AM Bo

Laboratory Manual And Study Guide

LEO J. SCANLON

N ne
3 ir=

-

vaaml

TR R LELE

AIM B5

Laboratory Manual
and

Study Guide

LEO J. SCANLON

Rockwell International
Anaheim, California

JOHN WILEY & SONS NEW YORK CHICHESTER BRISBANE TORONTO

Copyright © 1981 by John Wiley & Sons, Inc.

All rights reserved.

Production or translation of any part of this work

beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act
without the permission of the copyright owner is unlawful.

Requests for permission or further information should be addressed to

the Permissions Department, John Wiley & Sons, Inc.

ISBN 0 471 06488 2
Printed in the United States of America

10987654321

Dedicated to

my father
Leo J. Scanlon

whose intellectual curiousity has been a lifelong inspiration to me

PREFACE

Through the experiments in this book, you will receive a solid
introduction to the fascinating world of microcomputers. The
experience will be both instructive and ‘‘painless,” because you
will be working with a professional microcomputer that has been
designed with education in mind—the AIM 65 Advanced Interac-
tive Microcomputer from Rockwell International Corporation.

The ‘“brain” of the AIM 65 microcomputer is a 6502 microproces-
sor, perhaps the most advanced eight-bit microprocessor on the
market. The 6502 is also used in many other popular microcom-
puters, including the Apple II and III, the Commodore Pet, the
Atari 400 and 800, and the Synertek SYM-1, as well as in a variety
of industrial and consumer products.

These experiments will introduce you to principles that have
importance far beyond the AIM 65 microcomputer. You will be
learning about the internal architecture and instruction set of the
6502 microprocessor, many fundamental techniques of pro-
gramming (including how to “debug” and design efficient pro-
grams), how external devices communicate with the microproces-
sor, and many other interesting and worthwhile topics.

Makeup of the Experiments . . . Most experiments in this manual
have four parts. They are, in order:

Object—what you can expect to learn from the experiment.

Pre-Lab Preparation—a list of material that must be read prior
to the laboratory session.

Discussion—a summary of the pertinent portions of the read-
ing material, and additional principles that can be applied in
solving the laboratory problems.

Procedure—a step-by-step approach to the problem for the
experiment.

Supplementary Reference Material . . . The pre-lab reading mate-
rial is drawn from three Rockwell documents that are supplied
with each AIM 65 microcomputer:

AIM 65 Microcomputer User’s Guide, Doc. No. 29650 N36
R6500 Programming Manual, Doc. No. 29650 N30
R6500 Hardware Manual, Doc. No. 29650 N31

Additionally, the following three Rockwell documents will prove
useful to you, but they are not required for the experiments:

AIM 65 Monitor Program Listing, Doc. No. 29650 N36L
AIM 65 Summary Card, Doc. No. 29650 N51

R6500 Microprocessor Programming Reference Card, Doc. No.
29650 N50

These documents are available from: Marketing Services,
Rockwell International, P.O. Box 3669, RC55, Anaheim, CA 92803

A Note About the Experiments . . . All but one of the experiments
can be performed using the base model AIM 65, which has 1K
bytes of RAM memory on the board. Experiment 17 requires
Rockwell’s optional ROM-based Assembler, and 4K bytes of RAM
memory, to be present on the microcomputer board. With an
Assembler-equipped AIM 65, you should perform Experiment 17
immediately after Experiment 4, and then conduct all subsequent
experiments using the Assembler.

Acknowledgements ... This book reflects the efforts of many
people in addition to myself. In particular, I wish to thank the
Microsystems staff of Rockwell International in Anaheim,
California, for their enthusiastic support; Mrs. Lenore Seidman,
for her excellent typing of the final manual; and Ms. Judy Green of
John Wiley & Sons, whose many contributions helped make this
book a reality. And my wife Pat deserves special thanks, for her
patience and understanding during this project.

LEO J. SCANLON

CoNOOTLWN 2

CONTENTS

Getting to Know the AIM 65 | 1

Addition Operations | 9

Subtraction and Logical Operations | 15
Program Sequencing | 27

Debugging Programs | 35

Multiplication Operations, with Shift & Rotate | 45
Division Operations | 55

Subroutines and the Stack | 61

Unordered Lists | 71

Sorting Unordered Data | 79

Code Conversion from Input | 85

Code Conversion for Output | 93

Input/Output | 99

A More Powerful I/0 Device, the R6522 VIA | 109
Interrupts | 119

A Timing Program with Decimal Output | 129
The AIM 65 Assembler | 137

Answers to Experiments | 147

1

GETTING TO KNOW THE AIM 65

OBJECT

To become familiar with the AIM 65, and to learn how to enter and execute a program.

PRE-LAB PREPARATION

Read Sections 1.1, 1.2, 1.9, 2.1 through 2.8 and 3.1 through 3.6 in the AIM 65 User's
Guide. Read Chapter 1 and Sections 2.0 and 2.1 of Chapter 2 in the R6500 Programming
Manual.

DISCUSSION

In the laboratory sessions you will be using AIM 65, the R6500 Advanced Interactive
Microcomputer from Rockwell International Corporation. Before proceeding with this first
experiment, take a few minutes to examine the AIM 65.

Observe that AIM 65 is a complete microcomputer, with a typgwriter-sty]e keyboard,
a display, a printer and a group of electrical elements (integrated circuit "chips", re-
sistors and capacitors). In this experiment, and those that follow, you will be using
the keyboard to input data and instructions into the computer. The display and printer
are output devices -- they give you visual readouts that relate to your programs.

AIM 65 has three switches. Switch S1, located on the left side of the board, is a
RESET push-button. It is used to initialize the AIM 65, to put it in a known state.

Switch S2, located to the left of the display, is a two-position STEP/RUN switch.
Switch S2 should be set in the STEP position for Experiment 1.

Switch S3 is a two-position TTY/KB switch that selects whether you will be using AIM
65's keyboard (KB) or an external teletypewriter (TTY). Switch S3 should be kept in the
KB position for all laboratory experiments in which this manual is used.

The AIM 65 Monitor

The operating program of the AIM 65 is contained in two Read-Only Memory (ROM) chips
that are installed in sockets above the keyboard's PRINT key. This program is called
the Monitor. The Monitor program regulates the overall operation of the AIM 65, based
on commands that you enter at the keyboard. These commands allow you to examine the

1

contents of specific memory locations and registers (and change those contents, if desired),
initiate the execution of a program, turn the printer on and off, and a variety of other
system control functions. The Monitor commands are describad in Section 3 of the AIM 65
User's Guide, and are listed on the AIM 65 Summary Card.

Nearly all of the Monitor commands will be used in this manual, but for Experiment 1
we will use only these eight commands:

COMMAND DESCRIPTION
* Alter Program Counter

| Enter Mnemonic Instruction Entry Mode

RESET Enter and initialize Monitor

G Start executing user's program

K Disassemble memory

M Display specified memory locations
/ Alter current memory locations

R Display register values

The R6502 Instruction Set

A microcomputer is aomprised of a microprocessor (usually referred to as a CPU, or
Central Processing Unit), memory and one or more input/output (I/0) devices. In the AIM
65 Microcomputer, the microprocessor is a Rockwell R6502. The R6502 is an eight-bit micro-
processor, which means that it operates on instructions and data eight bits at a time.

