1]

AIM 65/40

| ‘ ' Rockwell
i International

Section

1

TABLE OF CONTENTS

Title

Introduction

1.1
1.2

AIM 65/48 FORTH User's Manual Description ..svecececes
Reference DOCUMENLS ...cesssssssssssssssssmnnnnnannny

Installation and Operation

2.1
2.2

FORTH

3.1
3.2

Installing the FORTH ROMS ..:csssssssssscapssncnssnons
Entering, Exiting and Re-entering FORTH ...ceccs0euns

2.2.1 Entering FORTH ..csvsessscsssssssssssssssnanse
2.2,2 Exiting FPORTH ..csvssvsvsssssnasnssssssssnssnnna
2.2.3 Re-Entering FORTH ...ccccecevecansnscnnansnsnss
Concepts

Features of FORTH ...csscscsssssssssssnssssssssssnnnns

Debugging ...eeesssscssasasccsssscnsccsnsesssssnssanes

Elementary Operations

4.1

4.4

Simple Arithmeticceseeessoncscsacnssccsncacssans
4.1.1 Examine Stack Contents with .5 ..cccensnssss
4,1,2 Print from the Stack using . .ccscssscnssass
4.1.3 Clearing the 5tackcevecvsveccssncnsse
4.1.4 Add + and Subtract = ..cccscsssssssssssses
4,1.5 Multiply * and Divide / .ecacecercnncrnnes
4.1.6 Postfix Notation and Stack Operatione.ees.
4.1.7 Decimal and Hexadecimal Number Basecscse.
Stack Manipulation ..c.veesesessssesssssscncnscnsccne
4,2.1 DUP , DROP , SWAP and OVER .cccsceccssces
4.2.2 Test and Duplicate with -DUPcevvencssss
4.2.3 Delete the Top Stack Item with DROP ...eeess
4.2.4 Rotate Stack Items with ROT .escvcssanssnsss
4.2.5 Copy a Stack Item with PICK <essscccscccnces
Memory Operations ...sceeccaccssccccccccccssssnnsnnns
4.3.1 16-Bit Store ! and Fetch € ...cvcccnansnss
4.3.2 8-Bit Store C! and Fetch C@ ...scsesssnaes
4.3.3 Initializing Memory with ERASE , BLANKS ,
and . FILLi.ﬂ...........................
4.3.4 Dumping Memory with DUMPccuocsssensvenee
4.3.5 Moving a Block of Memory with CMOVE

Defining Your Own Operationsc.cscsssssscsncvcces

Colon-Definitioncssscsssssssssasancncnnes
Find a Word in the Dictionary with '
Print a Message with ."
Commenting ...sesscscccsesascscssnsccsssssnnas

4.4.1
4.4.2
4.4.3
4.4.4

sessena

ssssEEBERSEERRRERE RS

it

Page

1-2

2-1
2-3

2-3
2-3
2-4

3-1
3-5

4-13/

4-13
4-15
4-16
4-16|
4-17|

|
4-18|

4-18
4-19
4-20|
4-21
§-22

§=22|

4-23
4-24
4-25
=70

Section

4.6

4.9

4.10

4.11
4.12

TABLE OF CONTENTS (Continued

Title

Executing and Compiling using SOURCE

DO LOOPS 4uuuinnnnnosnnsansansatosnnsenssanaasenneses

4.6.1 DO ... LOOP S s esssE IR TR E st as s s s
Relod HROOP wovoraviononors & e i
is b iy

3 LEAVE Peseserenssreensientnastsenaratta e annn

Comparison and Logic Operations ...eveseseceveosennas

457.1 <« ' > and = L T TR L T .,
.72 W, e amd g Ll onnneanee :
4.7.3 Logical Operations Pesesrasesssanesanenenenn

Conditional Control Structures serssnssessssesanannes

4.8.1 IF ... ELSE ... THEN Tessssetssanennansnanans
4.8.2 Nesting Contrel Structures:.:
4.8.3 Masking and Setting Bits sessnsssssbonssennns
4.8.4 BEGIN ... Loops1..........:

4.9.1 Find Next Dictionary location with HERE .,...
4.9.2 Use PAD for Temporary StOrage ...esesesssces
4.9.3 Increment Memory with +! sesesesretsnsnsnnns
4.9.4 Exclusive-OR Memory Using TOGGLE

Constants and'Varlablos Sevesseessetteenananssenenann

4.10.1 CONSTANT +evvnnrneennnnnnnnsnnnnsnnnnn,

8.10.2 VARIABLE «ouvvvvsrnnnnnsssonsnnnnnttsenes
4.10.3 DfiNing WOLdS +...oousooomonnoonnnnoo s
4.10.4 USER Sl s
418,

R B

5 ALLOT R

Changing the Number BASE tessaessessess e nsanansanns
Output Words T

4.12.1_Prlnt Right-Justified with .R ..vecevucvenns
4.12.1 Output Spaces with - SPACE and SPACES
4.12.3 Output a Number to the Display/Printer

. with EMIT fEss s ssssEn NNt e R s
+12.4 Output a String to the Display/Print e
s with TYPE?..T{...?.?r

«12.5 Prepare to Output a String with coUui"::::::
4.12.6 Set the Active Output Device with 7?0UT .
4.12.7 Output a character to the Active Output

Device with PUT essresrssse Nt s s R st e

4.12.8 Output a string to the Active Output

Device with WRITE

L

411

Section

4.13

4.13.1

TABLE OF CONTENT (Continued)

Title

INput WOLdS ...ccssassscovssnsnsncssssssnnnncsecnncss

Input a Character from the Keyboard

with KEY .eccecssscsssssssnnsssssssnsnssssnnss
Input a ‘String from the Keyboard

with EXPECT .cceesessssancsscssanscnssonvnss
set the Active Input Device with ?IN
Input a Character from the Active Input
Device with GET ...sssssssssseressscscsannss
Input a String from the Active Input

Device with READcsssssssssssssssccnsnes
Test for Input with ?TERMINAL ..cecccccnnenes

4.13.2

sesnnaw

4.13.3
4.13.4

4.13.5
4.13.6

Advanced Operations

5.1

5.3

Other Single-Precision Arithmetic Operations

§.1.1 Modulus Operators MOD and /MOD ..ecvnesses
5.1.2 Absolute ABS and Negate NEGATE ...cecsovees
5.1.3 Simple Increment and Decrement 1+ , 2+,

1- r 2= sasssssssssaddssRERsEsRasERRERRRERERESE
5,1.4 Minimum MIN and Maximum MAX ..cececanscnes

Unsigned, Mixed and Double-Precision Arithmetic

5.2.1 Entering Double-Precision Numbersccevees
5.2.2 Printing Double-Precision Numbersccce..
5,2.3 Other 32-Bit FORTH Operators ...ssssccsscansss
5.2.4 Unsigned Compare U< .esssccscsscsccsscnaanes
5.2.5 Unsigned Multiply U* and Divide U/ cesssss
5.2.6 Mixed Mode Operations M* , M/ , and M/MOD ..
5.2.7 SCAlINg ..covescssscssnsanssscnsnansasnrsnsnas
Output Formatting weceeeccssssssassncasassccsnsrnnsee
5.3,1 S->D , <# , #5 , SIGN , and #> .cevvccnse

5.3.2 # and HOLD

sssssssaBsssIENERRRSRERRERIRSERES

BErINGS .seecessccsccasssssssscsssronnsssssansanscnscs

5.4.1 Address String Data with COUNT ...cconsccnes
5.4.2 Output String Data with TYPE ..ececccccncscss
5.4.3 Input String Data with EXPECT ..cevscacensse
5.4.4 Suppress Trailing Blanks with =TRAILING .ses..
5.4.5 Interpret a Number with (NUMBER) .cconvcssss
5.4.6 Input a Number with NUMBER ..csscscccscsnsas

plctionary SEFUCLUL® ..ssssssssssssssscnnnsnssssssanse

5.5.1 PORTH Word SEIUCEUL® .osseeescssssssssasasasns
5.5.2

Handling FORTH Word Addressescssseccsassss
5.5.3 FORTH Word Handling Examplessscesessssens

:
4-59 I
4-60

4-61
4-62

4-63

4-63
4-64

5-1

5-1
5-1

5-2
5-2

5-3

5-3
5-4
5-6
5-7
5-7
5-8 °
5-9

5-9
5-10
5-11

5-12

5-13
5-13
5-13
5-13
5-14
5-15

5-16
5-16

5-18
5-19

Section

5.6

5.7
5.8

6 AIM
6.1

6.3
6.4

6.6

6.7
6.8

TABLE OF CONTENT (Continued

Title

Vocabulariescovecvescssncssscsnasncans

g.g.% More on VLIST ..ieecssscncasns

.6. CONTEXT and CURRENT Specify é&é;S;i;;i.;
5.6.3 Use LATEST and HERE to Ch .

5.6.4 Application Libraries??E.?ff??f?f?.

Immediate WOXASsceveesecnasesnannccnnssse

Creating Your Own.Data/Operation Types

65 FORTH ASSEMBLER

The Assembly ProceSsSeceevceccscsssanssacans

6.1.1 CODE Definitionsecessccccscasnonncans
6.1.2 Assembly-Time Versus Run-Time'
6.1.3 | CODE-Definition EXAMPLE +......ssssssssonsnnns

ASSEMbler OP-COB@S .uuvvvennnrsnvaneennensnnnnns

6.2.1 Single Mode Op-CodeS '
6.2, MLtioNie Op Codus - oo SAETeCECsSEeL ey

Addressing Modeseceiecccnncnscnnncnnie

R6502 Conventionsccciecevssennncacsannsnns

6.4.1 ¥

Stack Addressi sesessnansen
$ed-1 ssing Pesesaseshenins e

ROEUEN BLACK .icvcvsevscvcsccccsvessnssassnnsns

BRDLBROXE cisisivassnnsnas e e R e d i P ETR

6.5.1 Assembly RegiSterscoeees

6.5.2 CPU REGISEEES +ouuennnsnnssnsssnesonsonninnnns
R R i Joms
G Boll WD ovenesersrsrensaresieresbotnsiiiotto e
6.5.5 SETUP .uuevsnsnsonsnsnsonssnsneosrreains

Control PlOW sovissvsvencasnsasnssancnansnns

Conditional LOOPiNG ...ceecvsosvcnncanass
6.6.2 Conditional EXECULION ..uosovnornsonsomooneny
6.6.3 CONALtiONal NESEING a.vvovsovmssomnnonrnenns
6.6.4 BSome Nesting Examples:::::
Betuxn Of CONEXO)l sesevevasassssnssisabtovenssss

Assembler SecCUrity .veeecsssvennsascsssssnsscannannes

6.8.1 Assembler TesStScsvcssssssssnnssansens
6.8.2 Bypassing Security::::

Adding Assembly Code to Defining Wordecceuvene.

ﬁd\? -

Ty
~N ~Nd -

3

6=1@
$-33
6-11
6-11
6-12
6-12
6-13
6-14
6-15
6-17
6-18
6-19
6-22
6-23

6-23
6-24

6-25

Section
7

TABLE OF CONTENTS (Continued)

Title

Handling Interrupts in FORTH

7.1 Types of Interrupt Handlers ...cccseescesssssscncccns

7.2 Machine Level Interrupt Handling ..cccaveesccscscccns
7.2.1 CODE-Definition FOIM .cccsccscsssesascansnsnses
7.2.2 Code Fragment FOIM ..ccccccsssssanrassnsnnarsnse
7.2.3 Interrupt Disable/Enable Words::
7.2.4 EXample ..ceccesssesscscsnsassssnananssnnnns

7.3 Interpretive Interrupt Handling ...scessscccscccnnnes
7.3.1 Interrupt Service Subroutine ...ccceccescccnes
7.3.2 Interrupt Processing Word ...sssescccccsccssss
7.3.3 Example:
7.3.4 Points to Remember .::csssssesssncnssscssnces

Programming the R6522 in FORTH

8.1 VIA Organization and Registers ..seescesccsscensssnns

8.2 Simple I/0 with the VIA ...ccscsscccnssscssccnncnncers
8.2.1 Considerationssesescsassssssssansssscncss
8.2.2 EXampleS ...csscesccssssccsnsssssnnansvrssanes

8.3 Recognizing Status 5ignalssssesscnscsrscscncscss
8.3.1 Considerations ..cccecsscsssscscssssssssnnsasne
B.3.2 EXaMPleS ..cccssssascescnssssssssssannananense

B.4 Producing Output Strobes ..c.esesvssssssassassccnnsses
8.4.1 Considerations;..............::
8.4.2 Optionl -o-aoooo---400.-----.-.o----oo.v-o::..
8.4.3 EXampPlesS .cccaseverssoncsanessssassscnsnrns

B.5 VIA INCerruptS scscessscsccscansssnsssassnsnssnssvres

B.5.1 Considerationscesssncecssnsnsssncssncncee
8.5.2 EXaMPleS ...essesscsscssscsesscsssssnacnsnnres

Notes on Style and Program Development

9.1
9.2

GENErAl ..cesecscsssssssssssssassnesscanssnnsnssansss

Example Program ..eccssscsssssssssssssnsccannssssssas

Page |

T=1
7-5 |

7-6
7-6
7-7 |
7-9 |

7-9 |
7-9 |
7-% |
T=11!
7=-13f

12

TABLE OF CONTENTS (Continued)

Section Title
10

Preparing an Application Program for PROM Installation ...

18.1 General Procedure Teessesessntsenasesananasacansnans
1.2 Example Startup Drivers Fesesessssnstsssnesanannnnas

10.2.1 With I/0 and Monitor ROMs Installed
18.2.2 With I/0 ROM INStA11€d .uvueescscenccnnennnns
10.2.3 Without I/0 ROM Installed Sesesssnsastsnasans

Using an Audio Cassette Recorder

11.1 Handling Program Source Code Files sussessessssassss
11.1.1 Listing Program Source Code ...seesecescscosns
11,1,2 Reading Program Source Codesveesccssssss
11.1.3 Compiling Program Source Code tesessssanssaans

11.2

Handling Program Object Code Files smssssssncssnsnns

11.2.1 Dumping Program Object Code sesssssssssvennas
11.2,2 Loading Program Object Code R

11.3 Handling Data Files T

11.3.1 Using Recorder Remote Control sesssnsassannns
11.3.2 Using AIM 65/40 FORTH Format Tessesasnasasens
11.3.3 Using AIM 65/40 Monitor FOTMateeeeeeeses
Interfacing to Mass

SLOTAGR .ivessessasnsssssanacasnnnanes

12.1 oOverview Tersrssssssesssssssasserasasessannnannrnnn
12.1.1 Mass Storage Terminology .ussssessscecnssanss
12.1.2 Buffer Variables ...ccceseencecsosasnnssscenss

12.2

Setting.up Block and Data Buffers sessesasensnananen

12,3 Creating Screens Sessssssesassssssreserasssasnneana e
12,3.1 Creating and Testing a One Screen Buffer
12,3.2 Creating and Testing a Two Screen Buffer

12.4 Interface Words fessscsesssssesenratasstasasatananan.

12.5 Using Mass Storage P st sessses st assstsaene st a0
12.5.1 Data Storage and Retrieval -the Virtual RAM .
12.5.2 Program Loading and OVerlays .eseeccescccnnses

12.6

Source Code EAitings .seueveevecccvoncncsannnnas

vii

Section
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
_APPEHDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

T O m m © 0 wo»

z X O A

TABLE OF CONTENTS (Continued)

Title

AIM 65/48 FORTH Functional Summary ...cseesse
AIM 65/40 FORTH GlOSSArY .cssvescsscssssssssss
AIM 65/40 FORTH Assembler rungtional Summary
AIM 65/40 FORTH Assembler GloSSary ..eseessss
Error Messages ReCOVEIY .ccsssssssssssssssnne
Page Zero And One Memory Map .esccesssccsssses
USER Variables RAM Map .scssvcscocssansosssnns
ASCII Character Set ...csasssccesssssvssenans
FORTH 5S5tring Words ...scesssssessesassscnsnans
USER 24-Hour Clock Program in FORTHss..
Utility EXampleS ..covecsscnssessssssanssens:
AIM 65/40 FORTH Versus FIG-FORTHc000..
FORTH and the RM 65 FDC Moduleceavsssee

Selected Bibliography ..esvesssasssssasccsss

wiil

—

ggﬁ'Figun
211 [2-1
B-ll[4-1
i
c-
§e-
D)
3 ;7'-
E=l 7-2
[7-3
|~ | |
-
a-1f 8-2
L R=3
H-1
Lo h1e-.
T4 10-2
' 1p-3
J-1§ 1a-4
K=181)]
o
L) 12-1
Ay
Nelig-2
-3
-4
Table
8-

r
[
£

LIST OF FIGURES

Title

AIM 65/48 FORTH Memory Map sssessssssensennne

VLIST of AIM 65/4¢ FORTH Words L
Stack Diagram of Postfix EXamplecvvensssivanes

VLIST of AIM 65/40 FORTH Assembler Words

Machine Level NMI Interrupt Handlingee...
Machine Level IRQ Interrupt Handling ...cesveau.n.
Interpretive Interrupt Handling ...cevvenvscanens,

R6522 VIA Block Diagram Sevesasentstsansassesansns
R6522 VIA Interrupt Enable Register (IER)
R6522 VIA Interrupt Flag Register (IFR)

sassssanns

Example Driver Compilation and Test sesssesansssan
Startup Driver with I/0 and Monitor ROMs Installed
Startup Driver with I/O ROM Installed
,Btartup Driver without I/0 ROM Installed cessssean

AIM 65/49 Audio Tape Handling Words sesesenssensun
RM 65 FDC Module DISK SYSEOM veuuevvnevssnsennnsss

24-Hour Clock Program Using a Machine Level
Interrupt Handler fesdsreassestnen et arnaentnanans

VLIST of 24-Clock Program Using a Machine Level
Interrupt Handler rsssessasssssesasnsasnenasananss

24-Hour Clock Program Using an Interpretive
Interrupt Handler e sstassstsasatr st Enaansannsn
VLIST of 24-Hour Clock Program Using an
Interpretive Interrupt Handler sesssssssersssenanan

LIST OF TABLES

Title

R6522 VIA Memory Assignments ...,

Buffer Variables and Access Words

AIM 65/48 FORTH V1.4 ERRATA

The AIM 65/40 FORTH release V1.4 includes the following
limitations:

1 Compilation using SOURCE does not return control to
the keyboard upon error detection.

2, The XOR word operates improperly.
3. The READ word does not dl-piny_data input

4. The key used to terminate VLIST is also entered as an
input character.

i;- Compilation using SOURCE will accept lines greater
than 79 characters in length.

%. "OK" is not displayed upen completion of compilation

The following words should be entered into the text editor and

compiled as shown (see Section 4.5). Run a VLIST (see Section

4) to verify proper compilation. These words will then be used
in lieu of the XOR , FINISH , SOURCE and READ system

words.

={L3}/ ouT=
X

VLIST
VLIST KEY DROP ;

“KEY

[UKEY : J_LITERHL EXECUTE)

DUP EMIT

: READ
UKEY @ ROT ROT™

E - “KEY CFA 3 LITERAL
UKEY ! READ uxsv!sEﬂﬂL

-ABORT

CR nERE COUNT TYPE * 2" CLOSE QuI

[SMUDGE

: _SOURCE
TIB @ 8@ ERASE

WARNING @ URBORT @

-1 WARNING ' [*
LITERAL URBORT !

: FINIS

URBORT ! WARNING *

CR [uKn FINIS

%ggE XOR

LDA, SEE EOR,
TOP 1+ LDA, SEC 1
BINARY JMP, END-C

WARNING. @ U

FINIS | BORT
END

=(@}

{53

3E¥ECE IN=HM

T NOT UNIQU
READ NOT UNIGUEE
SOURCE NOT UNIQUE
FINIS NOT UNIGQUE
gER NOT UNIQUE

AIM 65/40 FORTH ¥i.4 ?;

H

-ABORT CFA 1
SOURCE ;

PHA,
+ EOR,
ODE

xi

SECTION 4

INTRODUCTION

FORTH is a unique Programming system that is well suited to a
g. variety of applications. Because it was originally developed
% for real-time control applications, FORTH has features that

; make it ideal for machine and process control, data acquisi-
| |
tion,

energy and environmental management, automatic testing,
and other similar applications. The speed performance of
assembly language is required in many of these applications, :
however a high-level language is often desired to improve }
i Program development productivity and Program reliability. j'
FORTH is designed to satisfy both speed and programming E
efficiency requirements.

E:FORTH can be called a computer language, an operating system,
‘lan interactive compiler, a data structure, or an interpreter, fa
Erdapondtng upon your point of view., It was designed to combine

;nthe strengths of both compilers and interpreters. The result .
is a unique language based on pre-defined operations that i:
'minimizes software development time and costs, supports .;-
fstructurpf programming and program modularity, compiles '
. interactively to ease debugging and to reduce Programming

7error3, compacts into small object code, and executes extremel’

. fast., Additional words may be defined to- allow usage by =
non-programmers. ' :

- AIV 65/40 FORTH in ROM combines the benefits of FORTH and the
| features of the AIM 65/480 Microcomputer with its resident
fprintex, display, keyboard, and interactive Monitor and Text |

§Editar firmware, to produce a stand-alone development and
 run=time system.

EiS | I

AIM 65/4@ PORTH can also be used in a Rockwell RM 65 Single Section 6, AIM 65/40 FORTH Assembler, describ

Board Computer (RM65-1808), in either a run-time, or develop : operating procedures associated uithr 3 ribes concepts and
ment, mode with user provided peripherals and input/output Assembler. the AIM 65/40 FORTH
software drivers. AIM 65/48 peripherals may easily be
connected to the RM 65 SBC module, either directly, or throuch| Section 7, Handling Intarsugts in

an RM 65 Multi-Punction Peripheral (RM65-5223) module. FORTH, explains how to use

machine level and interpretive interrupts in FORTH
1.1 AIM 65/48 FORTH USER'S MANUAL DESCRIPTION Section 8, Programmin
g the R6522 VIA, explains h
ow to use FORTH

| to program the R6522 Versatil
This manual is designed to provide both introductory instruc- | techniques tan easily be nterface Adapter (VIA),

tion and detail language reference information. If you are n=

to FORTH, be sure to read and follow the manual chaptet-by-. ‘Section 9, Notes on Btyle and Program Develo t

chapter using the AIM 65/40 Microcomputer as a teaching aid 7| the general approach to programming in EonTupuen ¢ discusses

order to learn the FORTH language and operation concepts. 1f | exampls program. and provides an

you already know the FORTH lahguage you can probably skip

certain sections and still use the language, however it ig : LSEC*iﬂr 10, Preparing an Application g

recommended to review all sections to become familiar with thel Installation, tells how to structure and Thde 5 i

AIM 65/48 FORTH mechanization and unique features. application program in a PROM which will operate in C::juncti
on

with the AIM 65/40 FORTH ROMs.

These
applied to other peripheral devices.

Section 1, Introduction, introduces the AIM 65/48 FORTH

languagé and the AIM 65/40 FORTH User's Manual. | Section 11, Using an Audio Cassette Record
' er,

5 describes h
' dump and load source and object code for progr i

Section 2, Installation and Operation, explains how to installf FORTH ams written in

AIM 65/48 FORTH. § Section 12, Interfacing to Mass Storage
. v

tells how to prepare
Mprograms to store and retrieve program and data from °
Section 3, FORTH Concepts, provides a general overview into [storage Blocks, screens, and buffers d 54,

' are described.

FORTH concepts and advantages. This is a good chapter to rpmifpfhniqua to handle program overlays is al The
if you are new to FORTH. also explained.
| Appendix A, AIM 65/48 FORTH Func
Section 4, Elementary Operations, leads you through elemﬂnraréFORTH word operation by general .
and common FORTH operations. By following this section

step-by-step you will learn how FORTH operates to a SJFFin1nn$ﬁPPBndix B, AIM 65/40 FORTH Glossary, define
level to implement simple applications in FORTH. ‘in ASCII sort order. ™ 8 each FORTH word

&l Summary summarizes
of usage.

Section S, Advanced Operations, takes you into more complex d
FORTH operations once you have become familiar with the s
elementary FORTH operations described in Section 4. >

ppendix C, AIM 65/40 FORTH Assembler Functional Summary
; r
ummarizes FORTH assembler word operation by area of usage

A
hppeﬁdlx D, AIM 65/40 FORTH Assembler Glossary defines each
ORTH Assembler word in ASCII sort order.

1-3

H |
Appendix E, Error Messages and Recovery, identifies each FOR | 1.2 REPERENCE DOCUMENTS
error number and/or message, defines the error meaning, and } -

i

describes the recovery action. E
|

29650N30

Appendix F, Page Zero and One Memory Map, defines the address, | Order No. 282
: . |

variable name and general usage of page zero parameters. 29650831
| Order No. 201 R6500 Hardware Manual

R658@ Programming Manual

A e

Appendix G, User Variables RAM Map, defines the address, : 29650N86 .

variable name and purpose of each user variable. The cold and} Order No. 289 AIM 65/40 System User's Manual 2

warm start initializatien values are also listed. i 39851088 &
: AIM 65/40 FORTH Reference Card

Order No. 2194

Appendix H, ASCII Character Set, provides a list of 7-bit ASCIE
!

codes in decimal and hexadecimal corresponding to 32 control

functions and the 96 upper and lower case alphabetic, numeric

and special characters.

Appendix I, FORTH String Handling Words, describes how to
create string handling functions in FORTH.

Appendix J, User 24-Hour Clock Program in FORTH, illustrates :
program written in FORTH colon- and CODE-definitions, i.e., i
FORTH high-level words and 6500 assembly language. f

Appendix K, Utility Functions, explains how to determine the |

time it takes for a FORTH word to execute.
|

Appendix L, AIM 65/40 FORTH Versus FIG-FORTH, identifies word
incorporated in each FORTH that are not included in the nrhnri i

FORTH. 1

Appendix M, FORTH and the RM 65 FDC Module, lists a program
written in FORTH to compute and display a ROM check-sum. |

Appendix N, Selected Bibliography, lists references to many |
popular and tutorial FORTH articles and books. j

-

SECTION 2

F-
4
% INSTALLATION AND OPERATION

. The AIM 65/48 FORTH object code is Provided in two Rockwell
ER2332 4K-byte ROM devices. After installing the ROMs in the
3

" AIM 65/48 SBC Module, FORTH is ready for use.
| the overall FORTH memory map.

Figure 2-1 shows

¢ 2.1 INSTALLING THE FORTH ROMS

ﬂBefore removing the ROMs from the shipping Package, be sure to
* observe the handling precautions listed in Section 2.1 of the
AIM 65/40 System User's Manual. Since Mog devices may be
iﬁamaged by the inadvertent application of high voltages, be
;%ure to discharge any static electrical charge accumulated on
Lyour body by touching a ground connection (e.q., a grounded
:ﬁquipment chassis) before touching the ROMs or the SBC module.
\ This precaution is especially important if You are working in a
carpeted area or in an environment with low relative humidity,

(ENsure that power is turned OFF to the AIM 65/4@ microcomputer,
Carefully remove any ROM or PROM devices that may be installed
iin sockets 278 and z71 of the AIM 65/48 sBc Module. Remove the
LHORTH ROMs from the shipping Package. 1Inspect the ROMs to
%nsure the pins are straight and free of foreign material.
ile supporting the AIM 65/48 SBC module beneath the RoM
ocket, insert ROM number R32P@ in Socket z70, being careful to
bserve the device orientation. Now insert ROM number R32P1
fto Socket Z71. Be certain that both ROMs are completely
nserted into their sockets. Make sure addresses $CA@G-S$SDFFF
re selected on the AIM 65/49 SBC module (see Sogtisn 2e 25k b
the AIM 65/4p System User's Manual) . Then turn ON power to the

.%IM 65/48 microcomputer,

FFEF

Fope
EFFF
EQGO

DFFF

copo
BFFF

ApBO
AFFF

80B
8@A
800
TFFE.
788
77F
760
75F
708
6FF
600
5FF
4A0
49F
2080
1FF

1p@
FE
F@
EF
D7
D6
A9
A8
1@

AIM 65/48 1/0 ROM

and On-Board I/0
User

Available

AIM 65/40
FORTH ROMs

AIM 65/40
Debug Monitor/
Text Editor ROMS

FORTH
User Dictionary
(Continues Upward
in Memory)

Dummy Word
TASK
Terminal Input
Buffer (TIB)
User
Variables
FORTH User
Variables
RM 65 FDC Module
Default Buffers
~ RM 65 Module
Variables
System Variables
and Constants
R65F2 CPU Stack
and FORTH Return
Stack
I/0 ROM
Variables
RM 65 Module
Variables

Figure 2-1.

=2

Start of FORTH Dictionary in
in RAM.

See Appendix G

See Appendix F

AIM 65/40 FORTH Memory Map

2.2 ENTERING, EXITING AND RE-ENTERING FORTH

242,11 Entering FORTH

Press 5 to enter and initialize FORTH when the AIM 65/48

Monitor prompt is displayed. AIM 65/40 will respond with

{5}
AIM 65/48 FORTH V1.4

along with the {5},

To re-initialize FORTH while in FORTH,

type COLD followed by
| pressing the <RETURN> key.

AIM 65 will respond with

COLD
AIM 65/480 FORTH V1.4

' Initializing FORTH with either of the above methods will remove
& any user words Previously defined and added to the FORTH
;:vocabulary or to any other application vocabulary (see Section

ES.S). User variables are initialized to the default values

& described in Appendix F. The FORTH number base is also

initialized to DECIMAL for input/output operations.

$2.2.2 Exiting rorra

The ESC key can be
g pPressed any time FORTH is in a command input mode. Control

‘will be immediately returned to the AIM 65/40 Monitor,
;;ny values currently in the stack will not
bignificance of this will be apparent as yo
Eamiliar with FORTH.

however,
be saved,

u become more

MON

followed by pressing the <RETURN> key. This causes an R6582
BRK machine instruction to be executed and AIM 65/40
microcomputer to display

MON

= Bp D9 92 Pp@ FD DID BRK

More iupoftantiy, exiting FORTH in this manner preserves any
values on the stack.

2.2.3 Re-Entering FORTH

once FORTH has been entered and control returned to the AIM

65/40 Monitor, you can re-enter FORTH by either of two nethoas |

without re-initializing the user variables or deleting
previously defined words.

You can re-enter FORTH by pressing 6 anytime the AIM 65/48
Monitor prompt is displayed. The system will respond with

6
[A}H 65/40 PORTH V1.4

The last line of data displayed may be printed upon FORTH
re-entry along with the {6}.

Note that re-entering FORTH with the 6 key will delete any

' e I/0 number |
values previously stored in the stack, however the I/ . | FORTH keeps all definitions in a DICTIONARY.

fincludes virtually all the object code of the system itself and

base is retained (See Section 4.11.3).

If FORTH has been exited using the MON command, FORTH can be
re-entered by pressing G, typing D9D2 then pressing the
CRETURN> key.

Re-entering FORTH in this manner retains any numbers on the
stack saﬁed by the FORTH MON exit to the AIM 65/40 Monitor

If FORTH is re-entered properly in this manner, FORTH disnlays

e (2 i

}.nutaidc it, at your optioen.

SECTION
FORTH CONCEPTS

FORTH is quite different from more conventional languages suc
as BASIC, FORTRAN, or Pascal. It Creates a computing environ
ment with unique strengths, tools, and styles. Some of the
Structures of FORTH have little correspondence with those of
other languages. This overview of -the language and the AIM
65/40 FORTH implementation Provides background for the
‘how-to-do-it chapters which follow.

3.1 FEATURES OF FORTH

FORTH is EXTENSIBLE,
to the language.

meaning that you add your own operations
New words (operations) are defined from old
‘words or assembly language, until a single word is the entire
desired program. The pProgram word can then be executed by

typing its name. Except that your words may be defined in RAM,

i or user provided PROM or ROM, while those of the FORTH system

itself are provided in the FORTH system ROMs, there is no

af.diltlnctlon between your new operations and those originally
. ipart of the language.

Extensibility allows users to define
libraries or even their own languages for particular applica-
tions, greatly facilitating maintenance as requirements change.

The dictionary

of your applications. Only the AIM 65/48 Monitor, I/0 buffers,

any source code which may be in RAM, and the "user area" of

_'system or application variable values are outside the diction-
fary,

Your own data structures may be in the dictionary or

The internal structure of the

Eﬂlctionary is uniform and much simpler than the internals of

@ust other languages; therefore, application pProgrammers
ftypically learn much more of the inner workings of the FORTH

‘systen

1 3 = d
FORTH object code is extremely COMPACT in memory, even compare

to machine language. Short programs, however, that are
assembled or compiled to machine language may take less spafe
since the entire FORTH system in the 8K ROM normally stays in
The BK AIM 65/49 FORTH ROMs

terminal

memory as a run-time package.

include code for the FORTH compiler, an assembler,
which

applications. It is

run-time for most

handling, etc. are unnecessary at

possible to shrink FORTH's run-time

package to much less than BK by special compilation techniques,

but the software for included in this system.
u

FORTH's

code to build on itself, increasing the memory advantage for

doing that is not
In any case hierarchical structure allows application
L

larger programs, and with little loss in speed.

FORTH code is recursive, suited to multi-tasking applications,
and can be programmed in RAM, PROM or ROM.
FORTH is STRUCTURED. There is no GOTO statement in the
language IF and ELSE control structures, and DO, UNTIL, and
WHILE loops are provided; all of these can be nested to any

practical depth.

FORTH uses a STACK and its associated POSTFIX NOTATION, a%so
called Reverse Polish Notation (RPN), in which the operation
codes are written after the operands which they u§e. For
example, <2+2> in BASIC would be written <2 2 +> in FORTH.
does FORTH use a stack explicitly when most other languages
hide their stacks from the user and avoid postfix in favor of

more conventional notation?

Part of the answer is that the stack allows very low overhead
for linking between subroutines. FORTH reduces the cost‘of
subroutines to very little, and the whole language is built

calls. Routlines can accept and return any

L]
(«]
(=4
rr
-
m

number of arguments, without the complexity or other overhead

variable declarations.

of formal parameter or local

| be debugged with
L gramming environment.
t has only one entry ang
& cation
B are no side effects on other modules,
iexplicitly Programmed.
" three to five 4@-column
§ easier

s compiled inte later definitions.

| Simply be typed onto the stack bef

tUsually each compo

Whyi

Words to include run-time bou
1 Sting.
tegisters (A, X, Y, etc. in the 6502 CPU)

flsembly language subroutines, FORTH can do anything machine

Fassenbly 1an

P The stack encourages extremely MODULAR Programming,

great reliability,

which can
Consider FORTH's pro-

Each module (i.e., word Or procedure)

one exit point, Usually all communi-

with the stack, so there

the outside worid is through

variables, etc., unless

Usually each module is short; commonly

The smaller g3 module is, the
it is to test all paths through it,

lines.,

‘FORTH is INTERACTIVE. Testing is immediate,

fORTH words can be executed di
'}eyboard.

because almost all

rectly as commands from the

and will behave exactly the same in this mode as when

: Any arguments required can
ore the test, or generated by
cher operations, and results can be printed immediately.

' nent of the new definition can also be

iXecuted interactively from the keyboard, to aid in debugging.

- Documentation of the behavior
form is required, i.e.,
outputs, and actions, but there

is no need for their
ode to be listegd

. Fewer listings are therefore required
FORTH program development than w

ith other languages.
erything you need to work with

is directly in front of you,

ORTH allows easy MACHINE ACCESSs,

unlike most other high-level
anguages,

(data ports ang control

although run-time pProtection

All of memory and I/0

Bgisters) can be addressed, can
implemented simply by rede

fining aPpropriate system or user

nds or other checks during
Except for direct access to

which require

ddnguage can do. And FORTH

runs fast enough that usually no
guage subroutines are necessary,

But if full machine speed is needed, AIM 65/4@ FORTH includes

an assembler. It also allows machine language subroutines to
be tested immediately as soon as the assembly source has been
typed in or otherwise entered, with no waiting for separate
assembly and linking passes. It encourages structured

programming even in assembly language; IF...ELSE and BEGIN...

UNTIL macros are provided. ;
and use the full power of FORTH for address arithmetic and
All 6502 op codes and

other assembly-time utilities,

addressing modes are available. This one-pass assembler is
implemented in about 1.5K bytes, illustrating the compactness
of FORTH's object code. It
ROM set.

The routines created by this assembler have FORTH names and
behave exactly like regular FORTH definitions.

i i language.
needn't know which words are programmed in assembly guag

The user

Therefore, an application can first be written entirely in h‘?'
if more speed is necessary, Partyy

level using FORTH words, and,
can be converted to assembly language code with no changes
required elsewhere.

FORTH code is extremely TRANSPORTABLE between machines.
common b
computers such as 6502, 8088, and PDP-11 with very little
change or none at all.
(FIG)
and one closely aligned with the Interna-
The FIG model

Interest Group
dialect of FORTH, ;
tional Standard for the language. is available
on the common small computers and is rapidly being implementes

on others. Therefore the AIM 65/49% microcomputer can be used

to develop software for other computers, and it can use
published FIG-model code regardless of the machine on which i

Published programs are commonly written

waer Asuvalnoed
WasS UevVeloped.
in F

ORTH with

entirely i no machine code or other dependenciesf

but designed so that short, time critical words can be

rewritten in assembly language for optimization on any

particular host machine. These programs can first be run

unchanged, then optimized only if needed.

Users can define their own macros,§

is resident in the AIM 65/40 FORT&:

It iss

The AIM 65/40 system follows the FORTHS
language model, probably the most common g8

languages;

B relies on earlier modules which ha
@ in turn,

As in any Programming, good style makes the a
easier to debﬁg and verify,
requirements change.
fam

Pplication program
and easier to read ang modify when
Many recommended FORTH Practices are

iliar from other language environments,
different.

but some are

Practices such as top-down design and bottom-up
coding and testing, short modules,
Structures,

indentation of control
and a glossary as the Principal documentation
during development, are discussed throughout this manual.

3.2 DEBUGGING

The FORTH environment's convenient and powerful debugging and
error control features are an important advantage of the
System.

FORTH allows complete access to the machine, without

the restrictions of many other languages such as BASIC and

Pascal which try to guard the programmer

against mistakes.
. Most users report that FORTH allows them

to quickly produce and
modify programs which are exceptionally reliable.

Although AIM 65/4¢ FORTH includes extensive compile-time

checking which detects most of the detectable errors
¢ Appendix E),

(see
the most important error control
which the FORTH environment

is in the tools
itself gives to the Programmer.

for substantial programs to be moved between different ;

' Like most other modern languages, FORTH encourages "structured

‘Programming" design techniques, which helps to control errors.,

FORTH is extremely modular, even compared to other structured

each software module can be tested and debugged

I independently. Usually all communication between a module and

i the outside world is through an internal stack. Each module

ve already been debugged, and
the new testing helps catch any errors that may still

Bbe hidden in the earlier work.

| - . - 5 - s s

W Testing is immediate and interactive; Simply
fonto the stack, execute the word,
"nore elaborate test data

it

type arguments

and print the results. 1If

is needed, a special word can generate
This ease of testing means that a large number of tests
fcan be run quickly.

Each module should be short, in the programming style pre:erredi
by most FORTH users, so that all possible paths of control can |

be tested easily.

If correct results are not obtained, it is possible to step
through the definition by executing each component word
individually, checking the stack whenever desired. AIM 65/40
FORTH has a special word, .S , which non-destructively prints
the stack contents to help in this kind of debugging. Any
unexpected results can be localized to a particular component
word, which in turn can then be examined in detail. Because

FORTH words work identically when compiled, or when executed a;f-mh. stack, below any argiments returned by the test word
' rd.

commands, the programmer can debug at either a batch or
interactive operation mode.

their original functions and, in addition, give special debug
print-outs or do run-time error checks. These redefinitions

can be inserted into programs for testing and removed later;

nothing else in the program need be changed.

AIM 65/40 FORTH also includes a memory dump and other words fo;f

examining or changing memory. These commands can be compiled

into programs or executed from the keyboard.

In contrast to most other operating systems, all of these toolil
No special syntax off

are part of the normal FORTH environment.
command language must be learned for debugging.

Each FORTH word is documented by a glossary (see Appendix B)
which lists the arguments it takes from the stack and the

results returned, and gives a short verbal description [usua1L'ﬂ

one to three sentences) of its action. Such a glossary
completely describes the word as it is seen by any other part
of the program.
words should have these descriptions available.
programmer seldom needs to look at the source code of any othe
word; the glossary fully describes its functions. During

3-6

. One important debugging procedure applies only to FORTH.
. a word appears to work correctly it must be tested to make sure
$lthat it does not take any unexpected numbers off the stack, or
-fraturn unexpected results.
.ffmarkers, easily-recognized numbers, such as 1, 2 and 3, on the
g.stack and then execute the word being debugged.

When a new word is being tested, all earlinr:fs
Therefore, tif

testing debugging, on one word at a time needs to be
examined this greatly s down the need for program
listings ring developme

After |

One way to check is to leave

After an
«§ to make sure that the markers are still on

This
‘check is important because otherwise the word may look like it

works, but causes later program crashes at unexpected and

operatlon, use

£ seemingly random places making the problem hard to debug.
Because FORTH is extensible, words can be re-defined to perforrg’ |

SECTION

ELEMENTARY OPERATIONS

" Thig section provides a step-by-step description of elementary
. ATM 65/4@8 FORTH operations, such as:

+ Performing simple arithmetic and comparisons

» Entering and retrieving data from memory

- Using the stack

« Compiling interactively or in a batch mode from memory
+ Defining new FORTH words

+ Performing looping and conditional sequences

‘A major portion of FORTH is the FORTH dictionary itself. Each
pword in the FORTH dictionary causes specfic actions or
Boperations to be Performed. The use of FORTH is explained
‘Primarily by describing how each word operates and how to use

it, either individually or with other words. Let's start by
fsecing what is in the FORTH dictionary.

Enter FORTH from the AIM 65/40 Monitor.

{s}
AIM 65/40 FORTH V1.4

‘?ﬁst the contents of the FORTH dictionary by running a vVLIST .
-

VLIST

@nc then press the <RETURN> key. The entire FORTH dictionary
/11 be displayed (and Printed if the printer control is ON).
hers are 249 words in the AIM 65/40 FORTH dictionary (not
Junting the assembler, see Section 6.1) so the printout will
2ke about one minute.

Terminate the listing at any time by pressing any key. The
entire VLIST is shown in Figure 4-1. HNote that the words i~

not appear to be in any general order; the words are listed n~y ;
(The FORTH dictinn-f

ary structure is explained in detail in Section 5.5, but leave &
These FORTH words are described in ASCII sortf

their address in the AIM 65/40 FORTH ROMs.

that for later.)
order for convenient lookup in the glossary in Appendix B and

summarized by associated function in Appendix A.

