 10 NEGATE: Negate the 16-bit value in EA (two's complement) .

CALL 14 PRTLN: Print a string of characters starting at the

location pointed to by P2. The string is terminated
either when bit 7 is set in the last character printed, or
when a CR character is found (which is not printed unless
it has the bit 7 set).

CALL 15 ERROR: This routine prints out an error message with an
error number, then returns to the interpreter in command
mode. The error number is given in the byte following the
CALL instruction.

JSR 04FCH PRNUM: pops a l6-bit number from the arithmetic expression
stack and prints it.

JSR 084DH GETLN: reads a line from the console into the line buffer
at location BUFAD. This is the routine used by the editor
and INPUT. Terminating the input with control-C returns
control to the command interpreter.

JSR 092BH GECO: receives the next character (with echo) from the
input routine into the A and E registers.

JSR 09CBH DLYX: delay by the time value specified in EA. A
millisecond delay would have a value of 63. Other delays
are proportional.

INS8073 Notes Page 5

7. Some on-chip RAM variables

Ssome of the interpreter variables which are stored in the on-chip RAM
may be useful to be tested by user assembly language routines. These
are all 16-bit values unless otherwise indicated. Sixteen bit values
are stored in memory with the low-order byte followed by the high-order
byte.

Location Name Description
FFC3 CURRNT Current line number
FFC6 EXTRAM Starting address of the external RAM.
FFDO BUFAD Address of the line buffer in the external RAM
(used by the editor and INPUT).
FFD2 STACK Starting address of the stack area.
FFD4 TXTBGN Starting address of the current program area.
FFD6 TXTUNF Address of the first byte after the end-of-program

flag; this value is used by the editor to control
entry and deletion of program lines. This value
must be properly set for the editor to work (it is
not changed by NEW with an address specified).

FFD8 TXTEND Address of the first byte after the end of the RAM
where the program can be stored. Also used by the
editor.

FFES8 ONE A constant with a value of 1.

FFEA ZERO A constant with a value of 0.

FFEC DLYTIM The delay time constant for the current baud rate.