The R6502 executes programs by fetching instructions from memory, one-by-one.

Some instructions can be contained in a single eight-bit location, or byte, in memory;
other instructions include an operand (a data value or a memory address), and must be con-
tained in two or three bytes in memory. The first byte in all instructions represents an
operation code, or op-code, that tells the R6502 which operation is to be performed.

The sum total of all instructions that are executeable by the R6502 is referred to as
its instruction set. There are 56 instructions in the R6502 instruction set; they are
summarized in Tables 1-1 and 1-2. Further, many of the 56 instructions operate with more
than one addressing mode. There are 13 addressing modes in all, making the R6502 one of
the most versatile and powerful microprocessors in existence. The addressing modes are
discussed in detail in the R6500 Programming Manual.

When writing programs for the AIM 65, you will enter instructions in their assembly
language form, using the three-letter mnemonics that make up the left-most column in Table.
1-2. The AIM 65 Monitor will automatically translate each mnemonic into the proper op-code
for input to the R6502. For instructions that can operate with more than one addressing
mode, the Monitor will generate the proper op-code based on the format of the instruction's
operand. Table 1-3 shows the general form of the operand for each of the R6502's 13 address-
ing modes. Each "a" in this table represents a hexadecimal character (0 through 9 and A
through F), so if you were specifying an operand of hexadecimal F3 in the Immediate address-
ing mode, you would enter the operand in the form #F3. For example, to load F3 into the

Table 1-1. R6502 Instruction Mnemonics
(Courtesy of Rockwell International)

ADC Add Memory to Accumulator with Carry JMP Jump to New Location
AND “AND"” Memory with Accumulator JSR Jump to New Location Saving Return Address

ASL Shift left One Bit (Memory or Accumulator) LDA Load Accumulator with Memory

LDX Load Index X with Memory
LDY Load Index Y with Memory
LSR Shift One Bit Right (Memory or Accumulator)

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Resuit Zero

BIT Test Bits in Memory with Accumulator NOP No Operation
BMI Branch on Result Minus
BNE Branch on Result not Zero ORA “OR’’ Memory with Accumulator
“BPL Branch on Result Plus PHA Push Accumulator on Stack
BRK Force Break PHP Push Processor Status on Stack
BVC Branch on Overflow Clear PLA Pull Accumulator from Stack
"BVS Branch on Overflow Set PLP Pull Processor Status from Stack
CLC Clear Carry Flag Fnig; 2otate One Bft ::ft (M';mory or Accumula‘tor))
CLD Clear Decimal Mode otate One Bit Right (Memory or Accumulator,
. - RTI Return from Interrupt
CLI Clear Interrupt Disable Bit RTS Return from Subroutine
CLV Clear Overflow Flag
CMP Compare Memory and Accumulator SBC Subtract Memory from Accumulator with Borrow
CPX Compare Memory and Index X SEC Set Carry Flag
CPY Compare Memory and Index Y SED Set Decimal Mode

SEl Set Interrupt Disable Status
STA Store Accumulator in Memory
STX Store Index X in Memory
STY Store Index Y in Memory

DEC Decrement Memory by One
DEX Decrement Index X by One
DEY Decrement Index Y by One

TAX Transfer Accumulator to Index X

EOR “Exclusive-or” Memory with Accumulator TAY Transfer Accumulator to Index Y
TSX Transfer Stack Pointer to Index X
INC Increment Memory by One TXA Transfer Index X to Accumulator
INX Increment Index X by One TXS Transfer Index X to Stack Register
INY Increment Index Y by One TYA Transfer Index Y to Accumulator

Accumulator, you would enter the instruction LDA #F3. Note that all addressing modes ex-
cept the Implied mode require an operand.

Hexadecimal Number Notation

In this experimgnt, and most of the other experiments in this manual, we will be using
the AIM 65's mnemonic instruction entry mode to enter programs into the microcomputer's
memory. The mnemonic instruction entry mode requires all data values and addresses to be
entered as hexadecimal characters. To eliminate the necessity of forever writing "hexadec-
1ma1.F3“ or "hex F3" we will henceforth use a $ prefix to denote hexadecimal values; that
is, in this manual, hexadecimal F3 will be written as $F3. (The § prefix is strictly a
writing convention. The values you enter into AIM 65 must not have a $ prefix.)

Table 1-2.

R6502 Instruction Set
(Courtesy of Rockwell International)

INSTRUCTIONS MMEDIATE | ABSOLUTE | zeRoPaGE [Accum | mpuieD | oNp.x) | onoiY | Z.Page.x | ABs. ABS.Y | RELATIVE | INDIRECT | Z PAGE.Y 2;:2?“" sTatus