AIM 65/40 FORTH may be readily learned by performing the
following procedure.

Then read the word definition in the Appendix B

examples.
Repeat the examples, but vary one or more of the

glqssary.

parameters until you thoroughly understand the operation of th

described FORTH word.

As you are learning FORTH, you may make errors that either
cause an error message to be displayed or cause the AIM 65/40

to hang up or to run away, i.e., the display may go blank or .f
If an error occurs with a displayed error P

message or number, refer to Appendix E for the error definitigf

show random data.

and suggested recovery. If the program appears to hang up or

run away, press the <RESET> key to reinitialize the AIM 65/49_1

microcomputer and to return control to the AIM 65/4@ Monitor
You can then re-enter FORTH and try the example again.
have to back up a few steps;, however,; to recover the example
initialization.

In the following descriptions, a FORTH word comprising of

letters and numbers is written in upper case.
words contain special characters that may be confused with

sentence structure, e.g., plflods, commas, or apostrophes, thi

FORTH words are set off by spaces, e.g., .5 . These sinale
spaces are not part of the FORTH word and should not be

entered.

4-2

As each new FORTH word is encountered in 5
this section, read the explanation and perform the accompanvim'j

You ma

Since some FOR

CASE

Figure 4-1,

TASK
MON
YLIST

D

#S
SIGN
<#
WHILE
IF
AGARIN
UNTIL
LOQP

THEN
EEGIN

-=>
MESSAGE -
(LINE)
FLUSH
BUFFER
UPDATE
M/MOD
;/HDD

*
M

MIN

ABS

-

CoLD

QuUIT
DEFINITION
FORTH

IMMEDIATE
?5TACK
LITERAL
CRERTE
ERROR
=FIND
{NUMBER >
PRD

BLANKS
FILL
GEER?

-TRAILING
COUNT
<BUILDS
(; CODEY
HEX

1
COMPILE
?PRIRS
?COMP
!CSP
NFA

LFA
=DUP
PICK

>

ug

CAS1

BLOCK
EMPTY-BUFFE
+BUF
*/
MOL
/MOD
ns
HAX
DABS
D+-
5=>D
?BDRT

ASSEMBLER
VOCABULARY
INTERPRET
DLITERAL
ESDHP!LE]

CRBORT >
NUMBER
WORD
HOLD
ERASE

EXPECT
. M)
TYPE

VLIST of AIM 65/40 FORTH Words
4-3

Figure 4-1

UABORT
UB/BUF
YOC-LINK
FENCE
WIDTH .
UPTERMINAL

KEY
CLRLINE
(FIND>
I

(+LOOP>
BBRANCH
EXECUTE
LIT OK

VLIST of AIM 65/4@ FORTH Words (Con't)

4-4

ALLOT
2—

B/SCR
LINIT

USER
YARIABLE
c

ce
TOGGLE
BOUNDS
DUP
2DROP

OVER
NEGATE
+

NOT

" 'FORTH arithmetic, like

. |[results to it,

hna Pressing the <RETURN> key. AIM 65/40

- <RETURN> is shown in the

. entry.)
. number.

8 O

. 0K 1is not shown in most of the examples,
. implied in all operations.)

following is printed (i1f the printer control is ON)

- Note th

4.1 SIMPLE ARITHMETIC

that of advanced pocket slide rule
jcalculators, uses a stack to store operands and results.

Operations such as + - * / (add, subtract, multiply, and

divide) take thelr arguments from the Stack, and return thei

To see how the stack works, give FORTH a cold restart by typing

COLD

will respond with
AIM 65/40 FORTH V1.4

Now type the following five numbers

1 22 333 -44 5

and terminate the input by pressing the <RETURN> key. <RETURN>
ot the end of a line signals that your input is complete, (The

initial examples, but is not shown in

later examples, except where needed to clarify data or command

Be sure to insert one or more spaces between each

Now the numbers 1 through 5 are separate numbers
Stored on the stack with 5 at the top.

FORTH responds to your
input by displaying (and Printing if the

Printer control is ON)
- OK means that the system has correctly acted on your

command and is waiting for another command to be entered. (The

however, it is
After <RETURN> is pressed, the

T 22 333 -44 50K

: at the printer can be turned ON and OFF in FORTH using
tLe <CTRL> and P keys as in the AIM 65/48 Monitor.

Notice that the "blinking™ cursor indicates the input charact
position. A typing error during FORTH command or data entry
can be corrected by pressing the key as necessary.

4.1.1

Examine Stack Contents with .S

The word .S (pronounced dot-s) may be used at any time to

examine the contents of the stack without altering the values |

or removing the numbers from the stack. Try it by typing

«S <RETURN>

The numbers entered in the prior section will be displayed (i

some examples the displayed data is underlined to distinguish

it from entered data)

2
-44
333
22

1 OK

The .S word is very useful when learning AIM 65/4¢ FORTH or
debugging a FORTH program to determine the stack contents
immediately prior to and/or after executing a FORTH word.
4.1.2 Print from the Stack using

The print command removes a number from the stack and displays|

it (and prints it if the printer is ON) in the current I/0
number base. In FORTH, the print command is represented by a
"dot"., Type

period and is called

+« <RETURN>

The 5 will be printed and removed from the stack.

B K

ef

B Verify this by typing .S and <RETURN> to show the new
[i contents of the stack.
E -44
. 333
3 22
I 1 OK
3The next dot (and <RETURN>) will print the -44. Multiple
@ commands separated by spaces, can be typed on one line like
| this
E
:l - . <RETURN>
:
nf

P;o display two numbers from the stack,
b

e.g9.,

.

» <RETURN> 333 22 Ok

'iéw only 1 is left on the stack.
3

Output it with

<RETURN>

£ which displays

1 OK

Trying to examine or pPrint the stack contents when there are
iumbers on the stack will result in an error
ich will show

no

message, e

Try

i .5 <RETURN>
EMPTY

iNote that the word
1411 display an indeter
flessage., Try it now

will now cause a stack underflow and

minate value along with a stack empty

@ (typical number)

? STACK EMPTY

finilar FORTH operations trying to pull a num
igack will result in this error message.
48 well as others,

ber from an empty

This error message,
are described in Appendix E.

|
Notice that the data was displayed (and printed if the printeg

installed

the FORTH

is and enabled) on the same line as the commands,

fae; word in this case. Many times it is [
The FORTH |
to the display and printer,
the
(and printed)

CR

desired to display and print data on a new line.
play P

word CR issues a carriage return

Repeat the previous examples but insert CR before worg

and note that the command is displayed on a

separate line prior to the data. Also command after the

« and observe the results.

Perform a cold restart before continuing.

COLD
AIM 65/48 FORTH V1.4

4.1.3 Clearing the Stack

It is sometimes desirable to delete data from the stack withotl

performing a COLD restart. The stack may be cleared by Erying
to execute a word
This

echos the missing

that is not currently defined in the FORTH
in which FORTH
(see Appendix E for
Initially, thel
is not defined in the FORTH dictionary and can be

dictionary. causes an error condition
word followed by a "2"
error descriptions)

Q

conveniently used to clear the stack.

and then clears the stack.
word

Note also that commanding a word that is not in the dictionar:
will also delete data that you may want on the stack -- so bel
careful with your word entries or you may have to re-enter d&
or repeat prior steps.

Enter some numbers on the stack and display the stack contentf

678 356
«5
356
678 OK

Type Q now and verify that the stack is cleared.

Q

Qe'?

-5

EMPTY OK

R4.1.4

loperations destroy their arguments on the stack),

Bubtract works in a

jafter the word

fultiply and divide also work

Add + =

and Subtract

Let S how perform some simple arithmetic. Put two numbers on

the stack, say :
12889 135 <RETURN> 1
Wow type the add command |
+ <RETURN> i
i
he + takes whatever two numbers are on top of the stack and
dds them.

It removes those numbers (by convent ion, most FORTH

and replaces

ithem with Type i

their sum,

<RETURN>

(o verify this. The sum will be displayed as

12944 oK

is before, multiple operations can be placed on one line, @.9s;

128@9 135 + <RETURN> 12944 0K

similar manner. Try

12889 135 - , <RETURN> 12674 OK

Bpeat these last two éxamples but, insert CR before and

to display the result on a Separate line,.

Multiply * and pivide

/

in a similar manner. Try the

lowing

38 78 '+ ,

<RETURN> 2964 OK

The word * multiplies the top two items on tl :ack and
leaves only the result on the stack. The word divides the]
second item on the stack by the top item. Try

1f you are new to postfix, you may want to follow this example
by using stack diagrams, as shown in Figure 4-2., This
llustration shows the successive states of the stack after

ch number or operation has been pProcessed. Each column show
- stack at one time. The number on top is the most
dccessible number on the stack, ready to be used first by any
operation which takes a number from the stack. We say that
thic number is at the TOP of the stack.

13036 58 « <RETURN>

which displays
13036 50 . 260 OK

Note also that the divide limited the result to an integer In the execution of the postfix formula shown above, 42 is
value (the full answer is 268 with a remainder of 36). Other | '
operations allow the remainder to be saved (see Section 5.1). |
In all FORTH arithmetic and comparison words roqulring two dat:f
items, the operator bchavos as if it were between the top two '
values on the stack. Thus, 13836 58 / behaves as if it were
13936 / 589.

ered. The subtraction destroys those arguments and leaves

L difference, -8. You can follow the rest of the process
&imilarly,

eration 42 50 128 1!95_

of|_-sf|

Each number on the stack is 16 bits wide, therefore these
single numbers have the range -32768 to 32767 since the most
significant bit (bit 15) is used for the arithmetic sign. Thig
is enough for many applications, but AIM 65 FORTH also has
double-precision (32-bit) numbers which are discussed in
Section 5.1.

128 [a6y
|_128

_:-IJ. lii

‘s 2]
4.1.6 Postfix Notation and Stack Operation '

Note that in the preceding examples, the operators (+ ,
* and /) were typed after their arguments, not between them,
This style of arithmetic notation is called POSTFIX or Reverss
Polish Notation (RPN). It can represent complex formulas
without any use of parentheses. For instance

Pigure 4-2, stack Diagram of Postfix Example

7br column in Pigure 4-2 shows the stack at the time after

'} h successive number or operation of the formula has been
ocessed. Note that any numbers which may have been below
xes= numbers on the stack will be undisturbed. Repeat the
2bove example but insert .S after each number and operator to
Bxamine the stack contents after each operation,

(42-5@)*(128-10906/3)
would appear in postfix as

42 50 - 128 19090 3 1y numbers go on the stack. Strings or other data structures
Note that the operands (the numbers) are in the same order in B jrot reside there directly -- although some data such as
the postfix and infix (ordinary arithmetic) expressions. Don't inters (addresses), length and offset information, AsCII

forget to type . and <RETURN> to display/print the result. | :ﬁ="eg' are frequently on the stack.

4-10 : 4 4-11

i

How many numbers can reside on the stack.at one time? AIM E

65/40 FORTH limits the stack depth to 65 16-bit values, in _
order to keep the parameter stack in page zero to maximize 650}
CPU execution speed. Except for certain recursion problems,
very few programs ever need a stack depth of more than about

20. E

4.1.7 Decimal and Hexadecimal Number Base

Up to now we have been working in DECIMAL . FORTH allows
input and output data to be represented in different number

bases. We will consider only two pre-defined bases now --
DECIMAL and HEX . FORTH is initialized to DECIMAL (base 10]
during initial entry or upon commanding COLD . DECIMAL is |
best used when working with numeric calculations. HEX

operates in hexadecimal (base 16) and is most useful when
working with addresses or logical operations on individual :
bits.

Type DECIMAL or HEX to change FORTH to the desired base
before entering or displaying data in that base., FORTH will
stay in the selected base until the base is changed or until
FORTH is reinitialized (to DECIMAL). Note that DECIMAL anl
HEX affect the input and output data representation and not |
internal data handling.

Reinitialize FORTH and put the following numbers on the stack
and print them using different combinations of DECIMAL
HEX .

COLD <RETURN> (Initializes DECIMAL
AIM 65/4@0 FORTH V1.4

in each of the following

Press <RETURN> after the word
examples ¥ -

E
E

Notr that

16 . 16 oK

16 HEX . 10 OK

19 DECIMAL . 16 OK

255 . 255 OK

255 HEX . FF OK

DECIMAL 32767 . 32767 OK
32767 HEX . 7FFF OK
DECIMAL -32768 . -32768 OK
-32768 HEX . -8pP@ OK

DECIMAL numbers -1 to -32768 entered on the

-ﬁwilL be displayed in HEX in 2's complement form with a
lleadinq minus sign,

g/

stack

g:e will examine other number bases later (see Section 4,11.3).

Il.z STACK MANIPULATION

Since most FORTH words use the stack to hold input

s or output
numhers, let's explore some

FORTH words that are used to
fearrange Or Copy numbers near the top of the stack. While
- these functions are sometimes necessary,
ther where possible. FORTH code is more readable when less
;tack manipulation is used. Common stack manipulation words
.fre discussed here, however, ‘to give you additional experience
in working with the stack before proceeding into other FORTH

you should avoid using

‘Word descriptions.

DUP , DROP , SWAP and OVER

4.2.1

most common stack manipulation words are DUP , DROP ,

and OVER . Lat'slaxplore these, but first place some
markers on the stack for reference

WAR

i DECIMAL 333 222 111 <RETURN>

}f.ul accidently pull tao_nany numb.;s frcﬁmthe stack we will

knou where we are. Type .5 to check
] .S <RETURN>
: 111

222

333 oK

4-13

|

DUP pushes a copy of the top number onto the stack to create af@lNotice that the top two number are reversed Now try OVER

new top number. In sequence] 1Which copies the second item to the top '
123 DUP . . <RETURN> i OVER .S <RETURN>
£ 789
duplicates 123 on the stack then displays both numbers i f ggg
E 111
123 DUP = « 123 123 OK t =8 222
i 333 oK

DROP deletes the top number from the stack. Try this with

'4.2.2 Test and Duplicate with -DUP
456 789 DROP . <RETURN> }
A related word -DUP duplicates the t
which deletes 789 and displays A S P Op number on the stack
_Knly if it is non-zero; otherwise -DUP does nothing.
456 789 DROP . 456 OK @ continuing from the prior example, type

SWAP exchanges the top two numbers on the stack. Put two i ~DUP .S <RETURN>

th e
numbers on e stack e show that the top number was duplicated.

456 789 <RETURN>

' 789
ﬁ E 789
Use .5 to look at the stack E = 456
: ! 789
«S <RETURN> | £l
789 8 202
456 | 333 0K
111 .
§§§ e ket's remove and display the top four numbers from the stack

Wbefore continuing

Now the S on t the stack and examine the stack 2
oW Swap numbers o op k min r CR: ¢ w = o CHEDURIG

with i
@ Which displays
SWAP .5 <RETURN> |

789 789 456 789 OK
which prints

Now, enter

456 g f
i?? & 8 -DUP CR .5 <RETURN>
222 A j..
333 oK @ which displays

a

113

222

5

333 OK

Notice that the top number was not duplicated. -DUP is y,;ﬁﬂ;ch outputs
usually used before an IF (see Section 4.8.1). In the {

non-zero case, some action is usually performed using the : 800
value; the extra copy made by -DUP is therefore removed by { g g::
the IF processing. In the zero case, no additional action l& i3 ;;;
performed, thus, the extra copy of the top number is not i ; 333 OK
needed. : ‘B

fhﬂf remove and display the top three numbers
4,2,3 Deleta th: Top Stazk Item with .01 '

| 5 CR . . . <RETURN>
b 800 600 780 OK

The word DROP deletes the top item on the stack. Drop the

zero now and check the statk contents } 14.2.5 Copy a Stac« Itan wita PICK
R
DROP .S <RETURN> PICK looks down any depth into the stack and copies the nth
igg § nunher from the top (not counting the n itself) and places it
333 oK & on top.

i 1 PICK
4.2.4 Rotate Stack Items with ROT | 3
(is the samé as DUP , and

ROT rotates the top three items, moving the third item to u@i

& ‘2 PICK
top, the previous top item to the second, and the previous | 58

second item to the third. P15 the same as OVER . put several numbers on the

3 stack and
w!eck them

For example,

40 50 608 70 80 .S <RETURN>

8060 700 680 .S <RETURN> E 80
600 ; 70
780 E 60
800 B 50
11 E 48
222 B %ig
318 0% | 333 oK

Now rotate and print with Now Pick the 4th item (i.e., 58), and look at the results

ROT .5 <RETURN> ;aPICK «5 <RETURN>

X 8o
. 70
60
50
40
111
222
333 oK

4-17

4.3 MEMORY OPERATIONS Re-enter FORTH with

{6}

t t the stack d memory, off
Several FORTH words move data between the sta an mory 1 AIM 65/40 FORTH V1.4

from memory to memory.

4.3.1 16-Bit Store | and Fetch @

DECIMAL

16060 HEX 940 | OK
The FORTH word

£0 store a decimal number in an address entered in hexadecimal
Now display the data in decimal by

"
(pronounced "store") takes an address from the top of the stad

96@ @ DECIMAL CR
16008 OK

and the 16-bit value beneath it and stores the value into thel
address (and address 3 By IR

which fetches the contents of addresses $980 and $901 ang

- es it
A corresponding word res on the stack

+ Switches to the decimal mode, and

Puts the data in decimal when

- 1is commanded.
e

t fetch and display the value in hexadecimal by
(pronounced "fetch") takes an address from the top of the 4
stack, fetches the 16-bit data from that address (and address
+1) and replaces the address on top of the stack with the dats
from memory. Both the address and the data are specified in

the current number base. Initialize FORTH and try

HEX 999 @ CR .,
3E8F OK

«2 8-Bit Store ¢! and Byte Fetch ce

COLD

AIM 65/40 FORTH V1.4
HEX OK

306FF 900 | OK

908 @ CR .

38FF OK

Imilar words allow byte length data to be stored and fetched.
word

Cl

~store

") stores the least significant 8-bits of the second

n on the stack into the address determined by the number on
p of the stack. The word

which stores 3@FF into addresses $90@ and $901 with

fetches the contents of addresses $980 and $981 with @ and}

displays it with . . Return back to the AIM 65/48 Monitor #
examine addresses $980@ and $9061 with the M command and note

that data is stored in low-byte, high-byte order

ce

fetch™) accesses the 8-bits stored at the address on top of

stack and stores it on top of the stack
ess). Try

ESC
{M}@9@8 FF 38 XX XX XX XX XX XX XX

(replacing the

HEX OK
41 968 C! OK
F4 941 C! OK

which stores 41 and F4 into addresses $96@ and $901,
respectively. Display the contents of those address with

9¢@ Ce 941 Ce CR . .
F4 41 OK

4.3.3 Initializing Memory with ERASE , BLANKS and FILL

Three words allow a block of memory to be initialized to
various values.

ERASE fills memory with zeros ($00) starting at a specified

address (second on the stack) and continuing through the numbef

of bytes specified (top number on stack)
HEX 969 188 ERASE OK
Spot check with

9¢¢ @ 9FE @ CR . .
@ @ OK

Note that if the contents of $9FF were fetched, a non-zero
number may be displayed since '@' fetches two bytes ($9FF and
$AP@) and address $A@@ was not erased. The last byte could
have been checked with

9FF C@ CR .

@ OK i

BLANKS works like ERASE except that memory is initialized
ASCII blank ($208) instead of zeros. Try

HEX 908 188 BLANKS OK
909 Ce@ 9FF Ce CR . .
20 28 OK

HEX 980 1@@¢ FF F
90@ Ce 9FF Cce CR
FF FF 0K

9¢@ @ 9FE @ CR
-1 -1 0K

ice that the 2's compler
=bit numbers were accesse

@ also that HEX is not
& mode, but was included
tor somewhere along the
Y (causing DECIMAL mode
mode when you exited F

. be
mode if you re-entered

#3.4 Dumping Memory with DUMP

e
k.

lock of memory can be display

ess (second on the stack) an

i ed (top of the stack) are spe

HEX
988 14 F8 FILL OK {(Fi

900 14 DUMP <RETURN> (

?*élsplay

; 980 F8 F9 F8 F8 F8 F8
9¢8 F8 F8 F8 F8 F8 F8§
F8 F8 F8 F8 FF FF

e

4.3.5 Moving a Block of Memory with CMOVE

It is often useful to move a block of data from one area of
memory to another. This can be done with the word CMOVE
which takes three arguments on the stack: a from-address, a
to-address, and a byte count. It moves the given number of
bytes starting with the first address to the area of memory
starting at the second address. Try

990 80 8@ FILL OK

980 8@ FF FILL OK

900 A@@ 8 CMOVE OK

980 A@8 B CMOVE OK

AG@ 10 DUMP
A@0 80 80 80 80 80 80 80 88
AP8 FF FF FF FF FF FF FF FF

OK

CMOVE works from the left to right, so be careful if the
"from" and "to" memory areas overlap.

4.4 DEFINING YOUR OWN OPERATIONS

FORTH allows you to create your own operations. These new

FORTH words become an integral part of the language, just like
Your new words

those which are pre-defined in AIM 65/48 FORTH.

can take any number of arguments from the stack, and return apj

number of results.

The names of your operations can have up to 31 characters,
They can use any ASCII characters except blank, delete and
carriage return.
number, or even be non-displaying or non-printing control

characters, although such names are discouraged. Even names

already used by the system may be redefined as something olsﬂ; 3
When a napss

therefore there is no reserved word list in FORTH.

ii'rtdat!nad, the old definition becomes inaccessible for latil

use in the program (although all earlier references to that
name will remain as before). So, do not redefine a name if
want to use the old definition later.

For instance, an operation name could be a |

Names which are descriptive of the function they perform make
‘hn code easier to read. Good choice of names is important for
ater use of the code, especially by other programmers.

As nev words are defined, they are added to the FORTH vocab-
}lar‘ (described in more detail in Section 5.6). These
"Ffinltions are normally stored in RAM starting at address
$080E and build upward in memory. (They can also be stored in
f OM/ROM as described in Section 10.) The FORTH word VLIST
1llows you to check what words have been added to the FORTH

V r.'abu] arv

Colon-Definition

“ﬁ:pose we want an operation to take the number on top of the
ack, multiply it by 5, and print the result. Let's pick the
TEST-OP . We could define it simply as

: TEST-OP 5 * , ; <RETURN> OK

ater we will rewrite this definition, using indentation and
mmenting conventions for more readable code). Enter the
lon-definition as follows

‘a. Start the definition with a colon which tells FORTH to
look ahead in the input stream for the word name.
Pollow the colon with a space.

b. Enter the word name (up to 31 characters).
word here is TEST-OP .

The FORTH

! Enter the definition of the word.
following

TEST-OP does the

1. Puts 5 on the stack

¥
2.

v5 Multiplies the top two numbers, i.e., the number
o on top of the stack when TEST-OP is executed by
the 5 put on the stack by TEST-OP .
3. Prints the result, i.e., the top number on the

stack.

FORT: will respond with OK for a found word and put the
Word's parameter field address on the stack (See Section 5.5
description of the parameter- field address). If not found
r e name is echoed with a "?" and the stack is cleared.

d. End the definition with a semi-colon (be sure to
insert a space first). A FORTH definition may be
continued on as many lines as needed.

This TEST-OP operation takes one number from the stack, q;
have seen. It does not return any result (but if the . wers

Check TEST-OP now (and print the address in the dictionary)
omitted, the product would stay on the top of the stack). Not# o

4 HEX OK
that no formal parameters are used to show the inputs and | ' TEST-OP <RETURN> OK
outputs of an operation. These are implicit -- TEST-OP takes .8
one argument because it puts one number (5) on the stack then 82C OK

performs a multiply which uses two numbers (the 5 and one
other). Check the operation of TEST-0P by placing a value o
the stack and executing TEST-OP , e.g.

an also run a VLIST to determine if TEST-OP is in the
tlonary and to verify the address returned by ' . This is
sy in this case since only two colon-definitions have been

6 TEST-OP <RETURN> 38 OK ! 3 -ed to the dictionary and these two entries are printed

8 TEST-OP <RETURN> 4@ OK '.edlarp1y. Press any key to terminate VLIST,

If the word being defined is already in thc vocabulary

1 VLIST
. b 82C TEST-OP 817 TEST-OP
dictionary, the message <name> NOT UNIQUE will be dlsplayed? 809 TASK D9DC TS 0
The NOT UNIQUE message is displayed only as a reminder that § D9D1 MON D9C1 HANG
you have rcdeflnad a word which was previously defined and has OK (a key was pressed here)

o ‘sfReot o the compilation process. le both versions of TEST-OP are listed, only the version

: TEST-OP 10 * . ; adﬁrn=s 82C is valid since it was defined last,

TEST-OP NOT UNIQUE OK _:.
4.4 Print a Message with ."

and try

6 TEST-OP <RETURN> 6@
8 TEST-OP <RETURN> 8¢

‘can print a message of up to 127 characters with the wor

‘(dot-quote). Start the message one or more spaces after

‘" word. Terminate the message with " (a double

Note that only the new definition of TEST-OP is found and %;f;]- 5é ‘siife. to leave & space affer ths .® .
executed. k 4

ow define a new word to use
4.4.2 Find a Word in the Dictionary with ' A

3 g t MULTIPLY
= | j "
Use the word ' (pronounced "tick™) to find 1f a word is ! CR ." ANSWER="5 * ; CRETURN> OK
already contained in the dictionary and to return its paramarm i;d'iitf it
field address (PFA). E
] DECIMAL
Type the word <name> after the word 2 i.es E 148 NULTIPLY

ANSWER=540 OK
| 1345 MULTIPLY
' <name> | ANSWER=6725 OK

4-25

11
E|
]

bbb Okt { 'EFir‘h't an empty comment must consist of a 10!& parenthesis,
—Sementihg ; £ Q |spaces, and a right pParenthesis. The reason is that the
Because the inputs and outputs are not explicit in PORTH code, @8 Parsing word (WORD in FORTH) skips over leading occurrences

it is very important to show them in the documentation. It isf Of tne delimiter.
recommended that they be included as comments in the code and#
also in a separate glossary of operations. Each glossary pntﬁ
should include the inputs, outputs and a short description of

what the operation doeés -- usually two or three sentences ars
enough.,

So if you leave only one space as in

first character encountered by WORD is the right

enthesis, therefore the system skips it and continues
ng for another right parenthesis.

Comments in FORTH are enclosed in parentheses. A space must
follow the left pParenthesis because the left parenthesis is

itself a FORTH operation. The closing right parenthesis neced
not be preceded by a space however, since it is a dnlilltprlﬁi
not an operation. A <RETURN> also acts like a right paren- ;
thesis to terminate a comment. FORTH comments can be included
on as many lines as needed; however, the comment must start
with a left parenthesis followed by a space on each new]ine,

EXECUTING AND COMPILING USING SOURCE

t¢ now you have been operating in a manner where FORTH
ations are compiled or executed immediately upon entry in
interpretivs mode. If a new FORTH word is formed using a
on-definitinn (see Section 4.4) the word is immediately
piled and entered into the FORTH vocabulary upon completion

ntry, Upon commanding the new FORTH word, the defined
function is'executed.
A conventional form of comment first lists the inputs, then

three dashes, then the outputs. A period may be used to
separate the last output word from the words of any describﬁf
of the function of the operation. Therefore the TEST-OP '
definition could look like

H words can also be compiled and
his mode, the FORTH words are
y from memory or mass storage.

executed in a batch mode.
compiled or executed upon

The source program for
n-definitions is not lost upon compilation with this

Lechnioue, therefore
e —— T pp— _ 4 + changes can easily be made without
8 v, i guirinc re-entry of the whole program.

A common style is to have only the colon, the word being

defined, and the comment on the first line, then indent E
subsequent lines three columns. If the comment is too long,
put it on the second line. There is no object code penalty fu

including comments and spaces so they can be used freely to
improve readability.

€ are two methods of batch compiling in AIM 65/4¢ FORTH.
rst method uses AIM 65/49 microcomputer Monitor/Editor
bilities to enter and edit source programs in FORTH and to
and save source and object programs. Entering and

ilinc source code using the AIM 65/48 Text Editor is

Ained in this section, while loading and saving FORTH

irce and object programs using an audio cassette recorder is

When there is more than one input or output in a command, thé BNdescribed in Section 11.

right-most numbers are toward the top of the stack. A comment}

for a definition of a multiply operation might therefore be econd method of batch compiling uses the standard FORTH

-“ﬁ;nique of multiple RAM buffers and 4 b
:t MPY (N1 N2 --- MULTIPLY & PRINT E 5 S TN soveiss wntR
r -4;n1que is commonly used for manipulating, saving, and

rieving data files on mass storage. This method is
cussed in Section 12.

4-27

L T

Perform the following steps to enter and compile FORTH source
code using the AIM 65/4¢ Text Editor:

b.

If you are in FORTH, return to the AIM 65/48 Monitar
by pressing <ESC>. i

(ESC)

Initialize the AIM 65/ Editor above the maxiw
expected address for t! compiled FORTH colqn—definyz
tions (remember that new words entered into the FORTH

vocabulary start at address $80B and build upward).

(e}
EDIT FROM=20¢8 TO=3FFF IN=<RETURN>

Type your FORTH source code in colon-definitions, ;
for example, 'y

: TEST-OP N

MUL by 5 AND PRINT
5*.,

Type any comment words to be executed during
compilation. These words can serve as progress ;
markers during compilation of large programs, €.gss |
." 1" , .," 2" , etc. You may want to indicate ;
completion of compilation with a different word or
message. For example, enter

DONE"

Terminate your program with the FORTH word FINIS WM%
indicates the end of the source program. Then type |
<RETURN> twice to end the text input

FINIS

END

£,

9.

CAUTION

If FINIS is not included, your source

Program may be altered when compilation
is attempted.

Quit the Text Editor and return to the AIM 65/490
Monitor.

-tﬁj

Enter or re-enter AIM 65/40 FORTH with the 5 or 6 key.
If previous words have been compiled and the Text
Buffer relocated below the previous source code using
the Monitor C command, You may want to re-enter FORTH
with the 6 key to save previous definitions. If you
re-enter FORTH and compile the program, the latest
word definitions will be used upon execution. 1In this
case, the "ISN'T UNIQUE" message will be displayed as
each word previously defined is compiled -- otherwise,

enter FORTH with the 5 key to recompile the whole
program.

{5}
AIM 65/40 FORTH V1.4

4-29

NOTE

If words are repeatedly compiled with-
out reinitializing FORTH or FORGETing
previously defined words, the vocabu-
lary may build up too high in memory
and overwrite your source code. A com- |
mon technique for preventing this is

to FORGET <name> at the beginning of
the source code in the Text Buffer.

The dummy word TASK has been defined
for just this purpose. FORGETing TASK
then redefining it will remove all pre-
viously defined words from the vocabu-
lary, e.g.,

FORGET TASK : TASK ;

Execute the BSOURCE word to indicate that the FORTH
program is to be input non-interactively, i.e., nct
from the keyboard. Be sure to press <RETURN> after
SOURCE . When 1IN= {is displayed, press M to tell A
65/40 FORTH that the input is from the Text Editor.

SOURCE <RETURN> IN=M DONE
OK

In this example the word DONE was displayed to
indicate completion of input from the Text Buffer.

If the input is from the Editor, note that the scurce
code is always compiled from the top of the Text
Buffer. Should you desire to compile starting with i
different line, you can use the AIM 65/4@ Monitor C
function (Recover Text Buffer) to move the top of Tex
Buffer.

If an error is detected during compilation, an errar
message is displayed and control returns to the FNRTE
Consult Appendix E for the definition!

command level.

-.'h.

of the error message anc
action. Run a VLIST to
defined and entered int
the incorrect code.

required corrective
the words properly
dictionary to help locat

If an error is detected during compilation from the
Editor, the Monitor variable MEMRW ($82EF) will point
to the last byte of source code read by FORTH. The
bad source code can then be easily located in the Tex
Buffer by checking memory around that address.

Check VLIST to verify the new word was entered in the
FORTH vocabulary

VLIST
817 TEST-OP 809 TASK
p9pC .8 D9D1 MON
D9C1 HANG D97A VLIST
D943 7 OK | <SPACE> was pressed here

Use the newly defined FORTH word to verify proper
operation..

2 TEST-OP <RETURN> 1@ OK
17 TEST-OP <RETURN> 85 OK
567 TEST-OP <RETURN> 2835 OK

You may want to define new FORTH words in terms of
this word

: MUL TEST-OP ; <RETURN> OK

Verify the new word is in the FORTH vocabulary with VLIST

VLIST
828 MUL - 817 TEST-OP
809 TASK D9DC .8
DOD1 MON D9C1 HANG

D97A VLIST OK | <SPACE> was pressed here)

Verify proper operation of the new word

2 MUL <RETURN> 10 OK
87 MUL <RETURN> 435 OK

4.6 DO LOOPS n D sets up the loop (at run-time), it always takes two

ent.s from the stack. The top stack number (@) is the
2l "index value of the loop, and the second argument (25)

e final value plus one. If the initial value is zero, as
The DO and LOOP statements allow repeated execution of 7 ter the case, the second argument is the number of times

block of code. For example, the following definition creatﬁ; the loop. Also, ordering the loop limits this way makes
word SERIES , which prints a series of 25 numbers, zero b r upper limit more accessible from outside a definition.
through 24: N see how this is done in the definition of NSERIES,

4.6.1 DO ... LOOP

: SERIES (=== . PRINT A SERIES
CR 25 @ DO I . LOOP ;

[index value is kept by the system and incremented

ically. The FORTH word I retrieves this index and
can easily cha e it and experiment w ferent values, S it onto the stack. 1In the example above, the index

the procedure scribed n Section 4. this. Por exanp ' ic zero the first time through the loop, then it is 1, 2,
\ rouch 24. 1In this example, the index is printed each
SERTES takes no arguments from the stack and returns no

You may want t enter th source code Text Editor snﬁ.

(ESC)
{E}
EDIT FROM=2080 to=3FFF IN=<RETURN>
FORGET TASK : TASK ;
: SERIES (=---, PRINT A SERIES)
CR.25 # DO I . LOOP ;
." DONE“
FINIS

ecommended code-writing style for using DO and LOOP is
the -entire loop in a single line if possible; if not,
should be indented to the same column as its correspond-

i D0 This style makes the program's structure easier to
A B

{s}
AIM 65/40 FORTH V1.4
SOURCE IN=M DONE

OK

inition

NSERIES (N -—- . VARIABLE SERIES)
CR § DO I . LOOP ;

Now execute

f NSERIES , which is almost like SERIES , except that
s one argument from the stack, the number of times

d the loop. You can use the Editor Text Buffer to enter
urce code then compile both SERIES and NSERIES.

SERIES

P12345678910 11 1213 14 15-16
17 18 19 28 21 22 23 24 OK

Note that after the whole string is displayed the tlr-t line
redisplayed.

DO and LOOP must always be used as a pair. The code sectig
which they enclose can be of any length. This code is pracyy
repeatedly, and an index value I is available. !

(ESC)
{T}

FORGET TASK : TASK ;

={B}

FINIS

=U}/1

." DONE"

={R} IN=<RETURN>

: NSERIES (N =---. VARIABLE SERIES)
CR @ DO I . LOOP ;

." DONE"

<RETURN>

={Q}

AIM 65/40 FORTH V1.4

SOURCE IN=M DONE

Now execute NSERIES

18 NSERIES 3
9123456789 0K

Redefine SERIES now in terms of NSERIES , as

: SERIES (===. PRINT A SERIES)
2(NSERIES ;

This redefinition will cause a "NOT UNIQUE® warning message ty
be printed.
it's purpose is to let you know that the word has also beep |
defined previously. As mentioned before, FORTH allows any o
to be redefined -- even the system words such as DO ifself,
Any further use of the word will refer to the latest '

definition, but all earlier uses still refer to the definitis

which was in effect when the earlier references were compiledy

Execute SERIES now,.

SERIES

2123456789109 1! 12 13 14 15 16 i
17 18 19 OK 3

4-34 1

SERIFS and NSERIES

8%anple also shows that the arguments to DO
initial ‘and terminating values, need not be literal numbers;-

i‘A espanding DO.
The warning can be ignored in this case; rememh; :

n._:::l ayed L
jisu211y notice the delay time.

0 the examples above, notice that the only difference between
is that the latter does not place a loop
etminating value on the stack. Instead, it uses whatever was
il the stack when NSERIES was executed. The NSERIES

+ the loop

fistead they can be computed or obtained in any way. DO
gesn't care how its arguments got onto the stack. This
@ature helps keep FORTH code modular and reduces side effects

ghen ‘changes are made.

=*i%. LOOP , and the other control structures which will be

'H;oduced later, can only be used inside colon-definitions,
.+ 'they cannot be executed directly as commands at the
”‘uinal. DO and LOOP are in a special class of words
illed immediate words. These are not compiled like other
ﬁ?} used in colon-definitions, but instead they execute at
'”}lle time to handle special compilation functions,
ﬁ;dle an internal branch back from the LOOP to its .
Immediate words are discussed in Section 5.

e.g., to

n iamp'fs of DO ... LOOP"

prd:

is a one millisecond time delay

1 M8 (N --- . MILLISECOND DELAY)
@ DO 5 @ DO LOOP LOOP
CR ." TIME-UP" CR ;

his word will cause delays of n milliseconds when used by
puttine n on the stack and then typing the word.

To execute a
millisecond delay, simply enter

4 9 M
£ the end of the delay, the message

E TIME-UP

Try it with larger delays, e.g 18808, to

Br

4-35

4.6.2 +LOOP

The DO ... LOOP index always increments by 1.
+LOOP , allows other increments. Each time around the loop,1
takes a number off the stack for the increment, DO ... 2
+LOOP would increment by 2. The increment can be computed an
it can change during loop execution. It can also be nEgatlvm
The following word causes an odd number in the range 1 to N tn
be printed.

: ODD-SERIES (N =— ,
1 CRDOI . 2 +LOOP ;

PRINT ODD SERIES)

Execute
to put the input number on the stack or a STACK EMPTY error may

occur. o

25 ODD-SERIES
1357911131517 19 21 23 OK

4.6.3 LEAVE

LEAVE is another word used with DO 1loops. If LEAVE is
executed within a loop, it will set the limit to the index
value, causing the loop to exit when LOOP or +LOOP is next
executed. LEAVE (and also the index I
inside a

) can only be used

4-36

Another word,

ODD-SERIES with 25 as the input number (don't foraet #Sinple PORTH comparison words are <

7.2 U<, B¢
-fﬁr comparison operations are U< , @<

DO loop. Wlnsicned 16-bit integers (see Section 5.1). 8<.

= is equivale

7 COMPARTSON AND LOGIC OPERATIONS

‘“?iDO loop is one form of structured control in FORTH.

theil structures described later (IF ... THEN , ELSE ...
ENfy BEGIN ... UNTIL , BEGIN ... WHILE ... REPEAT ,
"BEGIN ... AGAIN) may test Boolean values (truth

5) to control program execution. Comparison and logic

pPlace Booleans on the stack and then the control words
thesg values.

7.l > and

(less than), > (greater
(equal). Each of these operations takes two
uments from the stack (destroying those arghnonts) and

urns one result (a Boolean) to the stack. The second item
the stack is compared to the top item in accordance with the
word., If the comparison is true, a true ("1") is

nomp

'}jrﬁed; if false, a false ("@8") value.

and @= . U<
nsigned less than) compares the top tuo_qtack numbers as
(zero less)

8= (zero equals) differ from the others in taking only
‘ardiment from the stack; it is tested for being less than
fo (or ‘equal to zero, respectively). @< 1leaves a true on-:
stack if the number is less than zero, otherwise a false is
ft, P= returns a true if the number equals zero, othoruill
*lsa is returned. @= works the same as

itten as two words; similarly for 8< The one-word forms

(e mors efficient, however.

: to a logici wot", because '‘erses the
futt value of e top stack ! (it changes : © 1, and
f any other no gero value f tro) .

4-37

Experiment with the comparison operations

HEX
16 20 < . <RETURN> 1 OK

20 1¢ = . <RETURN> @ OK
5 @= . <RETURN> @ OK 3
55 - 0= . <RETURN> 1 OK i

18 -19 < . <RETURN> @ OK
18 =18 U< . <RETURN> 1 OK
1l @= 0= . <RETURN> 1 OK
8 @= @= . <RETURN> 1 OK

Note that the Boolean false value is always zero and any
non-zero value (not only 'l') is taken as a Boolean true,

However, the value returned by these comparisons is always 7el

or 1.

4.7.3 Logical Operations

i

Logical operations AND , OR , and XOR (exclusive OR) aré

provided. These are bit-wise operations. Each takes two '
arguments from the stack and returns one result. Each of the
16 bits of the result is obtained by applying the logical
operation to the corresponding bits of the arguments.
positions are treated independently.

HEX

F7 81 AND . <RETURN> 1
@8 81 OR . <RETURN> 9
F7 81 XOR . <RETURN> F6

The word NOT is provided as a synonym for #@= (see Section
4.7.2) to improve readability in logic expressions. Note thal
NOT 1is not a bit-wise operation; it is only a Boolean
inversion and just returns the right-most bit of the word
negate all the bits of a word (i.e., to take its one's
complement) , use

=1 XOR j
For example

HEX 3
AAAA -1 XOR . <RETURN> 5555
AAAA FFFF XOR . <RETURN> 5555

4-38

hese logical operations can also be applied to truth values
“{rrned by comparisons; in this case, only the right-most bit
iffach-uord is important. For example, suppose that a word
HOT has already been defined to return a value of true if a
'Wﬁ r detects a temperature higher than a pre-set limit, false
ﬁ%;rwise. Also suppose that a voltage value is previously
ftored on the stack. The test

' 8 7?HOT OR
glll rerurn true if the voltage (on the stack) is greater than

lor the temperature is high, or both. In this example the
0ltage value on the stack is first compared to 8 by use of the
ilational operator. This results in a Boolean value left on
the stack. Then ?HOT puts another Boolean on the stack and
 twe Boolean values are OR'ed together.

ate that

4 ?7HOT 8 > OR

i1d (be erroneous in this case, because the Boolean left on

e stack by ?HOT would be compared with the 8 and the result
f that comparison (always false) would be OR'ed with the
oltacs that was on the stack before this phrase was extended.

8 CONDITIONAL CONTROL STRUCTURES

he following FORTH control structures test a Boolean result
génerated by the comparison or logical operations, and direct
he flow of program execution accordingly.

3

8.) IF ... ELSE ... THEN

th other control structures, the IF and THEN must be
ed as a pair; if they are not, error message #19 or #20 will
8 generated (see Appendix E) at compile-time. Any correct

lock of FORTH programming may occur between the IF and the

4-39

The 1IF -takes one argument, a Boolean value , from the stach

If it is true (non-zero), the code between IF and THEN i
executed; if false (zero), that code is skipped. 1In either
case control resumes with the THEN . For instance,

GET-VOLTAGE 8 > ?HOT OR
IF SHUT-DOWN THEN

will execute the (predefined) operation SHUT-DOWN if the

previously defined word GET-VOLTAGE returns a value greatep
than 8 or ?HOT returns true (or both) .

An optional . ELSE clause -allows a block of code to be executs
only if a test is false. .For example, the simple control lo

10600 @
DO

GET-VOLTAGE 8 > ?HOT OR (Danger?)
IF GO-SLOWER ELSE GO-FASTER THEN
LooP

repeatedly tests whether temperature or voltage exceed theu

limits, and executes predefined operations GO-SLOWER or
GO-FASTER accordingly.

4.8.2 Nesting Control Structures

The previous example shows that control structures can be

nested; an IF ... ELSE .,. THEN is inside a DO ... LOOP.

Any of FORTH's control structures can be nested within any

other to any practical depth. The recommended coding techn;
is to keep each definition short and simple, breaking comple
operations into two or more shorter ones. FPor this reason,
great depth of nesting is not normally used. For ins*ancéff

the examples above, operating like GO-SLOWER and GO-FASTER
may themselves contain complicated control, it is best to
define them as separate words to avoid cluttering a single

with many levels of nesting. Also, this is an example of fop

down coding as GET-VOLTAGE + GO-SLOWER , GO-FASTER and

may not exist in final form yet as the programmer experimpn'

with the overall design of the control loop.

(Loop 18088 mimas

ourse GET-VOLTAGE , GO-FASTER and ?HOT must exist i

' form at least before the loop would compile in a defini

~«If not, the first unknown word name encountered would
e the error message

<name>?
e joutput .

r recommended coding style is to indent 1IF ... THEN or
THEN ... ELSE 1like DO ... LOOP . Keep the whole
cture on one line if it is short enough, otherwise, indent
TF , ELSE (if present) and THEN to line up vortlcally
new level of nesting structure should be indented at leas

Space,

Masking and Setting Bits

erations 'used for masking -- selecting certain bits
‘a 16-bit word, and turning them OFF or ON, or

mplementing or testing them -- were largely covered in

fon 4.7.3. This section further explores these operations
v of the control applications to which the AIM 65/40
omputer is well suited.

¢ values are best presented in hexadecimal. In hexadecimal,

¢ values 0@80F through FFFF can be input; a minus sign can
S0 be used to input numbers 880@ to FFFF (-80@06 to -1). The
£ (period) works for output, but if the first bit is set, use

phrase

@ D.

double-precision print) instead, to avoid having the
1 Interpreted as negative. This makes the top stack item
ble integer, whose most significant 16 bits are zero, and
:usﬂs the double integer print word to output the resulting
ive 32-bit integer.

4-41

In the following examples we will be changing or testing the
last three bits of a word; i.e., the mask value will be aaa?

(last three bits set, all others off). This value could be .
written simply as 7, but the leading zeros are conventionalli
used on address and mask values for program clarity.
of course need not be a literal value as shown in these

illustrations; it could be computed, perhaps by previous
logical operations, or input from the terminal, etc.

To turn ON the last three bits of the word on top of the stack
(leaving all other bits unchanged) , execute

8087 OR
|
The OR operation, as described earlier, does a logical OR of
each bit independently. The sign bit is treated like any
other. (In these examples, we will assume that HEX has begp
executed to set the number base to 16.)

Bimilarly to turn OFF the last three bits, use
FFF8 AND

To test if any of the last three are ON, use
8087 AND

The stack top will now be zero if none of the last three h‘t
were ON, and non-zero otherwise. This value can be used as a
Boolean by IF , UNTIL , or WHILE , but be careful if the
value is used as input to another AND or
operations should be a Boolean zero vs. one, not zero vs.
non-zerc. If such further logic is to be done, use

4-42

The mask

OR ; input to th'-

IPEAT while the condition between

;; no control te remain in the

iich leaves the truth-value unchanged but converts the
iyﬁnn—zero result into a more correct zero/one Boolean. Use

8087 AND @= g=
@807 XOR

fonplement (reverse values of) the last three bits of the
;;rark word.

Gonptement all bits. Use
FFFF XOR

7;t§nu1d also be written

-1 XOR

”ﬁ}? the numeric representations FFFF and -1 are the same in
bt [2's-complement arithmetic.)

h the operations AND , OR , and XOR , any truth-value
ictions of one, two or more arguments can be built.

4 |BEGIN ... Loops

BEGIN ... UNTIL 1loop, the UNTIL takes a Boolean value
B the stack. If false, it loops back to the BEGIN ; if

¢ it terminates the loop, i.e., the loop continues UNTIL
-!pltion is true. The following loop executes until ?HOT
~ye (non-zero) .

BEGIN
, PERFORM-AN-ACTION
i ?HOT (STOP IF HOT)
UNTIL

BEGIN ... WHILE ... REPEAT loop is almost opposite; it
| continue to gxecute the statement(s) between WHILE and
BEGIN and WHILE is
8, WHILE tests the Boolean; if true, it does nothing,
| BEGIN ... REPEAT loop; if

4-43

Qy;ze find available memory for data structures is to use
op of your RAM memory and work down, since your word

ions start at $80B and work up. Por instance, if you

k¥ of RAM, addresses such as $3FF@-$3FFF might be used

false, it branches out of the loop (to beyond the REPEAT |,
The REPEAT always branches back to the BEGIN . The
following loop is almost the same as the UNTIL loop above

BEGIN a. depending on the size of your program (i.e., the
"BIEEDT a t and size of your word definitions). As described below
REPg::FORH-AN-ACTION ysten uses the first 68 (decimal) bytes of available

onary memory (after your latest definition) as its own
pad area; do not put data too close to the end of your
#initions,

The difference is that the words contained between WHILE 3
REPEAT loop can execute zero times, but the words in the
BEGIN ... UNTIL loop will always execute at least once sing
the test is made at the end of the loop, not the beginning.
Note the use of @= (equivalent to a logical NOT) to reve
the truth-value returned by ?HOT.

approach is to allocate memory for data within the
ary -- the words CONSTANT , VARIABLE and ALLOT ,
e in the next chapter, do this.

A BEGIN ... AGAIN structure creates an infinite loop. AGA . Find Next Dictionary Location with HERE
takes no arguments from the stack -- it always causes con
to return to its corresponding BEGIN . This structure coul
be used in a real-time control pProgram to execute a final
Procedure until interrupted. It is also possible to evit th

loop with a ;S word.

d HERE returns the address of the next available
onary location. HERE can be used to determine the size,
¢ the memory required of a colon-definition.

rocedure s to type:
All of these structures can be nested within any others.
Again, avoid long or complicated definitions. Short

definitions make programs easier to read, debug, and modify,

HERE puts current dictionary address on stack)

i,the colon-definition
4.9 DATA STORAGE
4 : <name» =--
How can you get an address of available memory to use for dat
storage? : the current dic rary addre 5 on sta , swap to subtract
L ‘smaller address f the large , and th print the size of
Let's review the memory map (see Figure 2-1), The AIM 65/48 8 defined word.
FORTH system occupies 8K of ROM (C8@@~-CFFF). This area I :
contains definitions of the words already defined by the _ b HERE SWAP - .
system. Your own word definitions start in RAM memory at Sill 3
and continue upward. AIM 65/48¢ FORTH uses parts of RAM mem;
$0-$AB (see Appendix F) and $7008-$7FF (see Appendix G) for i
variables and buffers.

iter the following example of a square function. Note the
_available dictionary location before and after entry of

4-44 » 4-45

el

the SQUARE colon-definition. The length of the colon~-
definition in the dictionary is $13. !

HEX OK

HERE DUP . <RETURN> 8@B OK
: SQUARE DUP * ., ; OK

HERE DUP . <RETURN> B1lE OK
SWAP - . <RETURN> 13 OK

Check the operation of the SQUARE word.

DECIMAL
4 SQUARE <RETURN> 16

4.9.2 Use PAD for Temporary Storage c

A common location for temporary storage is the address retuu
by the word PAD , and the memory above. PAD returns a 3
starting address 68 bytes beyond the next available d1ctina{
location (which is returned by the word HERE), The space
between HERE and PAD is used by AIM 65/48 FORTH itself f
temporary memory; the byte at PAD and the locations abo

are free for your temporary use. Let's restart and check thg
starting address of the FORTH dictionary using HERE and the
starting address of the temporary storage area using PAD .

COLD]
AIM 65/40 FORTH V1.4 i
PAD HERE HEX .S r
80B

84F OK

Verify that the PAD starts 68 bytes above the start of the
FORTH dictionary

DECIMAL - CR .
68

Since PAD is located relative to the current top of the RN
dictionary it will chanqo when any new words are defined, or

when words already in the dictionary are forgotten. Usually

this is not a problem because any particular test or run would

move data into its temporary storage at PAD + and not rely
data stored there previously.

4-46

ample, add a word to the FORTH dictionary that can be
rheck where HERE and PAD are located, as other

¢ either added or deleted from the dictionary. Then
irst to check itself. Let's also define it in the Text
tor ir case we want to modify it later.

{igrr FROM=3¢@@ TO=3FFF IN=<RETURN>
. SK : TASK
i fog:E:A;A(-Z_. CHECK PAD & HERE)
PAD HERE HEX
i CR ." HERE=" .
e CR ." PAD=" . ;
FINIS

END
={Q}

{5}

AIM 65/48 FORTH V1.4
! SOURCE IN=M
' OK

CK-PAD
HERE=837
PAD=87B OK

he memory fetch and store words can be tested, using PAD
available memory. Try the sequence

DECIMAL OK
] PAD 28 BLANKS OK
E 15 PAD | OK
' 15 PAD 10 + C! OK

PAD 20 HEX DUMP

879 F @ 20 20 20 20 20 29

4 881 20 20 F 20 20 20 20 20
b 889 20 20 20 20 45 D3 SA 8
{ 0K

';utpuf shows the blanks (ASCII $2@), the 15 ($808F) stored

. word (with the bytes reversed by the 6582 CPU so it looks

'%4§FBG".nd the 15 ($F) stored as a byte 10 bytes later. The

18 +

use of an offset to an address; this technique can be
. to create data structures such as arrays, records and

4-47

4.9.3 Increment Memory with +!

Two miscellaneous memory words are +] (pronounced "plus

store") and TOGGLE . +! takes a stack value and a memory
address and adds the value to the contents of the address; Fo

example, it is used for incrementing counters in memory. A

Define the word BUMP to increment the contents of address

$908 by one, eight times, and prints the contents of $908 a
each increment.

HEX
BUMP
CR 8 @ DO 1 909
+! 908 C& . LOOP ;

Initialize $96@ to zero and execute BUMP
@ 988 CI

BUMP
I:2: 3 4 5le ¥ & DK

Try it again but first initialize $966 to $18

18 98P C!
BUMP
11 12 13 14 15 16 17 18 OK

Define another function UPBY6 to increment the memory
contents by six and display the results

UPBY6
CR 8 @ DO 6 9p8@
+! 9908 Ce . LOOP ;

Clear $900 contents and try it.

2 9@@ C! OK
UPBY6
6 C 12 18 1E 24 28 3@ OK

4.9.4 Exclusive-OR Memory Using TOGGLE

I
TOGGLE takes an address and a one-byte mask as arguments; it

does an exclusive-OR between the byte and the address conten{

updating the latter.

ent with TOGGLE by first initializing $980 to SF@

HEX OK
F@ 998 C! OK
the value
9848 55 TOGGLE OK
Eithe result
: 90@ Ce . <RETURN> A5 OK

';at both +! and TOGGLE could be performed otherwise
pultiple FORTH words, however, these words are

'CONSTANTS AND VARIABLES

CONSTANT

word CONSTANT creates a new FORTH word which returns a

8 to the stack whenever it is executed. For example,

5@ CONSTANT X

s a constant named X . When this new word is executed,
gill return 58 to the stack. Print the value of X with
.

X . <RETURN> 5@

Stants are commonly used to give names to values which are

id parameters in programs.

Bame result could also have béen accomplished by using a

in~definition,
X 50 ;

the former is more efficient in both memory use and

time speed.
i

: i‘— -Defining Words
If it is ever necessary to change the value of a CONSTANT Defining W
e using the E
after entry in the dictionary it can be don g : B : o vAsIaBLE are S et
following technique |

-of words
Mdefining words". Defining words add new words to the
E Rary. The only other defining word we have seen so far
L] M
(new valus> ' <name> | : f Ehe colon used to begin colon definitions. As with the
i : the names created by CONSTANT and VARIABLE can be up
the prior example to 78, us:
For example, to change the 58 in P : 3l characrers long and can redefine other names.
78 ' X] e AT :65/4@ FORTH system includes eight defining words which
- [mmonly used: the colon, CONSTANT , “VARIABLE , USER ,
check it now with ' CARY , 'CODE , <BUILDS ... DOES> , and ;CODE . Each
; { ng word is equivalent to a data type or .class of
X '« <RETURN> 78 _ fifations. Later we will learn how the user can create
- 1 ta t
Note that trying to change the value of a constant, by pittis ¥ Gaxa Yypen

(new defining words) by using the

a new definition of the constant in the dictionary after perations <BUILDS ... DOES> or ;CODE- .

compiling a word using it, will not work since axisting.lﬂ“
to the prior value will not change. However, when PomPll?T
from the Text Editor, the value can be changed in the =nnr§
code to allow the constant and the using words to be recom??
for proper linkage.

USER

 i5:a defining word which creates a different kind of

bles - A user variable, like an ordinary variable, returns
ress of where a value.is stored. But user variables
their values in a special "user area" which is always in
on address $708 through $77F; not in the dictionary

may be in ROM). (The name “user area" originated on
minltli-user FORTH systems. Each user has a unique memory

[system' variables, e.g., the number base currently in
for that user, and the

4.18.2 VARIABLE

VARIABLE is like CONSTANT , but the word it creates rEtnl
the address of a value instead of the value itself. Therefq

new values can be stored into the variable. Try ;

Programmer's own variables.) The
580 VARIABLE Y (Defi e variable ¥, initiallil BiVariabies are defined in Appendix G.
to 5) ;
Y @ . <RETURN> 58 (Fetc and print ¥ :

60 Y | (Stor 6@ into Y)

b like CONSTANT and VARIABLE ¢+ takes one argument from
Y @ . <RETURN> 68 (Fetc and print ¥

ck+.hut_th¢_afgunent~i:—uut—ln—tﬁ1tlal value; instead it
ffset from $788 into the user area., For example,

Although this example illustrates the use of the word yhaf-
to initialize the value (to 58), the better practice is toll
always create the variable as zero or some dummy value, and
initialize if necessary in an initialization section of t
code. If the program is later moved to ROM, the variable
location will have to be in RAM, where it cannot be initi
at compile time (see Section 4.10.4).

96 USER A
98 USER B

S two variables, A and B, with offsets of 96 and 98

» respectively, from the user variables base address at

§2°(s700,. USER 1is configured to allow offsets of §-255
). Offsets between $56 and $7E should be used however,

4-51

to place the USER variables at $756 through $77E. Note that
offset values below 86 ($56) and above 126 ($7E) may cause

conflict with other system user variables or the Terminal Input

Buffer (see Appendix G). Be sure that your assignment allows

one word (two bytes) for each user variable.

4.18.5 ALLOT

FORTH programs can use arrays, records, virtual arrays (if mass

storage is available), and other data structures. The most
elegant way to create such structures is described in the
chapter on user-defined data types. But a simple method whici
is sometimes good enough uses VARIABLE and another word,
ALLOT .

ALLOT takes one argument from the stack and leaves space forr
that many bytes in the dictionary. For example,

@ VARIABLE RECORD

creates a variable called RECORD ; two bytes are available ﬂ
the value, Suppose 100 bytes are needed. Then i

@ VARIABLE RECORD 98 ALLOT

would create the variable RECORD and leave the 98 extra by
for it.

Suppose RECORD were to be used for a customer name and
address; the programmer could create such operations as

LAST-NAME @ + ;
FIRST-NAME 20 + ;
MIDDLE-INITIAL 38 + ;
ADDRESS1 31 + ;
ADDRESS2 51 + ;

e ss se we oae

Then

RECORD FIRST-NAME

4-52

18 number base can be changed by storing the

~L,e I word to do this,

foul¢ return the address of the start of th FIRST-NAME

’11 a

?ullllr manner, arrays can be generated and manipulated.
i defira an array of 3@@ bytes, use

@ VARIABLE ARRAY 298 ALLOT

g fetcn the nth value of this array, one can use

: GETN ARRAY SWAP 2 * 4+ e ;

i 41 GETN

-fﬂane the value of the 41st element onto the stack,

CHANGING THE NUMBER BASE

ve already seen the words DECIMAL and HEX , which set
umber base to 10 and 16, respectively. FORTH can work in

unmber base (even above 16) but in practice only 14, 16, 2,
‘Perhaps' 8 are commonly used.

desired base
‘Into the user variable BASE , which is availablc as

part
thd system. For example,

2 BASE !

FORTH terminal lnput and output t, binary. The user could

g- : BINARY 2 BASE

d ther later just execute

E BINARY

4-53

The words DECIMAL and HEX similarly change BASE ; for .
convenience, these words are already defined in the system as
supplied.

| possible source of confusion is the fact that in'binary, t

ers 2, 3 and 4 (as well as @ and 1) are correctly

fognized on input. This happens because the numbers @-4 a

emmonly used that they were made into constants to save
[y space. Since these common numbers are FORTH words in

dictionary, they are recognized regardless of the number
in ‘effect .

Note that BASE only affects input and output. Internal

computation is always in binary so there is no computation- .
speed penalty for using different bases. Also note that the
base will remain as set until changed again.

12 OUTPUT WORDS
You can easily determine the current I/0 number base with

#12.. Print Right-Justified with .R

| _.y;ue already seen the word . (dot) used for printing
The word @ puts the value of BASE on the stack. DUP i mb

mbers. Other operators are available to output single-
duplicates the base value for the later restore. DECIMAL r sion and double-precision nusbers left-justified and
converts the I/0 number conversion base to decimal and . [Ght-iustifieq,
prints the base and removes it from the stack.

BASE @ DUP DECIMAL .

i€ worc .R prints a 16-bit number right-justified in a field

width. It takes two arguments, the number and the

8irec field width; the latter is on top of the stack.
X4l -12 .

If you need to check the base often, you can define a 'Efgiuen
colon-definition word to do it, such as ! s e

BASE? BASE @ DUP DECIMAL . BASE ! ; :
= L 5 4734 CR 18 .R CR

' i 4734

When a colon-definition is compiled, the base in effect at:_; } 0K
compile time is the one that counts. Notice that the Folloyly
code is erroneous and fails to compile:

S /4734 right-justified 26 columns. Note the use of CR
B cause OK to print on the following line.
DECIMAL

;B=:§K HEX @OFF OR ; (ir. Section 5.2,2) you will see that the corresponding
e-precision (32-bit) output word D. prints a
prtecision signed number left-justified, while D.R

ts @ double-precision signed number right-justified.

The P@FF is unrecognized because the base is decimal at compll
time; the word HEX does not change the base immediately (as
was intended), but compiles as part of the definition of ASH
1 iﬁ would change the base when MASK was executed. The
correct code is

2.7 Output Spaces with SPACE and SPACES

I-rd

SPACE outputs one dpacc, and SPACES takes one
“E:Asn SOFF OR ; jinent from the stack and outputs that number of spaces; such
: i
DECIMAL

4-54 4-55

o
CR . TEXT1" 4 SPACES TEXT2" CR E 2h displav: 16 byte st 'ting from HEX address 980
TEXT TEXT2 ; :
OK

4.12.3 Output a Number to the Dilglaxdgrint.r'ulth EMIT

Use the word EMIT to take the top stack number as an ASCTH
value and output it to the display/printer. For example

il convert whatever is In these locations to ASCII and
A put it -- which will display random characters and spaces

known data is placed in these locations.

afrer first entering in string of data from the keyboard
(let's use the PAD area for temporary storage) using
¢ EXPECT (see Section 4.13.2).

DECIMAL 65 EMIT s ik
DECIMAL PAD 48 CR EXPECT
<character string> <RETURN> (if less than 2§ characters)

outputs A to the display/printer. PAD 48 CR TYPE

with a message of up to 4@ characters. Note that if the
‘ is less than 4@ characters, whatever is in memory

‘the last entered character through the 4@th character
‘converted and displayed/printed.

Use EMIT in conjunction with the input word KEY (see

Section 4.13,1) to display/print an entered character. Try-
with

g:Y <RETURN> <input character>
IT .
"Prepare to Output a String with COUNT

Note that the input character (from the keyboard) is not

displayed/printed by the word KEY -- only by EMIT. Now, de!
one word to do both

es a string is stc s a length byt llowed by the
itself, and only 1 ldress of the s 3 (of the
byte) is on the st this is an alt te form for
ping a string.

ol

: ?KEY KEY CR EMIT CR ;

vert from this form, the word COUNT takes the address
urn the arguments required by TYPE. Therefore,

Check it with

?KEY <RETURN> A
A

?KEY <RETURN> § COUNT TYPE
L

OK -
nts @ string given the address of its length byte. Try the

lowina

i

Now try a few other characters of your own choice -- try lower
case letters also. :

HERE COUNT CR TYPE
TYPE

4.12.4 Output a String to the Display/Printer with TYPE

To print an ASCII string given its address and length E‘ﬂnqtn
on top of the stack), use TYPE . Try

advanced output operations are discussed in Section 5.3,

nt Formatting®™. These allow you to create your own output

nats which may include decimal points, dollar signs, commas,
;. 'More on string handling is discussed in Section 5.4.

HEX 908 1@ TYPE

4-57

4.12.6 Set the Active Output Device with ?0UT Output a String to the Active Output-Device with WRITE

The word ?0UT allows you to set the active output device tg
device other than the display/printer. ?0UT calls the AIM

65/48 Monitor Subroutine WHEREO (see Section 7.7 in the Amv
65/40 System User's Guide). After ?0UT , enter the input caf
for the desired device as follows ' ;

rd WRITE outputs a string of characters to the active
it device like TYPE outputs a string to the display

é. Put the starting address of the string and the

cter length (top of the stack) on the stack followed by
ito use it.

?0UT <RETURN> <output device code> by putting nessage in as you did with EXPECT

putputting it the printer
where the output device code can be uEpnTring P

DECIMAL
CRETURN> or <SPACE> = display/printer PAD 40 CR EXPECT <RETURN> <input string>
P = printer

| - 70UT <RETURN> OUT=P
= floppy disk (user defined) - 4 e h
= Serial (user defined) ; L PAD 48 CR

audio cassette recorder (AIM 65/49 format)
user defined
user defined

- the commands will not be echoed to the display until
her = display/printer

F
s
T
u
v
ot 20UT <RETURN> OUT=<RETURN>
See Section 11 for audio cassette recorder I/0 procedures. S
Section 6.1 of the AIM 65/40 System User's Manual for user
defined I/0 guidelines. Refer to Sections 9 and 19 of the Al

65/40 System User's Manual for audio cassette recorder and
teletype interface information.

enterec

3 INPUT WORDS
. I handles input by taking all characters (tokens) separated
ipaces and first trying to look them up in the dictionary.
:; token is not in the dictionary, the system tries to make
er of it, using the number base currently in effect.

f the token contains a non-digit character, the system
,ts.an error condition by typing the token followed by a

on mark, indicating an unrecognized word (see Appendix

Once the active output device is selected, ?0UT does not hay
to be used again until the output device is to be changed.

4.12.7 oOutput a Character to the Active Output Device with PUf
The word PUT operates like the EMIT word but outputs the
character on top of the stack to the active output device

rather than the display/printer. Input a character and ontput

it to the printer only with programs can use the FORTH system itself for terminal

?0UT <RETURN> OUT=P ' | jput. You type the numbers onto the stack and execute

KEY <RETURN> <input character> jperations to use them. Many programs run without a terminal

oo n special input is needed. You seldom need to write

perations to accept input from the keyboard, except for

urnkey programs which do not run under the FORTH interpreter
.¢.. which do not give the "OK' to the user). When special

input is required, several primitive operations are available.

Notice that the character is printed and not displayed.

4-58 E 3 4-59

4.13.1 Input a Character from the Keyboard with KEY Jiidispiay an entered number in decimal, use
The word KEY accepts a single character from the xeyboard; KEY <RETURN> <input character> DECIMAL
returning its ASCII value to the top of the stack. It is the
opposite of EMIT (see Section 4.12.3). It is often i=ed ty
accept a single-letter menu choice from the user. The entry
procedure is P

jord ‘can easily be defined to display the entered number i

ares

: ASC
KEY DUP DUP CR EMIT HEX . DECIMAL . ;

KEY <RETURN> <character>

prnt procedure is
Note that the entered character is not displayed/printed,
Upper or lower case letters may be entered, however, FORTH
words must be in upper case.

ASC <RETURN> <character>

! fy it with a couple of numbers.
Clear the stack with an undefined word, enter a character, and

3 URN> A (A will not be displayed/printed
check the entered value on the stack. E :Ssl<::T
2 ASC <RETURN> 1
2 ¢ . 1 31 49
-5 r ; ASC <RETURN> ?
.8 ‘)
“ kperinent with a few other numbers a mpare your results

i lth Appendix H.
Notice the hexadecimal representation of the ABCII code for th Appendix H

entered number. Change the I/0 base to DECIMAL and check the
value again 4

3.2 Input a String from the Keyboard with EXPECT

A

-”;ord EXPECT accepts a one-line string from the terminal.
E takes two arguments from the stack, a starting address
li AM and a maximum length of the input string; it returns no
. sult to the stack. When executed, EXPECT waits for the
ﬁnal input; it keeps accepting characters until you press
IIRN>, or until the maximum length is reached. Note that
CT terminates the input string with a null byte ($08@); be
ih-ro is room for it in the input area.

DECIMAL .S
65

Use EMIT now to output the numbers to the display/printer.
EMIT <RETURN> A

You can use the words KEY and . along with the I/0 base to
easily convert the ASCII code for an entered character intd j'
number base of your choice. This is especially useful if you.

PECT to prepare to input 15 characters,
do not have an ASCII/HEX/DECIMAL conversion table handy. example, use EX prepa

‘the data, then dump the input data in hexadecimal which
esents the ASCII code for the input data (see Appendix H).
r you type EXPECT , FORTH will wait for your input -- 15
gharacters maximum. Press <RETURN> to end the input early.
jotice that the last byte dumped is the null byte.

To enter a number and display it in hexadecimal, use

KEY <RETURN> <input character> HEX .

4-60 F 3 4-61

section 11 for audio cassette recorder I/O handling. See

DECIMAL OK
PAD 15 CR EXP
123456139!153:g;x 6.1 of the AIM 65/4P System User's Manual for user

1/0 considerations. See Section 9 of the AIM 65/48
em User's Manual for audio cassette recorder and teletype

PAD 16 HEX DUMP

86B 31 32 33 34 35 36 37 38
873 39 3¢ 31 32 33 34 35 @

OK c¢ information.

e the active input device is selected, ?IN does not have to
 acain until the input device is to be changed.

In this example, the temporary storage area specified hy'p;
(see Section 4.9.2) was used to store the input data.)

Use TYPE ¢t '
© display the input data as it was entered: Input a Character from the Active Input Device with GET

DECIMAL OK g
f§§4§§7§:.f§" ke K&Y , the word GET inputs one character. Unlike KEY,
Jenox , GET inputs the character from the active input device

than just the keyboard. For example, GET can be used

Usi th :
sing @ two preceding examples as a guide, set up an input| il
M e KEV as follows

40 characters and display it in HEX and in ASCII. Then
establish a permanent input buffer area in RAM where
it instead of PAD and try it again.

?IN <RETURN> IN= <RETURN>

you want
r GET <RETURN> <input character>

4.13.3 Set the Active Input Device with 2IN ut a character from the keyboard.

3. %

In addition to the keyboard, AIM 65/40 FORTH allows you ti
specify a different active input device. The word ?IN 5
this by calling the AIM 65/40 Monitor subroutine WHEREI (see

t n . I 5/ - *
] Syl em User 8 Guide se 2T
Se c 1 -] 7 7 ‘ n the A M 6 4 t 1) U

Input a String from the Active Input Device with READ

Anes rdA READ allows a string of characters to be input

| to EXPECT except that the string can be input from
tive input device instead of just the keyboard. Use the
d 7™ to first select the active input device. Try

?IN <RETURN> IN= <1nput device code>
DECIMAL OK

?IN IN= <RETURN>

PAD 16 CR READ

(Type 01234567898123456)

The acceptable codes are

<RETURN> or <SPACE> = keyboard " OK
b £i?f§{ ?i'* (user defined) 1 PAD 16 HEX DUMP
® wigifis c..:::tgcgizodé i 86B 31 32 33 34 35 36 37 38
U = Gher detink order (AIM 65/48 format) 3 . °K873 39 3@ 31 32 33 34 35 36
gt;-nsorkdcfin-u - | S
er = keyboard s
: ote that the input t displayed duri ntry and that a
erminating null is aced in the inpt ea as with
_I- -"!'__ cT
i

4-62 B 4-63

?
i

TYPE can also be used here to display the input dat: L A SECTION
form it was entered '

i E ADVANCED OPERATIONS
PAD 15 CR TYPE "
1234567896123450K

4.13.6 Test for Character Input with ?TERMINAL

b

The word ?TERMINAL tests the terminal keyboard and - .. jere jare other FORTH arithmetic words that perform simple
inng.

true flag (1) on the stack if any key is depressed. An exanpl ;

of a word that waits for a key depression is

I 0THRR SINGLE-PRECISION ARITHMETIC OPERATIONS

While these words are not required for many

ientary arithmetic operations, they simplify implementat

mor= complex functions.'

: ANY-KEY? BEGIN ?TERMINAL UNTIL ; :
1.1 Modulus Operators MOD and /MOD

€ word MOD takes a dividend (second on the stack) and a

or (top of the stack), and leaves only the remainder o
ion on the stack; for example,

22 7 MOD . <RETURN> 1

orc "/MOD" ("divide-mod™) leaves both the guotient (top of
tack) and the remainder (second on the stack), for example

22 7 /MOD CR .
31

22 [Absolute ABS and Negate NEGATE

get the absolut
le, take the
ive number

¢ of a number

2 the word ABS. For
te values of b

h a positive and a

22 ABS . <RETURN> 22
=22 ABS . <RETURN> 22

vg.;a the sign of a nu

the word NEGATE. Negate
a@bsl:lu and a negat!

for example,

=33 NEGATE . <RETURN> 33
33 NEGATE . <RETURN> -33

'iHSTGNF MIXED AND DOUBLE-PRECISION ARITHMETIC

-4

5.1.3 Simple Increment and Decrement 1+ , 2+ , 1~ , lﬁ;'

%

Four words are included for convenience of incrementing or
decrementing a value on the stack by one or by two. They ar

RTH gtack is 16 bits wide, and the numbers we have seen
arr signed values internally formatted in 2's complement
‘arithmetic, In this number representation, bit 15 (the

1+ (:one-plu Increment by 1 ignificant bit) contains the arithmetic sign, and bits @
;: :-z:::gig ,Ig:::::::tb{yzl contain the numeric magnitude value. A '@' in the sign
2= ("two-min | Decrement by 2 dicates a positive number while a 'l' indicates a

' il
%ve number. A positive signed 16-bit number may range

Try the follgving examgise, |($0000) to 32,767 ($TFPF) while a signed negative number

¥ i vary from -1 (SPFFF) to -32,768 ($8000). Signed values are 1
3 30 Seepaner 2 cst often for arithmetic calculations. 5%]
3 1- . <RETURN> 2 '

S 2- . <RETURN> 3

¢ can also hold an unsigned number, where bit 15 is

réted as an additional order of magnitude rather than the -

etic sign. In this case, bit 15 represents a value of |8

(215) with the sign implicitly positive. The value of a T
|

5:1.4 Minimum MIN and Maximum MAX

When you wish to limit the range of number between a lower il { _
upper value, the words MAX and MIN will compare the vall unsigned number may, therefore, range from @ ($0808) to

of the top two numbers on the stack and leave only the great ([SFFFF', Unsigned values are used most often for
or smaller number, respectively. 4 jdresses

1 2 MIN . <RETURN> 1 i *4'_Bntcr!ng Double-Precision Numbers
-18 5 MIN . <RETURN> -1@ :

5/4¢ FORTH also supports 32-bit (double-precision) 2's :
ment numbers. These are represented as two 16-bit i
s on the stack, with the high-order number on top.
~precision allows positive or negative decimal integers
range -2147483648 to 2147483647 to be used.

4 7 MAX . <RETURN> 7
=10 5 MAX . <RETURN> 5

A word that will limit numbers to a range between 1 and 9 U
the following colon-definition:

: RANGE 1 MAX 9 MIN ;

»“interprets an input number as double-priclsioﬁ if there

ecimal point anywhere in it. The location of the dccinal

dces not affect the input number (although thc number of g

1 placol is saved in the system variable DPL in case you '

“tc know it, see Appendix G). For example, '555555555.' ;

555555555 are input as the same number -- only DPL is

ferent, Input the following numbers in double-precision
-'i and display the contents of DPL to check the number of

§oinal places ih the input number:

For example:

6 RANGE <RETURN>
1 RANGE <RETURN>
@ RANGE <RETURN>
9 RANGE <RETURN>
18 RANGE <RETURN>

(8 is smaller than 1)

[T-Rr-N ol -]

(18 is larger than 9)

M I?|.'| i

1@@. DPL @ . <RETURN> @
156.7 DPL @ . <RETURN> 1
365.12 DPL @ . <RETURN> 2
496.436752 DPL @ <RETURN> 6

Doub}o-procillon numbers are integers, with the decimal pqﬁ

used only as a flag to indicate double-precision; the

pProgrammer must keep track of any implicit decimal peint
information.

Input the following small numbers in double-precision format

and print out the two 16-bit numbers that make up the numbf
Notice that the most significant 16-bits is zero for posit

numbers and is -1 (SFFFF) for negative numbers (consistent i

2's complement notation).

456. . . <RETURN> @ 456

23145. . . <RETURN> § 23145
-879. . . <RETURN> -1 -879
-1289.4 . . <RETURN> -1 -12894

Change to hexadecimal and repeat the examples.. Notice ths’

difference since each hexadecimal digit represents four hl«

bits.

HEX

456. . . <RETURN> 0 456
23145. . . <RETURN> 2 3145
-879. . . <RETURN> -1 -879
=-1289.4 . . <RETURN> -2 -2894

5.2.2 Printing Double-Precision Numbers

Now that you understand how double-precision numbers are St0F

on the stack, let's look at two FORTH words that print the
in double-precision format. The word D. (pronounced °
prints the top two numbers on the stack as a 32-bit numben
left-justified. Rapoat the previous examples in decimal

(@ word to print multiple 4

DECIMAL
456. CR D.

-1289.4 CR D
-12894

ofter. desirable to print the data right-justified. The

("d-dot-r") prints a double-precision number,

jht-justified in a variable width field. The top number on
ack is the column in which the least significant digit of
tz2 is to be printed, while the second number is the
precision number (the data) to be printed. Try the

¢ 'data one more time, but right-justify it in the Co
vmn field as follows (if the number prints in the wrong

. you forgot to switch back to decimal)

'456. 30 CR D.R

456
23145. 30 CR D.R
23145
-879. 38 CR D.R
-879
-1289.4 38 CR D.R
-12894

ecision numbers

Tustified 15 columns.

: PRINT-RIGHT (N---.)
8 DO CR 3@ D.R LOOP CR ;

£ the data on the stack and print it with PRINT-RIGHT .
the numbers and the number of 1tals on the stack before
PRINT-RIGHT .

456, 23145, -879. -12894.
4 PRINT-RIGHT
-12894

-879
23145
456

5-5

5.2.3 Other 32-Bit FORTH Operators

There are several other double-precision FORTH words uhlch:ﬂ

analogous to the single-precision operations.

Double-precision ad D+ 'd-plus" operates in the same

manner as + , usi g the |)p two d 1ble-precision numbers g
the stack as inputs and le: ring one Jouble-precision nnmhnﬁ.

e.9.,

3456. 6576. D+ D. <RETURN> 180832

DABS ("d-abs") returns the absolute value of a double-

precision number similar to the single-precision word nas.{

-76543. DABS D <RETURN> 76543

DNEGATE ("d-negate") changes the sign of the doublt-preci{f

number on the stack, allowing subtraction.

-768945. DNEGATE D. <RETURN> 768945

The word S->D ("s-to-d"™) converts a single-precision nnm&

on the top of the stack to double-precision number.

6758 DUP CR .
6758

§->D CR D.
6758

The operation D+- ("d-plus-minus®) applies the sign oi the
singlc-p:-c!slon number on top of the stack to the 1
double-precision number beneath it. Note that a minus nu~
on top always changes the sign of the double-precision num
below. Note also that the single-precision number is re
by the D+- operation. '

56789 -78 D+- D. <RETURN> -56789

5.2/ Unsigned Compare U<

Addition and subtraction are the same for signed or unsigned

ers so there are no special operations for these.

Rarison is different, however, so an unsigned compare word
{'u-lasl-than') should be used instead of the signed
reword < . Using < in a comparison where one number

eeds 32,767 will result in an incorrect answer. The
rison

20080 49000 < . <RETURN> @

;!m(Boolenn false), because 40,000 as a signed 16-bit
is negative and is therefore less than 20,000. The

omparisor

20000 48000 U< . <RETURN> 1

s 1 (Boolean true) which is ghe correct result, Use U<

mpare addresses, unless you are sure both of them will be
12,768, or both above it.

Unsigned Multiply U* and Divide u/

ther unsigned operations are provided. The unsigned
v word U* ("u-times") multiplies two unsigned

é-precision numbers to give an unsigned double-precision
r. For example,

48000 40000 U* CR D
1600000000

signed divide word U/ ("u-divide") divides a unsigned
precision number (second on stack), by an unsigned
precision number (top of stack), to give an unsigned
recision quotient (top of stack) and unsigned
recision remainder (second on stack).

it

The foll Ing example gives a positive quotient and unsigne

remainde

120031 4 u/ <RETURN> 30007

Note that another example,

140035, 4 U/ <RETURN> -30528 3

appears to give a negative quotient and unsigned remainde%
the single-precision format a number between 32,768 and 65,

is displayed as negative unless printed as a double- -prec
number. The tollouing example forces the quotient to a
doublc-proclilon number and prints it along with the rem

140835. 4 U/ @ D. . <RETURN> 35908 3

5.2,6 Mixed-Mode Operations M* , M/ , and M/MOD

Some mixed-mode operations are also available. The nperate

M* ("m-times”) multiples two signed numbers and returns
signed double-precision product. Two examples illustrat
operation.

4532 8765 M* D. <RETURN> 39722980
4876 -5467 M* D, <RETURN> -26657092

The operator M/ ("m-divide®) divides a dnuhle-precision

number (second on ltacki, by the single-precision number (o

top of the stack), and returns a signed single-precision |
remainder (second on stack) and signed single-precision f
quotient (top of stack). Try this example:

564755. 508 M/ . . <RETURN> 1129 255

Iort M/MOD ("m-divide-mod®) divides a positive

precisial number (second on stack) by a positive
precisior number (top of stack), returning an unsigned
precisior remainder (second on stack) and an unsigned
precision quotient (top of stack). Examine with

54000. 5000 M/MOD D ., <RETURN> 1@ 4080

.7 |Scaling

"_ynu are working with 16-bit integers and want to

;Jw,ono by a scaling factor such as the sine of 45

+ Since we are using only integers, this sine value

) could be roprcl-ntad'al multiplied by 10008, i.e.,

We want to multiply our number by 7871 and divide it by
the problem is that the intermediate product is too

¢ represent as 16 bits --- so FORTH provides an

an */ ("times-divide™) which multiplies the third term

stack by the second item and then divides the result by

of stack item, while keeping a 32-bit intermediate
This is illustrated by

12345 7071 10000 */ . <RETURN> 8729

'dperation */MOD ("times-divide-mod”) performs the
beration but also returns the remainder as the second
on ‘the stack. Repeat the last example but also print

remainder

‘12345 7071 1e@eee */MOD . <RETURN> 8729 1495

) OUTPUT FORMATTING

%hm@;ic output commands described in Section 4.11.1 are

for most programs. However, some applications need

al formats such as decimal points and dollar signs with

el numbers, or colons within numbers to indicate degrees,
:¢. and seconds. PORTH includes special output operations

ch let you define your own numeric formats.

5-9

5.3.1 8->D , <#, 95, SIGN and > § 2 i and HOLD

To use these operations, first get a double-precision numhep g @ is an example showing creation of a word D$. which

the stack. Then a special operation <# ("less-sharp”) must a double-precision number with decimal point and dollar
be used to start numeric conversion. Digits are converted Besides the above operations, it also uses § ("sharp")
the right, i.e., least significant digit first. ASCII charac Bk places a single digit into a string being created. It

ses HOLD which takes an ASCII value from the stack and
65 tnat character into the number being formed.

ters such as decimal points and dollar signs can be added ui
needed. Then another special operation l) ("sharp-
greater”) must close the cohversion.

lowing colon-definition shows how to convert digits,
ually, placing additional characters such as decimal
5 and dollar signs where desired within a number.

For example, the following definition creates and tests a
+PRINT , which works like the print command . . This exanpl
illustrates a fairly simple case with no added charactar. E

DECIMAL
:t D§. (D --=)

: .PRINT SWAP OVER DABS
§->D SWAP OVER DABS <# : # 46 HOLD (46 is the decimal point)
<# #5 SIGN $> #S 36 HOLD SIGN $> (36 is the dollar sign)
TYPE SPACE ; TYPE SPACE ;

Enter a number to test .PRINT lowina examples show that the leading zeros are handled

v
12345 .PRINT <RETURN> 12345

555. D$. <RETURN> $5.55

First, S->D converts the top stack number to double- 5. D$. <RETURN> $0.85

precision. The SWAP OVER ¢+ In effect, makes an extra co
the high-order 16-bit part below the double-precision numberp
the stack; this is required to Preserve the sign information
since the numeric conversion itself requires a positive numﬁ
== hence the DAaABS.

ire= places after the d mal point were desired, one
nal § would be nec ary before the '46'.