MNEMONIC OPERATION 0P| n [w]op| n| wljop[n{w|oP n|w]OP|n|w|oP njor|n|wjor|n|ufor| n|s|or[n|afor|n]|w]|or »|op{ n "L?lidsf)?'zg
ADC A+M+C=-A wfes| 2|2 f6D| a3 |65 3|2 61 2|n|sf2frs|a)2 |0 af3[r9fa]3 Nv....zCc| aDcC
AND AAM=A m|2ef 2|2 [20] 4|3 |25 3|2 21 2|3 5|2 f3s|a]|2 30| afa[a9fe]3 NeoooeszZs|laND
ASL c{f—9-0 oE| 6 (3|06 5|2 foaf 2|1 662 e[73 Neoooozc| astL
BCC BRANCHONC =0 (2 90| 2|2 « s+ s e s« | BCC
BCS BRANCHONC = 1 (2) Bo| 2| 2 e e e+ ...l BCS
BEQ BRANCHONZ = 1 (2) Fo| 2| 2 e ...--|BEQ
BIT AAM 2ca]|3)2ef3})2 M,Mge « = » Z «| BIT
BMI BRANCHONN = 1 (2) wl2]2 e e e e e e ol BMI
BNE BRANCHONZ = 0 (2) ooh2] 2 e e e e el BNE
BPL BRANCHONN = 0 (2) w| 2|2 - T
BRK BREAK 00|71 « . et -1 e | BRK
8BvC BRANCHONV =0 (2) 5022 N T
BVS BRANCHONV = 1 (2) 0|22 e e e e o] BYVS
cLc 0-~C 82 e
cLD 0-~D o8| 2|1 e +ee0.--|lcrLo
[0-~1 58| 2] 1 N A
cLv 0=~V B8l 2|1 I RPN AN
cCMP A-M Coj2f2|co|4|3fcs|3]|2 c1 2|o1|s|2|osfa|2]oo| 4| 3|oofa|3 N.....zc| CmpP
cPX X-M E0| 2| 2 [ec| 4 | 3|es| 3|2 N.....2cCc|lcCPx
CPY Y-M coj 2| 2fccfa|3]ce 3|2 N.....ZC)JcCPY
DEC M-1=M cel 6 3]ce| 5| 2 066 2f0e| 7|3 N.....2.|DEC
DEX X - 1=X cal2 | N+ooeozo|l DEX
DEY Y-y egl 2| No oo DEY
EOR AVYM-~A 49| 2| 2]eD| a|3]as]| 3|2 4 2|s1[s|2|ss|a|2]sp|a|3]s9fa]3 N.+++.2.|EOR
INC M+ 1M Ee| 6| 3|e6| 52 F6| 6| 2 |FE[7|3 Noeowoowoeozoline
I'N X X+ 1-=X E8|2 (1 N o oo oo 2l InNX
INY Y+1-Y csl2 | Nos o oo 2Ny
JMP JUMP TO NEW LOC 4C| 3 6C 3 N T
JSR JUMP SUB 20(|6(3 P Y
LDA M~A () fagl 2| 2]aDj 4 [3]As| 3|2 Al 2B1{5|/20es|s|2|sDja[3B9| 4|3 Neeeeoeoezel1LDA
LOX | M=x () |a2| 2| 2|aE| 4 [3]A6| 3| 2 BE|4 |3 B6(412[N=- « « « « Z+|LDX
LoY M=y o) [ao] 2| 2 |ac| a | 3 |a¢| 3| 2 B[af2]8c| a3 Neeoooeoz|l DY
LSR [P A— 4l 6] 3]a6) 5| 2)aa| 2|1 s6[6|2se| 7|3 0.2zCfLSR
NOP NO OPERATION EA[2|1 e KT
ORA AVM=—=A 09| 2| 2 foof 4 |3fo5f{3]2 01 2fin]s]2]isfaf2]D]a|3f19]afs Ne.++++2:0RA
PHA A-~Ms S-1-5 48| 3|1 “ e ee e e | PHA
PHP P~Ms S-1-5 08| 3|1 R TR
PLA S+1-5 Ms = A 68| a1 Nev+ooeoze|lpPLa
PLP S+1-5S Ms ~ P 2|4 (RESTORED) PLP
ROL i 2€|6]3|26|5|2]ea] 2] | 6| 2] 7|3 : N+« zC|ROL
ROR B o 6E[6| 3|66 5|2 6a| 2 76[6|2f7€l 7|3 B N+« =+ ZC|ROR
RTH RTRN INT 40|61 (RESTORED) R T
RTS RTRN SUB 60[6 (1 N R
SBC A-M-C-a (n|eg| 22 fep| 4| 3{e5[3|2 3 2|Fr| 5] 2|Fs|a| 2|FD} 4|3 [F9]| 4] 3 NVv:® =23 s8C
SEC 1-C .| 2[1 : ce e e e e o1l sEC
SED 1-0 F8| 2| e« e e s 1+« sl SED
S E | 11 782 “ e e e e 1. o] SE
STA -M 8Df 4 |3f85(3 |2 81 2]91|6712(95(4| 2|9D[5|3]99| 5|3 I IR
STX -M 8E(4 |3)e6| 3|2 9|al2f+s v o oo oo ol sTX
STY ~M 8C|a|3|8¢| 3|2 94| 4| 2 c e e s e o]l sSTY
TAX A-=X AAl 2| Neooeoozo Tax
TAY A~ asf 2| 1 Ne+oeveoeoeozeo TAY
TSX S—~ BA[2| 1 Noeoooozo|lTsx
TXA - sal 2|1 . Neowoeooeze|ltxa
TXS 9af 21 N R
TYA - 9|2} 1 Neoeosooze|ltva

(h) ADD110"N"IF PAGE BOUNDARY IS CROSSED x INDEX x . ADD M MEMORY BIT 7

B ADD270 N IF BRANGH OGGURS 10 DI FERENT PAGE vy o sverc M, Mewomy e

(3 CARRY NOT = BORROW M MEMORY PER EFFECTIVE ADDRESS vV OR # NO.BYTES

(4 IF IN DECIMAL MODE. Z FLAG IS INVALID

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT Ms MEMORY PER STACK POINTER v EXCLUSIVE OR

ASSIGNMENT

Develop a program that will load a value of $AC into the Accumulator and then store
the contents of the Accumulator in location $40. The program should start at location
$0200. To do this, you should use these two instructions:

INSTRUCTION DESCRIPTION
LDA Load Accumulator with Memory
STA Store Accumulator in Memory

Table 1-3. The 6502 Addressing Modes

Mode Operand Format
Immediate #aa
Absolute aaaa
Zero Page aa
Implied
Indirect Absolute (aaaa)
Absolute Indexed, X aaaa,X or aaaaX
Absolute Indexed, Y aaaa,Y or aaaaY
Zero Page Indexed, X aa,X or aaX
Zero Page Indexed, Y aa,Y or aa¥
Indexed Indirect (aa,X) or (aaX)
Indirect Indexed (aa),Y or (aa)Y
Relative aa or aaaa
Accumulator A

PROCEDURE

1.

10.

1.

Turn on power to your AIM 65. What are the contents of the Program Counter and tne
Accumulator for this "initial" condition?

PC= A=

Which Monitor command did you use to determine the register values in Step 1?
What are the current contents of memory location $40?

Location $40 contains

Which Monitor command did you use to determine the contents of location $40 in Step 3?

Write a two-instruction program that will load the value $AC into the Accumulator and
then store the contents of the Accumulator in location $40.

Which addressing mode was used in your load instruction?

Which addressing mode was used in your store instruction?

Change the contents of the Program Counter so that it points to location $0200, the
starting address of your program. Which Monitor command did you use to load $0200
into the Program Counter?

Place the AIM 65 in the mnemonic instruction entry mode. Which Monitor command did you
use to accomplish this?

What is the display showing at this point?

What does this display indicate?

Enter your program from Step 5 into the computer, and press ESC when you are done.

12.

13.

14.

15.

What is the contents of the Program Counter now?

Explain why the Program Counter has this value.

Change the Program Counter so that it addresses the starting location of your program,
then execute the program. Which Monitor command did you use to execute the program?

What do you expect to find in the Program Counter, the Accumulator and memory location
$40 at this point?

PC= A= $40=

Verify your answers, using the proper Monitor commands.

PC= A= $40=

If you programmed the problem in the most efficient way, your two instructions should
occupy four bytes in memory, locations $0200 through $0203. List the contents of
each of these locations below, and provide a short description of what each location
contains.

LOCATION HEX.CONTENTS DESCRIPTION OF CONTENTS

$0200

$0201

$0202

$0203

ADDITION OPERATIONS

OBJECT

To learn how to perform addition operations on signed and unsigned integer numbers.

PRE-LAB PREPARATION

Read Sections 6.2 and 6.8 of the AIM 65 User's Guide, and Section 2.2.1 and Chapter
3 of the R6500 Programming Manual.

DISCUSSION

The R6502 instruction set contains only one addition instruction, Add Memory to Accum-
ulator with Carry (ADC). This instruction adds the contents of a specified memory location
(or the second byte of the instruction, if Immediate addressing is used) and the contents
of the Status Register's Carry bit to the Accumulator. The ADC instruction can be used to
perform addition operations on three types of integer numbers: unsigned and signed binary
numbers, and Binary-Coded-Decimal (BCD) numbers.