B cine anéther word that uses D§. to print multiple

The <# sets up the output convuraion followed by the #s
("sharp-s8") which converts all digits of the number to ARPIL
The SIGN word then places an ASCII minus sign if necessary;
it uses the extra copy of the high-order part of the double-
precision number to detect Iif that number was originally
negative.

: PRINT-DS.
CR @ DO D$. CR LOOP ;

:;t four numbers on the stack and print them

123. 45678.
3456. 23456.

The #> 'closes the conversion, and leaves stack arguments ;2;Ef::-ns. (Print four numbers)
up for "TYPE =-- i.e., the number of characters to type on t :i;;sga
of the stack, and the address of the first one below it. The $1.23
SPACE word leaves one space after the number to Separate it
from the next one.
5-10 5-11

The following word prints a mixed number when the integer:n
double-precision number is on top of the stack and the posikl
of the decimal point is held in the user variable DPL .

HEX

: XN.

SWAP OVER DABS (Set form for sign and
conversion) ;
<# DPL @ -DUP

IF @ DO # LOOP THEN
2E HOLD #S SIGN #>

decimal point)

(Convert decimal point and_
and remainder of digits)
TYPE SPACE ; (Print results)

DECIMAL

Verify proper conversion with an example such as:
34.786 XN. <RETURN> 34.786

5.4 BSTRINGS

FORTH does not have a standardized package of errina—handQW

operators, but it does have primitive operations from wni?
string routines can be built. For many applications the
primitives themselves are enough. A series of string han
functions that can easily be constructed in FORTH is descr
in Appendix I.

Because there is no ready-made standard, you can dccidc'ﬁj

represent strings internally. Two formats are already in U8

within the system. In one, a length byte is followed by th
string itself; string length cannot exceed 255 characters,

address of the string is the address of the length byte (thi

is used to store names of words in the dictionary). 1In th
other format, only the string itself is stored in memory; 4
address is the address of its first character. The lenqtﬁ?
stored separately, and kept above the string address on t@?
stack.

5-12

(Convert digits to right av

Address String Data with COUNT

OUNT. word returns the address (second on stack) of a

icter string and the number of characters, e.g., bytes, in

trxng (top of the stack). The character string can be up
ﬁyt.s in length. COUNT operates on the address

?@ the first byte of the character data which must
in ‘the number of bytes of the character data.

2 Output String Data with TYPE

o¥a TYPE takes the address of the first data byte
1 on stack) and the data byte count (top of stack) and
it to the active output device. TYPE 1is usually

iceded by COUNT which sets up the data address and byte

n.a compatable format.

3;££EEE_§££}n9 Data with EXPECT

d EXPECT (see Section 4.11.2) can be used to read a
into memory. Unfortunately it does not return the
length of the input string; however, you can find this

f it is needed by searching for the trailing nulls
' zerg bytes).

Suppress_Trailing Blanks with -TRAILING

{ iagtq trailing blanks of a message, the word -TRAILING
g If ~-TRAILING is given an address of a string (second
5%;‘“d a count (top of stack) such as that output by
/then -TRAILING will adjust the count to commands if
ry to eliminate any trailing blanks in the string.

ﬂgmple

i

HEX 9
988 9 EXPECT <RETURN>

nine characters to be entered into memory starting at

@S Entep

ONLYS (followed by four spaces)

5=13

e

immediately after the <RETURN> following EXPECT (note ha 5t ASCII character of the number minus one, i.e., the
OK will not be displayed until after nine characters sre ddress lof one byte before the number begins. This address
entered). A five character message with four trailing hiangd @MSE be on top of the stack. (NUMBER) then returns the value
is now in RAM. Check it with v e nimher; it is accumulated into the double-precision :
_ 9, The address on top of the stack is incremented to point f
988 9 DUMP -4 first non-numeric character, i.e., to the terminator of
g:g ;: 45 ; :: :i :: i: :: ber; the program may test this terminator, which would @
OK g tpally be a blank, and {f it is an unexpected quantity, e.g.

‘erroneously typed by the terminal operator, error

Notice the terminating null character ($8) placod a!tor the ‘can be performed.

entered data. Now enter

Sxample

900 9 -TRAILING S 1 i
5 (character count less rraiv 4 -
blanks) & 1 INPUT]
909 (starting address) : 3 PAD 10 EXPECT @ @ PAD 1 - (NUMBER) ; i
To see the full message less trailing blanks, enter E
CR TYPE CR 1 ~ INpUT 1
ONLYS ; . :
OK £ it y
“ ch wher executed, accepts a number, returning the address b
5.4.5 Interpret a Number with (NUMBER) L { yond the number, and the number itself in double- "
i glsion form (as two numbers on the stack). (NUMBER) will 3
Most of the words needed for terminal input are descriped i kir leading blanks or handle minus signs; you must do so
Section 4.11. This section covers the special situation of @cessary. By defining INPUT , you have handled the i
accepting a numeric string as input and interpreting it as fcult part of (NUMBER) just once. Subsequent inputs can :
number. Such special input is seldom necessary, because mos essed easily by using the INPUT word. I
programs can accept input from the FORTH system itself (i i 3
numbers typed onto the stack), if they use a terminal at -; Input a Number with NUMBER !
This special terminal input is most often for turnkey progran ' i
not run under the direct control of FORTH (in which the use Wordc NUMBER (written without the parentheses) will handle ?
should not see the OK). ‘ ng hlanks and the minus sign. But if the string being 3y
| ed is in error (e.g., contains alphabetic letters), i
Pirst use EXPECT to accept a string from the user lm R i1l handle the error itself by echoing the unrecognized ;
Section 4.11.2). Then use (NUMBER) to interpret part or. hg with a question mark; the user cannot get control to 3
of that string as a number (the parentheses are part of the ro the error differently. Therefore the more primitive
name). This operation is a bit complicated. It needs a Q- UMBER| is usually preferred for turnkey applications.

double-precision zero on the stack, as well as the addressg ; I

5-14 : E 5-15

5.5 DICTIONARY STRUCTURE -3 88 is set to indicate the start of a name. The precedence

cates if the word is for compile or immediate
As you are well aware by now, FORTH consists primarily ofi§ . The smudge flag prevents the word from being found
dictionary of words. The FORTH words were listed using f @ dictionary during compilation. If the compilation
in Section 4 and are shown in Table 4-1. This section ;. Shes successfully, the smudge bit is reset to zero allowing

describes the structure of the words in the dictionary. @ Ame to be recognized. "SMUDGED" words show up in a

5.5.1 FORTH Word Structure

i ame field continues with the ASCII characters of the name

The FORTH words are arranged one after the other, startingl fhe MSE of the last character set to indicate the end of
LIT to TASK , followed by all user-created words, Each
is composed of five sections:
address is the address of the count byte of the
- flag bits and name character count '; BUs word (i.e., the beginning of the previous name field).
5 néme 4 Jlows the dictionary to be scanned, word-by-word,
- K 3 -jg with the most recent word and moving back. The last
4/ code ;address ! i the dictionary has a link address of zero.
. parameter field [
address indicates the code to be executed depending on

Here is a picture of the dictionary with a word expanded wit of word, i.e.,
its sections:
3 code $C723 for "colon-definition" words
; $CTAD for USER words
I LIT WORD WORD WORD WORD WORD | w er - i SC77B for VARIABLE words

SCI5F for CONSTANT words

‘ I E 1 next address for "CODE-definition" words

I COUNT NAME LINK CODE PARAMETER l

| I I T .
NFA LFA CFA PFA | "word is a "colon-definition" word, the parameter field

ins the addresses of the FORTH words that make up the

The first byte of a word begins the name field and contatlj on, If the word is a "CODE-definition® word then the
number of characters in the word's name along with two fl,g j8ter field contains the actual assembly code for the logic

jrameter field changes meaning depending on type of word.

ijperformed.

} 1 | X l X | X X X X % l :n& the TASK word; as an example,

|
| character count o

smudge flag A | B@@ C DUMP
precedence flag E 8@ 84 54 41 53 CB D5 D9 23
k. BPB C7 32 C5 XX XX XX XX XX

OK

For both CONSTANT and VARIABLE words, the parameter !
is two bytes long and contains the value of the constant or
variable. For USER words, the parameter field is one byt

long and contains the offset into the user area for the
variable.

-ﬁEORTH Word Handling Examples
‘the contents of LFA of CLIT , perform

‘HEX
' CLIT LFA @ 8 CR D
CO4F

Now look at it's component parts: :
rint the name of LIT , perform

800 84 (B = MSB =1 = start of a g

{ 4 = Number of characters i ! LIT NFA COUNT 1F AND CR TYPE
801 54 41 53 CB (ASCII characters for TASK .

(M8B of last character set to ‘the topmost word name in the dictionary, perform
865 D5 D9 (Link address of $D9D5 links ta

_ (word in AIM 65/48 FORTH ROMs). LATEST CR ID.

807 237 (Code address of $C723 indica TASK

(colon-definition) A]

ble 1i £ all rds in the FORTH dictionary can be

889 32 c5 (Parameter address of $C532) 9 sE-of 91 wo x

(indicates the end of a) with

(colon-definition, i.e., ':'1'5

5.5.2 Handling PORTH Word Addresses

There are five FORTH words concerned with finding the addres
of the various word fields. They are:

t DIR CR LATEST
BEGIN
‘DUP ID. CR
PFA LFA @ DUP
@= UNTIL ; OK
DIR <RETURN>
DIR
TASK

' (tick) .8 (Press <RESET> to terminate list)

PFA (Parameter Field Address)

CFA (Code Field Address)

LFA (Link Field Address)

NFA (Name Field Address)

YOCABULARTES

ibularies are groupings of FORTH words. They are used to
-{nc Same names to be used for different operations in
erent application areas. If a name is redefined in the
cabulary, only the latest definition will be accessible.
he same name is used in two or more different vocabu-
'211 the definitions can be selected. Every word
n FORTH should be in only one vocabulary to nininiza
it au between word usage.

8. ' leaves the parameter field address (PPA) of the
following word on the stack.

b. NFA converts the parameter tlold address on the sﬁ
into the name field address (NFA). :
LFA converts the PFA into the link field address
(LFA) ., _

d. CFA converts the PFA into the code field adaresg
(CFA) .
PFA converts the name field address (NFA) to the
Parameter field address.

5-18 5-19

The AIM 65/408 FORTH system as supplied includes two vocabu-
laries: FORTH , which is the default vocabulary, where the
example definitions illustrated earlier in this manual we '
placed, and ASSEMBLER , which contains definitions of R6502
instruction mnemonics, mode symbols, and other operations mf
used for the assembler (See Section 6). For example, AIM 65/
FORTH has two words, @= and @< , which are defined in b
vocabularies and used differently (see Section 4.7.2 and ‘6,6
depending on which vocabulary is selected (see Section 6.0)4

| CONTEXT and CURRENT Specity Vocabularies

given time, two vocabularies are in effect: CONTEXT

CURRENT . CONTEXT specifies the vocabulary in which

nary searches begin, while CURRENT gives the vocabulary
gngneu definitions are placed. Often CONTEXT and
T/are the same; e.g., when AIM 65/40 FORTH is initialized

'% entry or COLD word), both of them point to the
vocabulary. But when a CODE-definition is being

led, the CONTEXT vocabulary is ASSEMBLER , while

4 As usually FORTH or something else (CURRENT would

MBLER only if you were adding new capabilities, e.g.,

tc the assembler).

5.6.1 More on VLIST

As mentioned at the beginning of Section 4, you can list the
FORTH vocabulary by executing the word

88t the CONTEXT , just execute the name of a vocabulary;
VLIST i

Press any key to.terminate the VLIST . VLIST can also be
used to list the words contained in the assembler vocabulary
(see Section 6). Enter

ASSEMBLER

¢ to the ASSEMBLER vocabulary. To set the CURRENT ,

ASSEMBLER VLIST

DEFINITIONS
which will print the ASSEMBLER vocabulary (and then link £

the FORTH vocabulary and print that also). The FORTH Llin

word (no name) is shown at address $726 in the VLIST. Then!
is wise to execute

the CURRENT to the CONTEXT . So to change both of
ASSEMBLER , execute

ASSEMBLER DEFINITIONS
FORTH

new col

n + CODE- , or other definition will go into

to set the vocabulary back to FORTH . ASSEMBLER cabulary. Remember to get back by executing

Vocabularies are effective only at compile time; they have n
meaning after object code has been compiled. They only »

the search for names of words in the dictionary. 3 yoi are done extending the assembler

FORTH DEFINITIONS

Incidently, any colon or other new definition will set CONTEM
back to CURRENT . This is done to help the programmer avoid

6.4 Application Libraries f
errors. So if you are in FORTH and then execute just

b
ASSEMBLER l Btferent application libraries separate from each other. Just

@u can create your own vocabularies, in order to keep

! gcute
without DEFINITIONS , and then define any new words, they will

go into FORTH , and also the CONTEXT will be set back to

FORTH ; i.e., executing ASSEMBLER alone will have had little
effect. -

VOCABULARY <name>
1 fliere <name> is the name (up to 31 characters) you want the new

bulary to have. Then you would usually say
5.6.3 Use LATEST and HERE to Check Directory Addresses

| <name> DEFINITIONS
The word LATEST leaves on the stack the name field address g

the last word pointed to by CURRENT . Do a COLD start and’ begin putting your application library words into the B
check the FORTH dictionary 5

ame> vocabulary.

HEX LATEST <RETURN> . 800 I the AIM 65/48 FORTH system, the new vocabulary will be

i
r 1 whatever vocabulary it was created in (usually [
The word HERE eaves on the stack the next available il 4

dicti dd h a H). All vocabularies form a tree, allowing subvocabularies
ctionary address where new 5 can be added. ;

g s B i g ° ed to any depth. All vocabularies from CONTEXT along the

fanching path back to the root of the tree (which is always ;

H) will be searched whenever a name is entered into the b

HERE . <RETURN> 8@B

BRTH system for execution or compilation. i
ASSEMBLER | ’
TRyl ery — ficreate a new vocabulary, use the word (2) VOCABULARY (2)
1ink ang with the vocabulary name to change (2) CONTEXT (2) to :
n b.
int to its last word, e.g., }
FORTH . r
EwW
Vocabulary <—— HERE VOCABULARY N
LATEST ;
gadd words to NEW, now type !
NEW DEFINITIONS |
jcause DEFINITIONS sets CURRENT equal to CONTEXT
lowing new words to be added to the NEW vocabulary.
'I oW add a new word
MYWORD ." NEW VOC" ;
* 5-22
5=23

and type VLIST and get finc a new immediate word, use IMMEDIATE after its

tion, i.e., after the semicolon. This causes the last

VLIST efined to be immediate.

826 MYWORD 726 '3

813 NEW 889 TASK (word in NEW)
D9DC .8 DSD1 MON (link NEW to F e ncrasions the programmer must force compilation of an
ggfg gﬁﬂc 32;? VLIST (new vocabulxgy are word, To do this, use [COMPILE] (the brackets are
D927 .R OK (<SPACE> bar pressed nerea) f the name.

Now type FORTH , this will set CONTEXT back to the FORT
vocabulary and MYWORD will not show up on a VLIST bu&i
will execute, E

ample, suppose you want to run source code written for an
ersion of FORTH which used the name ENDIF for THEN
/40 FORTH supports both of these words). You don't want
rough the code and make all the changes. It would be

Now type FORTH DEFINITIONS , changing both CURRENT and tc define ENDIF by

CONTEXT to the FORTH dictionary. Now MYWORD will nat g
up in VLIST and will not execute. To use MYWORD one needs

. ENDIF THEN ; IMMEDIATE
only to link the NEW vocabulary to FORTH by typing NEW

use the THEN would try to compute a conditional branch
sg an error message because there is no corresponding
The correct form would be

It is generally recommended that use of subvocabularies be
avoided and all user-defined vocabularies be created in FOR
This is for colpltlbllity with many other FORTH systems whig
only allow one level of vocabulary nesting. t ENDIF [COMPILE] THEN ; IMMEDIATE
Vocabularies are optional, needed for advanced users only.§
Most programs only use the default PORTH vocabulary, and the
programmers do not even need to know that vocabularies exl%

Qefinac ENDIF to work the same as THEN .

CREATING YOUR OWN DATA/OPERATION TYPES

5+7 INMEDIATE WORDS AIM 65/40 FORTH system includes several 'defining words';

words which create new words. The most important of
are; (the colon), CODE , CONSTANT , VARIABLE , USER
id VOCABULARY .

Most FORTH words will be compiled, not executed, when they
used inside a colon-definition. Immediate words are the
exception. They are executed even at compile time.

'innnt to create new defining words. 1In general, each
The words used for conditional branching and looping (e.q., ining word creates a new type of data structure of

IF , THEN , DO , LOOP + BEGIN , etc.) are all .lmmediatt A4 ;011_. Examples n'l.ghl: be ARRAY , MATRIX , CUSTOMER-
words. They execute at compile time in order to handle forws ’ ¥ Y . FORTH assemblers use similar

or backward branch references, various error checks, and ot ',z?:orv::::::‘nzzain,t,uction,, such as one-address and
functions. Some of these words such as DO and LOOP p1

special run-time words, not used directly by the proarammer.
into the object code. But some, (e.g., BEGIN) place nnthi
at all in the object code.]

5-24

DOEF part tells what happens when X or Y is

juted At execution of @ X , 49 X , etc., DOES>

tically causes the system to place the address of where
array begins on top of the stack; any arguments (@ , 49
Tln'these examples) are below that address. The SWAP

- the array index to the top of the stack, where it is
For example, suppose we want a word to create arrays of 2-hyl iplisd by two to get its byte offset from the beginning of
(16-bit) memory locations numbered from zero. we want fo sa array. This offset is then added to the address of the
viges 4 Wﬁic get the desired address of the particular element.

New data or operation types are usually created by the pal]
words <BUILDS and DOES> i these words are always used
together. The word ;CODE is an alternative way to creste
data structures; they run faster but require use of the
assembler (see Section 6.9). ' '

50 ARRAY X

g.hOH the allocation works, after entering the definition
10 ARRAY Y o

ARRAY , type:
to create arrays 'X' and 'Y' with 50 and 18 elements,

L HERE .
respectively. Then we want to use these arrays as DECIMA

& : t dictionary entry will occur . Then enter
8 x (9th element of ARRAY X) -1”her‘ the nex y
49 x (49th element of ARRAY X)
oy (Bth element of ARRAY) % .
9y (9th element of ARRAY Y) 50 ARRAY X HER

to return the addresses of the first (8th) and last elements oW much dictionary space has been used by the array. Note
X and Y. We can then use the arrays to store and fetch data {iers are 8 bytes of overhead plus the 100 bytes for the
using ! and @ . Note that there are 50 elements in ar ay,

(numbered from @ to 49) and, similiarly, there are 1@ elemept 1
in ARRAY Y (numbered from @ to 9), %?nov enter

How do we define ARRAY to do this? We could use 18 ARRAY Y HERE .

¢ ARRAY
<BUILDS 2 * ALLOT
DOES> SWAP 2 * 4+ ,

#11) see that 20 bytes of array plus 8 bytes of overhead
allocated. Entering

How does this definition work? 1234 5 X |

- - : - N ifth element in the X array. And
The <BUILDS part tells what happens at compile time, The v store 1234 in the f

argument (on top of the stack) to ARRAY (56 or 18 in the
above example) 1s'lu1tlpllod by two, and ALLOT leaves that) b
many bytes of space in the dictionary. Note that when ‘X of p Sxe
Y or any other array is being defined, the appropriate ﬁhﬁn
of bytes must be alloted for it.

ol
-

now place 1234 on the top of the stack

5-27

5 and DOES> can be used to create much more elaborate
types such as special array definitions which do bounds
f: error checks at run-time. These definitions could be
*;ring debugging and replaced with the regular (faster)
itions for production use, once you are assured that no
pf-bounds error will occur.

The data to go in an array may be loaded at compile time bj
following technique:

: VECTOR <BUILDS @ DO ,
LOOP DOES>
SWAP 2 * + ;

The data on the stack is in inverse order and the top value g
the stack is the number of elements in the vector. Thus,

data n-1 data n-2 ~" dltl'
n VECTOR ALPHA

Creates a vector with n elements called ALPHA . FPor ~vamply

55 4444 -33 2222 1111 @
6 VECTOR ALPHA

Now check the element data

3 ALPHA @ . <RETURN> -33
@ ALPHA @ . <RETURN> @
2 ALPHA @ . <RETURN> 2222

These elements may be changed if so desired, €.g9.,
1010 @ ALPHA |

Check with
@ ALPHA @ . <RETURN> 1018

In the definition of VECTOR , a loop is executed the numbeg
times indicated by the top value on the stack. The only
function performed by the loop is to use the » command tJ{
Store the current top value of the stack into the dictionary
entry. This is repeated until all of the vector elements ir
stored in the dictionary definition. The remainder of the
operation is the same as the definition. The remainder of th
operation is the same as the prior example for ARRAY .

5_“ 5-2‘

?f"
=4

SECTION 6

AIM 65/40 FORTH ASSEMBLE

ed in high-level FORTH colon-definitions. A separate
LER vocabulary provides the op-codes, addressing modes,
ignals, and other support words necessary to program
ions in R650@ assembly language. A function written in
mbler language is entered into a vocabulary in a similiar
as a PORTH colon-definition. It is also executed in th
manner by referring to the word name. It is recommended
ssembly language, or "code", as it is often referred to
TH terminology, be structured and written similiar to
evel FORTH for clarity of expression. A function can

be rapidly written and debugged in FORTH, tested for
operation, and then recoded in assembly language for
.execution with a minimum of restructuring.

167 ASSEMBLY PROCESS

¥ 65/40 FORTH assembler vocabulary is selected by the
ASSEMBLER or by the word CODE (explained in the
}ng paragraphs). A separate ASSEMBLER vocabulary is
ed ahead of the FORTH vocabulary. The words in the
LER vocabulary are defined in Appendix D, AIM 65/40
Assembler Glossary, in ASCII sort order.

g examing the assembler words, perform a cold start, command
MBLER , and run a VLIST . The Assembler VLIST is shown in
3-1. Note that the ASSEMBLER VLIST continues into the
vocabulary upon completion of the ASSEMBLER word list,
5 any key to terminate the VLIST before completion.

6-1

K coLD
k. AIM 65/48 FORTH V1.4
ASSEMBLER OK

1% VLIST
b DFD@ END-CODE DE DFC1 @<
i . DFB8 @= DFAF VS 3
- 3 DFA6 CS DF99 NOT i
1 E! DF73 ELSE, DF65 THEN, 1
i ASSEMBLER Ok 3 <)
i : ' i A
(DA3E UP DA35 W i
3 D IP DA24 N 0
VLIST £ ; n?is ¥ 809 TAS(
g;bg END—CUDE DFC1 B< 4 p popcC .S D9D1 MON ? i
DFRE G5 BFO9 NBT 3 ~ D9C1 HANG OK (<SPACE» bar pressed) 1
DF?72 ELSE, DFES THEN, i ;
gggg EE?%E% EEE: Agﬁ;n é ssembly consists of interpreting entered words with the 4
DEDS MWHILE, DEBAR UNTIL: o ¢ CONTEXT see Section 5.6.2). Thus B
DEAS BEGIN: DESS BIT, LER vocabulary as X () :
D _DE?D JSR, - gh word in the input stream is matched according to the FORTH 0
DES2 LE;: gES% kgﬁ: 9 ce of searching CONTEXT first, then CURRENT . #
DE37 CPX, DE25 STX, & ' :
DE1B ROR, DEBD ROL, i
DDFF LSR, DDF1 INC, ! § vocabularyv search order is
DDE3 DEC, DDDS RASL, A
ng; g;g. DDBS SBC,
DDSD LDA ; i
DDSF EBR: DD81 CHP: A ‘der Vocabulary
Bg;g ¥Eg, DD6S ADC, : G ;
’ DD4D TYA, 1 i
. DD41 TXA, DD3S TSX, 3 1 ASSEMBLER (Now CONTEXT)
i ggﬁ ;Eﬁ‘;: gg%g ;g: FORTH (Chained to ASSEMBLER)
gg;i §$§. gggg gzg. i User's Vocabulary (CURRENT if one exits) 3
DCCS PLA, DCBD PHP. b 4 FORTH (Chained to user's vocabulary) A
gggg ?HG: 3323 ?ﬂﬁj M 5 Literal Number i
DC81 DEv, DC?5 DEX,
DCES CLY, DCSD CLI, a2 ! '
DCS1 CLD, DC45 CLC, 4 - ve sequence is the usual action of FORTH's text inter-
DC39 BRK, DBEC RP) E' 1
DBSE SEC DBS@ TOP 2 ; which remains in control during assembly.
DB4S > DB3C ¥ X :
E§§§ Hi pBas ,v 4 s |
. DB14 MEM 1. &
DEBS & 5680 . f] ‘,CODB Definitions b
DACF SETUP DAC2 BINARY i k. 3
Eggg EH;?&D 8222 ES&“““ 3 6 CODE word defines a word written in assembly code (called -
3 e 3
g%%f 5%;; g§§§ ?ﬁ?ﬂECT A OpE-definition) in a similiar manner as the : word defines 3
|
gggg 5gTFLHG DA4A XSAVE : iWord writter, in FORTH (a colon-definition). The assembler
DARZD IP 3233 : i larv is automatically selected as CONTEXT when CODE

b ountered. The name following CODE is entered into the Bl
onary as the FORTH word for the CODE-definition. Assembly ;
ac- routines or program segments in CODE-definition form

g often referred to as "CODE" or "code" in general PORTH

Figure 6-1. VLIST of AIM 65/48 PORTH Assembler Words

6-2 ' 3 6-3

literature. Assembly language instructions in RPN rormat
Section 6.2) are then entered along with any instructinns
save and restore return stack values (see Section 6.4) ~nd
conditionals (see Section 6.6) The END-CODE word terminatel

.a CODE-definition in a similiar manner as the
FORTH colon-definition.

During assembly of CODE-definitions, FORTH continues interpres
'tation of each word encountered in the input stream (not i
compile mode). These assembler words specify operands, ad
modes, and op-codes. At the conclusion of the CODE-definitigy

an error check verifies correct completion and then

the definition's name, therefore making it available

for
dictionary searches.

6.1.2 Assembly-time Versus Run-time

It is important to understand at what time a particular warﬁ

definition executes.

'assembling' or 'assembly-time'. This function inecludes

op-code generation from mnemonics, address calculation, addre

mode selection, and relative branch calculation,

The later execution of the generated code is cal
This distinction is particularly important with the
conditionals. At 'assembly-time', each word (i.e., 1IPF,

UNTIL, BEGIN, etc.) 'runs' to produce machine code
(conditional branch

6.1.3 CODE-Definition Example

As a practical example, here's a simple call to the AIM 65/55
Monitor, via the IRQ address vector (using the BRK op-code),

Enter the following words.

CODE MONX
BRK,

NEXT Jmp,
END-CODE

H terminata

"unsmudg

During assembly, each assembler wnrg
interpreted executes. Its function at that instant is cal

led 'run~-tine

and/or jump instructions) which will 1ater
execute at 'run-time' when its CODE-definition name is used

Exit to AIM 65/40 Monitog

The word CODE is first encountered and executed by

- FORTH. CODE builds the name MONX into a dictionary
header and calls ASSEMBLER as the CONTEXT vocabu-
lary. Note that the <name> after CODE must be on
the same line.

tg

BRK , is next found in-the assembler vocabulary as the
‘op-code. When BRK , executes, it assembles the byte
-value @@ into the dictionary as the BRK instruction
machine code. This causes the R6582 CPU to perform an
IRQ interrupt, which in turn returns control to the
AIM 65/40 Monitor (see Section 6.4 in the AIM 65/40
System User's Manual).

TNote that the FORTH assembler word names end with a
",". The significance of this is:

The comma distinguishes assembler control words
from FORTH control words, e.g., IF, versus IF
: etc.

{2) The comma shows the conclusion of a logical
E: i grouping that would be one line of classical
i 1 .assembly source code.

43) "," compiles into the dictionary; thus, a comma
implies the point at which code is generated.

o

{4) The "," distinguishes op-codes from possible
hexadecimal numbers ADC, ADD, and BCC.

If FORTH executes your word definitions undez_control of
3 the address interpreter, named NEXT . This short
code routine moves execution from one definition to
the next. At the end of your CODE-definition, you
must return control to NEXT or else to other code
which returns to NEXT.

The BRK instruction executed by the word MONX 0 'Single Mode Op-Codes
returns control to the AIM 65/48 Monitor, e.g., : L

6502 single mode op-codes are:
MONX 5
= BO @8 92 9@ FD 0814 BRK

Note that the address counter and processor statuﬁ
were saved by the IRQ processing. If G, followe
the address displayed plus one, and <RETURN> is noy
typed, execution will resume at the next instructig

past BRK, which is the JMP to NEXT , e.qg.,

of these op-codes are executed, the corresponding
{e) ABL%<RETURNY ¥ code byte is assembled into the dictionary.

NEXT is a constant that specifies the machine a

of FORTH's address interpreter (at $SC@6F). Here B 2 Multi-Mode Op-Codes
NEXT 1is the operand for JMP, . As JMP, execul :
it assembles a machine code jump to the address plti-mode op-codes are:

NEXT from the assembly time stack value. If contl

is not returned to this FORTH address as the last ADC AND, CMP, Ok, A2, ORA ¢ REC, ki

instruction in the CODE-definition, improper operatis - DEC, ING, L5R; Mt RORy SI%, CRX,

of the AIM 65/40 microcomputer and possible alter$=- gE- LEXY i #L¥y Sl Ty, LY

of your program may result. ; o
op codes take an operand which must already be on the

d. The END-CODE word terminates the CODE-definition wif gfs An address mode may also be specified. If none is
a SMUDGE of the name. It also exits the ASSEMBLE ¢ the op-code uses z-page (when appropriate) or absolute
making CONTEXT the same as CURRENT . i j8sing .
The object code of our example is: ADDRESSING MODES
UBOB B4 (Name letter count with M ddressing modes are specified by:
@80C 45 58 49 D4 MONX (Name with MSB of last di
6810 0@ @8 link field l i
6812 14 @8 code field 3 - FORTH Mdfe:“ng
@814 00 BRK _ Word ___Mode
9815 4C 6F C@ JMP NEXT '
accumulator none
: immediate 8 bits only
i indexed X z-page or absoclute
6.2 ASSEMBLER OP-CODES : J

The bulk of the assembler consists of dictionary entries for

indexed Y z-page or absolute
indexed indirect X z-page only
indirect indexed Y z-page only
indirect absoclute only

the R6506@ mnemonic op-codes. Refer to Appendix B in the R . MEmO Ly z-page or absolute

Programming Manual to see the machine code that is generat
each mnemonic op-code.

Here are examples of FORTH vs. conventional assembler 'Y p ;gg :gs: :::::gi:: :g% g;;i} and
that the operand comes first, usually followed by any addre

ing mode modifier, and then the op-code mnemonic. Thisn
best use of the stack at assembly-time. Also, each assen f
word is set off by blanks, as is required for all FORTH s

leaves @ on the stack and sets the address mode to ,X
‘leaves 2 on the stack and also sets the address mode to

text. .j'
< a pictorial representation of the parameter stack in
FORTH Conventional Assembler Page (see Appendix F).
' .A ROL, ROL A .A distinguishe 1
1 % LDY, LDY #1 from hex numbep) 'Vi,. Memory
DATA ,X STA, STA DATA,X) |
DATA ,Y CMP, CMP DATA,Y F
6 X) ADC, ADC (06,X) TOP low byte | <-- @,X (the X-register points to here.)
POINT)Y STA, STA (POINT),Y TOP high byte| <-- 1.x
VECTOR) JMP, JMP (VECTOR)

The words DATA , POINT , and VECTOR specify machine
esses defined by prior VARIABLE or CONSTANT words. .
case of "6 X) ADC," the operand memory address $8006 wa
directly. This is occassionally done if the usage of a
does not justify devoting the dictionary space to a symb
value.

! fa g el <-- 3,X

@or-2:1eft by TOP or SEC is the base address above
h * register indexes. You may further modify this at
iembly=-time to address at any byte in the parameter stack.

6.4 R6502 CONVENTIONS

6.4.1 Stack Addressing

- an example of assembly code to "or" together the top
vteg on the stack: i
The parameter stack is located in z-page, and is usually

addressed by "Z-PAGE,X". This stack starts at $8091 and g FORTH Conventional Assembler
Physically downward. The X index register is the data s TOP LDA, LDA (@,X)
pointer. Thus, incrementing X by two removes a data s :gg 1+ g::- g:: E;-ﬁ;
value; decrementing X twice makes room for one new dat 'SEC 1+ ORA: ORA (3:x)

value. :
! obtai- the 14-th byte on the stack, use
16-bit valiles are plaeod on the stack accordlng to the R63
convention; the 1 ¢ byte is at low memory, with the high b
!ollouing.-.?htl llows "indexed, indirect x" 1nqrrurrinv

be executec direc ly off of a stack value.

“TOP 13°¥ LDA,

The top and second stack values are referenced often Pno
that the support words TOP and SEC are included. Imu\

6.4.2 Return Stack

The FORTH Return Stack (and the machine stack) is located {j

the R6502 machine stack area in Page One. It starts at
and builds physically downward.
checked as Page One has sufficient capacity for all
(non-recursive) applications.

S register points to the next

By R6502 convention the CPU's

free byte below the bottom of the Return Stack. The byte

follows the convention of low significance byte at the lowg

address.,

Return stack values may be obtained by: PLA, PLA, whigh
will pull the low byte, then the high byte from the Returp

Stack. To operate on arbitrary bytes, the method is:

a. BSave X in XSAVE

b, Execute TSX, to move the § register contents to
X register.

2

€. Use RP) to address the lowest byte of the return
stack. Offset the value to address higher bytes.
(The address mode is automatically set to ,X .)I

d. Restore X from XSAVE .

As an example, this CODE-definition non- destructively test
second item on the Return Stack (also the machine stack),

see if it is zero.

CODE IS-IT (Is second item on Return Stack ;;a
XSAVE STX, (Setup for Return Stack)
TSX,
RP) 2+ LDA, (Or second item's bytes together)
RP) 3 + ORA, 3
#= IF, (If zero, increment Y by one)
INY,
THEN,
TYA, (Save low byte)
XSAVE LDX, (Restore data stack)

PUSH@A JMP, (Push Boolean and zero onto data s

END-CODE

6-10

No lower bound is set ori

Low Memory

Free Byte <— §

Top Item Low Byte {<—— RP) = $101,X

Top Item High Byte

Second Item Low Byte
Second Item High Byte

Return Stack

FORTH REGISTERS

\ Assembly Registers

FORTH registers are available only at the assembly

land have been given names that return their memory

es, These are:

Address of the Interpretive Pointer, specifying th
next FORTH address which will be interpreted by
NEXT .

Address of the pointer to the code field of the
dictionary definition just interpreted by NEXT .
W-1 contains $6C, the op-code for the indirect jump
instruction, Therefore, jumping to W-1 will
indirectly jump via W to the machine code for the
definition.

User Pointer containing the address of the base

the user area.

A utility area in z-page from N-1 thru N+7

| CPU Registers

FORTH execution leaves NEXT to execute a
efinition, the following conventions apply:

Sy

The Y register is zero It may be freely used

.s“.

b The X register defines the 1
stack item relative to machi
point to the correct item up

byte of the Lottom
address $000@
returning to FORTH,

DF. DEMO

The CPU sta er § patﬁt-:nne by below the Ig 6§ LDA,
byte of the item in the Return tack. Exec- 1- STA,
uting PLA, ull this byte to t accumu! ~tog dp§3Lg;£'
! .~ BEGIN,
4 The accumulator may be freely used :'?i ;:E:
i 1(UNTIL,
The CPU is in the binary (i.e., not decimal) mode ?:ﬁﬁTpﬁﬂf'
must be returned in the binary node (with a CLbo o b
‘to return, as needed). the VLIST and HERE

' important to note that many FQRTH procedures use
N may only be used within a single CODE-

W, Never expect that a value will remain within

z ‘single definition!

(Setup a counter)
(Make Port A input)

{ Test Port A)
(Decrement the counter)
(Loop until negative)

to det he starting and next

358 after the end of dictionary

6.5.3 XSAvE

i 14 DEMO
XSAVE is a byte buffer in z-page, for temporary storage of 9DC .8 2
X register. 1 BANG O

‘Typical usage, with a call to a previously ﬁef*

F « <RETURN> 827 OK
code word USER , which will change X, is:

ipe to AIM 65/40 Monitor

CODE DEMO —
E ,]
fsagsnsggi, {K1=0814/5
XSAVE LDX e
NEXT JMP,' @814 A9 06
END-CODE - 0816 85 96
- 7818 A9 @0
- 0812 8D A3 FF
6.5.4 N Area 981D 2C Al PP
_ . B82(C6 96
: & | ‘-382: 18 F9
When absolute memory registers are required, use the "N irea’ - B82{ 4C 6F C@
in Page Zero. These registers may be used to store printers 3
) SETUP

for indexed/indirect addressing or to store temporary u=1ug§

The assembler word N _retirns the base address ($0097). 'Tu
N area spans 9 bytes, from N-1 thru N+7. Conventionally,
holds one byte and N, N+2, N+4, N+6 are pairs which may hol

16-bit values. See SETUP for help on moving values to the r{ fo be moved to
Area. ' only:

3 §# LDA,
SETUP JSR,

6-12

‘we wish to move stack data values to the N
SETUP has been provided for this purpose.

UP the accumulator specifies the quantity of 16-bit stack
the N area.

809 TASK
D9D1 MON
(<SPARE> bar pressed)

aﬁd examine generated machine code.

OUT=<RETURN>

LDA #$06
STA $96
LDA #$00
STA S$FFA3
BIT $FFAl
DEC $96
BPL $@81D
JMP $C@6F

The
Upon entering

That is, A may be 1, 2, 3,

6-13

Stack before N after Stack after i conditional specifiers for the R6502 are
Stack before N after Stacl L !

TOP —> A high N—> a 1 RTH
B low B - nditior .
— . | cel est
S5 g g g ! rﬁs(Function Processor Status Bit
E E 3 .
) C5 carry set C=1
g low ¥ TOP o : llilythln zero N=1
H high H equal to zero zZ=1
| - overflow set V=1
o €5 NOT carry clear C=p
6.6 CONTROL FLOW NOT positive N=0
B, . NOT not equal zero Z=0
E WS NOT overflow clear V=0

FORTH discards the usual convention of assembler labelifr
Instead, two replacements are used. First, each ronru;*
definition name is Permanently included in the dictiana
This allows procedures to be located and executed by na |
any time as well as be compiled within other dPFinitinns;

fconditional Looping

t)onal loop is formed at assembler level by placing the
fions to be repeated between BEGIN, and UNTIL, .
UNTIL, by a conditional specifier, e.g., @< . The
enbler generates the proper conditional branch machine
"&ion, e.g., BEQ, to test the processor status and to
onally branch back to the machine instruction

telv after the BEGIN, .

Secondly, within a CODE-definition, execution flow is
controlled by label-less branching according to "structirad
Programming®. This method is identical to the form used
colon-definitions. Branch calculations are done at assenbly
time by temporary stack values Placed by the control words:

Bara: format is:

BEGIN, THEN,

UNTIL, AGAIN, 4 -

IF, WHILE, ssembly code>
ELSE, REPEAT, Fo UNTIL,

ontinuinc assembly code>

Here again, the assembler words end with a comma, to indical
that code is being produced and to clearly differentiate:
the high-level form.

mple, enter the CODE-definition for LOOP-TEST

X
| VARIABLE PICK
LODE L.OQP-TRST

One major difference occurs! High-level flow is rontrolledit . € ¥ LDA,

run-time Boolean values on the data stack. -Assembly flow { F ia;u‘

controlled instead by processor status bits. You must i fiTCEEbBC.
‘N DEC,

which status bit to test with one or two FORTH condition
(cc) words, just before a conditional branching word i.e .
UNTIL, or WHILE, .

. @= UNTIL,
. NEXT JMP,
END-CODF

ST

6-14 6-15

TS T

L

Note where the variable TICK and LOOP-TEST are
the FORTH dictionary:

lConditlona Execution

',exocutlon may be chosen at assembly in a similar

2 A
e i =

- VLIST) 25, done in colon-definitions. In this case, the branch
Huees Jooe e o e shstn conition o

%“% : DSD1 MON DIC1 HANG srmat is (using @= as a typical condition code word):
5] D97A VLIST OK (<SPACE> pressed) '

£t |

%’" Also, £ind the start ($832) of the next dictionary entry JRET LOA,

il

1P,
¢<code for zero set)>

¥

HERE . <RETURN> 832 continuing code>

Return to the AIM 65/40 Monitor and disassemble the nc%t

s example, the accumulator is loaded from PORT . The
code. j

tatus is tested and, if set (Z=1), the code for zero set
cuted, Whether the zero status is set or not, execution

(ESC) :

{K}*=0824/6 OUT=<SPACE> ene at THEM, .

::g: gg gg gg: ::g‘ 't-’g'ional branching alse allows a specific action for the
#9828 CE 14 g8 DEC $8814 3

P82B C6 97 DEC $97

#82D D@ F9 BNE $@828

@82F 4C 6F C@ JMP $CO6F

This shows you how the assembly code is generated for a <assembly code for zero set>
conditional loop. y

; a;subly code for zero clear>
EN,

First, the temporary storage byte at address N is 1ofade' ntinuing assembly code>
the value 6. The beginning of the loop is marked (at a
time) by BEGIN, . Memory at TICK is decremented, then &
loop counter in N is decremented. Of course, the CPU updat

its status register as N is decremented. Finally, a test
Z=) is made; if N hasn't reached zero, execution returns |

of PORT will select one of two execution paths,
resuming execution after THEN, . The next example
ments._ N based on bit D7 of a port:

3 PORT LDA, (Fetch one byte)
BEGIN, . When N reaches zero (after executing TICK DEC, "\ pic (If D7=1, decrement N)
times) execution continues ahead after UNTIL, . Note that - Saay
BEGIN, generates no machine code, but is only an ““.sﬂ? -.N e, (If D7=0, increment N)

] { Continue on)
locator. 1In this example, # = UNTIL, generated a BNE /

instruction to address $8828, the address located by BEGIH

6-16 6-17

6.6.3 Conditional Nesting

Conditionals may be nested, according to the conventions g
structured programming. That is, each conditional sequene|

begun (IF, BEGIN,) must be terminated (THEN, UNTIL,

before the next earlier conditional is terminated. An EL§

must pair with the immediately preceding IF, :

BEGIN,

<code always executed>
Cs IF,

<code if carry flag set>
ELSE,
<code if carry flag clear>
THEN,
<loop until zero flag is non-zero>
#= NOT UNTIL,
<code that continues onward> =

Next is an error that the assembler security will rﬁvnﬂlj
s

CODE <name> "

I.
Some Nesting Examples

An:8-Bit Counter

. An;8-bit counter illustrates simple conditional
' looping,

@ VARIABLE COUNTS
-1 ALLOT
CODE COUNT-DOWN
COUNTS STA,
@ # LDA,
COUNTS DEC,
BEGIN,
@= UNTIL,
NEXT JMP,
END-CODE

' Execute the counter:

COUNT-DOWN <RETURN> OK

Dumr the machine code for examination:

HEX ' COUNT-DOWN NFA 1C DUMP

BEGIN, 817 BA 43 4F 55 4E 54 2D 44
PORT LDA, B1F 4F 57 CE B B8 26 B8 AS
Ip, . 827 @ 8D 16 8 CE 16 8 D@
0b s 3 b 82F FB 4C 6F C# 4 44 55 4D
, i)
#= UNTIL, 5 . OK
ENDIF, 1

: | the breakdown of the machine code 1s:
The UNTIL, will not complete the pending BEGIN, =ince

. 816 o0 COUNTS Variable)
immediately preceeding IF, is not completed. An error tr : 817 BA Name Field = Start)
will occur at UNTIL, and error number 19 “"conditinnals 'gég :: :5 55 4E 54 2D 44 4F 57 CE g?::r;?ggg Ea:;{s)
Paired" will be generated. To delete the erroneous code £ 824 26 @8 Code Field = @826)
the dictionary, first SMUDGE the word to allow finding {i - gi: :g gg g8 ;2: :::6 Parameter Field)
then FORGET it, and correct the source code and recompilg . 82B CE 16 08 DEC 9816

82B D@ FB BNE 082B Next)
838 4C 6F Co JMP C@6F

" The machine instructions can be disassembled with the

f AIM 65/40 Monitor K command to check the assembly
. code sequence,

. In this example we use part of the RAM dictionary for
thgfcountor (COUNTS) . This counter is only 8 bits,

| however, so after we create the 16-bit named
. dictionary location COUNTS , we use ALLOT to back
. ur over the extra byte and recover it for use.

6-18 . f' 6-19

The definition of the word COUNT-DOWN is a simplé
loop, decrementing COUNTS

jump to NEXT .

to its initial value by the LDA,
The initializing to zero is no pr

because right after we clear counts to zero we
decrement it and it becomes FF.
times before finally exiting when we decrement to

instructions.

Zero.

A lb-Bit Counter

This counter is similar to the 8-bit one except thii;

COUNTS is the right size to begin with thiriﬁ&u
is unnecessary. 3
We initialize two bytes to zero to start wltqé%f
We use two nested loops to do the decrementing.

ALLOT

The assembly code is:

@ VARIABLE COUNTS
CODE COUNT-DOWN
@ § LDA,
COUNTS STA,
COUNTS 1+ STA,
BEGIN,
BEGIN,
COUNTS DEC,
@= UNTIL,
COUNTS 1+ DEC,
@= UNTIL,
NEXT JMP,
END-CODE

Execute the counter

COUNT-DOWN <RETURN> OK

:ggz D@ FB BNE $@82F
4 C [} DEC

until it hits zero the 9837 D: :z . ng :::;;
First, of course, we clear COU} 8839 4C 6F Co JMP $CO6F

and STA &
i A 24-B1t Counte

This way we loop 2

ested loops do the work.

8 VARIABLE COUNTS
11 ALLOT
_CODE COUNT-DOWN

~ (COUNTS 1+ STA,
- 'COUNTS 2+ STA,
|- BEGIN,
ki BEGIN,
: BEGIN,
i COUNTS DEC,
it 9= UNTIL,
COUNTS 1+ DEC,
0= UNTIL,
COUNTS 2+ DEC,
§,.@= UNTIL,
NEXT JMP,
END-CODE

$x&éute the counter:

;ouuT-Dowu <RETURN> OK

The. breakdown of the machine code is:
3816 00 00 00

@819 BA

BE81A 43 4F 55 4E 54 2D 44 4F 57 CE

. 9824 0B 08
. 0826 28 98

4 7828 A9 @0 LDA #500
The machine code is: ‘ . DB82A 8D 16 @8 STA $0816
;i . 082D 8D 17 @8 STA $8817
@816 00 00 (COUNTS V @830 8D 17 @8 STA $0818
@818 8A (Name Field - 9833 CE 16 @8 DEC $0816
@819 43 4F 55 4E 54 2D 44 4F 57 CE (COUNT=-DOWN . (836 D@ FB BNE $0833
@823 ¢B 08 (Link Field - 0638 CE 17 o8 DEC $@817
@825 27 @8 (Code Pield . 0B3B DP Fé BNE $0833
9827 A9 @9 LDA #500 (Parameter Fla ~ 083D CE 18 @8 DEC 60818
@829 8D 16 08 STA $0816 ;
@82C 8D 17 @8 STA $0817
082F CE 16 @8 DEC $08816
6-20 6-21

—

The value of indentinhg the loops for visual clarity
re obvious here than in the previous example.
s example uses a three byte counter and so one
_én byte of dictiqnnry space is alloted and three

About 2 1/2 min.)

COUNTS variable)
Name Field Start)
COUNT-DOWN ‘'Name)
Link Field = $080B)
Code field = $@828)
Parameter Field)

6.7 RETURN OF CONTROL

When concluding a CODE-definition, several common lkibﬁ :
manipulations are often needed.
the nucleus, so we may share their use just by knowind

return points. Each of these words ultimately returns co END-CODE
to NEXT . wentior ‘for PUSH' , BINARY and PUT is:
' 16-b k value. E : i
R Tomore ong 16'bit ?tqu "’1“? & Push the low byte on to the machine stack.
PORINO nnn:va Ewo 16= F .:ffd b _f'fk - 'Leave the high byte in the accumulator.
PUSH Push two bytes to the data stack. T Jump to PUSH , BINARY or PUT .
PUT Write two bytes to the data stack, Vep‘
t tt £ tack. =
hehp:e-on °: :h the s .: s i el will pllace the two bytes at the new bottom of the data
e [; ,
RUSHEA P:' k. SA%0 30O The.SeCWNLETOL tw s PUT “will over-write the present bottom of the stack
8 l: = h v vha gl k 1tnl the two bytes. BINARY first pops two stack values (four
PUTOA WRACE. 1B fom et Tem wud o 'f theh' does a push. Failure to ‘push exactly one byte on
zero and the accumulator. : E
o8 *ul?ne stack will disrupt execution upon ‘usagel -
BINARY Combines the action of POPTWO and

Our next example complements a byte in memory.

address is on the stack when INVERT is executed.

CODE INVERT
HEX
TOP X) LDA,
FF # EOR,
TOP X) STA,
POP JMP,
END-CODE

A new stack value may result from a CODE-definition.
place it on the stack by:

CODE ONE

DEX,

DEX,

1l % LDA,
TOP STA,
TOP 1+ STY,
NEXT JMP,
END-CODE

Change I/0 base to HEX)

Complement accumulator)
Replace in memory) &
Discard pointer from stack
Return to NEXT)

—— — — —, —, -,

3

Code to put 1 on the stack.
Make room on the data'itﬂéﬁ

1w

(Store low byte).
(High byte stored from ! lgngc

These functions are alread

The hytes!

Code to invert a memory pygo)
Fetch byte addressed by stack f

| { Code to put 1 on the stack)
(Push low byte to lachlno stack
T : (High byte to accumulator)

BUSH JMP, (Push to data stack)

.

imp ast version would use PUSHGA :

DE ONE
§# LDA,
PUSHEA JMP,
'END-CODF

high byte of a result to be placed on the stack is zero,
low byte is in the accumulator, the words PUSHPA and
are ¢orivenient. They work the same as PUSH and PUT
to, or replace, the data on the stack with a zero in
bgtc polition and the contontl of the accumulator 1n
oW ytg_polltion.

BLEF SECURITY

Assembler Tests

= =

13c
tlltl nra nado by the aasenbllr to dct-ut orrorl in

ire Snd qyntax. These tests verify that

-

a. All parameters used in CODE-definitions are remg 6“

b. Conditionals are properly nested and pcired. 5 .

¢. Op-codes are valid. ﬁ Word ;CODE is used in a colon-definition to stop

d. Address modes and op-rands are allowable !orltha pilinc and to add assembly code to the definition. The
op-codes. i= as follows:

anxnc ASSEMBLY CODE TO A DEFINING WORD

Note that a possible error not detectable by the assembler, i <name> [FORTH words] ;CODE [assembly code] END-CODE
referencing a word in the wrong vocabulary, e.g., referri ¢
@= in the FORTH vocabulary rather than the Assembler 3 @re the [FORTH words] are run at compile time and the

vocabulary. enbl: code] is executed at run-time.

6.8.2 Bypassing Security ame® is used later to define new words, this assembly

4 address will be put into the code sequence of the new
Occasionally we may want to g.n.rltl:unltIUCtur!d code. W . Thus, the new words will cause this assembly code to be
then control the assembly-time security checks, as follogf ?-y? For example,

First, we must note the parameters utilized by the control
structures at assembly-time. The notation below is tak
the assembler glossary in Appendix D. The "---" indica
assembly-time execution and separates input stack values fra
the output stack values.

} VALUE CREATE SMUDGE C,
:CODE

X) LDA,

PUSHEA JMP,

END-CODE

ec by typing 8@ VALUE EIGHTY , the word EIGHTY is

Sﬁgifj ::; addrB l-zze:dfff-;* d which, when executed with a "dot" to print the stack
AGAIN, ==> addrB 1 ===

WHILE, =-=> addrB 1 --- addrB 1 addri

REPEAT, =-=> addrB 1 addrW 3 ---

"

EIGHTY .

IF, -—> 4 i <cec> -=-= addrI 2 °
ELSE, -2 : . addrI 2 --- addrE 2.
THEN, -—> . addrI 2 ---

or addrE 2 ---

Where the address values indicato the machine locatlou of
corresponding "B"EGIN, , "“I“F, , or 'S'LS!,' and <co>
represents the condition code to select the processor s
bit referenced. The digit 1, 2 or 3 is tested for rondit
pairing.

The general method of security control is to drop off the &
digit and manipulate the addresses at assenbly-tlnl. The
security against errors is less, but the programmer is u{r
paying intense attention to detail during this effort, “

SECTION 7

HANDLING INTERRUPTS IN FORTH

OF INTERRUPT HANDLERS

can easily be handled in FORTH using one of two
" machine level or 1nto:prot¢vo interrupt processing. f
levg+, or canwcntional, 1ntorrupt handler is written
y 1anguage and pcttorls the entire interrupt X
before returning to the inteérrupted routine. NMI i
Ipts must be serviced with a machine level interrupt
; 23 shown in the flowchart in Figure 7-1. The IRQ i
Pts can also be serviced with a machine level interrupt
'hirh is the method ulod tor all AIM 65/40 peripheral
processing. The gon-ral flqwchlrt for using this
the AIM 65/48@ nlcroebnpntar is shown in Figure 7-2.
ach,g;pviﬂt: the fastest response to an interrupt, i
since it 1] written -in assembly lanqulqu it may: t:t- B
dévelop and check out. o ' 3

etive IRQ interrupt has a minimum length assembly
broutine to sor?ico'éhfwintlrrupt and to initiate
processing, which is written in high level FORTH and A
d under control of the FORTH inner-interpreter,

e general flowchart for this approach is shown in

Although the response to an interrupt may be

this approach, the development and checkout may be 2

er and easier since the main interrupt processing is
R'ﬂ:l.

- interrupt dependent software (regardless of the
interrupt’ try to take small steps between checkout.
determine when system interrupts should be disabled
d. Avoid using any interrupt service routine that has
M first tested for logical integrity.

"

!

$F120
| PERFORM
I RESET
PROCESSING

"
I

3

UNMIBM
VECTOR

$FOB1 * |/0 ROM COI N RESET

| SAVE cpusTATUS _I
| savesecstatus |

| o |

1/0 ROM COLD RESET /~ UNMIBR
l'_ VECTOR

[.

IRQ

$0228

OMCOLD RESET
10

HIGH YES

PRIORITY
USER

SYSTEM

PERFORM USER
NMI PROCESSING
AFTER I/0 ROM

’F 'A'&

7-2

PERFORMUS

Pigure 7-1. Machine Level NMI Interrupt Handling -

IRQ?

$FSA7 _y 1/0 ROM COLD RESET,

l

PERFORM USER
LOW PRIORITY
IRQ INTERRUPT
PROCESSING

PERFORM USER
HIGH PRIORITY
IRQ INTERRUPT
PROCESSING

. Ficure 7-2. Machine Level IRQ Interrupt Handling

|
|
|
|
|
1
i
|
|
!
]
1
|
|
1

e NOTE
b-Since the AIM 65/40 system is interrupt
driven, care must always be taken with
-untested user interrupt routines to

AT PROGRAM INITIALIZATION AT FORTH WORD
OR COMPILE TIME ~ INTERPRETATION

_Ij_l_uﬁﬁf‘o FORTH] - avoid hanging up the system. This hang
LOAD ADDRESS OF THE | '}“ i ‘up condition is always recoverable with
INTERRUPT PROCESSING ; | INTERPRET WORD 4 .
WORD INTO INTVECT | ' 4 I T et xeset
v } NE LEVEL INTERRUPT HANDLING

LOAD ADDRESS OF THE
INTERRUPT SERVICE
SUBROUTINE INTO
UIRQBM ($0227) OR

'r:hins level interrupt handler in assembly language
88 a CONRE-definition (see Section 6.1) or as a code
If written as a CODE-definition, assign a name to

INTVECT

UIRQAM ($0229) upt -handler and later address it by that name to load
IS:;IIBI\II;E{:;UEZLREQU upt vector. If written as a code fragment, include
IN INTFLAG y code directly into the dictionary, but first save
CONTINUE K ; ttilg sWddress for later loading into the interrupt
PERFORM The code fragment (also called an orphan) eliminates
INTERRUPT PROCESSING ayerhead of the dictionmary header. In either case,
AT INTERRUPT OCCURRANCE + ?:l}?..thlturup‘t- handler with an . RTI, to return to the
oted ‘program rather than NEXT JMP, which returns
RESTORE IP k. o the inner-interpreter. Before continuing you may
SET INTERRUPT REQUEST F;?E;;('JTLE“?JRUPT : izw ‘the AIM 65/40 interrupt linkage and handling
IN INTFLAG (BIT 7=1) RESET INTERRUPT REQUES lin “Section 6.3 and 6.4 of the AIM 65/40 System User's
INHIBIT (BIT 6=0) N the! R6502 interrupt processing features discussed in
N LA g ~of the R6580 Progfmlng Manual.
-~ IRQ N, :

: _'/49 interrupt vectors normally available to the user

(Before I/0 ROM Processing)
fore Return to Monitor)
Befora I/0 ROM Processing)
(After I/O ROM Processing)

il

50227 (UNMIBM)
$0229 (UNMIBR)
$022B (UIRQBM)
§622D (UIRQAM)

Cromy Cm)

— ———=PROGRAM DESIGN CONSIDERATION

Figure 7-3. Interpretive IRQ Interrupt Handling
7-4 :

7.2.1 CODE-Definition Form ;. “;Winterrupt handler is not named, the starting address
- N hins code is saved on the stack by the word HERE
The form for an interrupt handler written as a CODE-deflp the cading is complete, then it is stored in the
te interrupt vector. Notice that in both the above

HEX ! nterrupt vector was loaded after the interrupt
EOD! <E:“'> —_ | : assembled. This method allows an IRQ or NMI
assem code .
<for 1ntzrrupt) 3 upt occurring immediately after the interrupt vector is
<handler> aded (anc the IRQ interrupt is enabled) to be processed
RTI, or CONTINUE JMP, (CONTINUE must end with an
END-CODE]
' <name> 022X | (Set interrupt vector)

where X = 7, 9, B or D i Interrupt Disable/Enable Words

The use of either the RTI, or the CONTINUE JMP, will de;
the interupt vector used. For the NMI or IRQ interrup
vectors after I/O ROM processing (UNMIBR or UIRQAM), e
RTI, or CONTINUE JMP, (where CONTINUE is the address 1
the interrupt vector by a cold reset) may be used. Fo
or or IRQ interrupt vectors before 1/0 ROM Processing
or UIRQBM), the CONTINUE JMP, should be used (where CO

ther help with control of IRQ interrupt execution you

"ﬁablg want to define two short CODE-definition words to
{a disable only the ‘user IRQ interrupts. Define the

0 interrnpt disable word as

form action tod

: - _ "
the address left in the interrupt vector by a cold reset) e intercapt
Don't forget the END-CODE as it completes the rODE-defi CODE

and makes <name> available for use Feloku-the jnterrupw- 'flﬁinahle the IRQ interrupt. as required with DISABLE .
ler address in the interrupt vector.

The word ' ("tick") fetches the parameter field address " user IRQ-BUARLE: ward an
of the word <name> to the stack and 822X | stores it ir b
appropriate vector. The PFA obtained is the start address
the executable machine code.

7.2.2 Code Fragment Form

i;-enabls the IRQ interrupt as required with ENABLE .
The form for a machine level interrupt handler written ag

code fragment is: A Bcritical applications (such as writing dgtf to a
: isk}, it is sometimes necessary to disable all IRQ

HEX § te except for the user interrupt. This type of masking
ASSEMBLER (Include assembler vocabul: A z i he IRQ Interrupt Priority Mask

HERE (Locate dictionary addres jpecforned uaing ¢ K
<assembler code> | Y, The PRIRTY mask is a write-only register that masks

<for interrupt>

(interrupts below the set level (see Section 2.7.2 in
R ox G0 T i the priority level
RTI, or CONTINUE JMP, (CONTINUE must end with an R MM 65/4¢ Bystem User's Manual). Since P
#22x 1 (Store dictionary address in

onfigurahie with a DIP header, these time-critical IRQ
interrupt vector) P

7-6

sources can be given the highest priority. For eachi IRQ
that is equal or higher in priority of the user Ian.anuri
this PRIRTY mask is not effective and separate enable ang
disable words should be created for each. The following §

code masks out all IRQ sources except for the RM65 B“Sﬂt

ample

ole of a conventional interrupt handler, written as a
ment, is shown in Figure J-1 for the 24-Hour Clock
rooram described in Appendix J.

(DISABLE ALL IRQ SOURCES EXCEPT USERS) o “}'-paaTrUF INTERRUPT HANDLING PROCEDURE
HEX 60 USER UPRIRTY (IMAGE OF PRIRTY) A '3

00 UPRIRTY C! (COLD RESET VALUE) ' :

PF88 CONSTANT PRIRTY :

FF CONSTANT USERMASK (MASK BELOW USER) QEEactuo: Satvice Subroutine
(DISABLE ALL IRQ EXCEPT USER)

: DISABLE (MASK OUT ALL IRQ ABOVE USER)
USERMASK PRIRTY Cl! (MASK BELOW USER) ;

’4 1nimun length interrupt service subroutine using the
described in Section 7.2 to load the AIM 65/48
vectors (and to disable/enable the IRQ interrupt).
ine ,needs only to set bit 7 in the FORTH interrupt
ELAG (at $80A7) to one and return to the interrupted
The user variable UPRIRTY is an image of the PRIRTY ‘reg ﬁﬁ'Th%-gor-.t oF ke NOFRAG waelahds.mare b
Any application code that modifies PRIRTY from the -
value ($80) must also change UPRIRTY to reflect this -

(ENABLE ALL IRQ INCLUDING USER)
: ENABLE (RESTORE ALL IRQ ABOVE USER)
UPRIRTY C@ PRIRTY Cl (RESTORE MASK) ;

Bit No. [}

sources below the highest priority. The DISABLE word di
all IRQ sources except for the user interrupt. Plrif,:
interrupts above the IRQ priority level are disabled:,
this example), then the mask for interrupts below the
stored into the priority latch, The ENABLE word. restore
IRQ sources to the previous state, with the value in U
taken as the priority mask level.

| Ix[xJx[x]x]x

'1F_' i i Don't Care

i bit 6, Interpretive Interrupt
Inhibit
1 = Inhibited
@ = Not Inhibited

bit 7, In erpretive Interrupt
Reqiiest

1l = Req ested

@ = Not Requested

CAUTION

Since the AIM 65/48 peripherals are IRG |
interrupt driven, DISABLE <code> ENABLE |)
should always be paired ai'clbsely as [™R intertupt ecaasing pféc.dPrf_u'f’ f high'.
possible. Interactive debugging of Tt ‘colon=definition word. ‘Load the code field address
code between DISABLE and ENABLE cammot ' | ' : this interrupt handler word into the FORTH interrupt

“rru-t_g;o:essing Word

E ¢

- , :) f INTVECT , a two-byte user variable located at $@PA8 and
be performed. s B
nte that upon FORTH initial entry, or upon executing
COLD , this vector is initialized to $D245, which
ABORT processing.

When FORTH is executing its inner-interpreter, i.a.;'?uﬂ¥ xample
examines the interrupt request and inhibits bits of INTi '
When the interrupt inhibit (bit 6) of INTFLAG is ON/
interrupt request (bit 7) is ignored and NEXT ecxecnte
FORTH word. When the interrupt inhibit is OFF, the int
request (bit 7) of INTFLAG is tested. If the interrup;
request is OFF, then NEXT executes the next FORTH unvd,
the interrupt request is ON, then NEXT passes executi
the word whose CFA is in INTVECT , i.e., the interpre
interrupt service word, and sets the inhibit bit.

mplc :of an interpretive interrupt handler is shown in

: Only two short CODE-definition words are defined;
et the request bit in INTFLAG when an IRQ interrupt

= to VIA Timer 1 timeout, and one to clear the inhibit
'fINTPLhG when the interpretive interrupt word completes

¢ to the 24-Hour Clock to use interpretive interrupts
‘eplacing the code interrupt handling routine with a
igfinition or code fragment service word, writing the

-iva interrupt arm and trigger words and then the FORTH
ipt processing word. The conventional interrupt handler
to RTI, 1is replaced with two smaller code

The interpretive interrupt word now processes the service
required without interruption (inhibit bit is set). Whesn
interpretive interrupt word has finished, it must reset;O
inhibit bit to zero, restore the interrupted word to-th%
interpretive’ pointer, and jump to NEXT to continue th one a code fragment and the other the ARM word that
interrupted execution. Remember to keep the assembly ink i the end of the FORTH' interrupt processing word.

code as short and simple as possible. For example, if il

reading data values at specific times, read them and put ide fraoment is the interrupt service subroutine that is
away in, say, a PORTH variable using a small interrupt id with each IRQ interrupt. It sets the interrupt

for just that purpose. Meanwhile, a high level FORTH roy it ‘in. INTFLAG and clears the VIA's IRQ request bit
examines that variaple for new data and processes it when ed?tho interrupt. This code fragment serves as a
appears. FORTH is fast enough for much of the work to he example of all that is necessary to do at the code

in high level which will speed program development timef. or = wide variety of high level FORTH interrupt words.

If FORTH is not fast enough for some purposes, a prwerful
nique is to first develop the program logic in high lev
and test the logic at reduced speed. When it works correct
code in assembly language only those FORTH words that are
required to bring the speed performance to the desired f;
By this technique, program development time is rediced ¢
minimum. E

word ARM turns OFF the interpretive interrupt

t (bit 6) of INTFLAG , restores the FORTH

'va:pointor into the interrupted FORTH word and then

FORIH's inner-interpreter NEXT to continue

ARM could be written in high level FORTH using

| and ; words but it must not be interfered with by a
3 interrupt. This interference cannot occur if the

s arg done within a CODE-definition.

intarpretive interrupt word for the 24-Hour Clock is
ther PORTH word, +IL is used often by T+ . These
i nomprise the entire interpretive lntattupt service
does just what the CODE-definition interrupt

id+ i.e., increment the hundredth's of a second byte
when it reaches 10@, increment the seconds, minutes,

7-11

etc. The utility word +IL increments a certain byte hy Points to Remember

given amount and checks it against the given limit. If the .

limit is exceeded, it zeros the byte and returns a true ' Define and code all required words before loading
so that the next byte can be incremented. The arauments oj 'ﬁuTvﬁr? , or requesting an interpretive interrupt.

stack for +IL are: - required CODE words are (see text for more detail)
limit 1- byte-address increment --- T/F k fip the IRQ or NMI code fragment
E 2 - the ARM word to rearm the interrupt, etc.
The CODE-definition word ARM stops execution of T+ . 1h 3,- the ENABLE and DISABLE words for IRQ (if using

word [switches FORTH from the compiling state to the " | IRQ).

interpreting state so that the word SMUDGE will be exe ;

which makes the name of T+ available in the FORTH dictig & colon-definition level FORTH word is also required to
* rur. at interrupt request. The last word executed by

In order for the interpretive interrupts to work, the codg this word is ARM , above.

field address (CFA) of the interpretive interrupt word must 1

loaded into INTVECT . This is accomplished in this examp o= that NMI and IRQ do not contend for the
the following: 8 iprerpretive interrupt -- there is no stacking and they

can get lost.

' T+ (Obtain the PFA of T+) 4 i

CFA c ! &

ASSEMBLER E s:::g; :: :;otganggllssclblor vocabul ‘Do not alter any of FORTH's floating buffers (at HERE
INVECT { Obtain the address of INTVECT) d PAD) or any of the USER variables (BASE , DPL ,
1 Store the CFA of 'T+' in INTVECT |}

FORTH (Return to the FORTH only vocabulary s etc.) or leave anything on the stack between

Inhpr rupte
which follows the definition of T+ . _f
‘Use caution when using interpretive interrupts -- think

Note that if the AIM 65 is executing machine code for an ‘the sequence through before acting. If it does not
appreciable amount of time and not frequently executing Wi ‘operate correctly, perhaps you are overwriting
the FORTH interrupt routine will not be executed and int ‘sonething that FORTH needs. Try using a do-nothing

requests may pile up or be lost (depending on the interrupt word like
service subroutine). This can happen when using the printel 3
waiting for a key. .t DUMMY ARM SMUDGE

The proper choice of machine level or interpretive (or hoth ' for the interpretive :d and see if that
interrupt service routines can make a very flexible approach vorks.,

control situations or understanding computer interrupts. i
E . The X register contents must be saved if X is used

- during the interrupt processing, but not in XSAVE or
‘any of the other regular FORTH "registers". For
gyxamnle, use the Return Stack instead, such as TXA,

SECTION 8

PROGRAMMING THE R6522 IN FORTH

in the AIM 65/40 System User's Manual explains how t
he R6522 Versatile Interface Adapter (VIA) in R6500

languace. FORTH can be used to program the VIA in a

anner using its built-in assembler, however, in most
h-level FORTH can be used. This section repeats mos
amples described in the AIM 65/40 System User's Manua
s them in FORTH rather than assembler, except for a
Stances where assembler is preferred.

iques shown in this section can easily be applied to
g¢ -peripheral devices such as
'___fo-riph-ul Interface Adapter (PIA)

/Asynchronous Communications Interface Adapter (ACIA
‘CRT Controller (CRTC)

imilariy structured I/0 or peripheral control

JIA ORGANIZATION AND REGISTERS

‘the R6522 is organized as shown in Figure 8-1 with
ers ijoccupying 16 addresses as listed in Table 8-1.
ses shown correspond to the user R6522 on the AIM

Module, To summarize, the VIA operates as determined
ontents of four control registers.

Data Direction Register A (DDRA) determines whether
‘the pins on Port A are inputs or outputs.

H Direction Register B (DDRB) determines whether
‘the pins on Port B are inputs or outputs.

INTERRLPT
CONTROL

Table 8-1.

R6522 Memory Assignments

Function

FLAGS

Data
BUS

DATA

BUS
BUFFERS

IFFR)
ENABLE
HER]

PERIPHERAL
IPCRI
AUXILIARY
(ACRY

FUNCTION
CONTROL
LATCH LATCH
HES ITILH) ITILL)
A P e I o
" COUNTER COUNTER
B S—— MCHL | [TIcL)
O ——— = -
== CHIP TIMER 1
= ACCESS
RS0 | EOINTROL TIMER 2
Pa—r—h LATCH
Roi———f {TaL L)
Rav————t} COUNTER | COUNTER
1T2C HI i T
i

Fiqure B8-1.

R6522 VIA Block Diagram

8-2

INPUT LATCH
{IRAL

OUTPUT
1oRA)
DATA DIR

IDDAAL

BUFFERS
Pa)

POAT A REGISTERS

HANDSHAKE
CONTROL

SMIET AEG -—
1SR}

PORT B REGISTERS

INFUT LATCH
1A

DATA DIR

K—

IDDAF

BUFFERS .
{1 1]

Port B Output Data Register (ORB)
Port A Output Data Register (ORA) Controls handshake
Port B Data Direction Register (DDRB) 0 = Input
Port A Data Direction Register (DDRA) 1 = Output

Timer
T1

T
T1
T
T2
T2

RIW =L
Write T1L-L

Write T1L-H & T1C-H
TiL-L—-TiC-L

Clear T1 Interrupt Flag
Write T1L-L

Write T1L-H

Clear T1 Interrupt Flag
Write T2L-L

Write T2C-H
T2L-L—-T2C-L
Clear T2 Interrupt Flag

Shift Register (SR)

Auxiliary Control Register (ACR)
Peripheral Control Register (PCR)
Interrupt Flag Register (IFR)
Interrupt Enable Register (IER)
Port A Output Data Register (ORA) No effect on handshake

R/IW = H
Read T1C-L

Clear T1 Interrupt Flag
Read T1C-H

Read T1L-L
Read T1L-H

Read T2C-L
Clear T2 Interrupt Flag
Read T2C-H

[(User VIA), B(System VIA), C(Keyboard VIA)

L LR

The I ripheral ¢ rol Regisi ' (PCR) determines i

n establish directions as follows:
polai ty of tran ion (i.e., 'ising edge or fa :

edge) is recogni on the ir It status lines (ci A:'8"' in a bit in the data direction register makes
CBl) md how the her status ines (CA2 and CB ;the corresponding pin an input.
oper: e. 3 1

For example, a '@' in bit 4 of data diroctlou reglstor
The Auxiliary Control Register (ACR) determines -A makes pin PA4 into an input.
whether the data ports are latched and how the 5

and shift register operates.

'h:'l' in a bit in the data direction register makes
! tha corresponding pin an output.
Note that there is a data direction register for each side f
only one pair of control registers. Ports A and B are alr For example, a '"1' in bit 6 of data direction register
identical. oOne important difference is that Port B ran 180 & makes pin PB6 into an output.
Darlington transistors which are used to drive solennids |
‘relays. We will generally use Port A for input and port
output in our examples.

'EénSterring data, ;;;;nber that the R6502 micro-

- hag no specific I/0 instructions. Storing data in a
‘that has been designated for output is equivalent to

‘he data to the attached output device. Loading data

Y12 port that has been designated for input is

lent to reading the data from the attached input deviee:
struction that acts on memory can serve as an I1/0

or if the specified address is actually an I/0 device
be careful of the exact significance of such instruc-
riting, reading, and documenting R6502 programs.

8.2 SIMPLE I/0 WITH THE VIA
8.2.1 Considerations

Since RESET clears all the VIA registers, disabling all
interrupts and clearing all control lines, we can dxscus"
simple I/0 referring only to the data registers and the
direction registers. So simple I/0 can be performed with ¢
R6522 VIA as follows: Bxamples
Establish the directions of the ins by storing t
Proper values in the data direc »>n registers.

four examples can be done in almost exactly the same
TE as they are done in assembler -- they are

here as a bridge between assembler techniques and

B. Transfer data by moving it to or from the data rst, the assembler label equivalences are emulated

registers. Jme FORTH constants:

‘Note that most programs only have to execute .top “a once i'
the directionality of most input and output devices is fi
(i.e., you never want to read data from a display or printer
write data to a switch or paper tape reader).

~ ;{ R6522 ADDRESSES)

 HEX

FFAD CONSTANT UDRB

FFAL CONSTANT UDRAH
 FFA2 CONSTANT UDDRB
 FFA3 CONSTANT UDDRA
. [FFA4 CONSTANT UTIL

{PFAS CONSTANT UT1CH
| 'FFA6 CONSTANT UTILL
FFA7 CONSTANT UTILH

8-4 8-5

FFA8
FFA9
FFAA
FFAB
FFAC
FFAD
FFAE
FFAF

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

uT2L
UT2H
USR

UACR
UPCR
UIFR
UIER

UDRA 11

Then the examples are done as FORTH colon-doflnitioﬁ;i'“
definitions will do exactly what the assembler code doas
the same example. Note that we are in HEX the whole |
also, since.PORTH uses page zero for its parameter sta_}
not a very good idea to put things in there indiscrimine
After presenting these examples in exactly the same for
assembler they are done again in a way that completely
any conflict with the FORTH stack area. Note also tha
comments have been included beside the FORTH words for
understanding. In actual coding, you should include th
comments along with the code. Remember that rnmmpnPQ—w
take up any space in the compiled FORTH object code.

i h

a. Petch da om a simple jut port (e.g., from

of switc! r a keypad) 1 store it in memory
location
e C
HEX
: INDATA
@ UDDRA C! Set DDR A to Inpu
UDRAH C@ 48 C! ; Fetch input data a
b. BSend data to a simple output port (e.g., to set

t
hav

displays or relays) from memory location 48.

: OUTDATA
FF UDDRB C!

(Set DDR B to outputs
40 C@ UDRB CI ;

(Petch data and ~utpyl

<]

You can mix inputs and outputs on a single port by =st
the directions of individual pins appropriately. Note
can read the states of data pins even if they have been ds
nated as outputs. Port B side is buffered so that it ¢
always be read correctly; however, Port A side is not buf
so that it can only be read correctly if it is lightly lg
(or designated as inputs).

lie & or B I/0 port data direction addresses.
INPUT

-RTH in the direction of peripheral control.

h'ﬁﬁmples are all perfectly fine FORTH words and will
y 'do not take advantage of FORTH's unique abilities
jgo to illustrate the point, they are done over now

RTH style. Note that with the proper choice of

~anc order, the examples are more readable and nearly

sh what they actually do. Also, since proper FORTH
t .:always uses the parameter stack for temporary
avgrused it here as the comments indicate.

HEX
@ CONSTANT BPORT
1 CONSTANT APORT

: INPUT -=-=- b. Get Data from Port)

FFAD + C@ ;

:+ OUTPUT b ---. Output Data To Port)

‘FFAD + C! ;
.3 DIRECTION (b---, Set Data Direction)

FFA2 + C| ;

: EX1 (---b. Set Output and Input Data)

@ APORT DIRECTION APORT INPUT ;
1 EX2 (b=—-. Set Output and Output
Data)

FF BPORT DIRECTION BPORT OUTPUT ;

onstants APORT and BPORT are defined in such a

eir numeric value can be added to a fixed value to

Next,
OUTPUT and DIRECTION are defined to
cqrrect port or direction register and then fetch
7 .or store direction information. In this manner,

¢ defined convenient words that talk to or control

the AIM 65/4@ SBC module User VIA.
f PORTH just as VLIST or DUMP

These words are
are and extend
Thase
uued in a natural way in the new version of EX1

nd in the examples to follow.

8~7

%

RECOGNIZING STATUS SIGNALS Examples

If the I1/0 device is more complex, we may not be able t now look at some examples:
transfer data to or from it at will. 1In the input case '
processor must know when new data is available (e.g., 2
been pressed on a keyboard or a tape reader has read anathy
character). 1In the output case, the processor must knoy
whether the device is ready to receive data (e.g., a pr;P

. Ferch data from an input port with an active high-to-
. Jov DATA READY strobe and place the data in memory
Jleration $40.

has finished printing the last character or a modem has : EX3
i @ UDDRA C! (Set DDR A to inputs)
completed the previous transmission). @ UPCR CI (Set CAl Flag on falling edge)
BEGIN
UIFR C@ 2 AND
8.3.1 Considerations UNTIL (wait for strobe occurance)

UDRAH C@ 48 C! ; (Petch data and store in memory)
Normally, the input or output device providaa a status

‘Ciearing the Peripheral Control Register is unneces-
sary if the routine is starting from a reset. Note
&haf reading the input Data Register clears the
interrupt flag so that it is available for the next
DATE READY signal.

the readiness of the device. The microcomputer I/0 sec
must recognize the transition and allow the processor to
determine that it has occurred. :

You can handle this kind of I/0 with the R6522 verqarxL

Interface Adapter as follows: Senc data to an output port with an active high-to-low

PERIPHERAL READY strobe. Get the data from memory

X locat d .
a. Attach the peripheral status input CAl or CRl, _fpra 'on $48 and send it when the peripheral is veacy

: EX4
b. Determine which edge on the status line w{l# FP UDDRB C! (Set DDR B to outputs)
recognized by assigning a value to control reg :Bg§:R ct (Bet CB1 Flag on falling edge)
bit @ (CAl) or 4 (CBl). A value of zero in th UIFR CE 1@ AND
position means that the interrupt flag will be | UNTIL (Wait for strobe occurance)

8 cC % d
a high-to-low transition (or falling edge). 4¥ ct vpasicl U FREIOAEE AR oliput 1)

of one means that the interrupt flag will be saf
low-to-high transition (or rising edge).

cte that sending the data to the Output Data-ﬂigitttr
clears the interrupt flag so that it is available for
L the next PERIPHERAL R IADY signal.

¢. Determine whether a transition has occurred b .
axauinlnq bit g o (Cll) or 4 (CBl) of the infern

register. The bit will be one, if a trans‘ltm_.l

For the second version of EX3 and EX4 the word
?STROBE has béen defined to wait in a BEGIN ...

occurred. UNTIL loop until a given bit in the IFR register
: turns ON. To help provide readable code the special
d. Reset the : 't flag by reading or writingSeh Word @IFR was defined to fetch the IPR register from
correspond! | register. The flag is themf" < stack to be ANDed with a copy of the given mask
to be used next operation, : ta. The word loops until the result of the AND

8-8 8-9

operation is true (non-zero) and then exits and drop . bv setting Bit @ (Port A) or Bit 1 (Port B) of the
the extra copy of the mask byte. With similar Auxiliary Control Register. The input data will the
motivation for clear coding, the word IPCR is :ﬁbe latched by the active transition on CAl or CBl.
defined to store a given byte in the PCR for = !

up the desired event. RODUCTNC OUTPUT STROBES

pheral may also require information about when a
33 occurred or whether the port is ready to receive
example, devices such as digital-to-analog conver-
nly require a LOAD pulse to enter data into the

: IPCR FFAC C| ; (Set I'CR Reaister)
: @IFR FFAD C@ ; (Fetcli IFR)

t ?STROBE (M ---,) Wait for Strobe

s

(
BEGIN (Wait:ng) B
DUP (The llask) 4 A multiplexed display requires an output signal
@IFR AND (Pick Bit) . -
UNTIL (It iu on) ! t3 the next output properly. A communications device
DROP ; (Extrii Mask) signal to indicate that an input buffer is available
: EX3 output buffer is full. Output signals may also be
@ APORT DIRECTION - turn devices ON or OFF, activate operator displays,
@ IPCR (CAl Falling)
2 ?STROBE (CAl Interruptﬂﬁ operating modes.

APORT INPUT ;

. EX4 Zugsideratlons

FF BPORT DIRECTION :

@ IPCR (CBl Falling) : Ea

10 ?STROBE (CB1 Interrupt?)l pdle this kind of I/0 th the R6522 Versatile

BPORT OUTPUT ; ace Adapter as follows:

Examples 5 through 8 are all modifications of 8
and EX4 and use [PCR to setup for various §
protocols.

Attact the control output to CA2 or CB2.
" Make CA2 (CB2) into an output by setting control
“register bit 3 (7).

Petch data from an input port with an active loy

1
high DATA READY strobe and place the data on the
stack.]

‘Make CA2 (CB2) into a pulse by clearing control
tegister bit 2 (6) or into a level by setting that

: EX5

@ APORT DIRECTION

1 IPCR (CAl Rising) CA2 (CB2) is a pulse, make it into a handshake
2 ?STROBE (CAl Interrupt?)

Slgnal (low from the time the Output Register is read
or written until the next active transition on CAl
(CB1' * by clearing control register bit 1 (5) or into
‘=ingle-cycle strobe by setting that bit.

APORT INPUT ;

Note t| the VIA has | lnput and output 1a
The ou! : latches are ts enabled; outpnt
latche: ien it is sto | an output data re
The in] latches, if ire needed, can bhe CA2 (CB2 |s a level, determine its value by

clearing or itting bit 1 (5).

8-10 8-11

8.4.2 oOptions e Peripheral Control Register bits are

The options are:

bits 4-7 = @ since CBl and CB2 are not use
bit 3 = 1 to make CA2 an output
a. CA2 goes low when the processor transfers data
from Output Register A, and goes high when the bit 2 = 0 to make CA2 a pulse
active transition occurs on CAl. The signal bit 1 = @ to make CA2 a handshake
{3 ; 3 acknowledgement that remains low
indicate that the port is ready for more data ULl the nert AceivelEransiElon oh
- output data is available. The peripheral's ras CAl
H then indicates that it has sent more data or B Bl g % 1 tn uRke the Xative transitisn on

g processed the previous data. CAl a falling edge (high-to-low

transition)
|

\Fetch data from an input device that requires a brief
'DATA ACCEPTED strobe for multiplexing or control
purposes. Place the data on the stack,

y b. CA2 goes low when the processor transfers dati
¢ from Output Register A and goes high after one
cycle. This signal indicates that an input o
operation has occurred and can be used for mul

B ing. : EX8
. @ APORT DIRECTION
i3 : A IPCR { cAl Falling)
C. CA2 is a level controlled by the value of cont 2 ?STROBE (CAl Interrupt?)

register bit 1. This signal can provide an APORT INPUT ;

i high or low pulse of arbitrary length. It can
- to load registers, turn devices ON or OFF, or &g
operating modes. :

A
Here bit 1 of the Peripheral Control Register is set

ito 1 to make CA2 a brief strobe lasting ocne cycle
ffter the reading of Port A Input Data Register.
Send data to an output device that requires a
‘handshake signal and that produces an active
‘low-to-high PERIPHERAL READY strobe. The data is
assumed to be on the stack and is sent when the

(! 8.4.3 Examples

A1 Let us now look at some examples:

a. Fetch data from an input device that requires i

herlpheral is ready.
handshake signal and that produces an active !