Status Flags for Addition Operations

The ADC instruction affects four flags in the Processor Status Register:

o The Carry (C) flag is set if the sum of a binary addition exceeds decimal 255 ($FF)
or if the sum of a BCD addition exceeds decimal 99 ($99); otherwise it is reset.

o The Zero (Z) flag is set if the sum is zero; otherwise it is reset.

o The Negative (N) flag is set if Bit 7 of the sum is a logic one; otherwise it is
reset. The state of the N flag is meaningful only if signed numbers are being add-
?d, ;n which case it indicates whether the result is negative (N=1) or positive

N=0).

0 The Overflow (V) flag is set if two like-signed numbers (both positive or both nega-
tive) are added and the sum exceeds +127 ($7F) or, -128 ($80), which causes Bit 7 of
the Accumulator to be changed; otherwise V is reset.

10

7 6 5 4 3 1 0
N}V B|D|I|Z]|C
’ i
0 = No carry from Accumulator
1 = Carry from Accumulator
0 = Sum is not zero
1l = Sum is zero
0 = Accumulator Bit 7 was not
changed
1 = Accumulator Bit 7 was changed
by addition of two like-signed
numbers
0 = Accumulator Bit 7 is logic zero
1 = Accumulator Bit 7 is logic one

Figure 2-1. Status Flags for Addition

R6502 Instructions Used for Addition

You will be using the following new R6502 instructions in this experiment:

INSTRUCTION DESCRIPTION

ADC Add Memory to Accumulator with Carry
cLC Clear Carry Flag

SED Set Decimal Mode

CLD Clear Decimal Mode

The ADC instruction adds a specified memory location and the contents of the Status
Register's Carry flag to the Accumulator. The automatic addition of Carry is handy in mul-
tiple-byte additions, but it also forces the programmer to clear Carry (using CLC) before
the first ADC instruction is executed.

The decimal mode instructions, SED and CLD, put the R6502's adder into the decimal
mode and restore it to the binary mode, respectively.

The CLC, SED and CLD instructions require no operand -- their functions are fully de-
fined by the mnemonic. For example, the Clear Carry Flag (CLC) instruction performs a speg-
ific operation (clearing) on the Status Register's Carry flag; the instruction needs no ad-
ditional variable to define its operation. These types of instructions use the Implied ad-
dressing mode. Nearly half of the R6502 instructions operate with Implied addressing.

PROCEDURE

1. Write a program to add the unsigned integer contents of memory locations $0200
and $0201, storing the sum in memory location $0202.

Draw the flowchart below.

Write the program code below.

11

12

Run your program for the three cases listed below, and complete the table.

$0200 $0201 $0202
Carry?
Dec. Hex. Dec. Hex. Dec. Hex. (Yes/No)
143 8F 131 83 274
46 2E 65 41 111
59 3B 197 C5 256

2. Write a program to add the signed contents of memory locations $0200 and $0201, stor-
ing the sum in location $0202.

Will the flowchart and/or program code differ from that of Step 1? If so, describe
the differences below.

Run your program for

the cases listed below, and complete the table.

$0200 $0201 $0202
Overflow?
Dec. Hex. Dec. Hex. Dec. Hex.| (Yes/No)
106 6A 89 59 195
127 7F 3 03 130
32 20 -3 FD 29
-90 A6 -62 Cc2 -152

13

Write a program to add two 16-bit (two-byte) signed numbers, one stored in locations
$0200 and $0201, the other stored in locations $0202 and $0203. The sum should be re-
turned in locations $0204 and $0205. Numbers should be stored with the low-order byte

in the lower-addressed locations; e.g., $0200 holds the least-significant byte of the
first addend.

$0200 LSB

$0201 MSB,

$0202 LSB

$0203 MSB

$0204 LSBgum

$0205 MSBgim

Flowchart the problem in the space below.

14

4.

Write the program code below.

Run your program for the two cases listed below, and complete the table.

Addend #1 Addend #2 Sum
Overflow?
$0200,$0201 $0202,50203 $0204,50205 (Yes/No)
$2563 $41AB
$83C7 SF1B4

Using AIM 65, how would you determine whether a carry occurred between bytes during a

multi-byte addition, such as the one performed in Step 3?

SUBTRACTION AND LOGICAL OPERATIONS

OBJECT

To become familiar with subtraction operations on signed and unsigned numbers, and the
use of the AND, OR and XOR logical operations.

PRE-LAB PREPARATION

Read Sections 2.2.2, 2.2.3 and 2.2.4 of the R6500 Programming Manual, and Section 6.3
of the AIM 65 User's Guide.

DISCUSSION

Subtraction Operations

The R6502 instruction set contains only one subtraction instruction, Subtract Memory
from Accumulator with Carry (SBC). This instruction subtracts the contents of the speci-
fied memory location (or the second byte of the instruction, if Immediate addressing is
us$d) and the contents of the Status Register's Carry bit (in inverted form) from the Accu-
mulator.

Why is Carry used in its inverted form? Because for subtraction, Carry represents a
borrow; a final Carry = 1 indicates absence of borrow, Carry = 0 indicates that the sub-
traction has produced a borrow. Whereas Carry must be initialized to 0 for addition oper-
ations, it must be initialized to 1 for subtraction operations.

Status Flags for Subtraction Operations

The SBC instruction affects four flags in the Processor Status Register:

o The Carry (C) flag is set if the result is positive or zero, and is reset if the re-
sult is negative (indicating a borrow).

o The Zero (Z) flag is set if the result is zero; otherwise it is reset. Note that if

Carry and Zero are both set, the result is zero. If Carry is set and Zero is reset,
the result is positive.

15

16

o The Negative (N) flag is set if Bit 7 of the result is a logic one; otherwise it is
reset. The state of the N flag is meaningful only if signed numbers are being sub-
tract?d, ;n which case it indicates whether the result is negative (N=1) or posi-
tive (N=0).

o The Overflow (V) flag is set if two unlike-signed numbers (one number positive,
the other number negative) are subtracted and the result exceeds +1271q or -128y¢,
which causes Bit 7 of the Accumulator to be changed.

R6502 Instructions Used for Subtraction

You will be using the following new R6502 instructions in the subtraction portion of
this experiment

INSTRUCTION DESCRIPTION
SBC Subtract Memory from Accumulator with Borrow
SEC Set Carry Flag

The SBC instruction subtracts a specified memory location and the contents of the Stat-
us Register's Carry flag from the Accumulator. The automatic subtraction of Carry is handy
in multiple-byte subtractions, but it also forces the programmer to set Carry (using SEC)

before the first SBC instruction is executed.

7 6 5 4 3 2 1 0
N}V B|D]|I (¢}
T }
0 = Borrow has occured
1 = No borrow
0 = Result is not zero
1 = Result is zero
0 = Accumulator Bit 7 was not
changed
1 = Accumulator Bit 7 was

changed by subtraction of
two unlike-signed numbers

0 = Accumulator Bit 7 is logic

zero
1 = Accumulator Bit 7 is logic
one
Figure 3-1. Status Flags for Subtraction

Logical Operations

The R6502 supports three types of logical operations: AND, OR and Exclusive-OR. A1l
three types operate on the Accumulator, using the contents of a memory location or, with
Immediate addressing, the contents of the second byte of the instruction.

An AND operation produces a 1 in each Accumulator bit position in which both memory

and the Accumulator contain a 1; otherwise that bit position is reset to O.