_ i high-to-low DATA READY strobe. Place the dats 23 : EX9

i Stack @ APORT DIRECTION
= 9¢ 1PCR (CBl Rising)

18 ?STROBE
) e APORT OUTPUT ;

@ APORT DIRECTION !
8 IPCR (CAl Falling) ‘The Peripheral Control Register bits are:
2 ?STROBE (CAl Interrupt?) !
APORT INPUT ;

bit 7 = 1 to make CB2 an output

bit 6 = @ to make CB2 a pulse

bit 5 = @ to make CB2 a handshake acknowledge
that remains low until the nlxt ac
transition on CB1

J“Send data to an output device that must be turned ON

. before the data is sent and turned OFF after the data
_ is sent (a logic 1 on a control line turns the device
- ON). The peripheral produces an active low-to-high
'PERTPHERAL READY strobe. The data is assumed to be on
~ the stack and is sent when the peripheral is ready.

bit 4 = 1 to make the active transition on uBm
rising edge (low-to-high transztlan;

bits 0-3 = @ since CAl and CA2 are not usedeé

Send data to an output device that requires a briaf

OUTPUT or DATA READY strobe for multiplexing or 3 : EX12 oN Sat €82 Highy
control purposes. The data is assumed to be on the :: ?;g:f DIRECTI E s:: by rlgg on Rising
stack. i Edge)
10 ?STROBE: (Ready?)
BPORT OUTPUT
: EX10 D@ IPCR ; (Turn off)
FF BPORT DIRECTION
A@ IPCR (CB2 Pulse)

BPORT OUTPUT ;

pplications, such as portable equipment, the output

4 : t to it. 1In
Here bit 5 of the Peripheral Control Register is sel pieral is only turned ON when data is to be sen
to 1 to make CB2 a brief strobe lasting one cycle pplications, the processor must issue an OUTPUT REQUEST
after the writing of Port B Output Data Register 3 gceive an acknowledgement before sending the data.

1bRTH versions of EX1@ , EXll and EX12 , we use the
y defined DIRECTION , IPCR , INPUT , OUTPUT and
words to our advantage. These extensions to AIM 65
i nake coding most types of VIA I/0 words very convenient.
? examples a further refinement of naming a constant @

Petch data from an input device that requires in 1
active-high START pulse. The device produces an

active high-to-low DATA READY strobe. Place the dat
on the stack.

: EX11 nd FF ALL-OUT would result in the very readable
@ APORT DIRECTION

C IPCR (Reset)

E IPCR (Bet Start) 3

C | PCR { Reset) ~ ALL-OUT BPORT DIRECTION

2 ?STROBE .

APORT INPUT ;

Here bit 2 of the Peripheral Control Register is sU
to 1 to make CA2 a level with the value given by bi
of the Peripheral Control Register. This mode can b
used to produce pulses of any length and pniarity;
is called the manual output mode because there is nol
automatic pulse information.

ALL-IN APORT DIRECTION

In a typical application, an analog- to-digital
converter or data acquisition system usually nneds
START CONVERSION pulse to begin operations,

8.5 VIA INTERRUPTS
8.5.1 Considerations

You can easily use the R6522 Versatile Interface Adapter
interrupt-driven mode. Figure 8-2 shows the Interrupt E
Register (IER). Any of the various interrupt sources ca
enabled by setting the corresponding enable bit. Note

most significant bit controls how the other enable bhits &
affected:

§522 INTERRUPT ENABLE REGISTER (IER), LOC. $SFFXE
- 76543210

LTI T T 1T
E 3 ‘L CA2 Interrupt Enable

— CA1 Interrupt Enable
L SRinterrupt Enable
: CB2 Interrupt Enable
CB1 Interrupt Enable
T2 Interrupt Enable
T1 Interrupt Enable
IER Set/Clear Control

If IER7 = @, each '1' in a bit position clears an en:
bit and thus, disables that interrupt.

If IER7 = 1, each '1' in a bit position sets an inta;
bit and thus, enables that interrupt. i)

Zeroes in bit positions al;;;; leave the enable bit;”
they were. '

|

8.5.2 Examples ;

IERRUPT ENABLE BITS (IER0-6)

8 =0 Disable interrupt

i Enable interrupt

RSETICLEAR CONTROL (IERT}

=0 Foreach data bus bit set to logic 1, clear corresponding IER bit
= 1 Foreach data bus bit set to logic 1, set corresponding |IER bit.

ble: IER7 is active only when R/W = L; when R/W =H, IER7 will read
'1-: 1.

For examples of how to set up the 'VIA's Interrupt Enabl:
Register, the word IIER {is defined to make things =s simp
as possible. The word takes an argument from the stack uh
like the previous examples, is an 8-bit pattern to store’
Interrupt Enable Register. .

: IIER (Put Byte)
FFAE C! ; { In IER)

@+ Enable CAl interrupt; disable all others.

: EX13
7D IIER B2 IIER ; = =

The first operation clears all the interrupt enLﬁ
except CAl. The second operation sets the 2l
interrupt enable.

.ﬁigurs 8-2. R6522 Interrupt Enable Register (IER)
i 8-17

i
A

b Enable CBl and CB2 interrupts; disable all othe 8

: EX14
67 I1IER 98 |IER ;

Note that we could disable all interrupts in the
step. :

c. Disable CAl interrupt; leave others as they were,

8522 INTERRUPT FLAG REGISTER (IFR), LOC. $FFXD
76 5 4 3 2 10

: EX15
1 !IER ;

d. Disable CB1 and CB2 interrupts; leave others as

L CA2 Interrupt Flag
: EX16] CA1 Interrupt Flag
18 IIER ; : SR Interrupt Flag
_] CB2 Interrupt Flag
The processor can determine which interrupt has occurr — CB1 Interrupt Flag
examining the Interrupt Flag Register (Figure 8-3). Not T2 Interrupt Flag
examining bit 7 determines if any interrupts have occurre T1 Interrupt Flag
the VIA. Note also, the conditions for clearing the inter IRQ Has Occurred
flags. ' |
Set By Cleared By .

~ Active transition on CA2 Reading or writing the ORA
- Active transition on CA1 Reading or writing the ORA

Completion of eight shifts Reading or writing the SR

- Active transition on CB2 Reading or writing the ORB
" Active transition on CB1 Reading or writing the ORB

A typical polling sequence in regular R6582 assembly T'?’""
would be: 9
LDA UIFR #ANY INTERRUPTS ON THIS VIA?

BPL NXT iNO, LOOK AT NEXT POSSIBLE SOURCE

ASL A ;IS INTERRUPT FROM T1 . Time-out of Timer 2 Reading T2C-L or writing T2C-H
i " Time-out of Timer 1 Reading T1C-L or writing T1L-H

BMI TIML jYES, GO SERVICE T1 INTERRUPT . AnyIFRbitsetwithits Clearing IFRO-IFR6 or

ASL A 71IS INTERRUPT FROM T2? corresponding IER bit IERC-IER6

BMI TIM2 ;YES, GO SERVICE T2 INTERRUPT also set =

ASL A IS INTERRUPT FROM CB1?

BMI CBl iYES, GO SERVICE CBl INTERRUPT

| Fiaurr 8-3, R6522 Interrupt Flag Register (IFR)

8-18 8-19

b

below using the PORTH assembler. Note that this code is

structured and therefore does not require labels.

HEX
FFAD LDA, (IFR)
#< NOT IF, (No VIA Interrupts)

<assembly code>
<to look for next>
<source of possible>
<interrupt>

E

(T1 Interrupt on?)
<T1 interrupt> (Yes)

<service assembly>
<code>

ELSE,

_«A ASL,

@< IF,
<T2 interrupt)
<service assembly>

T2 Interrupt on?)

<code>
ELSE,
.A ASL, (CB1 Interrupt on?)
#< IF, (Yes)

<CBl interrupt>
<service assembly>
<code>
ELSE,
(Etc.)
THEN,
THEN,
THEN,
THEN,

B8-20

© FORTH assembler code will do exactly what the regular

but even polling of interrupts can be done on a high

FORTH.

Using the word @IFR defined for EX3 to

‘contents of the Interrupt Flag Register we then

: ?IRQ
EIFR 88 AND ;

(From VIA)

ylelds a true or false value depending on the state of

the IFR.

¢ 70N

. OVER AND ;

POLL-VIA

. ?IRQ IF

€IFR 40 70N
IF
© <T1 interrupt>
{service FORTH>
- <eqde>
: ELSE 20 ?0N
IF

<T2 interrupt>
<service FORTH>
<code>
ELSE 1@ 70N
f IF
<CBl interrupt)
<service FORTH>
1 <code>

(oéc.)

THEN
THEN
THEN
DROF

& THRN

Then a direct form of the polling sequence

(Mask bit on?)

(Poll for VIA Interrupts)

(Any Interrupts on?)
Interrupt on?)

{71

T2 Interrupt on?)

CBl Interrupt on?)

(Copy of IFR)
(Done)

8-21

SECTION 9

NOTES ON STYLE AND PROGRAM DEVELOPMENT

£ other programming languages FORTH is not particularly
o someone who is not familiar with it, Because FORTH
ie among programming languages even experienced

s have difficulty at first -- FORTH is unlike their
srienca, After reading this manual FORTH should be
idable and some practice in coding will sharpen the
key to easily readable PORTH code lies in logical
j of key words and in choosing appropriate names for

RTH code should read in an almost natural English way
fiicher level key words if these practices are followed.
eans writing a word as a collection of lower level
actually name the functions performed by this word.
‘level words in turn are made up of other still

| words which more precisely define the task

shed by the word. Finally, you will arrive at a level
y mostly regular PORTH words and is the most

l_lcval; not particularly obvious to anyone but the

grammer, and then only when coding the word and for a
ime afrerwards

r equally qualified programmer at any time.

simple statements using the appropriate FORTH word
cently where you can. Be a bit more detailed than
lecessary when you write them, since they will be a
ire later if you don't. However, comments are not
s to ‘the novice or non-programmer. Too much verbage
e-‘program flow in a sea of text. Commentary

on ‘that must speak to the non-programmer should be
sewhere in a companion document.

9-1

;
i
4

SR R N e T

Comments given at the start of a FORTH word should includ 'ﬂHowPUer, miles is not the odometer reading, it is th

simple statement about what the word takes from and leay miles traveled, and the odometer will require a

the stack. enrrectinn factor, so

miles = (nl-u')} m, = last odometer readin

m; = current odometer
reading

To illustrate the style and comment forms described = b K = correction factor

at the many examples elsewhere in this manual and you wi i

the top-down approach in use, and reasonable nnmmentsj}‘ itherefore;

be included on a 40 column printer. This section take

example simple problem of figuring the miles a car ‘travel i mpg = (my-Rg) kp P = price

gallon of fuel from data kept in a common antomobile a w8

book.

9.2 EXAMPLE PROGRAM

But price is either in cents per gallon or cents per
. liter, and since you are probably interested in miles
- per gallon you will have to multiply any cents per

S liter prices by 3.785 to correct to cents per gallon.

a. Problem Definition
Start with the definition

miles traveled A 2131“311f

BP9 * <SalTons us

which is fine if you record mileage and oall | mpg = —=-2_ for cents/gallon

you aren't particular about accuracy. FPor t
automobiles, an error of a tenth of a oallon
an error of 0.5 mpg in the result.

For best accuracy you should accumulite milea f .; mpg = t‘-l':!)k (37852, for cents/gallon

gasoline used over several fill-ups. This av

your error in filling the tank non-uniformly ang

by recording the data carefully you can have i_ . To be efficient when doing more than one gas mileage

accurate picture of your gas mileage. p ';check, the current odometer reading should be saved as
. m, for the next calculation.

mpg = -miles gallons = 2mount,

gallons - price 'u:§951153
e i
so : . 1o correctly scale the calculation for integer
; bomputation, ou must first decide the precision is
,bg = ;E%%%%— = Miles(price) _ desired.in the answer. If you want mpg to a tenth of
price amount ! s mile per gallon, distance in miles, price to a tenth

" of a cent and amounts in cents, then

It is not necessary but a convenience to use two
‘memory storage locations in this calculation, one
constant for k and a variable where we can store the
‘current odometer reading (m;) to use as the last

(m,-m_) p(10)
mpg (10) 14

If we enter p without the decimal, we get p time
automatically and the result will come out in
mile per gallon as desired.

. odometer reading (mg) for the next calculation.

Start with the word ,MPG and use the normal FORTH
output formatting words except include a decimal point
in the output text string with the phrase 46 HOLD
‘and embellish the result with the ending "MPG" .

Program Design, Coding and Checkout

If the data are recorded in a data book as miles
price, and amount, it is convenient to enter thes
written, therefore the stack would look like t

Enter the program source code into the AIM 65/4@ Text
Buffer and compile from there. If any error occurs

m; pa ;ﬁring text entry, it will be easy to correct the
source code and recompile. Notice that blank lines
i‘;nter <SPACE> followed by <RETURN>) aid in source

iodp readability.

and they would all be 16-bit numbers.

Given the data on the stack as described above
odometer correction and price adjustment neces

the principle word looks (without any comments) |
this: j

{E}
EDIT FROM=2008 TO=3FFF IN=<RETURN>
: ‘(MPG PROGRAM)
: . (CONST & VARIABLES)
: ?MPT ROT TRUE-MILES ROT CFNTS/GAL | 103 CONSTANT K
ROT */ .MPG ¢ VARIABLE OLD

: .MPG (MPG * 10 ---. DISPLAY MPG)
5->D <# # (1 DIG.)

46 HOLD (DEC. PT.)

#5 #> (FINISH IT)

CR TYPE ." MPG " ;

CR ." DONE"

FINIS

where the ROT words bring the stack values up ¢t
operated on by the fairly obvious correction a
adjustment words. The */ computes the final
operation ' :

mp
a

END
={Q}

{5}
AIM 65/ FORTH V1.4
SOURCE < TURN> IN=M
DONE

0K

and the word .MPG prints the answer out in a
format with a decimal point where we expect 1t

Now that we have the 'top' level structure, let
define the lower level words TRUE-MILES . CEN!
and .MPG . p

18

The test of .MPG puts a few numbers on the sta- - <ESC>
before the test number 456 and then execute .)Mp - (ESC)

T}
along with .S to see that the stack contents h i MPG PROGRAM)
not been altered. ={B}
FINIS
123 456 MPG .S ph L S
;s.s MPG ={R} IN=<RETURN>
: ok : TRUE-MILES (ODOMETE ADJUST MILEAGE

OLD @ (OLD #)

OVER OLD | (NEW #)
- (MILES)

K (CORRECTION)
106 */ (ADJUST) ;

With .MPG working correctly, define TRUE-MILE§
which uses */ as a scaling operator.

t CENTS/GAL (PRICE --. CONVERT PRICE)
DUP (FOR COMPARE)
1000 < (? < §1.00)
IF (CENTS/LITER)
3785 1@@ */
THEN ;

ly) is multiplied by the miles traveled (M - oLD
and then divided by 18@. The decision point for
CENTS/GAL tells if the price for a gallon -or liter
$1.00 and should be correct for a while yet, The
adjustment for liter prices is

: ?TMPG (ODO PRICE AMT '« DISPLAY MPG
ROT (GET ODOMETER)

3785 TRUE-MILES .
PYgon ROT (GET PRICE)
CENTS/GAL

ROT (GET AMOUNT)
*/ (COMPUTE MPG)
.MPG (& PRINT) ;
<RETURN>

CR ." DONE"

={0}

{s}

AIM 65/40 FORTH V1.4
SOURCE <RETURN> IN=M
DONE
OK

which results in cents per gallon equivalent.

Escape and re-enter the Text Editor. Go to ‘he be
and read in the rest of the program. After valids
the source code entry, exit the Text Editor, ente
65/4@ FORTH and compile. You can quickly enter and
compile the program if you do not code the cnmmeﬁ:
but don't forget the terminating ; for each word,

1 any errors occur during compilation, check the
zqourre code for entry errors. Compile each word
'separapru, if needed, to verify proper coding by

brar&stln& each word before the word (before the :

" using the Monitor C command to move the top of the
" Teyr Buffer, and after the word (after the ;) with
i FINTS

e.

Program Final Testing

The testing of ?MPG involves entering some kno'f
values into it and observing the results. Don'fk
forget to set the OLD value for the odometer re

first, as shown below. Then enter test values

stack for the current odometer reading, the

the miles traveled.

3198 OLD ! OK

3457 1199 841 ?MPG
37.9 MPG OK

3665 1169 1@38 ?MPG
24.1 MPG OK

3839 1199 10663 ?MPG
2@.1 MPG OK

4017 1339 1158 ?MPG
21.3 MPG OK

4200 1329 997 ?MPG
25.0 MPG OK

OLD ? 4200 OK

Finally, if you want to put the decimal points'ﬁ
input numbers, remember that AIM 65/4@ FORTH
interprets this as a 32-bit number. So, for ever:
number with a decimal point in it, you will have
16-bit numbers on the stack.

Program Enhancement

You can redefine word ?MPG which will take Ruf
numbers and rearrange them to be acceptable to

original ?MPG . This time the input is in who
miles, cents and a tenth and dollars. 1
The 32-bit numbers go on the stack with the mosty
significant part on top.

are even close to using the most significant 16
part, simply drop them off the stack at the app
priate place and use the old version of ?7MPG o

Since none of the nimbar

<ESC>

(ESC)

(T}

(MPG PROGRAM)
={B}

FINIS

={U}/1

CR ." DONE"

={R} IN= <RETURN>

: ?MPG (GDO CENTS § --
DROP (UNUSED WD.)
SWAP (OTHER ONE)
DROP (IT TOO)

?MPG (USE IT OVER)

i
<RETURN>
CR ." DONE"

={q}

{5)

AIM 65/40 FORTH V1.4
SOURCE <RETURN> IN=M
?MPG NOT UNIQUE
DONE
OK

. Nov test it with miles, cents and a t
i dnllarg,

I

; 3198 OLD ! OK
3 3457 119.9 8.41 7MPG

37.9 MPG OK
. Check to be sure OLD was updated.

b OLD ? 3457 OK

COMPUTE MPG)

h, and

SECTION 10

FREPARTNG AN APPLICATION PROGRAM FOR PROM INSTALLATION

‘often desired to install an application pProgram written
F into one or more PROM/ROM devices for immediate
on upon microcomputer power turn-on, i.e., without
ngd entry into FORTH under operator control from the
;. or compilation of the application FORTH source code.
';ctinn describes a method to develop a 4K-byte
ation program written in FORTH high level (code-
ions) and/or low level (assembly language CODE-
lens) using batch compilation, how to locate it for
n from either RAM or PROM/ROM on the AIM 65/48
puter, and how to install a start-up driver program for
itializatian,

;xample startup drivers are illustrated. Each driver

fes that the AIM 65/40 FORTH ROMs be installed. One
perates with both the I/0 and Monitor/Editor ROMs

¢ and takes advantage of the user key decoding provided
& Honitor linkage. The second example driver operates

¥ tho 1/0 ROM installed. Both of these drivers provide
old and warm start initialization as well as common
zation paths. A third driver operates with neither the
M nor Monitor/Editor ROMs installed. This last configur-
Wwould be appropriate only for an application program

dinc the total initialization, reset and I/0 processing.,
-ﬂﬁral procedure is illuistrated for one of the drivers.
cedure can be easily modified, to accommodate larger

+ by changing address boundaries of the Text Buffer in
f (squrce code), and/or the object code and by compiling

¢ .storage, if necessary. Since compiled FORTH object

very compact, a fairly large application program can b
dn 4K bytes of object code.

19-1

‘Change the address of the dictionary pointer (in user
. variable DP) to point to the first address of the
CAUTION 4 'PROM/ROM area (now RAM):
This procedure changes the dictionary linkage ' i
variables from default AIM 65/40 FORTH values
to application dependent values. Correct
dictionary linkage is vital to the proper
operation of FORTH, thus the procedure to
change it must be carefully followed. Should
the dictionary linkage be improperly altered,
a cold reset may be necessary to recover
proper operation.

HEX 80860 DP |

Change the first and last addresses of the data buffer (in
user variables UFIRST and ULIMIT) to values equal to,
of greater than, $A@ above the last address of the

FROM/ROV area, to allow compilation:

96A0 DUP UFIRST ! ULIMIT |

te that these last two steps may, alternatively, be done
N an interactive manner in FORTH prior to compilation,
however, including them with the source code saves re-
rgtpring the steps during development,

18.1 GENERAL PROCEDURE

The general procedure is illustrated for the example rriyel
described in Section 18.2.1. The memory map for this evamp

$1i= - gi;r :agp : 3 ﬁblnde the follow u want to verlf changing of
- age I 0F
$200 - S$7FF System and FORTH Variables 5 P, UFIRST , and during compila on:
$800 - $BOA TASK dummy word - :
- HERE # D
$10@0 - STFFF Applica on Sour e Code (Text Buf: .
$8008 - $BO3F Applica on Obje t Code (Startip | UFIRST @ @ D. ULIMIT @ @ D. CR
$8040 - $BFFF Applica on Obje t Code (FORTH wo

his point, the start up driver for the application
5ode to reside in the PROM/ROM is ready to be entered --
irting at $8080. This can be entered using the FORTH
nhler as described below in steps 7 and 8, or using
AIM 65/49 Assembler as described in Section 10.2. If
 driver is to be programmed using the AIM 65/40

mbler, or the Enter Mnemonic Instruction function in
Al 65/48 Monitor (see Section 4.5.1 in the AIM 65/40
: ﬁaw User's Manual), skip to step 9.

1, Verify that RAM is installed and selected from @ —

2. 1If the source code is to be compiled from mass sto
to step 18. Otherwise, enter the Editor. Select s¢
entry from the keyboard (illustrated) or from mass

{E} :
EDIT FROM=1880 TO=3FFF IN=<RETURN>

3. Now create the text file that will be compiled. Firs
forget TASK to allow subsequent llnkaga from TASK
the last application word:

”thﬂ I/0 ROM is installed, include constants to identify
FROM/ROM (at $8@@8) and to cause auto-start processing
. §8001 and $8002) -- see Section 6.2.2 AIM 65/40 System
1

(TEXT FILE FOR PROM-FORTH PROCEDURE) & Manual.
FORGET TASK CR g
'AUTO-START BYTES)

40 c, 40 = typical value)

77 c, A5 C, $5A, $A5 = do autostart)

18-2 18-3

Note that a value other than $5A, e.g., 77 in this Entel the application source code cole and/or CODE
is used until the program is fully debugged, othery

RESET may cause improper AIM 65/49 and/or FORTH ope

efinitions)

'] EXAMPLE APPI \TION FORTH PROGRAM
K WD1X CR ." ‘T WORD 1" CR ;
i WD2X CR ." ‘T WORD 2" CR ;

Include the startup driver assembly code. .The-fongif
code, in FORTH assembly format, implements the dri
described in Section 18.2.2. This driver enters th
command mode immediately upon completion of auto-sta
proc;ssing (i.e., without returning to the I/0 ROME?
value to load into the TASK NFA field is left zerol)

after the application words are compiled (see Step IS i 800 DP |

;hanga the address of user variable DP back to the initia
?élue to allow TASK to be redefined in low memory, i.e.,

(START-UP DRIVER FOR AIM 65/48 FORTH) .:hanqe the first and last addresses of the data buffer

ASSEMBLER (ASSEMBLY VOCABULARY) . — - Tues, N - S

D293 JsR, (INIT FORTH) e Seriniatel-ve

5 4 Lo’ | INIT TASK Lea)

o0 ’ IT SK A MIT

Pk 1o s B 8 iy o 4600 DUP UFIRST ! ULI !

805 STA, . (STORE TASK LSB)

g (STORE IP LSB) nzlude the following if you rify restoration of
DP @ 1- @ D. .* =MSB " DF', UFIRST , and ULIMIT , values during
806 STA, (STORE TASK MSB) T

AB STA, (STORE IP MSB) 5

92 % LDX, (INIT PARAMETER STACK) i

CO6F JMP, (TO FORTH COLD START EN CR HERE @ D.

FORTH (RETURN TO FORTH VOCARILA UFIRST @ @ D ULIMIT @ @ D.

Not hat th 6F N v
ote that the C@6F JMP, can be replaced with a Beocrine TASK at $688:

to immediately begin application execution. :
R

. g TASK
If the start-up driver is coded in FORTH, the compi }

application words will be located immediately afte
end of the driver machine code. In this case, <kip|
step 10.

'9ut the name field address (NFA) of the last application
worc (referred to as LSB and MSB) into the TASK LFA
£ie1d. Note that the LSB and MSB (i.e., $88@A and 8EOF
:r this example) depend upon the driver assembly language
fccic (see Step 8)-.

If the driver is to be merged later, room must b{
the driver code ahead of the application code, 7h
dictionary pointer (in the user variable DP) it
therefore changed to where the application code will sk
(58040 in this example). Words to verify the value
compilation may also be included.

' WD2X NFA DUP-0 D, @ 188 U/
800F C! 80@A C|

8040 DP | (START OF APPLICATION WORDS
CR HERE ¢ D.

10-4 18-5

i T,
T LT TN

16

1?5

1‘.

19,

21

Chanas the value of $88@1 to $SA to enable driver aut
%?arf processing (see Step 7):

Add a message to indicate completion of compilation.
include FINIS to indicate end of words to compil
terminate text input:

{m}Bo@P 48 77 A5 20 93 D2 28 D1 @[

CR ." DONE" {/1800@ 48 S5A <RETURN>

FINIS -

<RETURN> Verifvu operation after a cold reset, either at the FORT
END command or run—-time level

\

Return to the Monitor and enter FORTH:

. <RESET>
AIM 65/40 FORTH V1.4
={Q}
Test the application words.
{5} ¥

AIM 65/40 FORTH V1.4 WD1X <RETU
<RETURN>

Compile from the Text Editor or mass storage (illustp 3:87 WORD 3
from the Text Editor with user variable changes ver|f. WD2X <RETURN>
i TEST WORD 2
OK

SOURCE <RETURN> IN=M
8000 90A0 90AP

800A =LSB 8@@F =MSB
8040

8008 4000 4009 B805B DONE

E:ve the object code at $80@8@-$8FFF on mass storage, using
the Monitor D command, for preparation of a PROM/ROM.

Save the source code in the Text Buffer on mass storage,

Run a VLIST to verify compilation (sh mp) 1
" on_(shown attex Fram using the Editor L command, for future updates.

words) : s

VLIST)
809 TASK 8864 WD2X fé 19-1 shows a compilation and test of the example program
8045 WD1x DIDC .S this procedure. The listing includes the application
DID1 MON OK (<SPACE> bar pressed) ¥ ? PP

sonrce code, the compilation, command of the test

‘anc a cold reset, followed by automatic execution of the
application word. This listing assumes proper operation
previously verified so that auto-start constant (i.e.,

Try the application words:

WD1X <RETURN>

E:ST WORD 1 o s compiled rather than being changed later.
WD2X <RETURN> o .
g:ST WORD 2 ¢ EXAMPLF START-UP DRIVERS
Escape to the Monitor & [With I/0 and Monitor ROMs Installed
<ESC> t=up driver listed in Figure 10-2 illustrates a start-
(ESC) er for use with both the I/0O and Monitor firmware

ed, During auto-start, this driver checks for the

18-6 1e-7

A 3001 FORTH STARTUP DRIVER FOR AIM &5/48 WITH MONITOR

o FORGET TASK CR ! SOURCE
i HEX 8880 DP !) -
SBA8 DUP UFIRST ! ULIMIT ! i ; PROGRAM EQUATES
' He oD : ' INTaTH=+0393 FORTH VRRIRBLE TNIT ML ISR 1O
- = ! F =$ 02 i i | 2 &)
" EEIRST @ 8D ULIMIT @ @ D. CR i FNDTOP=$D2D1 4FIND FORTH VARIABLE DEFAULT VALUES
I C; 9 g LAST=$0000 JPOINTER TO LAST APPLICATION WORD C(NFA)
K| SR C, AS C, START=$5000 s APPLICATION PROGRAM START
b { START-UP DRIVYER FOR RAIM &5/48 FORTH) 1 y SETLNK=$R432 i LINE TO USER COMMAND DECODER
i ASSEMBLER . i REBLNK=$83FC JFOR APPLICATION AT $s008
D292 JSR J i’ FORENT=$C545 i ENTRY TO FORTH
D2D1 JoR. g EX2MON=$03F 4 s INDIRECT EXIT FOR START DECODE
’ p *=START
86 # LDR, | . BYT $81 s AUTO-START PROGRAM 1D
DP @ 1- B D. . " =TRSK LSE * o ; . BYT #5A, $AS i AUTO-START KEY PATTERN
885 STA, j
SF STA | BPL UARM JUARM RESET ==3
B0 & LDA, y i CHF #SFF +CHECK FOR MONITOR PRESENT
DP @ 1- @ D. . * =TASK MSB* : E . =R B i
886 STH, i s ON COLD RESET, PERFORM THE REQUIRED AFPLICATION CODE
A@ STA, b COLD NOP i APPLICATION DEFENDENT
I 82 # LD¥, : 5 ALSO SET UP THE FORTH LINKAGE TO THE APPLICATION PROGRAM
e COEF IHP : LD% #<DECODE + INITILIALIZE MOMITOR CECODE LINKAGE
i FORTH 2 ! LDY #>DECODE
! A4 JSR SETLNK
E ¢ EXAMPLE APPLICATION FORTY PROGRAM L C ez STH RBALNK
0 © WD1X CR . " TEST WORD 1" CR ; 83 STY RBOLNK+L
1 3 ung CR . " TEST WORD 2" CR ; A E 80 JHP COMMON
| 8Lk i ' J ON WARM RESET, PERFORM THE APPLICATION REGQUIRED CODE
ggaﬁgggFQUEIRST ! ULIWIT ! i WARM NOP s APFLICATION DEPENDENT
J UFIRST @ o b. ULIMIT @ @ D, A : ON ANY RESET. SOME CODE IS COMMON TO WARM AND COLD
. . TRSK ; COMMON NOP s AFPLICATION DEPEMDENT
° WD2X NFA DUP 8 0. 8 188 U/ RTS JRETURN TO I/0 ROM

-] 4
i 8611 C! 3@6R C! i A MONITOR COMMAND CAM START FORTH WITH APPLICATION VOCRBULARY

4 CR . " DONE" DECODE CHP #°3 i KEY TO DECODE
“d FINIS BEQ FORINT JNES ==
! #END* JHP CERZMON)
4 =Gz i
g J FORTH INITIALIZATION DRIVER .
53 FORINT JSR INT4TH s DOMNLOAD RAM VARIABLES
b " JSR FNDTOP 3SET UP DEFAULT VALUES e
A RIM 65/48 FORTH V1. 4 LDA #<LAST i INITIALIZE TASK LFA 1
e SOURCE IN=M STA TSKLFA
cbe5 Sans' sone e
BOR =THS5K LSB 8811 =TASK WSB 5 % . i
ggsE4aea 4008 8623 133.:: :;ggNT i SET UFP PARAMETER STACK &
: THIS 1S WHERE THE FORTH APPLICATION CODE WILL BEGIN ... '
FREE NOP u
: WD4K . END :
3 TEST WORD 1 R
i oK i
WD2% i
TEST WORD 2 4
0K 7]

Figure 18-1. Exampl i i
g Example Driver Compilation and Te Startup Driver with I/0 and Monitor ROMs Installed

v 19-8 18-9

presence of the Monitor ROMs in the cold reset path. If &
pPresent, a pointer to a key-down check in the driver is
the Monitor key decoding linkage (see Section 6.2.2 in
65/40 System User's Manual). Linkage is also shown for ag
warm reset processing in auto-start. The NOP instructiond
in the listing should be replaced with actual appliration
dependent instructions.
‘FORTH STARTUP DRIVER FOR AIM 65/4@ WITH 1/0 ROM ONLY
Any time a key is pressed (when in the Monitor command "-“- ‘
driver will check to see if it is the 9 key. If it is

- I DDRESS OF TRASK
FORTH will be initialized at the command level with the :%'%ﬁ“;m‘ﬁﬁiw
tion words linked to the dictionary. potisr Bl

1 POINTER TO LAST APPLICATION WORD (NFA
JAPPLICATION PROGRAM START
3 ENTRY TO FORTH

10.2.2 wWith I/0 ROM Installed

This driver, shown in Figure 18-3, is similar to tho one
in Figure 10-2 except that neither Monitor linkage ror
decoding is provided.

AUTO-START PROGRAM 1D
} AUTO-STRART KEV PATTERN

JHARM RESET ==)>
#310N COLD RESET, PERFORM THE APPLICATION REQUIRED CODE
""‘?.-}u'o NOP JAPPLICATION DEPENDENT

J!' COMMON
- 3 lﬂlm“‘r PERFORM THE APPLICATION REQUIRED CODE
19.2.3. With I/O ROM Not Installed - i i
; e RESET, SOME CODE 1S COMMON TO WARM AND COLD
This driver, illustrated in Figure 18-4, initializes FORTH i : m&ur{irﬂ‘.}“mlm DRIVER —
COMMON JSR 3 DOWNLORD RABLES
including linkage of the application words to the dict !]

4+ SET UP DEFAULT VALUES

3 INITIALIZE TASK LFA
then jumps to NEXT to start execution of the applics

JSR FNDTOP
LDA #<LAST
STR TSKLFA
LDA #5LAST
program, i.e., of the last FORTH word compiled. No co ﬂm
JHP FORENT

JSET UP PARAMETER STACK
reset interface with the I/O ROM is provided, therefor | | Cove e TN FORTH COmO Ho0E
driver and/or -the application program must provide all res i ;:En;:s 18 VDTV TONTH AWVLICHTION CODE. \IRA BREN ;3
» El
interrupt and I/0 handler functions. - o v

'a-m—s.- Startup Driver with I/0 ROM Installed

10-19 ; 18-11

FROE 2801 FORTH STARTUP DRIVER FOR AIM 65/40 WITHOUT 1/0 ROM

ADDR OBJECT SOURCE

RLEORE Bimem
8 8 8%

588353 8383
A838%8 R8sz

|

Figure 10-4

i PROGRAM EQUATES
TSKLFA=$080S5
INT4TH=$D293
FNDTOP=$D201
LAST=$2000
LASTPF=$8000
START=$8000
NEXT=$COGF
IP=$Q05F
¥
»=START
RESET JSR INT4TH
JSR FNDTOP
LDA #<LAST
STR TSKLFA
LDA #>LAST

STA TSKLFA+1
4 SET UP THE WORD TO EXECUTE
LDA #<LASTPF

LDA WOLASTFF

STA IP+1
LDX #8392
JHP NEXT
. END

1 LINK FIELD ADDRESS

+FORTH VARIABLE INITIALIZATI
1FIND FORTH YARIAEIE DEFAULT
+POINTER TO NFA OF LAST APPL
+ POINTER TO PFA OF LAST AP
s APPLICATION PROGRAM START
ENTRY POINT TO EXECUTF NEXT |
JPOINTER TO NEXT FORTH LCRD

+ DOMNLORD RAM VARIABLES
DEFAULT VALUES
4 INITIALIZE TASK LFA -

1 SET up

JSET UP PARAMETER STACK
JCOME UP RUNNING RFPI TCATION

Startup Driver Without /0

18-12

OF TASK

SECTION 11

USING AN AUDIO CASSETTE RECORDER

assette recorder provides a low cost method of
ly saving programs written in FORTH as well as data

ring program execution. AIM 65/480 FORTH, in
on with the AIM 65/40 hardware and AIM 65/4@ Monitor
#1lows both source and object code to be saved and

isinc an audio cassette recorder.

‘to save and load programs or data at separate

ect only one recorder. Connect two recorders if you
d from one recorder and write to another one. Refer
o 4n the AIM 65/4@ System User's Manual for audio
cordey connection information and general operating

r describes the procedures to use audio cassette
ATM 65/40 FORTH also includes functions to

ith generalized mass storage. These functions are

n Section 12. ’)

DL.TNC PROGRAM SOURCE CODE FILES

Listing Program Source Code

everal reasons to record the source cole of a
tter in FPORTH:

have a permanent file of the source code for:
adinc into the Text Editor for editing in case of

cidental AIM 65/40 power turn-off or inadvertent
overurite of the source code in RAM.

Insufficient memory
1d object code co-

Q; compil from audioc cas:
ic availa le to have both
resident 1 RAM.

To allow program updating and editing at a late

To transfer programs between the AIM 65/48 FORD
AIM 65 FORTH. {

The procedure to record source code from the Text Rdi:ﬁ

NOTE

Recorder remote control must be used
if extended FORTH execution is per-
formed between blocks.

4. Position the tape and set up the recorder remat
control commands as described in Section 9.3 o
AIM 65/40 System User's Manual.

Enter the Text Editor and read the source code
the Text Editor as described in Section 4.5.

If the file to be recorded is to be compiled

‘Reading Program Source Code

A

NOTE

Be sure to manually start the recorder
‘before pressing <RETURN>, if manual
.recorder control is used.

B |
e code of a program written in FORTH can be read int
Editor using the AIM 65/40 Monitor E command (Enter
or] or AIM 65/40 Text Editor R command (Read Lines
ditor). Follow the procedures described in Sectio
and 5.4.1 in the AIM 65/40 System User's Manual,
Also refer to Section 9.3 of that manual for
ons on how to use the audio tape recorder.

Compiling Prograr Source Code

I}

e code can be compiled from an audio cassette recorde
e word SOURCE similar to the procedure described in
4. The procedure is:

audio tape and contains the complete prooram, . Previously record the source code on an audio cassette
as the last word in the Text Buffer: i file using the AIM 65/40 Text Editor L (List) command.

FINIS &l | 1f recorder remote control is used, turn the recorder

hp off. using the AIM 65/48 Monitor 1 or 2 command.
Position the Line Pointer to the first line of .

code to be recorded. i ;Enter or re-enter FORTH.
- ; 4 !
List the source code to the recorder using the ' Compile using the word SOURCE as follows:
(List) command. : :
SOURCE <RETURN> IN=T
={L}/. OUT=T UNIT=<recorder no.)> k- i1 UNIT=<recorder no.> FILE=<filename><RETURN>

FILE=<filename> <RETURN> XX W
END XX W

After the compilation is finished, control ret
the FORTH command level.

NOTES

(1) If a tape read error occurs, an
error message is displayed and
control is returned to the AIM
65/40 Monitor.

If the word FINIS is not read at
the end of a file, FORTH remains
in the read mode and will not re-
turn control to the keyboard. 1In:
this case, press the RESET button
to gain AIM 65/48 Monitor control
then re-enter FORTH. Run a VLIST
to see which words were compiled..
I1f only the word FINIS was missing,
all the words should have compiled.

11.2 HANDLING PROGRAM OBJECT CODE FILES

Loading a program written in FORTH in object code form
desirable since the files are shorter and compilation i
required. While AIM 65/40 FORTH does not have words
and load object code, the AIM 65/40 Monitor does. Using
AIM 65/40 Monitor dump and load functions, the AIM 65
variables and dictionary object code can be saved and re
to allow a program entry capability.

Note that FORTH object code is not compatible between thi
65 and AIM 65/40 microcomputers. The source program ﬁw:

words are compatible, however, except as described in
L"

- Dumping Program Object Code

h¢ following steps to dump the dictionary object code,
n¢ re-entry variables:

. validate operation of the FORTH program in FORTH.

). Use HERE to find the last memory location used by the

, dietiaonarv:
k| HEX HERE ., <RETURN> LAST

 where LAST is the value to be used in step d.

. Escape to the AIM 65/40 Monitor.

I-
. Dump the FORTH variables and program object code to
. the audio cassette recorder using the Monitor D (Dump

; command ,

{D}

FROM=@708 TO=077F OFPSET=0000 MORE?Y
FROM=@8@@ TO 0878 OFFSET=0088 MORE?N
TYPE=<A,B> OUT=T

UNIT=<recorder no.> PILE=<filename><RETURN>

| Where

708 start of the FORTH variables.
17F end of the FORTH variables.
' 880 = start of the program dictionary.
T8 - 878 end of the program dictionary
(from step b, typical value shown).

E;Also, be sure to save any user variables that have
" been altered.

g

iLoading Program Object Code

't code which has been
dion 11.2.1.

he following steps to loac
according to the procedure |

tIt in FORTH, perform a cold start using COLD to
ifinirialize FORTH, then escape to the AIM 65/40
| Monitor

If in the Monitor, first type 5 to enter FQRTH
initiali: FORTH variables, then escape back
Monitor. =

Read the recorded FORTH variables and objoct
the audio cassette recording using the Monit:
(Load) command.

{L} OFFSET=0880 IN=T !
UNIT=<recorder no.> FILE=<filename)<RET

(-] Type 6 to re-enter FORTH.

d Run a VLIST to verify that the application w
in the dictionary.

11.3 HANDLING DATA FILES ¥
Data files can be written to and read from an audio ca
recorder in several different ways. These includes _
Dumping and loading in AIM 65/4@ PORTH format u
FORTH READ and WRITE words (see Appendix B

Dumping and loading in AIM 65/48 Monitor Format
Sections 4.8 and Appendix H of the AIM 65/4
User's Manual).

Dumping and loading in FORTH screen format (s
Section 12).

The program listed in Figure 11-1 contains several unr
can be used to toggle or turn on/off the recorder renm
control lines, dump and load data files in AIM 65/48
format under keyboard or Program control, and to dump and
data files in AIM 65/40 Monitor format under keyboard

11-6

=

4 >
{ RIM 65/48-FORTH ARUDIO TAPE DRIVERS ;
<

HEX FFB8 CONSTANT SYSORB

8 YARIABLE DRIYENO .
8 YRRIARBLE NAME 4 ALLOT

: 5YSBC@ SYSORB DUP ce ;
: ON . " ON" ;
: OFF . “ OFF*® ;

¢ TAPE RECORDER CONTROL ROUTINES

(=—— TURN RECORDER 1 ON)
: T41-ON SYSBCe EF AND SWAP C! ;

(==-— TURN RECORDER 1 OFF)
: TA-OFF SYSBC® 18 OR SWAP C! ;

(== TURN RECORDER 2 ON »
: T2-ON SYSBC@ DF AND SWAP C! ;

(_==— TURN RECORDER 2 OFF »
: T2-OFF SYSBC@ 28 OR SWRF C! ;

{ _==— TURN RECORDERS 1 & 2 OFF »
: T-OFF SYSBC®@ 28 OR SWAP C! ;

e TOGGLE RECORDER 1 CONTROL
Ti SYSBC® 18 XOR 2DUP SWAP C!

1' AND IF OFF ELSE ON THEN DROF ;

[== TOGGLE RECORDER 2 CONTROL

: T2 SYSBC@ 28 XOR 2DUP SWAP C!
28 AND IF OFF ELSE ON THEN DROF ;

AIM 65/40 Audio Tape Handling Words
11-7

Figure 11+

Tl Toggle Recorder No. 1 On/Off
T2 Toggle Recorder No. 2 On/Off
T1-ON Turn Recorder No. 1 On
T1-OFF Turn Recorder No. 1 Off
T2-0ON Turn Recorder No. 2 On
T2-0FF Turn Recorder No. 2 off
T-OFF Turn Both Recorders Off
FDUMP Dump in AIM 65/48 FORTH Format
’ FLOAD Load in AIM 65/48 FORTH Format
LORD AND DUMP DATA ONTD TRPES . :' TDUMP Dump in AIM 65/4P Monitor Format
SET OUTPUT DEVICE = T 5 ! . TLOAD Load in AIM 65/48 Monitor Format

CODE SETOUT XSAVE STX, REB® JSR, [
¢ WHEREQ> XSAVE LDX, NEXT JHP, END-CODE tc s¥aro also included that are used by the above words

{ =— SET INPUT DEVYICE = T 3
CODE SETIN XS : e
{ WHEREI) xsggg f;ﬁ: 2§§$ fﬁﬁj END-"0DE g proaram into the AIM 65/4@ Text Editor and compile it
2 Run a VLIST to verify compilation was completed and

“addr no —— DUMP IN AIM 65/40 FORTH) word locations are the same as listed. Note that

: FDUMP CR SETOUT WRITE CLOSE i

k ‘an example program that can be used as is, or as a base
addr no -—— LOAD IN AIM 6548 FORTH). wr words., The flexibility of FORTH allows these

FLORD CR SETIN READ CLOSE ;
! altered or other words to be defined easily to meet

¢ === DUMP DIRECTLY FROM THE riiniTie) |
CODE TDUMP XSAVE STX, ASTS Jng R gcific application requirements.

¢ DUMP > XSAVE LDX, NEXT JWP, Frib-ronE

i

¢ LORD DIRECTLY FR HONTTARY Bene ‘wo
CODE TLOAD XSAVE STx. naagnjggf ONT TR the ‘word CLOSE is used in the program to return

¢ LORD > XSAVE LDX, NEXT JMP, EnC-~nne E 0 the keyboard upon completion of tape file read.

FINIS
END=

Usinc Recorder Remote Control

Er-rlnoto control words can be used er keyboard or

YLIST : gontral,
225 pome \
ORD) §

;:g ?gTIN : Tc turn a recorder on, use T1-ON or T2-ON .
ggE ;—DFF X It . Tc turn a recorder off, use T1-OFF or T2-OFF .
S:g Ti:g: 1 | Tc turn both recorders off, use T-OFF .

ON]
82F NAME toggle a recorder control line, use Tl or T2 .
816 SYSORB

AIM 65/40 Audio Tape Handling
11-8

11.3.2 Using AIM 65/480 FORTH Format

AIM 65/40 FORTH provides a data file format consisting o

data bytes as opposed to the AIM 65/40 Monitor ASCII £
which includes other information in multiple records.

65/40 Monitor record also includes the number of bytes,
starting address, and a checksum. Since the FORTH dat
format contains only data, more data can be stored in a

space resulting in faster recording and reading. Since th

data file does not include addresses, the recorded daty
easily be loaded where needed in memory without skippi]
processing the address information.

a. Dumping a Data File Using FDUMP

(1) Establish an output data buffer in RAM.

(2) Btore the output data in the output dat

(3) Set up the recorder for recording using
desired recorder remote control word.

Enter or 1« ‘he starting idress ln&
of bytes t« ‘ord and ini ate the dump.

<starting address> <no. of bytes> PDU.

Enter the output device code (in this
the audio tape device code =T),

ouT=T
Enter the recorder no.
UNIT= <1 or 2>
Enter the file name (all § nharactetﬁ):ﬁ

FILE= <filename> <RETURN>

The recorder will be started auromatirally

OK will be displayed upon dump completion,

11-1p

" For example, dump 28 bytes from locations $180@ through
| $101F to recorder no. 1 as a file named OWERT . Use
Ilths FILL and DUMP words to initialize and check the
{RAP'contlnts for test purposes.

., 1608 20 FDUMP <RETURN>

OUT=T UNIT=l1 FILE=QWERTOK
)

 Load1ng a Data File Usinc FLOAD

(1' Set up the recorder for reading. Use the

] recorder remote control words as desired.

ﬂz: Enter or load the starting address and the number
of bytes to record and initiate the load.

i <starting address> <no. of bytes> FLOAD <RETURN>

| (3 Enter the input device code (in this example, the
i audio tape device code = T).

IN=T

“fdﬁ-sﬁter the recorder no.

UNIT= <1 or 2>
(5! Enter the name of the file as recorded.
I

FILE=<filename> <RETURN>

;fhe recorder will be started automatically.

(6) OK will be displayed upon load completion.
g

ifry the following example. Again, use the FILL and
puMP commands to initialize and check the RAM

contents before and after loading.

10080 20 FLOAD <RETURN>

IN=T UNIT=1 FILE=QUERT <RETURN>
QUERT #0 R

OK

11.3. Using AIM 65/48 Monitor Format

It is sometimes desirable to dump and load a data file'ﬂ
that is compatible with the AIM 65/48 Monitor ASCII or |
format (described in Appendix H of the AIM 65/48 System U
Manual). Data files recorded in FORTH in this manner g

be read by the AIM 65/480 Monitor L (Load) command and
files recorded by the AIM 65/40 Monitor D (Dump) command g
read under FORTH control. '

(3) OK will be displayed upon load completion

‘For example:

TLOAD <RETURN>

OFFSET=00@@ IN=T UNIT=1 FILE=DAT22 <RETURN>
DAT22 @8 R

DONEOK

a. Dumping a Data File Using TDUMP

(1) Type TDUMP:
TDUMP <RETURN>

(2) Respond to prompts:
; |

PROM= <address> TO= <address> orrss7-<adda
MORE?<Y,N>

TYPE=<A,B> OUT=<T> UNIT=<1 or 2> FTLR=cfilen

(3) A block count will be displayed during recgr
and OK will be displayed upon dump completig

For example:

TDUMP <RETURN>
FROM=190@ TO=120¢ OFFSET=08@@ MORE?N

TYPE=A OUT=T UNIT=1 FILE=DAT22<RETURN>
DONEOK

b. Loading a Data File Using TLOAD

(1) Type TLOAD:
TLOAD <RETURN>»
(2) Respond to Prompts:

OFFSET=<address> IN=<T> UNIT=<1"or 2
FILE=<filename> <RETURN>

SECTION 1

INTERFACING TO MASS STORAGE

%ORTH includes all of the fundamental words needed to
ace with, and effectively use, mass storage devices.
apter, provides directions and guidelines on how to
ce tc a floppy disk, however, the procedure may be
modified to include other peripherals.

you begin, you must have a mass storage device in
unctioning order. You must know how to get data to

.ha device's controller, and what data the controller

function correctly. Finally, you must have enough
the AIM 65/40 microcomputer to hold a FORTH screen.

um RAM requirement is 2K bytes, but a practical

s 16K bytes. If you have more than 16K bytes RAM
then so much the better.

‘Mass Storage Terminology

jccesses mass storage in uniformly-sized pieces called
an¢ -keeps data, or source code, in RAM in 1024-byte
lled screens. If the block is 1024 bytes, then the
lock! or 'screen' are often used interchangeably.
e block sizes are commonly the size of a floppy disk
128 or 256 bytes, there are normally eight or four
ber :screen, respectively.

Ig

Block Buffer

A particular block is referenced by the PORTH worg
BLOCK which takes the block number as the arqumen
If the block of data is in RAM, BLOCK reforns
immediately with the address of the buffé: where
data is to be found. If the block is not in =a
BLOCK uses R/W (described below) to fotcﬁ 1t
mass storage and put it in a buffer in RAM, tnen
returns the address of that buffer. BLOCK also
checks to see if the data in a particular bLuffer nes
to be written out to mass storage before it use

Data Buffer

~ iThe RAM area reserved for use by mass storage,

uu;cou-only called the data buffer, or the mass storage

. tpbuffer, must contain more than two of the block

- !'buffers described above. The first byte of the entire
fmass storage buffer area is referenced by the word

“PIRST and is stored in the variable UFIRST . The

- last byte of the entire buffer area is located at

'LIMIT -1 and the value returned by the word LIMIT

'I“is kept in ULIMIT . The layout of the buffer area

buffer for new data.
Each block buffer in RAM is four bytes larger tH
mass storage block size. Two of these extra nyt
at the end of the buffer and both contain ASCII
characters ($00) to mark the end of data. The o
two bytes, located at the start of the buffer, c

the block number (byte 1) and a one-bit flag (by

that indicates whether or not the buffer conta :
that must be written to mass storage before the

can be used for new data. The layout of a hldok .
buffer is: ;

LOW RAM
Block No.
Tt- Update Flag
(—— Address
by BL
Block '
Buffer
Dl?l

,'-tlz

LOW RAM

‘ Qeiwse PIRST
Block Buffer 1

Mass Block Buffer 2

_Storage
Buffer

ﬁ Block Buffer 3

Block Buffer n

= LIMIT

:, Screen Size

iConventionally, when a screen of source code is listed
on a CRT display, it appears as 16 lines of 64
characters each. The lines are numbered @ to 15 on

I"Eh. left of the text. If the display will not permit
f_‘ST or 68 characters on a line, other formats can be
1 ‘adopted.

e

o e

—

12.1.2 Buffer Variables

The size, number and location of the block and data buffe

AIM 65/4@ FORTH is controlled by four user variables UB,

UB/SCR , UFIRST , and ULIMIT). The logic of which one
use at any given time is controlled by three other vaz;af
(PREV , USE , and OFFSET). Thé names, description a
access words for these variables are given in Table J9:1:

12.2 SETTING UP BLOCK AND DATA BUFFERS

R/W is the primary word that interfaces FORTH to mass s.
All of the FORTH logic which automatically handles the
locating, reading and writing of mass storage data ultima
winds up using R/W . However, before R/W can work pro
it must have a set of data buffers to use. As explained
earlier, AIM 65/40 FORTH needs more than two buffers {é

for the buffer rotation logic to work correctly.

‘.
The general steps in the process of setting up the block
data buffers is a simple procedure as summarized balOII
details are given in the following section.

1. Set the top (high RAM) of the data buffer area |
ULIMIT .

2. BSet the size of the block buffers into UB/BUF

3. Compute and set the number of block buffers per
into UB/SCR .

4. Compute and set the start of the data buffer ar
UFIRST . '

5 Set USE and PREV to FIRST .

6 Clear the data buffer.

7 Initialize the block offset value.

12-4

Tabl, 12=-1 Buffer Variables and Access Words

Access Default
Word Value | Description

B/BUF 128 Holds the number of bytes of data in
each block buffer. This is often a
power of two in the range of 128 to
1¢74, The actual buffer size is four

bvtes larger than this value.

B/SCR 8 Holds the number of block buffers
per FORTH screen. Typical values
lare 1,2,4 or 8.

FIRST * Hnlds the location of the start of

the data buffer.

LIMIT * Holds the location of the end of the
data buffer plus one.

Lnone** * Holdes the address of the block
buffer most recently referenced.

none** | * Hold= the address of the block
huffer to use next.

Holds a value to be added to the
block number given to BLOCK .

none** none

NOTES

sald start, AIM 65/40 FORTH V1.4 sets these variables to
) of 16K of RAM plus one byte ($4000 = 16384).

ble= without a special access word to fetch the value

reated like any other FORTH variable. Use @ to fetch

ta from its address and | to put data into its address.
iabla can be accessed in this manner; the special

wordg are only for convenience.

12-5

In many cases, steps 1, 2 and 3 can be omitted. The defaul . FIRST PREV | (AND ALSO PREV POINTER)
EMPTY-BUFFERS (CLEAN OUT THE BUFFERS)
value of the top of RAM for ULIMIT is a good choice, t «e. CR . . . ; (R/W WORD FOR DEMO)
special circumstances dictate that another value shanld he . «++ CFA.UR/W | (SET UP R/W WORD POINTER)
. 3 CR ." DONE " (FINISHED)
used. The default values for UB/BUF and UB/SCR are papl b FINIS
values for floppy disk systems, but may have to be ~hanged
especially for magnetic tape, or fixed disk, mass storage. “Trﬁﬁts the input/output base to hexadecimal, as it is much
: 'ﬁb visualize memory layouts in this format. Line 2
In steps 3 and 4, it is convenient to use FORTH to compute p<e of the dummy word TASK to avoid piling up
actual value to store. Step 5 provides the starting valuel nitions, The constant S¢ in line 3 is the number of
the buffer pointers, and step 6 sets up the buffers to use H screen's worth of buffers desired.
clears them of prior data.

i and 5 depend on the size (5 1/4-inch mini-floppy or
Step 7 is necessary as FORTH adds this offset value té each standard floppy) and recording density (single- or

block number requested via R/W . The utility of OFFS , ole-density) of the disk drive. The values shown (80,8) are
in setting it to the first block number in an extra mass st single-density mini-floppy, which has 128 bytes per

age device. Then the block numbers of media inserted in . These values are the same for a single-density

device will be the same to the user as when OFFSET is zer gjdarc floppy. For a double-density mini-floppy or a double-
and the media is in the primary device. b ty =tandard floppy, there are 256 bytes per sector, so

8 are $10¢ bytes per buffer and four buffers per screen.

12.3 CREATING SCREENS 1

6 negins the actual calculation by putting LIMIT and
This section illustrates the creation and testing ot-tw@i §8if on the stack, adding four to allow for the extra four
different buffer arrangements. Assume you have an AIM | in each block buffer, then multiplies this true block
microcomputer with 16K bytes of RAM connected to a disk fer size by the number of buffers in a screen. Line 7 then
typical sector size. : l}gs this by the number of screens desired. With two
'fﬁslfn the stack, LIMIT and the computed size of the
12.3.1 Creating and Testing a One Screen Buffer 3 disk buffer area, a subtraction leaves the bottom of the
buffer, which is placed in the variable UFIRST .

Source Code Entry
§8 9 and 10 set the remaining buffer variables, and in

Enter the following source code into the AIM 65/40 Te; 11 EMPTY-BUFFERS completes the buffer generation by
Editor: o finc all the RAM buffers to $00.

(SETTING UP DISK BUFFERS) fodd-definition word ... (dot-dot-dot) on line 12 is

HEX " B

FORGET TASK (FDC RAM $4AG-$55F) 3 .ﬁeirtc test the FORTH mass storage processing and buffer
1 CONSTANT S# (ONLY 1 SCREEN) b 8 Note that aside from the constant S# , this is the only
86 UB/BUF | (128 FOR SINGLE DENSITY) ! word defined and that all the other words are interpreted

8 UB/SCR | (8 BLOCKS ARE A SCREEN) ¢ X
LIMIT B/BUF 4 + B/SCR * grecuted as encountered. The word ... simply does a

S§ * - UFIRST | (BUFFERS AT TOP OF RAM) tack
O OPFSET | (NOT NEEDED RIGHT NOW) ge return then prints the top three items on the stack.

FIRST USE | (SET UP FIRST POINTER) k. @ function of ... i8 to print the three parameters that are

12-6 = : 12-?

supplied to R/W , to allow viewing of the overall cperation nc LOAD to test the buffer operation is convenient as it
buffer selection and use. Line 13 shows how to install ": fer= an entire screen, allowing the overall operation of
into the mass storage vector of UR/W . The FORTH word U g bnfter selection logic to be observed. Each line printed
(tic). fetches the parameter field of the word following it y ... shows the read/write flag (1), the block number (80,
(i.e., ...), CFA changes that address to the code field add~ :jetc.) and the buffer address. Remember that the screen
ress, and the phrase UR/W | stores it in UR/W . Line 3 iﬂgr gets multiplied by B/SCR and that buffers are four
and 13 are only shown to test the buffer operation withoit 1 yter ‘larger than B/BUF .
mass storage device. For proper operation, these lines would g
be replaced with the mass storage interface words (see Sectig be word UPDATE sets the update bit in the buffer that PREV
E . inting to and indicates that the buffer must be written
The mass storage system is now ready to visually test tor;_; to mass storage before being over-written. This operation
correct operation using parameters appropriate for a diikf E ':geu in the last two lines. It is the responsibility of the
Line 14 is only to show that the buffer creation step is done Ser to use UPDATE in any word that modifies the contents of
: disk buffer. If a disk buffer is not marked as updated when
b. Interpretation and Operation E has new data, it will be over-written and the data will be

The interpretation of the buffer creation code is done "sing

SOURCE with M specified for the location of source code, ' UPDATE 3@ LOAD <RETURN>

'DONE' is displayed when the buffers are ready to use. i:: gg::

182 3CEA

183 3D6E

184 3DF2

185 3E76

186 3EFA

107 3F7E (Weite out updated block)
187 3F7E OK (Read in new block)

{5}

AIM 65/40 FORTH V1.4
SOURCE <RETURN> IN=M
DONE
OK

— D

The following example shows the operation of the test word
with the words LOAD and UPDATE . First, load two screens

-
w2

‘Creation and Testing a Two Screen Buffer

 Source Code Entry
10 LOAD <RETURN> (Read screen 1@ into the buffer) k
80 3BE2

81 3Cé66 ange the value of S# to 2 in line 3 of the source code in
82 3CEA :

83 3Dé6E i he Text Buffer and recreate the disk buffers by compiling the
84 3DF2

85 3E76

86 3EFA
87 3F7E OK = B
@ LOAD <RETURN> (Read screen 20, overwritting this buff . ={F}1 CON

108 3BE2 ! " |1 CONSTANT S§

101 3Cé66 _, i . ={C} OLD=1 <RETURN> NEW=2 <RETURN> /<RETURN>1
182 3CEA A 1 CONSTANT S#

103 3D6E b ol 7 CONSTANT S#

104 3DF2 e wo

1865 3E76 e B0 UB/BUP

106 3EFA s L ={0"

187 3F7E OK 3

again,

Ll el el e N T R R S S

b Interpretation and Operation

After modifying the source code in the Text Editor, the b
operation can again be simulated by first entering FORTH a
compiling as follows:

{s}
AIM 65/ J FORTH V1.4
SOURCE < ITURN> [N=M
DONE

Now, testing using LOAD shows that two screens may be 1
before a buffer is over-written.)

1¢ LOAD <RETURN> Read screen)
80 37c3 (10 into the buffng}
81 3846 o
82 38CA o
83 394E
84 39D2
85 3A56
86 3ADA
87 3B5E OK .
@ LOAD <RETURN> (Read screen 20 :
158 ars into the buffer)
181 3Cé66 .
162 3CEA
163 3D6E
194 3DF2
165 3E76
106 3EFA
187 3F7E OK

e

18¢ 37C2
181 3846
182 38Ca
183 394E
184 39D2
185 3A56
186 3ADA
187 3BSE OK

1
1
2
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1

LOAD <RETURN> (Read screen 30, overwritting the &

'?JMTERFhCF WORDS

ain of events that results in a particular block of data

%g transferred to, or from, mass storage begins with a high

word, such as LOAD for programs, or BLOCK for data.
he user, or a word, executes LOAD or BLOCK , the

a1 logic decides if the data is in RAM, and if not, which
t¢ use and whether or not a write is necessary. This

jrmation, along with the block number, is passed along in
or rore calls to R/W .

peyt step is handled by the user written interface words

translate the FORTH parameters supplied to R/W into
ts acceptable to the mass storage device. This

sce then executes programs that do the actual work of
‘or writing data. These programs may be part of the

ace itself, or may be located in firmware supplied with

gy 1o,

v the status of the operation is returnmed, and control
s ito the word following the original high level FORTH
t began the transfer. The status resulting from the
er may, or may not, be acted upon, at the option of
ce program.

act interface methods depend on the hardware, but a few
ara applicable to most devices. Try to do most of the
in FORTH until you get to the point where you must call a
ina in the driver firmware, or where you need the speed
hine code. Use the FORTH assembler for these final
then take advantage of FORTH's parameter stack to pass
5] ‘and sense information between the interface words.

nagnetic disk mass storage devices, you usually have to
ﬂarc the track and sector, then place these values where
device driver expects to find them. The act of reading or
¢ is often a matter of calling the appropriate sub-
e For magnetic tape you may have to also keep track of
rrent location on the tape to know which way the tape
be positioned in order to access the desired block.

f2-11

For example, consider the floppy disk system example iﬂ :
12-1. This system is compatible with the RM 65 Floppy Di
Controller (PDC) module (RM65-5101) with program PROM 32
dated 1/4/82 installed. This system uses the 1ocqttoi§
§DC and $4A0 to $55F to keep the buffer pointers and vak
data. Seeking, reading and writing are done by callingl
subroutines in the disk driver firmware located in Ty

starting at $8000, with parameters passed in the A, !.%6ﬂ~

registers. Data is passed in the RAM buffers pointed €
RDBUF and WRTBUF , each which return a status byte iw
register. The interface driver's task is to take the d%b
given to R/W , compute the track and sector, load thc% :
buffer address into the buffer pointers, and call the b
with the proper parameters in the registers. This systs

a standard double-density mini-floppy, with 35 tracks and 1

sectors per track. k-

The entire disk interface is included in the program lis
Figure 12-1. As typical of FORTH, each word performs a s
function, with each new word building on previous ones. 1
first nine lines set up the mass storage buffers for usg as
previously described in Section 12,3. There is one scraen
buffer created with four blocks of 256 bytes each.

INIT initializes the module by setting up the int-rru_;"
and then calling the code INIT1 , which in turn calls i
65 FDC module initialization routine, then turns on thﬁﬂ
drive. SIZEOK checks that the block number is valid, il
less than the number of sectors times the number of tracks,
BBUF stores the RAM block buffer address into the Read fan
Write buffer pointers for the FDC module. T&§ takes the
number from the stack, and leaves a track and a sector {_

‘The next three words are the basic primitives that allo
disk sector to be read or written. The code word SEER#
the disk head to the track number on the stack and lon':
non-zero status byte for an error condition. The DR!:E :
DWRITE words read or write between the RAM block buffoéu
the disk sector left on the stack, returning a non-sarafw
bit for error conditions.

}'65/40 -- FORTH DOUBLE-DENSITY DISK ROUTINES)
FORGET TASK (FDC RAM $4A@-§55F)
NSTANT S# (ONLY 1 SCREEN NEEDED)
UB/BUF | (256 FOR DOU:::S?::S;TI)
OUBLE
Asésiﬁné:‘4‘+'§5sgn * 5§ * - UFIRST ! (TOP OF RAM)
QFFSET | (NOT NEEDED WITH ONLY 1 DRIVE)
T DUP USE | PREV | (SET UP FIRST BUFFER)
o7y _-BUFFERS (CLEAR OUT THE BUFFER AREA)
NITIALIZE FDC & TURN ON DRIVE NO. 1)
INITL XSAVE STX, 80@@ JSR, (CALL INIT) -
ET DRIVE PARAMETERS IN SRCDRV, SRCSID, & SRC
4 LDA, 4AS STA, (Dnlgsog:nléggos:ggggv))
E%g: ‘2518§¥i,{(sggunns DENSITY INTO SRCEEHDL
6 JSR, (MOTON) XSAVE LDX, NEXT JMP, END-CO| .
— INITIALIZE PDC & AIM 65/48, TURN ON DRIVE NO. 1)
1T Fn46 4FB | (UIRQBM > IRQOUT)
83Co 22B | (SET UP IRQHAN) INITL;
SIZEOK OVER 230 < ; (16 SECTOR * 35 TRACK)
BEUF DUP 4F1 (RDBUF) | 4F3 (WRTBUF) ! ;
S SWAP 1@ /MOD ; (LEA?:)TRACK & SECTOR)
TIVE
Hgsg: §§:v§D§,§?I¥g, LDA, 3104lggnéoézcnnn SEEK)
D, PUSH@A JMP, 3
ugvﬁsﬁﬁé'xgivi ;:x: TOP LDA, 84BF JSR, (CALL RDSEC)
VE LDX, BD # AND, PUSH@A JMP, END-CODE RTSEC -
DWRITE XSAVE STX, TOP LDA, ss::nfggss{ CALL !
PUSHOA JMP,
nugg 3??1352 :Lgugiusa INTERRUPTS FOR PRIMITIVES)
INTDIS FF FF8@ C! ; (MASK OUT ALL BUT RM 65 IRQ)
\ INTENB 6@ FFB@ C! ; (RESTORE THE IRQ MASK)
DERROR (RESTORE IRQ MASK & PRINT ERROR)
" DISK ERROR - " ; —
e aon n"ngggxalfgr Ba?rsggx ERROR) INTDIS ELSE DROP
i + ART WITH SECTOR 1) SWAP
a}?gg:ﬁgaggpl {gTDBEROR o a:ag ?-" . (READ ERROR)
ROP THEN (DO NOTH
:’Eugisgngrs DUP IF DERROR ." WRITE A=" . (ERROR)
ELSE DROP THEN (DO NOTHING) THEN DROP ;
DISK SIZEOK IF INTDIS DATA INTENB -
"ELSE CR ." BLOCK TOO LARGE ERROR " ABORT ;
pISK CFA UR/W ! (STORE INTERFACE WORD)
: FORMAT XSAVE STX, 8095 JSR, (CALL FORMAT)
AVE LDX, NEXT JMP, END-CODE
ORMAT INTDIS FORMAT INTENB ;
3SK ; (THROUGH WITH CODE) FINIS

Figure 12-1 RM 65 FDC Module Disk System

12-13

The FDC primitives (specifically DREAD & DWRITE) are
time critical because they must be synchronized with thl
diskette movement and must not be interrupted, or else ani
may occur. 8ince the AIM 65/40 microcomputer uses interrup
also, all other interrupt sources except for the FDC modul
must be disabled while the primitives are being performe
word INTDIS masks out all IRQ sources except for the RM
bus. INTENB restores the IRQ Priority Latch to the cold &
value ($080) with no interrupts masked. The word DERROR
restores the interrupt mask and prints out an error messag

The word DATA , when given a block number, read/write sta

and a RAM block buffer address on the stack, performs the di;

transfer, or returns with an error indication if an error is
detected. First, the disk buffers are setup and the block
number is converted to a track and a sector. A seek £o the
track is performed, with a disk seek error shown if the =e
not successful. This is followed by a read or a write, *
depending on the status from the stack. For a read, the
requested dilk sector is transferred into the RAM block bu
with a disk read error shown for errors. For a write, the R

block buffer is transferred into the requested disk sector“
with a disk write error shown for errors.

The word DISK integrates all of the disk management st

to be used by the FORTH mass storage device. DISK fxrsf

a size check; if the block is out of range, a disk .:ro: 0
and the operation terminates. Otherwise, interrupts are dis:
abled, the disk access is performed, then the interruptl are
restored (under an error condition they will already be resf
If more than one drive, or disk side, is available, DISK
modified to select the appropriate disk and side. This wo
also turn on and off the drive motor, but for this pxample
motor continues to run. Finally, the disk interface word
is stored into the mass storage read/ write vector UR/W

The FORMAT word prepares new disks for use with the FGRTK
disk. This word formats the selected disk (selected by IN
by writing track and sector identifiers for every sector o
disk, and filling each sector with byte $ES5 pattern. lote
interrupts should be disabled during FORMAT.

12-14

AT

8 THNC MASS STORAGE

simpliciry of the disk interface and FORTH's ability to
omize to a particular application allows mass storage

c to be easily used in powerful ways. Two such ways are
ed in this section. Remember all mass storage opera-
ﬁst use diskettes that are first formatted with either

rk’r a similar word.

‘Data Storage and Retrieval - the Virtual RAM

.sghmage and retrieval using a mass storage device is quite

Just think of the data as an array of numbers, and,
he element number of a data item in the array, gq!pute
equlred block number and offset into that block. Knowing

blockh number, all that is left to do is to access the block

4the offset to the address returned by BLOCK .

] sefyau want to process an array of 250 16-bit numbers and

h the data to start at block 25. 1If the disk uses

'iyra'blocks, a word that would supply the RAM address of a
'W;array element number (@-249) would look like:

. JDATA 128 /MOD 25 + BLOCK SWAP 2 * + ;

sddress produced by DATA can then be used like any other

- - address. The normal FORTH words @ and | would

fotch and store data as if it were always in RAM. One
ndification would be appropriate here -- the word !

d antomatically indicate that data was put into a disk
so that the buffer will be written out automatically.

ﬁk# éasily done by redefining ! and @ as U! and U@ :

s

- | lyalue index ---

~ : U! DATA | UPDATE ;
" (index =-=-=- value)
| 'U@ DATA @ ;

RS Y ILE RSS2

'm&-ﬁh&:.-‘p-r -

i e Al 1 2

The ACtUAlL yas of D3 is shown by a :ouple of examni~s, | Sk, construct what is called a load screen, which contains
print the 153rd numbe simply type: 3 ections for loading and executing the entire program.
: ; the source code of the input part of the program is in
290 2 12, 13 and 14, the source code for the processing part
W ol a6 enl ,_; creens 3@, 31 and 32, and the output source code is in
array use: i, 1 3 to 35. Further suppose that some data manipulating

: 4. in screen 102 and 103, and that these words are

CLEAR 250 0 DO @ I U! LOOP FLUSH ; E used by the three overlays of the program. The
(The word RLUBH: &F thE eud] iting. load screen might look like this:

writes all updated buffers out § i

th

e mass storage device.) GET TASK : TASK ; (CLEANS DICTIONARY)
| LOAD 1@3 LOAD (DATA WORDS)

PUT 12 LOAD 13 LOAD 14 LOAD ;

12.5.2 Program Loading and Overlays : 'PROCESS 3@ LOAD 31 LOAD 32 LOAD ;

§ OUTPUT 33uLOAD 34 LOAD 35 ;
3 NLEVEL j§ INPUT
Once a screen has been written with a FORTH program, it is -

:ecessary to compile the program into the dictionary. This Q the three overlay programs, INPUT , PROCESS and
one with LOAD , which takes the screen number from the iT . should have the phrase
and begins compiling that screen, starting at line ¢ and A
COﬂfin#f’_?gtll a ;5§ 1is encountered. The ;5 terminator .;RGET LEVEL '3 LEVEL ;
be placed at any position, and any number of ;S words may ;]
:f:::r T: i'::::::;r::t FORTH will always stop comniling a‘ ﬁgfirst screen to be loaded. This phrase discards the
- #iious overlay and makes room in the dictionary for the next

Wi 22 Bl e s] " The process of overlays is started by interpreting
s s o uou.scr::uhmay be compiled but onhni: . INPUT in the load screen. Note that the three
S S TR wor:) ch screen, except for the last, lay words are defined before the dummy word LEVEL . This

--> , and the last screen must he te Jres that the overlay words will not be forgotten by the

nated with ;§ . Compilation starts with a LOAD of rhe firs ys themselves.
screen in the sequence. [¥

WhiS: & Bidk connacind o wnane ek ik “icess of overlaying can be a manually directed one, or if

16X<bytes of BAM, yoit cati Fim it/ @ microcomputer with, e f the next overlay can be called as the last action of

by dividiag ths quite large programs in EQRY - tgfent overlay. The process of overlaying can then

9 the program into convenient-sized pieces -nd,us inue indefinitely and unattended.
program overlays. The techniques for using program overl:y F
::: ;;e]';;:?:h:o‘:::k d:::g::o:aqe -- quite straightforuard, ethod ‘outlined above for enhanced use of mass storage are
and LOAD to overlay proaram;_ yseful in actual practice even though the methods are

Suppéss you have a program that 4y simple. FORTH is capable of much more. By using the de-

Lagat, proce;ling = a -¢°ﬂliitl of three parts: : words <BUILDS and DOES>, different classes of new
put. If these three parts do not nes g01H words can be created to take advantage of other mass

to be ”
resident in RAM all at the same time, they can be]oaded ¢ or external facilities.
and run sequentially.]

B Tl

g i

Sasaad A

o (A T A R T T A

12.6 SOURCE CODE EDITING

The many different mass storage devices, terminals and u
preferences make it impossible to provide more than a stagt
putting source code onto FORTH screens. Two useful words
manipulating character data are already supplied in AIM
FORTH, namely (LINE) and .LINE . The following code
defines two useful words that take advantage of (LINE}J
-LINE , and a third word useful for initializing screens y
for text. These three words (P , LIST , and WIPE al
data to be typed into a line of a screen and show the
techniques involved in creating an editor appropriate to

particular setup. The example screen format shown resnlts
using these words.

13 :
(SOME PRIMITIVE WORDS TO PUT TEXT IN SCREENS.)

L === PUT TEXT INTO LINE # L VIA: L EDIT TEXTT

P SCR @ (LINE) OVER SWAP BLANKS (CLEAR LINE) 17
@ WORD (PARSE TEXT) HERE COUNT 64 MIN { 64 CH.
ROT SWAP CMOVE (MOVE TEXT) UPDATE ;

-

(8§ === S LIST LISTS SCREEN # 5) .
LIST DUP CR ." SCR # " . (PRINT SCREEN AND SAVE)
16 8 DO CR I 3 .R SPACE I SCR @ .LINE LOOP CR

(8 =-- S WIPE BLANKS & WRITES SCREEN § S. BE C
t WIPE B/SCR * B/SCR BOUNDS (SCREEN # TO BLOCK RA
DO I BLOCK B/BUF BLANKS UPDATE LOOP FLUSH H

[ol ol 3
EWNHROVELAU RWN S D
v

15 BASE | (RESTORE PREVIOUS BASE.) ;8 ‘

The words LIST and P work together in that a screen shol

be listed before text is placed in it with P . The ac
listing a screen makes that screen the current screen and 3
operations are directed to it.

The word LIST uses .LINE to output 16 lines of 64 chara

ters each. LIST also prints the screen number and the numbe

of each line, for reference when Placing text in that scre
Given the line number as a parameter, the word P fetches
the current screen number then places blanks in that Tine

12-18 ;

BASE @ (SAVE CURRENT BASE) DECIMAL (FOR THIS SCRE

ore moving the following text string into it. The phrase @
| pazses out the following text to the carriage return and

it, to HERE with the character count in the first
tion. The phrase HERE COUNT ROT SWAP gets the address

g connt of the text, positioned correctly along with the

s '0f the destination, so that CMOVE can be used to move

xt. Once the text is in the proper buffer, UPDATE

the buffer as having new data in it, and that data will
matically be written to mass storage if the buffer is needed
Wword WIPE takes the screen number left on the stack and
s all of its blocks with spaces, thus preparing the screen
editing, Because WIPE overwrites anything written in the
ﬁ.uit must be used with caution.

ﬁrds are used like this:
1/ WIPE

[blanks in screen 10, and

Jipr text, use P 1like this:
3/p THIS LINE OF TEXT GOES ON LINE 3.

tevt will be placed on line 3, and the rest of line 3 will
blanked, in case there was old text on it.

t# to place text into screens to make a simple editor.
hese words by loading the screens and trying them out.
use the simple editor to make a enhanced editor that takes
aoce of any features that your particular setup has.

12-19

=R

=%

1

T

Before you use P with a TTY or CRT, the input buffer Rif
should be set to the display line length. The phrase

APPENDIX A

AIM 65/48 FORTH FUNCTIONAL SUMMARY
80 UC/L

f;ppendix contains a summary of the AIM 65/40 FORTH word
fans, grouped by area of primary function. Consult
+ B for the detailed definition of each word.

will do this, with the number being the number of characters
per line. i
After a screen has been created or edited, the new infor ;9
must be written to the disk before that screen is anptlew
This can be done with a FLUSH before the LOAD .

6k Notation

stack operation is denoted in the parentheses. The symbols
left indicate the order in which input parameters must
eG on the stack prior to FORTH word execution. Three
t~==) indicates the FORTH word execution point. Any

ers left on the stack after execution are listed on the
The top of the stack is to the right.

Definition

. 16-bit signed number
~ 32-bit signed number
2 -16=bit unsigned number

32-bit unsigned number

diri,,. address

___8-bit byte (with eight high bits zero)

7-bit ASCII character value (with nine high bits
zero)

Boolean flag (zero - false, non-zero = true)
Boolean false flag (value = zero)

Boolean true flag (value = non-zero)

12-20 A-1

STACK MANIPULATION
bup (n---nn)
2DUpP (d ---d44d)

or (nl1 n2 ===
nl n2 nl n2)

DROP (n--—)
2DROP (d-—)

or (nl n2 ---
SWAP { nl n2 =-- n2 nl)
OVER (n1 n2 --

nl n2 nl)
ROT (nl1 n2 n3

n2 n3 nl)
-DUP (n=---n?)
>R (n ==
R> (===-n)
R (=== n)
PICK (n === nth)
sPe (=== addr)
RP@ addr)
BOUNDS (addr n ===

addr r + n addr)

«5 o '

NUMERAL REPRESENTATION

DECIMAL ()

HEX ()

BASE (==- addr)
DIGIT (===

— "™}

1 (=---1)

2 (=---2)

3 (---3)

4 (=---4)

A-2

Duplicate the numt
the stack.
Duplicate the t
number (or th
numbers) on
Delete the top num
the stack.
Delete the top do
number (or the

numbers) on the sti

Exchange the top
numbers on the g

Copy second number
the stack to the

Rotate the third n
on the stack *o‘
top.

Duplicate the top n
on the stack only

it is non-zero.

Move top item to R
Stack.

Retrieve item f+
Return Stack, |
Copy top of Retusn
onto stack, o
Copy the nth ltin

top.
Return address of
top position. °
Return address of
return stack pol
Convert start addr
count to start_a
stop addresses.
Display stack co
without modifying
stack. :

Set decimal bach 3
Set héxadecimal base
System variable |
containing number
base.
Convert ASCII to b
The number zero. |
The number one.
The number two. '
The number three.:
The number four.,

" ARITHMETIC AND LOGICAL

nl n2 --- sum)

(

(d1 42 === sum)

(nl n2 --- diff)
o { nl n2 --- prod)

B | (nl n2 --- quot)
HoD (nl n2 --- rem)
- /MOD (nl n2 -—-

e rem quot)

. *'MOD (nl n2 n3

- -== rem gquot)

.g (nl n2 n3 ---

r quot)

U b (ul u2 === ud)
By (ud ul === u2 u3
i (nl n2 d)
LM/ (dnl n2 n3)
3 ﬁ/mon. (udl u2

MAX (nl n2 --- max)
- MIN (nl n2 --- min)

- (nl n2 --- n3)
D4 (dl n=---43)
ﬂggs (n =-- absolute)
. DARS (4 ——= absolute)
'f NEGATE {(n----n)

- DNEGATE (d === =d)
E-ﬁ.) D (n d)

o O (nl === nl+l)
f §+ (nl --=- nl+2)

2- (nl -— nl-2)

AND (nl n2 === and)
. OR (nl n2 =-- or)

- XOR (nl n2 --- xor)

Add two 16-bit numbers.
Add two 32-bit numbers.
Subtract (nl=-n2).
Multiply.

Divide (nl/n2).

Modulo (i.e., remainder
from division).

Divide, giving remainder
and quotient.

Multiply, then divide
(nl*n2/n3), with
double intermediate.

Like */MOD , but give
quotient only.

Unsigned multiply leaves
double product.

Unsigned remainder and

uotient from double
ividend.

‘Signed multiplication
leaving double
product.

Signed remainder and
quotient from double
dividend.

Unsigned divide leaving
double gquotient and
remainder from double
dividend and single
divisor.

Maximum.

Minimum.

Set sign, n3 = nl times
the sign of n2.

set sign of double
number.

Absolute value.

Absolute value of double

number.

Change sign.

Change sign of double
number .

sign extend single
number to double
number.

Increment by 1l.

Increment by 2.

Decrement by 1.

Decrement by 2.

Logical AND (bitwise).

Logical OR (bitwise).

Logical exclusive OR
(bitwise).

COMPARISON OPERATORS

(nl n2 ===
{ nl n2 ===~

(nl n2 —-=
% Rl
N o———f)

ul w2 =--= f)
f ~==£')

CONTROL STRUCTURES

DO ... LOOP (end+l start —--
v« loop)

DO ... n (end+l start =---

+LOOP 3 «ss N +loop)

I (=== index)
LEAVE -

BEGIN BEGIN ... f UNTIL
-ee UNTIL

BEGIN ... BEGIN ... f
WHILE ... WHILE ... REPEAT
+«+« REPEAT

BEGIN ...
AGAIN
IF ... THEN if: (f ---)

IF ... ELSE if: (f ---)
LN 3 THB“

END
ENDIF

True if nl less t

True if nl greater
n2.

True if top two n
are equal.

True if top numher
negative,

True if top numhep
(i.e., reverses tr
value).

True if ul less thf

Reverse Boolean v
(same as 0 = |.

Set up loop, given
range.

Like DO...LOOP , by
and stack value
(instead of always

Place current indey
value on stack,
Terminate loop at ney
LOOP or +LOOP ,
Loop back to BEGTN u
true at UNTIL . i
Loop while true at
WHILE ; REPEAT 1
unconditianally
BEGIN . :
Unconditional lonpq

If top of stack tr'
execute,

Same, except thnti

stack false, execut
ELSE clause.

Alias for UNTIL .

Alias for THEN .#

. MEMORY

R

. BLANKS

* TOGGLF

addr --- n)

n addr ---)

addr --- b)
b addr ---)
addr ---)

n addr ---)

from
addr
addr
addr

addr

ton --
nb---

n ===)£

Replace word address by
contents.

Store second word at
address on top.

Fetch one byte only.

Store one byte only.

Print contents of
address.

Add second number on
stack to contents of
address on top.

Move n bytes in memory.

Beginning at addr, fill
n bytes in memory with b.

Beginning at addr, fill
n bytes in memory with
Zeroes.

Beginning at addr, fill
n bytes in memory with
blanks.

Exclusively OR byte at
addr with byte b.

A. INPUT-OUTPUT
-CR .

b CR

SPACE
SPACES
CLRLINE

——
=
1

7 - }

DUMP addr n

TYPE

-

?TERMINAL (=== £)

KEY (=== ¢)
EMIT (e=—-)
EXPECT (.ddr n ===
1 WORD U o §
? IN (--- addr)
' BL T)
I c/L (=---n)
i TIB (=== addr)
4 QUERY s
1D. (addr ---)
HANG (-)

=

-Output a carriage re

~addr n =---

Output a carriage r . NIIMRER
and line feed to th
~AIM 65/408 printer,

not to the display.

and line Feed to

Type one space.
Type n spaces.
Output a CTRL B to the
AIM 65/40 printer a
.display.
Print message
(terminated by ']
Dump n words starting
address using curcenl
base.
Type string of n 1
characters starting
address., ¥y
True if any koy is
depressed,

Read key, put ASCII
value on stack.
Output ASCII valun

stack.
Read n characters i

& pLr

. LINE

L epuNT

: - LR
Read the next text iy
character string.
User variahle conta
current offset wi
input buffer. 1
Put a SPACE charactep
(ASCII $20) on the
stack. E
Maximum number of :
characters/line.
Terminal Input Buffer
start addr.
Input text from
terminal.
Print <name> given nan
field address (NFA)
Wait for key stroke,

1 [}.R

e DPL

V=TRATLTNCG

i OUTPUT FORMATTING

(addr --- d

) A
lal --- 1d}

t1al —= 00

{ n Idl --= |d])
(Idl -—- addr u)

Convert string at
address to double-
precision number.