Table 3-1. Logical AND Operation
Memory Bit Accumulator Bit Result in Accumulator
0 0 0
0 1 0
1 0 0
1 1 1

An OR operation produces a 1 in each Accumulator bit position in which either memory
or the Accumulator (or both) contain a 1.

Table 3-2. Logical OR Operation
Memory Bit Accumulator Bit Result in Accumulator
0 0 0
0 1 1
1 0 1
1 1 1

Table 3-3.

An Exclusive-OR operation produces a 1 in each Accumulator bit position in which ei-
ther memory or the Accumulator (but not both) contain a 1.

Logical Exclusive-OR Operation

Memory Bit

Accumulator Bit

Result in Accumulator

0

0

0

1

0
1

18

R6502 Instructions Used for Logical Operations

The R6502 has three logical instructions:

INSTRUCTION DESCRIPTION
AND AND Memory with Accumulator
ORA OR Memory with Accumulator

EOR Exclusive-OR Memory with Accumulator

PROCEDURE

1.

19

Write a program to subtract the 24-bit signed binary number in memory locations $0200,
$0201 and $0202 (most-significant byte in $0202) from the 24-bit signed binary number

in memory locations $0203, $0204 and $0205.
$0205, replacing the minuend.

Write the program code below.

Store the result in locations $0203 through
The structure of this pro-

gram will be similar to that of the double precision addition program you developed in
Steps 3 and 4 of Experiment 2.

Run your program to perform this subtraction:

$267BFE - $74A017

List the contents of the operand locations in this table.

Subtrahend

Minuend

$0200

$0201

$0202

$0203 $0204

$0205

List the result in this table:

Results

$0203

$0204

$0205

Carry =

20

3.

Is the result in locations $0203 through $0205 valid? What did you check to determine
whether or not the result is valid?

The preceding problem involved three successive two-byte subtractions. How can you de-
termine which of these subtractions generated a borrow, without performing the subtrac-
tion by hand? (Hint: Recall that Carry = 0 indicates a borrow.)

Using your proposed method, determine the total number of borrows that occurred, and re-
cord the answer below.

Total number of borrows =

4.

Consider an industrial control system that has eight devices, listed in Table 3-4.

21

A

group of eight memory bits reflect the status of the eight devices at any given point

in time.
Table 3-4. Logic Information for System of Eight Devices
BIT
POSITION DEVICE LOGIC STATE. INFORMATION
0 Pressure sensor = Pressure above setpoint
= Pressure at or below setpoint
1 Temperature = Temperature above setpoint
sensor
= Temperature at or below setpoint
2 Velocity sensor = Velocity above setpoint
= Velocity at or below setpoint
3 Flow rate = Flow rate above setpoint
sensor
= Flow rate at or below setpoint
4 Concentration = Concentration above setpoint
sensor
= Concentration at or below
setpoint
5 Valve A = Valve A open
= Valve A closed
6 Valve B = Valve B open
= Valve B closed
7 Power = Power on
= Power off

below the setpoint, and so on.
system, based on the relationship of two status bytes.
is stored at location $0300. The Prior Status Byte (PSB) is stored at location $0301.

Your program should do the following:

a. Check to see which devices have changed state (Exclusive-OR operation)

b. Store the result of Step a. in location $0302.

For example, a status byte with the binary configuration 11100010 signifies that pres-
sure is at or below the setpoint, temperature is above the setpoint, velocity is at or
Write a program to monitor the eight devices in the
The Current Status Byte (CSB)

22

4.

(Cont'd.)

c. Determine which devices have changed from logic 1 to logic 0 (AND operation).

d. Store the result of Step c. in location $0303.

e. Determine which devices have changed from logic 0 to logic 1 (complement,
then an AND operation). Hint: The instruction EOR # $FF will complement the
Accumulator.

f. Store the result of Step e. in location $0304.

LOCATION CONTENTS
$0300 Current Status Byte ($0300)
$0301 Prior Status Byte ($0301)
$0302 Bits that changed state
$0303 Bits that changed from 1 to 0
$0304 Bits that changed from 0 to 1

Flowchart the program on the next page.

23

24

4. (Cont'd.)

Write the source code bglow.

5. Referring to the problem in Step 4, assume that the Current Status Byte has been found
to be:

CSB = 111010102
and the Prior Status Byte is
PSB = 11]010012

List the physical state of each device (above setpoint, etc.) in Table 3-5 for both the
CSB and PSB.

Table 3-5. Summary of CSB and PSB

Device PSB CSB

Pressure Sensor

Temperature Sensor

Velocity Sensor

Flow Rate Sensor

Concentration Sensor

Valve A

Valve B

Power

Run your program for the above CSB and PSB conditions and 1list the results below.

Devices that changed:

Devices changed from 1 to O:

Devices changed from 0 to 1:

25

PROGRAM SEQUENCING

OBJECT

To become familiar with loop and branch operations.

PRE-LAB PREPARATION

Read Chapter 4 of the R6500 Programming Manual and Sections 6.4 and 6.5 of the AIM 65
User's Guide.

DISCUSSION

Computer programs are sequential by nature, in that they carry out some specified oper-
ation by performing a series of instructions one after the other. It is important to real-
ize, however, that the order in which the program appears on a coding sheet -- and within
the computer's memory -- can be quite different from the sequence in which the instructions
are executed by the microprocessor.

The microprocessor, hereafter referred to as the CPU (Central Processing Unit), takes
program instructions from memory based on a special "instruction address" contained in the
Program Counter (PC). At the beginning of a program, the Program Counter will contain the
memory address of the program's first instruction. The CPU will use this address to fetch
that instruction, and update the Program Counter to address the next instruction in memory.

The R6502 has two types of instructions whose sole purpose is to control the program
sequence by altering (or not altering) the Program Counter.

o Branch instructions, which alter the Program Counter by an offset relative to the
Branch instruction. Branch instructions are conditional on the status of selected
bits in the Status Register -- that is, the branch is taken only if the condition
is satisfied.

o Jump instructions, which load a new address into the Program Counter. Jump instruc-

tions are unconditional -- the jump is taken (i.e., the Program Counter is altered)
whenever the Jump instruction is executed.

27

28

R6502 Instructions for Branches and Jumps

The following Branch and Jump instructions apply to this experiment:

INSTRUCTION
BCC
BCS
BEQ
BMI
BNE
BPL
BVC
BVS

JMP

DESCRIPTION

Branch on Carry Clear (C=0)
Branch on Carry Set (C=1)
Branch on Result Zero (Z=1)
Branch on Result Minus (N=1)
Branch on Result Not Zero (Z=0)
Branch on Result Plus (N=0)
Branch on Overflow Clear (V=0)
Branch on Overflow Set (V=1)

Jump to New Location

One additional Jump instruction, JSR (Jump to Subroutine), will be covered in Experiment

8.

The R6502 Compare Instructions

The R6502 provides instructions that permit you to compare the contents of the Accumu-
lator, X Register or Y Register with a value in memory without altering the contents of the

register.

These instructions are:

INSTRUCT ION

CMP

CcPX

cPy

DESCRIPTION
Compare Memory and Accumulator
Compare Memory and X Register

Compare Memory and Y Register

Essentially, these instructions subtract the contents of the memory byte from the speci-
fied register, and record the result of the operation in three flags in the Status Register:

¢ The Carry (C) flag is set if the register is greater than or equal to memory, and
reset if the register is less than memory.

o The Zero (Z) flag is set if the contents of the register and memory are identical,
otherwise it is reset.

o The Negative (N) flag is meaningful only when signed numbers are being compared.

29

N is set if the register is less than memory, and is reset if the register is great-
er than or equal to memory. Table 4-1 summarizes the compare flags.

Table 4-1. Compare Instruction Results

Condition | N* z | C
A, X or Y less than memory 1 0 0
A, X or Y equal to memory 0 1 1
A, X or Y greater than memory 0 0 1

*N is valid only for signed compares.

Bit Test Instruction

The BIT instruction performs a logical AND between the addressed memory byte and the
Accumulator, and has the following effects on the Status Register:

o The Zero (Z) flag is set if memory and the Accumulator have no "one" bits in common,
and reset otherwise.

o The Overflow (V) flag receives the value of Bit 6 of the addressed memory byte.
0 The Negative (N) flag receives the value of Bit 7 of the addressed memory byte.

Instructions to Increment/Decrement Registers and Memory

The compare and branch instructions are often used in program loops, in which an oper-
ation is repeated a specified number of times. In such cases, the loop count is maintained
in either a memory location or a register (X or Y). The R6502 instructions to increment
or decrement memory or register contents are:

INSTRUCT ION DESCRIPTION
DEC Decrement Memory by One
DEX Decrement X Register by One
DEY Decrement Y Register by One
INC Increment Memory by One
INX Increment X Register by One
INY Increment Y Register by One

The Jump (JMP) instruction can operate with two different addressing modes, Absolute

and Indirect Absolute, so the operand must be a four-digit hexadecimal address in either
this Absolute form:

JMP aaaa
or this Indirect Absolute form:

JMP (aaaa)

30

The Branch instructions (Bnn, in general form) operate only with the Relative addressing
mode; the operand must be an 8-bit signed offset, relative to the second byte of the Branch
instruction. However, the AIM 65 Monitor will, optionally, accept a four-digit absolute -
address as the Branch instruction operand, and use this address to calculate the relative
offset for you! Therefore, you can specify an operand in either this Relative form:

Bnn aa
or this Absolute form:

Bnn aaaa

Since AIM 65 prints out the instruction addresses as you type a program into the com-
puter, backward Jump or Branch addresses are readily available from the print-out. How do
you know which address to specify if the "target" instruction is past the Jump or Branch in-
struction that you are typing in? Do not worry about it! Just take a rough guess at the
target instruction's address, and type that address in. After you have entered the entire
program, and have seen the correct target address(es) printed out, you can come back and
replace the "guess" Jump or Branch instruction with an instruction having the correct
operand.

Program Terminators

In the preceding experiments, you have executed programs in only one way: by entering

a G command (i.e., pressing the G key), followed by a two-digit number that specifies how
many instructions are to be executed. For programs with no jumps or branches, the two-
digit instruction count is simply the number of instructions in the program. For example,
G/07 was entered to run a program that was seven instructions long. However, programs
having branch instructions will vary depending on whether or not a branch is taken. That
is, perhaps seven instructions will be executed under one set of input parameters and nine
instructions will be executed under a different set of input parameters.

From this point on in the manual you should add a special program terminator instruction
to the end of your program, so you need not count the instructions to be executed unless

you choose to do so. A program terminator will allow you to execute programs with the com-
mand

G/.
which tells the R6502, "Run the program until you encounter a program terminator." °
If you are running a program with AIM 65 in the Step mode, a good terminator to use is
JMP ETA1

which transfers control to the AIM 65 Monitor. With AIM 65 in the Run mode, you can use
either JMP E1A1, or this instruction

INSTRUCTION DESCRIPTION
BRK Force Break

which will also transfer control to the Monitor (but only in Run mode).

PROCEDURE

1. Write a program to arrange two single-byte, unsigned numbers in order of increasing
value. The numbers are contained in locations $20 and $21.

program, location $22 should reflect the outcome as follows:

o (%$22) =
o (%$22) =
o (%$22) =

0 if ($20) is less than ($21)
1 if ($20) is equal to ($21)
2 if ($20) is greater than ($21)

Use the X Register for temporary storage if an exchange is required.

flowchart for the program. Write the program code below.

be JMP E1A1.

Yes

Load $21
into
Accumulator

Exchange
$20 & $21

\

Indicator
= 2

$20>s21?

Yes

Indicator
=0

\

Upon completion of the

Figure 4-1 is a
The last instruction should

Indicator
=1

Figure 4-1. Flowchart to Arrange Two Byte Values in Increasing Order

\

Store
Indicator
in $22

y
End

33

2. Run your program for the values given below, and complete the $22 column for each case.
You should also use the AIM 65 Monitor's M command to check the final contents of loca-
tions $20 and $21.

$20 $21 $22
Dec. Hex. Dec. Hex. Hex.
150 96 14 OE
150 96 150 96
0 0 40 28
0 0 0 0

3. Find the largest unsigned number in memory locations $21 through $2A and place it in
memory location $20. Flowchart the problem in the space below.

34

Write the program code below. Use indexed addressing to process the data table.

4. Run your program for the data table values given below, and record the result in the
space provided.

Location Contents
$21 $A2
$22 $00
$23 $40)
$24 $40 Result in $20 =
$25 SCE !
$26 $5A
$27 SFA
$28 $55
$29 $06
$2A S4F

DEBUGGING PROGRAMS

OBJECT

To learn how the AIM 65 Monitor's trace and breakpoint features can be used to identify
programming errors.

PRE-LAB PREPARATION
Read Sections 3.6 and 3.7 in the AIM 65 User's Guide.

DISCUSSION

In the preceding lab experiments, each of the programming assignments involved drawing
a flowchart of the program, writing the instruction sequence in the lab manual, then enter-
ing these instructions (the source code) into AIM 65 memory with the I command and execut-
ing them with the G Command.

Unless all of your programs performed correctly the first time through, you had to do
some "debugging", to get the errors out of the program. Until now, the easiest way to find
errors was to run a portion of the program -- perhaps the first few instructions -- and dis-
play the contents of registers and meaningful memory locations at that point in the program.
If the displayed values were not what you expected, you searched the preceding instructions
to find out "what went wrong."

The procedure just described will do the job for very small or very simple programs,
but becomes time-consuming and inefficient for debugging more complex programs. The AIM 65
Monitor includes two command types that are specifically designed as debugging aids: they
are the trace commands and the breakpoint commands.

IMPORTANT. .

Both command types can only be used when
the AIM 65's RUN/STEP switch is in the

STEP position.

35

36

Trace Commands

As you know, the Monitor's G command causes the R6502 CPU to execute the specified num-
ber of instructions, then return to the Monitor command mode. The G command generates no
printed information in the course of the execution sequence. This lack of print-out is
inconsequential if your program is error-free, and working as you intended it to work, but
can prove a real hindrance if you are trying to track down errors in the program. The trace
commands can be used to provide the kind of printed information you need for debugging a
program. There are three trace commands:

COMMAND DESCRIPTION
Y4 Toggle Instruction Trace Mode On/Off
v Toggle Register Trace Mode On/Off
H Trace Program Counter History

The Z command causes AIM 65 to disassemble and print each instruction in a program be-
fore it is executed. Pressing the Z key turns this feature off if it was on, and on if it
was off, and displays the resulting on/off status.

The V command causes AIM 65 to print the register contents after each instruction is
executed. Register contents are printed in the same format produced by the R command, but
without a labeled header (normally, an R command is given before the G command, to provide
the header for the V command's listings). Pressing the V key turns the register trace fea-
ture off if it was on, and on if it was off, and displays the resulting on/off status.

There are many situations in which you don't need to know all of the information pro-
vided by the Z or V command, but simply want to know the execution path the program has tak-
en. For these situations, you can use the H command, which prints out the Program Counter
addresses of the last four instructions executed, and the address of the next instruction
to be executed.

Breakpoint Commands

The AIM 65 Monitor's breakpoint feature is perhaps the most powerful debugging option
at your disposal. With this feature, you can assign up to four different instruction ad-
dresses in your program as "breakpoint" addresses. Here is how the breakpoint feature oper-
ates: With the AIM 65 in the Step mode, the R6502 will halt each time it is about to exe-
cute an instruction whose address has been specified as a breakpoint. At this time, the
disassembled form of the instruction will be displayed and printed, and the R6502 will re-
turn to the Monitor.

With the R6502 halted, the contents of any memory location can be examined with the M
command, and register contents can be examined with the R command. In this way, the break-
point feature provides you with the opportunity to investigate meaningful parameters at
selected points in a program. Further, since the R6502 will halt on a breakpoint only if
it encounters that breakpoint, this feature can also be used to check whether or not a cer-
tain program instruction is ever being executed.

There are four breakpoint commands:

37

COMMAND DESCRIPTION
Clear All Breakpoints
4 Toggle Breakpoint Enable On/Off
B Set/Clear Breakpoint Address
? Display Breakpoint Addresses

The AIM 65 breakpoints are in an undefined state when power is turned on, and should be
cleared (reset, to address $0000) by pressing the # key.

From this initial state, you can assign a breakpoint by pressing the B key. When the
AIM 65 displays the prompt BRK/, enter the number of the breakpoint to be assigned (0, 1, 2
or 3), followed by the four-digit hexadecimal address of the appropriate instruction. Re-
peat this procedure for each breakpoint that you want to assign.

When all desired breakpoint addresses have been assigned, turn the breakpoint feature
on, with the 4 key, then initialize the Program Counter to the program's starting address
and enter G/. to execute the program. The program will run until it encounters a break-
point address, at which time it will halt and display the instruction at that address --
the next instruction to be executed. With the R6502 halted, you can examine memory and re-
gister contents, as described previously. If all values are as expected, enter G/ to re-
sume execution; if not, modify your program as required (remember, the AIM 65 is in the Mon-
itor command mode after encountering a breakpoint).

Once you get to the point where you feel that all errors have been corrected, you can
disable (turn off) the breakpoint feature by pressing the 4 key, and execute the program
from the beginning. Disabling the breakpoint feature does not affect the assigned break-
pg;nt addresses; the breakpoints will remain intact until you re-assign them, or turn power
off.

Where should breakpoints be placed in a program? A few of the 1ikely places include
these:

1. Following a loop -- to investigate counter values and results in memory and registers.
2. At branch destination instructions -- to see if and when the branch occurs.
3. After a complex calculation -- to check the result before continuing.

4. After inputting data from a peripheral device -- to see the data value that has been
received.

The exercise in this experiment will demonstrate how traces and breakpoints are used to
find some common types of errors in a program. It will also give you a good groundwork for
using these features to debug programs in the future.

38

PROCEDURE

1.

In this experiment, we will develop a program that counts the number of zeroes in mem-
ory location $21 through $2A, and places that count in location $20. Figures 5-1 and
5-2 show a flowchart and a symbolic program that should do the job.

Since the AIM 65 will not accept symbolic labels without the use of an assembler, the
program in Figure 5-2 must be converted into hexadecimal form. If we store the pro-

gram into memory starting at location $0200, the hexadecimal, mnemonic entry form of

the program is as shown in Figure 5-3.

Let us assume for the moment that the program in Figure 5-3 is error free, and see
what results a trial run produces. Enter the program into the AIM 65, then initialize
memory locations $20 through $2A with $00.

TAR
\

POINTER = 0
ZCOUNT = 0

ZCOUNT
ZCOUNT + 1

POINTER =
POINTER + 1

($20) = ZCOUNT

y
END

Figure 5-1. Flowchart for Zeroes-Counting Program

39

0000 *=0200
0200 A2 LDX #00
0202 A0 LDY #00
0204 B5 LDA 21,X
0206 FO BEQ 0209
0208 C8 INY

0209 E8 INX

020A E4 CPX 10
020C DO BNE 0202
020E 84 STY 20
0210 4C JMP El1Al

Figure 5-2, Symbolic Code for Zeroes-Counting Program

LDX #00 ;POINTER = START OF TABLE
LOADE LDY #00 ;NUMBER OF ZEROES = 0

LDA 21,X ;FETCH ELEMENT

BEQ NEXT ;THIS ELEMENT = 0?

INY ;YES, ADD 1 TO ZEROES COUNT
NEXT INX ;POINT TO NEXT ELEMENT

CPX 10 ;ANY MORE ELEMENTS?

BNE LOADE

STY 20 ;NO, SAVE NUMBER OF ZEROES

JMP EIAl ; AND RETURN TO MONITOR

Figure 5-3. Mnemonic Entry Code for Zeroes-Counting Program

After entering the program into memory, reinitialize the Program Counter to $0200 and
execute the program with the G/. command.

Now check the result by displaying the zeroes-count in location $20. Since our ten-ele-
ment data table (locations $21 through $2A) contained all zeroes, location $20 should
contain $0A. But, instead of $0A, you discover that

($20) = 01
This result implies that the program executed the INY instruction only once. To find

out when INY was executed, we will assign a breakpoint to this instruction's address,
$0208, using the B command. To do this:

0 Press the $ key, to clear all breakpoints

40

0 Press the B Key, to set the breakpoint, and enter 0=0208 in response to the
prompt BRK/.

0 Press the 4 key, to enable the breakpoint feature

With the breakpoint assigned and enabled, run the program once more, from the beginning.
The AIM 65 should display

0208 C8 INY

At this point, the R6502 CPU has halted prior to executing the INY instruction. How
many data table values did it check before hitting the INY instruction? The answer
lies in the contents of the X Register, which holds the table index.

Press the R key, to get a register display. At this point, you should find out that
(X) = 0A

What does this value of X indicate? It indicates that the last location to be loaded
into the Accumulator by the LDA 21,X instruction was location $2B (since $21 + $0A =
$2B). Apparently, when the Branch instruction BEQ 0209 tested this location (now in
the Accumulator), the test "failed" and program execution will continue with the INY
instruction. Since location $2B contains a non-zero value, the BEQ 0209 instruction
is clearly erroneous. It has been causing a branch past INY when a zero value, rather

than a non-zero value, is loaded into the Accumulator. The correct branch instruction
is:

BNE 0209

Change BEQ 0209 to BNE 0209, disable the breakpoint feature (with the 4 key) and execute
the program again, from the beginning.

What does location $20 contain now? A check should show:
($20) = 00

Location $20 still holds no zeroes count: What can be wrong now? Is it possible that
the INY instruction is still being bypassed, even though the branch instruction has been
corrected? We can find out by running the program with both the instruction trace and
the register trace turned on. This will produce a print-out of each instruction as it
is executed, along with the register values resulting from that instruction.

Press Z to activate the instruction trace and V to activate the register trace, then
execute the program from the beginning again.

Press ESC after a few passes through the loop, to terminate the print-out. Figure 5-4
shows the type of print-out you will get.

The boxed portion of the print-out in Figure 5-4 indicates the problem area, because it
encloses the spot where Y changes from 01 to 00. Note that Y is being re-initialized
to 00 by the instruction LDY #00 at location $0202. How did the program get back to
that instruction? The instruction BNE 0202 at location $020C caused a branch to it.

We have just isolated the second error in the program. This branch should go fetch
the next table element (LDA 21,X), and should not re-initialize the Y Register. The

4]

correct branch instruction is, then,

BNE 0204

LT
T1 L5

T T
kA DNl
T
m T

(RN}
A 0

.
m

1
T

1
1

1
"

5
H
[z
i
&
e}
[E]

"
T

1
1

(O] DX

e
i

[
SN

“1
[}

|
T

RO IR X ()

(X

WO |.:|"| D %
n
L

A
2!

T
]

.,...,..
AN

“+

=
A
-1

(RN
a g T i

Dl

Figure 5-4. Print-out With Instruction and Register Traces

10. Change BNE 0202 to BNE 0204, then press Z and V (to deactivate the traces) and run the
program once more from the beginning.

11. What does location $20 contain after this new run through the program? You should dis-
cover that:

($20) = 0B (or something other than OA)

Apparently, we still have problems. Location $20 should properly contain OA, since lo-
cations $21 through $2A contain a total of 10 (hex OA) zeroes. Evidently, location
$20 contains a value greater than OA because the program has somehow processed more

42

12.

13.

14.

15.

than 10 locations in memory -- and some of these extra locations contained zero'

We can find out how many locations the program actually examined by looking at the
final contents of the X Register, which contains the element pointer. At this point,

(x) =21

That is, the program has actually processed 33 locations, rather than the intended 10
locations.

To find out why so many locations were checked, we must examine the portion of the pro-
gram that stops the location-checking operation. This function is provided by the in-
structions CPX 10 and BNE 0204, at locations $020A and $020C, respectively. The cul-
prit is obvious: it is the CPX 10 instruction. This instruction is intended to com-
pare the contents of the X Register to the value 10. The instruction should be CPX
#10, since we want to compare X to the number 10, not to the contents of memory loca-
tion 10, Furthermore,we want the decimal number 10, not the hexadecimal number 10 (re-
member, AIM 65 assumes that the operand represents a hexadecimal value). The instruc-

tion should be
CPX #0A

Change CPX 10 to CPX #0A, then execute the program once more from the beginning. At
long last, the results are:

(X) = 0A
($20) = 0A

Test the program with some other data that is not all zeroes, to convince yourself that
the program is now correct.

The final program is shown in Figure 5-5.

0000 *=0200
0200 A2 LDX #00
0202 A0 LDY #00
0204 B5 LDA 21,X
0206 DO BNE 0209
0208 C8 INY

0209 E8 INX

020A EO CPX #0A
020C DO BNE 0204
020E 84 STY 20
0210 4C JMP E1Al

Figure 5-5. Final Zeroes-Counting Program

43

SUMMARY
Common programming errors to look for are:
1. Forgetting to initialize variables. Don't assume anything is zero when you start.

2. Confusing data and addresses. The contents of memory location $10 could be anything,
including (but not necessarily) the number $10.

3. Branching on the wrong condition; e.g., branching on not equal instead of equal.

4, Confusing decimal and hexadecimal numbers. Decimal 10 is hex OA; hex 10 is decimal
16.

5. Accidentally re-initializing a register or memory location, by branching to the
wrong place.

6. Incorrect keyboard entries. You should examine the entire program (by disassembl-
ing it, with the K command) before you run it.

7. Forgetting to update a counter or pointer. Watch for loop controls that must be
updated regardless of which path the program follows.

MULTIPLICATION OPERATIONS, WITH
SHIFT & ROTATE

OBJECT

To become familiar with the shift and rotate instructions, and to see how they apply
to multiplication.

PRE-LAB PREPARATION
Read Chapter 10 of the R6500 Programming Manual.

DISCUSSION

Shift and Rotate Instructions

The R6502 has four instructions that cause the 8-bit contents of an operand (a memory
location of the Accumulator) to be displaced by one bit position to the left or to the right.
Two of these instructions "shift" the operand, the other two instructions "rotate" the
operand.

For all four instructions, the Carry bit of the Processor Status Register acts as a
"ninth bit" extension of the operand; that is, Carry receives the value of the bit that is
displaced out of one end of the Accumulator or memory location (Bit O for a right shift,
Bit 7 for a left shift). In a shift operation, the vacated bit position at the opposite
end of the operand (Bit 7 for a right shift, Bit 0 for a left shift) is reset to 0. In a
rotate operation, the vacated bit position of the operand receives the initial (unrotated)
value of the Carry bit.

These are the shift and rotate instructions:

INSTRUCTION DESCRIPTION
ASL Shift Left One Bit
LSR Shift Right One Bit
ROL Rotate Left One Bit
ROR Rotate Right One Bit

45

46

The operations of these instructions are illustrated in Figure 6-1.

(o
ASL: E - 0

LSR: 00— '+—g

~
o
(@]

A

on: [F—F

ROR: > =

Figure 6-1. Shift and Rotate Instructions

As mentioned previously, the shift and rotate instructions can operate on either the
Accumulator or a location in memory. To operate on the Accumulator, you simply put an A in
the operand field of the instruction, like this:

ASL A

The shift and rotate instructions are the only instructions that use the Accumulator addres-
ing mode.

In addition to their affect on the Carry flag, the shift and rotate instructions affect
two other flags in the Processor Status Register:

o ASL, ROL and ROR cause the Negative (N) flag to be set if Bit 7 of the shifted re-
sult is a logic 1; otherwise N is reset. The LSR instruction always resets the N
flag, since it shifts a 0 into Bit 7.

o The Zero (Z) flag is set if the shifted result is zero; otherwise it is reset.
To show how these instructions work, consider an operand that contains @ hexadecimal 34 \

(binary 00110100, decimal 52) and the Carry flag is set to 1. Here is how the operand and
Carry flag would be altered for each of our four shift and rotate instructions:

47

CARRY BIT POSITION
FLAG 7 6 5 4 3 2 1 0
1 0 01 1 0 1 0 O Before shift (= hex 34, dec 52)
0 0 1 1 0 1 0 0 0 After ASL (= hex 68, dec 104)
0 0 0 0 1 1 0 1 0 After LSR (= hex 1A, dec 26)
0 0 1 1 0 1 0 0 1 After ROL (= hex 69, dec 105)
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>