Start output string.

Convert next digit of
double-precision
number and add
character to output
string.

Convert all significant
digits of double-
precision number to
output string.

Insert sign of n into
output string.

Terminate output string
(ready for TYPE).

(c === Insert ASCII character

A G T into output string.

{ === addr) Hold pointer, user
variable.

(addr nl --- Suppress trailing

addr n2) blanks.

(line SCR ===) Display line of text
from mass storage.

(addrl --- Count and address of

addr+1l n). message text.

(n === Print number ASCII

string

(n fieldwidth o) Print nunbar ASCII

(a---)

string right-justified
in field.

Print double number
ASCII string.

(4 fieldwidth --) Print double number

(=== addr)

ASCII strin
right-justified in
field.

Address of number of
digits to the right of
decimal point.

A-17

!
i
!
g

s

o A Es s

=¥ e G o Jeedy g

il

B

n"

A.19

MONITOR & CASSETTE I/0

COLD (===
MON ¢ wamdy
CLOSE —
?IN {(==~)
20UT [=)
GET “I
PUT (¢

READ (addr n
WRITE (addr n <)
SOURCE

FINIS (~=

COMPILER-TEXT INTERPRETER
-3 { ==}

;S (==
[COMPILE] (<name> -.
LITERAL (R ===-n)
DLITERAL (d=-==4d)
EXECUTE (addr ---

[

) -

A-8

!

-

AIM 65/40 m{! . _CREATE
start. { d

Exit to AIM 65/ FORGET
Monitor. 4 i

Close audio tape

Set active input dey

Set active output
device.

Input a characte
the active input
device, i

Output a charaect
the active ou p
device,

Input n charact
active input
addr.

Output n charact
addr to actlve
device. 3

Interpret input fr:
active lnpnt*ae~
through AIM 6%

End of filc nnrke {
input via SOURCE

Interpret next sc - LATEST
Stop lntorprctttio
Force compilatian:
IMMEDIATE word,
Compile a numbe
literal,

' Lar

Execute the def f
CFA on top of s
Suspend compilati
enter execution.
Resume compilation,

Ifsuuncz
. STATE

. IMMEDIATE

| LTUTERAL

DICTIONARY CONTROL

(<name> --

(-—- addr

(n---
(--—-)
(<name>

found: (<name>

PFA b tf) <name>

Create a dictionary
header.

FORGET all definitions
from <name>.

Returns address of next
unused byte in the
dictionary.

Leave a gap of n bytes
in the dictionary.

A dictionary marker null

word.
addr rlnd the PFA of <name>
in the dictionary.
-— Search dictionary for
<name>.

not_gggg%zv{ <name>

(n --- addr
(b===)

(n=--)

(== addr)

(<name>

. INTERPRET
addr)

(-—-n
(-——-b)
L ommel)

(
(===
(

-== addr)

) User variable containing
the the dictionary
pointer.

Compiles byte into

dictionary.
Ceupllo a number into

—the dictionary.

Pointer to temporary
buffer.

Forces execution when
compiling.

The Text Interpreter

executes or compiles.

Leave name field address
(NFA) of top word in
CURRENT .

Place 16-bit literal on
the stack.

Place byte literal on
the stack.

Compile a 16-bit
literal.

Toggle name SMUDGE bit.

User variable containing
compilation state.

A-9

5 _'a;...-"a'é

D

A.12

A.13

DEFINING WORDS
<name> (===)
i ==l
VARIABLE Compilation:
(n --- <name>)
Execution:
(<name> --- addr)
CONSTANT Compilation:
(n === <name>)
Execution:
(<name> --- n)
CODE <name> (---)
; CODE (===)
<BUILDS... Compilation:
DOES> <BUILDS ...
Execution; ...
DOES> ...
USER Offset user <name>
VOCABULARIES
CONTEXT {i==="addy 3
CURRENT (=== addr)
FORTH ==)
ASSEMBLER —)
DEFINITIONS <name> ---)
VOCABULARY === <name>)
VLIST (===
VOC-LINK (=== addr)

Begin colon defip
of <name>.

End colon definit

Create a variable &
named <name> with
initial value n
returns address
executed.

Create a constantip
<name> with val
returns value w
executed,

Begin definition
assembly-langua
primitive opera
named <name>,

Used to create a
defining word,
execution-time
routine"™ for this
type in assembly,

Used to create a
defining word,
execution-time
for this data ty
higher-level FORTH

Create a user varii

Returns address of
pointer to CONT
vocabulary.

Returns address of
pointer to CURRENT
vocabulary.

Main FORTH vocabular)

(execution of FOR
sets CONTEXT y
vocabulary) . 1

Assembler vocabula
sets CONTEXT .

Sets CURRENT
vocabulary to
CONTEXT .

Create new vocabulary

named <name>,

Print names of all worg

in CONTEXT

vocabulary. F
Most recently defin

vocabulary.

IMASS STORAGE
—— d editing screen into
i Fii) Loguffer ang compile or
execute. Automatically
] saves prior buffer
1 contents if necessary.
CK (bleck —-- addr) Load editing screen into

buffer and compile or
execute, Automatically
stores prior contents

L of buffer if necessary.

A-11

} i System constant giving
2 n
?/BUF (: mass storage block
size in bytes.)
5 -— Number of blocks/editing
U AR screen.
;LK -== addr) System variable
g containing current
i block number.

CR (=== addr) System variable
containing current
screen number.

——— Mark last buffer

R : : accessed as upgated.
F - Write all update

?LUSH (J buffers to disk.
:{MPTY- { ===) Erase all buffers.

S BUFFERS

: ——— addr2 f) Increment buffer

.+BUF (addrl Crehea:

B --— addr) Fetch next memory
';UFFER i buffer./ . sinksge
R blk £ ===) User read wrxtg nkage,

h/w Eafﬁi addr) Variable containing

4 address of next

i buffer. i

i -—— addr variable containing

i (‘) address of latest
buffer.]

p: -—- Leaves address of first

i (& block buffer.

. OFFSET (--- addr) User variable block

offset to mass
storage.

A.15 MISCELLANEOUS AND SYSTEM PRIMITIVE k

(<comment>) (=---) Begin comment, te B - Run-time procedure i
b by right parent : compiled by ." . |
on same line. \(; CODE! {—= Run-time procedure A
i CFA (pfa --- cfa) Alter parameter fi 3 compiled by ;CODE . q
: address to code B(+1.00p" (R === Run-time procedure 1
1 address. ' compiled by +LOOP . i
: NFA (pfa --- nfa) Alter parameter f " (ARORT! Run-time procedure !
d address to name compiled by ABORT .
E address. - (DO! (limit+l Run-time procedure
; PFA (nfa --- pfa) Alter name field start =---) compiled by DO .
0 to parameter fi (PTNDY (addrl addr2 - Searches the dictionary
1 adddress. pfa b £f£f)
i LFA (pfa --- 1fa) Alter parameter f (addrl addr2 -
i address to link i ££)
; address. ; {LINE! (nl n2 -—-) Virtual storage line
) LIMIT S-ﬂ-ﬂ Top of memory. . addr count) primitive.
y QuIT L Clear Return Stac L (LonP! (=== Run-time procedure
i return to termi - compiled by LOOP .
(NUMBER' Converts ASCII to
i numeric,
1 A.16 SECURITY £f -) Run-time conditional
i branch.
."I tcse Store stack posit (=== Run-time unconditional
: into check stack branch.
! pointer. (===) Indicates single
7COMP (=== Error if not compi . character literal.
i 2CSP fo=———) Check stack posit (add ¢ ——- Text scanning by WORD . ,
?ERROR { ~—=) Outputs error mess; addr 1 n2 n3) {
2EXEC § =y Not executing err (--- addr) Location of Return Stack
i ?PAIRS (=== Conditional nat p base. A
B error. (=-- addr) Location of Parameter
;' ?STACK (=== Stack out of ha Stack base. |
¥ error. o (=== Initializes Return i
K cse (---) User variable for Stack.
i stack pointer. Initializes Parameter i
§ ABORT (w==) Error ...operatip Stack.
i terminates., i
i ERROR (line --- in blk) Execute error ; !
notification ap)
_ b restart system. |
| MESSAGE (N ===) Displays messagenunt]
| n. 4
1 8 WARNING (==- addr) Flag for to message 1
| routine. - i
| FENCE (--- addr) Prevents FORGET
| ' this point. ,I
| d WIDTH (=-- addr) Contrnls the numbe I
f significant rhar I
| of <name>.)
|
|
|
A-12 A-13

APPENDIX B
AIM 65/40 FORTH GLOSSARY
'f'glossary contains the definition of all words in the AIM

FORTE vocabulary. The definitions are presented in ASCII
aft order

Eick ‘Notation

g first 1ine of each entry shows a symbolic description of
ction of the procedure on the parameter stack. The
on the left indicate the order in which input
ters have been placed on the stack. Three dashes "---"
ate the execution point; any parameters left on the stack
execution are listed on the right. 1In this notation, the
p of the stack is to the right.

pl Definition

gdr,addr! memory address
8-bit (with high eight bits zero)
7-bit ASCII character (with high nine bits
zero) E
32-bit signed double integer, most
significant portion with sign on top of
stack
Boolean flag (@=false, non-zero=true)
Boolean false flag (value = @)
16-bit signed integer number
16-bit unsigned integer number
32-bit unsigned number

Boolean true flag (value = non-zero)

Pronunciation feributes (ATTR)
The natural language pronunciation of FORTH names is qinQ pital letters show definition characteristics
double quotes ("). : .
] L Ma only be used \ 1in a colon-defini 1. A digit
. indicates number ¢ iemory acdresses u y 1f other tha

'.I i
E & ane

Integer Format

Unless otherwise noted, all references to numbers are i’m:%]f
16-bit signed integers. The high byte of a number is on tog
the stack, with the sign in the left-most bit, For 32-bit
signed double numbers, the most significant part (with tn;
sign) is on top. 5

_ Intended for execution only.

. Indicates that the word is IMMEDIATE and will execute

- during compilation, unless special action is taken

~ Has precedence bit set. Will execute even when compiling.
b user variable. :

| ?"

All arithmetic is implicitly 16-bit signed intagcr-lazl.' | ﬁi» Key Words (GROUP)

error and underflow indication unspecified. R -

ollowing key words identify the functional group (see
Capitalization «ﬂndix A) that each word is most related to. —
.%TARR Stack Manipulation

NIMRRTC Numeric Representation

Word names as used within the glossary are econvenrionally.
written in upper case characters. Lower case is used wh

reference is made to the run-time machine codes (not dire 'ARITHMETIC Arithmetic and Logical
accessible), e.g., VARIABLE is the user word to create a S COMPARTSON Comparison Operators
variable. Each use of that variable makes use of a code |CONTROL Control Structures

sequence ‘'variable' which executes the function of the
particular variable.

| MEMORY Memory
T /C Input/Output
FORMAT Output Formatting

 MONTTOR Monitor and Cassette Input/Output
" COMPILER Compiler - Text Interpreter
il . NTOTTONARY Dictionary Control
i | DRFTNTNG Defining Words
i }VOCAHHLhHV Vocabularies
/i - MASS Mass Storage
& | MISC ‘Miscellaneous SO
SECURTTY Security/Error Detection
VPRIMITIVF Primitives -
ASSEMBLER Assembler Dictionary
| PARAMETEFR Parameter Used in FORTH

WORD STACK NOTATION/DEFINITION GROUP ATTR
! n addr =--- MEMORY
| "store"

Stores 16-bit number n into addr.

1CSP - SECURITY
"store CSP"

Stores the stack position in CSP ., Used as DAl
the compiler security. See cCsp .

¥ udl --= pd2 FORMAT
"sharp"
Generates the next ASCII character placed in af
output string from udl. Result ud2 is the quotd
r after division by BASE, and is maintained for

i further processing. Use between <§ and >3
s .

L 22 d --—- addr n FORMAT
"sharp-greater"
Terminates numeric output conversion by dropping
leaving the text address and character count n
suitable for TYPE .

#5 ud --- g ¢ FORMAT
"sharp-s")
Converts all digits of a ud adding each to the
pictured numeric output text, until the remaindg
zero, A single zero is added to the output stel
if the number was initially zero. Use only betw
<¢ and #> .

=== addr
“tick®
Used in the form:

DICTIONARY

<name>

If executing, leaves the parameter field addras
the next word accepted from the input stream,
compiling, compiles this address as a literaly
execution will place this value on the stack,

If the word is not found after a search of _CONIE
and FORTH vocabularies an error message is
displayed.

STACK NOTATION/DEFINITION GROUP ATTR

MISC
Rparenn
Used in the form:

(ccec)

Accepts and ignores comment characters from the
input stream, until the next right parenthesis. As
a word, the left parenthesis must be followed by one
blank. It may be freely used while executing or
compiling. An error condition exists if the input
stream is exhausted before the right parenthesis.

PRIMITIVE [+

The run-time procedure, compiled by .", which
transmits the following in-line text to the selected
output device.

See " .

PRIMITIVE c

The run-time procedure, compiled by ;CODE , that
rewrites the code field of the most recently defined
word to point to the following machine code
sequence. ©See ;CODE .

PRIMITIVE c

The run-time procedure compiled by +L0OOP , which
increments the loop Iindex by n and tests for loop
completion. See +LOOP .

PRIMITIVE

Executes after an error when WARNING is -1. This
word normally executes ABORT , but may be altered
(with care) to a user's alternative procedure. See
ABORT .

limit +1 start =---
The run-time procedure, compiled by DO , which

moves the loop control parameters to the return
stack. See DO .

PRIMITIVE Cc

R T I S

WORD

(FIND)

(LINE)

(LooOP)

(NUMBER)

*/

GROUP ATTR

STACK NDTHTIONZDB?XNITIO“
4

PRIMITI

pfa byte tf (ok) |
addr2 £f : (bad)

Searches the dictionary starting at the nam
address addr2, matching to the text at addr
Returns parameter field address, length of name
field byte and Boolean true for a good match;

match is found, only a Boolean false is left.
-FIND . - il

addrl addr2
addrl

nl n2 === addr count PRIMITIVE
Converts the line number nl and the screen numb
to the disk buffer address containing the data,
gount of 64 indicates the full line text length,
ee .LINE . e i

PRIMITIVE

The run-time procedure, compiled by LOOP, whi
increments the loop index and tests for loop.
completion. See LOOP . g

dl addrl --- d2 addr2 PRIMITIVE
Converts the ASCII text beginning at addrl+l
regard to BASE . The new value is accumulate

dl, being left as d2. addr2 is the address o

first unconvertable digit. See NUMBER .
nl n2 =--- n3 ARITHMETIC
"times"

Multiples nl by n2 and leaves the product n3.

nl n2 n3 =--=- n4
"times-divide"
Multiplies nl by n2, divides the result by n3
leaves the quotient nd. n4 is rounded towardéf
The product of nl times n2 is maintained as a
intermediate 32-bit value for a greater preci
than the otherwise equivalent seguence:

ARITBH!TIC?

nl n2 * n3 /

STACK NOTATION/DEFINITION GROUP ATTR'

nl n2Z n3 --- nd n5 ARITHMETIC

"times-divide-mod"
Multiplies nl by n2, divides the result by n3 and
leaves the remainder n4 and quotient n5. A 32-bit

intermediate product is used as for */ . The
remainder has the same sign as nl.
nl n2 --- n3 ARITHMETIC

[] luI
nﬂa. nl to n2 and leaves the arithmetic sum n3.

n addr --- MEMORY

"plus store"
Adds n to the 16-bit value at the address, by the
convention given for +.

nl n2 =--- n3 ARITHMETIC

*plus-minus®
Applies the sign of n2 to nl, which is left as n3.

addrl --- addr2 flag MASS

"plus-buf”®

Advances the virtual storage buffer address (addrl)

to the next buffer address (addr2). Boolean flag is
false when addr2 is the buffer presently pointed to

by variable PREV .

(run-time) CONTROL ic

(compile-time)

nl =--

addr n2 ---
"plus-loop"
Used in a colon-definition in the form:

DO ... nl +LOOP
At run-time, +LOOP selectively controls branching
back to the corresponding DO based on nl, the loop
index and the loop limit. The signed increment nl is
added to the index and the total compared to the
1imit. The branch back to DO occurs until the new
index is equal to or greater than the limit (nl >
@), or until the new index is equal to or less than
the limit (nl < 0). Upon exiting the loop, the
parameters are discarded and execution continues.
Index and limit are signed integers in the range
<-32,768..32,767>.

WORD

+LO0OP
{Cont.)

=Dup

=FIND

STACK NOTATION/DEFINITION

GROUP ATTH

At compile-time, +LOOP compiles the run-time!
(+LOOP) and computes the branch offset from]
to the address left on the stack by DO . n2

used for compile time error checking.

R =
"comma"

Stores n into the next available dictio
cell, advancing the dictionary pointer.

DICTIONARY |
nary memgl
nl n2 --- n3

"minus"
Substracts n2 from nl and leaves the differenc

ARITHMETIC

%

MASS
"next-screen"

Continues interpretation with the next virtual
storage screen, 1

r) INPUT/OUTPUT
carriage-return" |
Issues a carriage return and line feed to the

printer but not to the display. Calls AIM 65

Monitor subroutine CRCK. I

nl === nl (if zero) STACK
nl --- nl nl (non-zero) 3
"minus-dup®

Reproduces nl only if it is non-zero. This isis
usually used to copy a value just before IF , ¢

eliminate the need for an ELSE opll

clause to drop

--- pfa b tf (found)

S (not found)
"dash-find" F
Accepts the next text word (delimited by blanks)
the input stream to HERE , and searches the
CONTEXT and then CURRENT vocabularies for a
matching entry. If found, the dictionary entry!s
parameter field address, its length byte, and a

boolean true is left. Otherwise, only a Boolean
false is left, !

DICTIONARY

STACK NOTATION/DEFINITION GROUP ATTR

addr nl --- addr n2 FORMAT
“dash-trailing”)
Adjusts the character count nl of a text string
beginning address to suppress the output of trailing
blanks. The characters at addr+nl to add;+n2 are
blanks. An error condition exists if nl is
negative.

B === INPUT/OUTPUT
"dot" .
Displays the number on the top of a stack. ? =
number is converted from a signed 16-bit two's
complement value according to the numeric BASE .
The sign is displayed only if the value is negative.
A trailing blank is displayed after the number.

Also see D. .

INPUT/OUTPUT I
"dot-gquote"
Used in the form:

X coecY

ccepts the following text from the input stream,
termgnated by " (double-quote). If executing,
transmits this text to the selected output devlce.l
If compiling, compiles so that later executign wil
transmit the text to the selected output device. At
least 127 characters are allowed in the text. If
the input stream is exhausted'befor? the terminating
double-quote, an error condition exists.

R N2 == FORMAT
"dot-line"
Displays a line of text from mass storage by its
line number nl and screen number n2. Trailing
blanks are suppressed.

I FORMAT

"dot-R" ' e
Displays number nl right justified n2 places. No
trailing blank is printed.

-

T

/MOD

<

B@BRANCH

STACK NOTATION/DEPINITION

GROUP ATTR

dot-g STACK

Displays the contents of the stack witho b
ut alterd
fhe siacrmhis ot T U e i
ents ur d ..:i.
learning FORTH. ng debugging programs and

nl n2 --- n3 THMET
;gi:;d-' ARI IC
vides nl by n2 and leave the g
rounded toward zero. The r.-.t§33§122t133i. ra

nl n2 --- n3 n4
;gi:édcwuod' 3
vides nl by n2 and leaves the ;
remainder n3. n3 has the same s ::t::n:l?4 "

ARITHMETIC

garo® e NUMERIC

The number zero is Placed on top of the stack.

R --- £
"zero-less" a9 COMPARISON
Leaves a true flag (1) if the number is 1 h
zero (negative), other ess th
The number is i;-t. vise leaves a false flag (8

n =--- flag
"zero-equals"” oA S -
Leaves a true flag (1) if the number is equal to BROF

zZero, otherwise 1
i 1;.t. Se leaves a false flag (@). The n

flag ---
“"zero-branch" PRIMITIVE |
The run-time procedure to conditionally branch, [B

the flag is false (zero), the followi in-1lin
g::::;t:;.:; agd;d :o tg. l?tlrpr.tivrqpointeretv

or back. Compil ITILY
and WHILE . plisd’by 1r Nty

STACK_NOTATION/DEFINITION GROUP ATTR
— 1 NUMERIC

*one"
The number one is placed on top of the stack.

n =--- n+l ARITHMETIC
“one-plus"
Increments n by one according to the operation of
+ .

n =-- n-l ARITHMETIC

"one-minus”
Decrements n by one according to the operation of

-— 2 NUMERIC
'twﬂ'
The number two is placed on top of the stack.

n = k2 ARITHMETIC
*“two—-plus"®
Increments n by two according to the operation o

* .

n === n-2 ARITHMETIC

*two-minus"
Decrements n by two, according to the operation of

d - STACK
or nl n2 =---
"two-drop"
Drops the top double number on the stack.

d --- 4 d STACK
or nl n2 =-- nl n2 nl n2

two-dup"
Duplicates the top double number on the stack.

-— 3 — NUMERIC
"three")
The number three is placed on top of the stack.

s NUMERIC

*"four"

The number four on top of the stack.

|
r
.
L |

WORD

i CODE

STACK NOTATION/DEFINITION GROUP ATTR

DEFINING
"colon"

A defining word used in the form:

: <name> ... ;

Selects the CONTEXT vocabulary to be identical
CURRENT . Creates a dictionary entry for <name)
CURRENT , and sets the compile mode. Words thus
defined are called 'colon-definitions'. The
compilation addresses of subsequent words from the
input stream which are not immediate words are
stored into the dictionary to be executed when
<name> is later executed. IMMEDIATE words are
executed as encountered. i

b
)

If a word is not found after a search of the
CONTEXT and FORTH vocabularies conversion and
compilation of a literal number is attempted, wi
regard to the current BASE ; that failing, an e
condition exists,

DEFINING 1
"semi-colon” T
Terminates a colon-definition and stops further

compilation. If compiling from mass storage and the
input stream is exhausted before encountering ; @

BUTLDS
error condition exists, :

DEFINING o :
"semi-colon-code” 3 .

Used in the form:

: <name> ;CODE <assembly code> ' |
END-CODE i
Stops compilation and terminates a new defining wort
<name> by compiling (;CODE) . Sets the CONTEXT
vocabulary to ASSEMBLER , assembling to machine

code the following mnemonics. il
When <name> is later executed in the form: |
1]

<name> <namex>

to define the new <namex>, the code field address 0
<namex> will contain the address of the code P
sequence following the ;CODE in <name>. Executio
of any <namex> will cause this machine code sequence
to be executed. 1

B-12 E

GROUP ATTR

STACK HO@ATION!DI!INIT;O“

COMPILER
. -colon-8" .
s::;: interpretation of a screen. ;S 1310120 th
run-time word compiled at the end of a co onllin
definition which returns execution to the ca g

procedure.

nl n2 --- flag COMPARISON

" e "
Lt:::stzltruo flag (1) if nl is less than n2;
otherwise leaves a false flag (@).

4 -——d FORMAT

s - -sharp"
I::::aig::s thapplctured numeric output format using

the words:
<¢ #

le-precision
specifies the cony-rsion of a doub
:uubg: into an ASCII character stg:;d—fn
right-to-left order, producing text at .

#5 HOLD SIGN #>

DEFINING

Used within a colon-definition:
DOES> s

defines a
ti <name> is executed, <BUILDS
::3hwor:ewith a high-level execution procedure.
Executing <name> in the form:

:+ <name> <BUILDS ...

<name> <namex>

to create a dictionary entry for
3:::.x§°3{tgsa call to the DOES> part for <nunc:>
When nnnn is later executed, it has the a:dro:;.c
its parameter area on the stack and execu ;; s
words after DOES> in <name>. <BUILDS ; g e
allow run-time procedures to written in h gb e
rather than in assembler code (as required by

;CODE).

nl n2 =--- flag COMPARISON

L:gg::-a true flag (1) if nl is equal to n2;
otherwise leaves a false flag (8).

B-13

]

&

WORD

>R

?COMP

7CspP

?ERROR

?EXEC

?IN

?0UT

STACK NOTATION/DEFINITION GROUP ATTR
nl n2 --- flag COMPARISON
"greater-than"

Leaves a true flag (1) if nl is greater than n?:
otherwise a false flag (@).

N == STACK I
L] to_n' " §
Removes a number from the computation stack and
places it as the most accessible number on the
return stack., Use should be balanced with R> in
the same definition.

60AC

: ERMINAT
addr -- STACK '
"question-mark"

Displays the value contained at the address on ths
top of the stack in free format according to rhe'
current BASE. Uses the format of . .

SECURITY

Issues error message if not compiling.

SECURITY '

Issues error mes:

! stack posi ion differs from
value saved in ¢ :

SECURITY
Issues error message #1 (STACK EMPTY), if the
Boolean flag is true.

SECURITY

Issues an error message if not executing.

MONITOR b

Calls the AIM 65/40 Monitor subroutine WHEREI to g

the active input device. ;
MONITOR .

Calls the AIM 65/40 Monitor subroutine WHEREO to
the active output device.

B-14

STACK NOTATION/DEFINITION GROUP ATTR
nl n2 -=- SECURITY

Issues error message #19 (CONDITIONALS NOT PAIRED)
if nl does not equal n2. The message indicates tha
compiled conditionals do not match.

SECURITY

Issues error message #7 (FULL STACK) if the stack is
out of bounds.

--- flag INPUT/OUTPUT
Tests the terminal keyboard for actuation of any
key. Generates a Boolean value. A true flag (1)
indicates actuation, whereas a false flag (@)
indicates non—-actuation.

addr --- 'n MEMORY

"fetch"

Leaves the 16-bit contents of the address on top of
the stack.

SECURITY
"abort"
Clears the stacks and enters the execution state.
Returns control to the AIM 65/40 keyboard.

n =-—— u ARITHMETIC
"absolute®

Leaves the absolute value of n as u

addr n =--- (co -time) CONTROL
"again®
Used in a ‘!olon-defini

in the form:
BEGIN AGAIN

At run-time, AGAIN forces execution to return to
the corresponding BEGIN . There is no effect om
the stack. Execution cannot leave this loop (unles
R> DROP is executed one level below).

At compile-time, AGAIN compiles BRANCH with an

offset from HERE to addr. n is used for
compile-time error checking.

B-15

g

|

ASSEMBLER

B/BUF

B/SCR

BASE

STACK NOTATION/DEFINITION GROUP ATTR
=t COMPILER q

n
"allot"
Adds the signed npmber to the dictionary pointe
DP . May be used to reserve dictionary space nr
re-origin memory. n is the number of bytes.

. d'nl n2 i ARITHMETIC
an i

Leaves the bit-wise logical AND of nl and n2 as i,

VOCABULARY
"assembler”

Sets the vocabulary to ASSEMBLER . f

=== n MASS
"bytes-per-buffer"

Leaves the number of bytes (default value = 128) pg

data buffer, the byte count read from mass stor
by BLOCK .
larger than this value.

=== n MASS
"blocks per screen” ;
Leaves the number of blocks (default value 8) p
FORTH screen. By convention, an ediring screen
1824 bytes organized as 16 lines of 64 characta
each. :

--= addr
"base" o
Leaves the address of the variable containing the
current number base used for input and output
conversion. The range of BASE 1is 2 through 7§,

NUMERIC

B-16

The actual buffer size is four bytes

STACK NOTATION/DEFINITION GROUP ATTR
--- addr n (compile-time) CONTROL
"begin®
Occurs in a colon-definition in form:
BEGIN ... flag UNTIL
BEGIN ... AGAIN
BEGIN ... flag WHILE ... REPEAT

At run-time, BEGIN marks the start of a word
sequence for repetitive execution.

A BEGIN-UNTIL loop will be repeated until flag is
true. A BEGIN-WHILE-REPEAT loop will be repeated
until flag is false. The words after UNTIL or
REPEAT will be executed when either loop is
finished. flag is always dropped after being
tested. The BEGIN-AGAIN. loop executes
indefinitely.

At compile-time, BEGIN leaves its return address
and n for compiler error checking.

=== cha
"blank" '
A constant th
“"blank®, i.e.

INPUT/OUTPUT

res the ASCI: character value fo

addr n ---
"blanks"
Fills an area of memory beginning at addr with the
ASCII value for "blank®, the number of bytes
specified by count n will be blanked. ;

MEMORY

=== addr MASS !
"b-1-k"
Leaves the address of a user variable containing th
number of the mass storage block being interpreted
as the input stream. If the content is zero, the
input stream is taken from the terminal.

n =--- addr MASS
a5 -1 1 I iy
Leaves the first address of the block buffer
containing block n. If the block is not already in
memory, it is transferred from mass storage to
whichever buffer was least recently accessed. If
the block occupying that buffer has been marked as
updated, it is rewritten onto mass storage before
block n is read into the buffer. If correct mass
storage read or write is not possible, an error
condition exists. Only data within the latest block

B=17

BLOCK
(Cont.

BOUNDS

BRANCH

BUFFER

ci

€

ce

STACK NOTATION/DEFINITION

GROUP ATTR i

referenced b¥ BLOCK is valid by byte address, d;
to sharing of the block buffers. n is an unsigned

number. Also see BUFFER , R/W , UPDATE and |
FLUSH . :
addr n --- add +n addr ARITHMETIC e

"bounds"” .
Bounds is equivalent to OVER + SWAP . It is used
to convert addr and count to a start and stop
address for a loop.

CONTROL
"branch" E
The run-time procedure to unconditionally branch,
An in-line offset is added to the interpretive
pointer IP to branch ahead or back. BRANCH is
compiled by ELSE , AGAIN , and REPEAT .

n --- addr MASS 4
“buffer” ' B b
Obtains the next block buffer, assigning it to blogk
n. The block is not read from mass storage. If th
previous contents of the buffer is marked as :
UPDATED, it is written to the mass storage. If
correct writing to mass storage is not possible, 3
error condition exists. The address left is the
first byte within the buffer for data storage. 4

LRL.TNE

GOV F

n addr --- MEMORY
"c-store" 3
Stores the least significant 8-bits of n into the
byte at the address, h

n -
"c-comma"®
Stores 8 bits of n into the next available
dictionary byte, advancing the dictionary pointer, =

DICTIONARY
-'l_:l F

-—=n INPUT/OUTPUT:: |
"characters/line" ; .

e number of characters (default value = 3§
per input line. i

B

add --- byte MEMORY

“"c-fetch A
Leaves t i-bit contents the byte at the address
on the t »f the stack i ¢ low order byte. The
high ord yte is zero. b/

B-18

STACK NOTATION/DEFINITION GROUP ATTR

pf -- cfa MISC
"c-f-a"
Convert! e parameter field address (pfa) of a
definit to its code field address (cfa).

--- b : STACK
"c-1it"

Compiled within system object code to indicate that
the next byte is a single character literal (i.e.,
in range 8-255). Used only in system code (not by
application program, i.e. user). Application
programs use LITERAL , which uses CLIT or LIT
as appropriate. :

MONITOR
"close” i
Closes tape Sets the active input drive to
keyboard and re output device :o Display/
Printer.
o ot INPUT/OUTPUT

“clear-line® : : :
Outputs a CTRL B to the AIM 65/40 printer and
display to clear to the end of the line.

addrl addr2 n --- MEMORY

"c-move"

Moves n bytes from memory area beginning at nddgcli
addrl to memory area starting at addr2. The
contents of addrl is moved first proceeding toward
high memory. If n is zero or negative, nothing is

moved.

ASSEMBLER
"code"”
A defining word used in the form:

CODE <name> ... <assembly code> ... END-CODE

To set CONTEXT to the ASSEMBLER vocabulary and

to create a dictionary entry for <name>., When
<name> is later executed the machine code in this

parameter field will execute.

B-19

COLD

COMPIL

CONSTANT

CONTEXT

COUNT

CR

STACK NOTATION/DEFINITION GROUP ATTR {.

MONITOR
"cold"” o [

The cold start procedure to adjust the diction
pointer to the minimum standard and restart vi
ABORT . May be called from the terminal to re
application programs and restart. Performs the
functions as entering FORTH from the AIM 65/48
Monitor via the 5 key.

: COMPILER |
compile” =
When the word containing COMPILE executes, th
compilation address of the next non-immediate
following COMPILE is copied (compiled, into th
dictionary. This allows specific compilation
situations to be handled in addition to simply
compiling an execution address (which the :
interpreter already does).

n --- <name> (compile-time) DEFINING
<name> --- n (run-time)
"constant"® .

A defining word used in the form:

n CONSTANT <name> k-
to create a dictionary entry for <name>, leavinQV-
in its parameter field. When <name> is later

executed, it will push the value of n to the stack

. === addr DICTIONARY b

context” A
Leaves the address of a user variable inti '
the vocabulary in which dictionary selggh-s gge'f
made, during interpretation of the input stream,

. addr --- addr+l n FORMAT o
count*® 4
Leaves the address addr+l and the character count
of text beginning at addr. The first byte at addr
must contain the character count n. The actual
starts with the second byte. The range of n is
9=255. Typically COUNT is followed by TYPE .

N '
"carriage-return® INPUT/OUTPUT

Transmits a carriage | and line feed |
to the active output

B-20

IRRENT

§3A§§_§OTATION£QEEINITIQQ GROUP ATTR

DICTIONARY

"create"
A defining word used in the form

CREATE <name>

Creates a dictionary entry for <name> without
allocating any pnrazator ¥1eld memory. When <name>
is subsequently executed, the address of the first
byte of <name>'s parameter field is left on the
stack. The code field contains the address of the
word's parameter field. The new word is created ir

the CURRENT vocabulary.

-=== addr SECURITY
"c-g-p"
Leaves the address of a user variable temporarily
storing the check stack pointer (CSP) position,
for compilation error checking.

-== addr DICTIONARY

"current"
Leaves the address of a user variable pointing to
the vocabulary into which new word definitions are

to be entered.

dl 42 --- 43 ARITHMETIC
"d-plus”
Adds double precision numbers dl and d2 and leaves
the double precision number sum d3.

dl n --- 42 ARITHMETIC

Applies the sign of n to the double precision number
dl and leaves it as double precision number d2.

d -—- FORMAT
"d-dot"”
Displays a signed double-precision number from a
32-bit two's complement value. The high-order 16
bits are most accessable on the stack. Conversion
is performed according to the current BASE . A
blank follows.

d n - FORMAT

"d-dot-r"
Displays a signed double-precision number d right
aligned in a field n characters wide,

B-21

WORD STACK NOTATION/DEFINITION GROUP ATTR j ﬁ
DABS d --- ud L8
it ARITHMETIC |
Leaves the absolute value ud of a double numbef.,
DECIMAL ? 1 :
SeetasL NUMERIC Ao
Sets the numeric conversion BASE ¢t a8
10) for input-output. o declssl A
DEFINITIONS '
*definitions" o ¥
Used in the form: ik
cccc DEFINITIONS .:’ 1
Sets CURRENT to the CONTEXT vocabul ol
subsequent definitions will be created ::Yt:: =Y
vocabulary previously selected at CONTEXT . I3
DIGIT NUMERIC |
g:ar n} === n2 tf (valid convorllon)'_;i
!digitP.r nl =-- ft (invalid conversionlr
Converts the ASCII character (usin 1
g BASE nl
%E? bl?;rzh:qulvalong n2, accompanied by a tr&u
. conversion is invali
ke Eine i d, leaves onlyf_:1
DLITERAL d --- d (executing) COMPILER
. d --= (compiling)
Ig-lltcral'
compiling, compiles a stack double numb to @
literal. Later execution of the doﬂnitio;r e
containing the literal will push it to the stack. .
If executing, the number will remain on the srack,
']
DNEGATE dl --- =41
Vionegrias ARITHMETIC

L

ﬁ::;::.thl two's complement of a double prﬁﬁislan;

STACK NOTATION/DEFINITION GROUP ATTR

nl n2 === (run-time) CONTROL

addr n =--- (compile-time

Occurs in a colon-definition in form:

Do sew LOOP
Do s +LOOP

At run-time, DO begins a sequence with repetitive
execution controlled by a loop limit nl and an index
with initial value n2. DO removes these from the
stack. Upon reaching LOOP the index is
incremented by one. At the +LOOP the index is
modified by a positive or negative value. Until the
new index eguals or exceeds the limit, execution
loops back to just after DO ; otherwise the loop
parameters are discarded and execution continues
ahead. Both nl and n2 are determined at run-time
and may be the resuult of other operations.

Loops may be nested. within a loop I will copy the
current value of the index to the stack. See I ,
LOOP , +LOOP , LEAVE .

At compile-time within the colon-definition, DO
compiles (DO) and leaves the following addr and n
for later error checking.

"does"
Defines |

defining
Used in |

: <name> ... (BUILDS ...
DOES> ...
and then <name> <namex>.

Marks the termination of the defining part of the
defining word <name> and begins the definition of
the run-time action for words that will later be
defined by <name>,

DOES> alters the code field and first parameter of
the new word to execute the segquence of S
word addresses following DOES> . Used in
combination with <BUILDS . The execution of the
DOES> part begins with the address of the first
parameter of the new word <namex> on the stack.
Upon execution of <name> the sequence of words
between DOES> and ; will be executed, with the
address of <namex>'s parameter field on the stack.
This allows interpretation using this area or its
contents.

B-23

WORD STACK NOTATION/DEFINITION GROUP ATTR E ?¢' STACK NOTATION/DEFINITION

DOES> Typical uses include the FORTH assembler, LSE At compile-time, ELSE emplaces BRANCH reserving
(Cont.) multi-dimensional arrays, and compiler generation, font." a branch offset, leaves the address addr2 and n2 for
3 error testing. ELSE also resolves the pending
: forward branch from IF by calculating the offset
DP addr COMPILER 1 from addrl to HERE and storing at addrl. See IF
"4-p" 4 and THEN .
Leaves the address of user variable, the dictionary
pointer, which points to address the next free k 2
memory address above the dictionary. The value n:] char --- INPUT/OUTPUT
be read by HERE and altered by ALLOT . 1 "emit"

Transmits an ASCII character to the selected output
device. See KEY .

DPL ==-- addr FORMAT
"d-p-1" ’
Leaves the address of user variable containing the PT{-BUFFERS MASS
number of digits to the right of the decimal on *empty-buffers”

double integer input. It may also be used hold
output column location of a decimal point, in user
generated formating. The default value on sinale
number input is -1.

Marks all block-buffers as empty, not necessarily
affecting the contents. Updated blocks are not
written to the mass storage. This is also the
required initialization procedure before first use
of the mass storage.

Ll

DROP n --- STACK . _
"drop" CLOSE PRIMITIVE
Drops the number on top of the stack from the stack addr char =--- addr nl n2 n3
“enclose"
DUMP addr n =--- INPUT/OUTPUT The text scanning primitive used b{ WORD. From the
dump® text address addr and an ASCII delimiting character

is determined the byte offset to the first non-
delimiter character nl, the offset to the first
delimiter after the text n2, and the offset to the
first character not included n3. This procedure
will not process past an ASCII 'null', treating it
as an unconditional delimiter.

Displays the contents of n memory locations
beginning at addr. Both addresses and contents are
shown in the current numeric base. DUMP outputs 8
bytes on a line.

Dup n =--- N n STACK
‘du -
Duplicates the value on the stack. . . CONTROL
end
This is an 'alias' or duplicate definition for
| ELSE CONTROL UNTIL .
‘ addrl nl addr2 n2 (compiling)
] "else"]
ity addr n =--- (compile) CONTROL
Occurs within a colon-definition in the form: "end-if"
An alias for THEN . See THEN .
i IF ... ELSE ... THEN
: At run-time, ELSE executes after the true part BE addr n --- MEMORY
: following IF . ELSE forces execution te skip ovel "erase"
the following false part and resumes execution afte Clears a region of memory to zero from addr over n
the THEN . It has no stack effect. addresses,

B-24 B-25

WORD STACK NOTATION/DEFINITION GROUP ATTR

—_—

ERROR line --- 1in blk SECURITY i
"erroc"
Executes error notification and restart of systenm,
WARNING is first examined. If WARNING = 1, the
text of line n, relative to screen 4 of drive @ |
printed. This line number may be positive or
negative, and beyond just screen 4. If WARNING
f #, n is just printed as a message number (non-dis
3 installation). If WARNING = =1, the definitien
j (ABORT) 1is executed, which executes the system
ABORT . The user may cautiously modify this a
execution by altering (ABORT) . AIM 65/48 FORTH
saves the contents of IN and BLK to assist in
; determining the location of the error. Final actio
[is execution of QUIT . - .

EXECUTE add; ==
; "execute'
il Executes he definitic
on the st ck. The code
i the comp! ation addres

COMPILER

* code field address
address is also ra

EXPECT . addr count --- INPUT/OUTPUT

I Transfers characters from the terminal beginning |
addr, upwards until a "return" or the count of n
characters has been received. Takes no action for
! = zero or less. One or more nulls are added at th
. end of the text. T

1 FENCE === addr SECURITY
"fence" > o
Leaves the address of a user variable contalning an
address below which FORGETting is trapped. To

forget below this point the user must alter the
contents of FENCE .

FILL addr n b --- MEMORY
" fll_]."
Fills n bytes, beginning at addr with the byte
pattern b.

FINIS MONITOR
"finis" | o
Marks the end of the input data stream into the
compiler. '

FIRST R HASS
"first® <

Leaves the first (lowest address of the data (o 8
mass storage buffer. E

B-26

STACK NOTATION/DEFINITION GROUP ATTR

MASS
"flush"
Writes all blocks to mass storage that have been
flagged as UPDATEd . An error condition results i
writing to mass storage is not completed.

DICTIONARY
"forget"
Executes in the form:

FORGET <name>

Delete from the dictionary <name> (which is in th
CURRENT vocabulary) and all words added to the
dictionary after <name>, regardless of their
vocabulary. An error message will occur if the
CURRENT and CONTEXT vocabularies are not
currently the same. Failure to find <name> in
CURRENT or FORTH is an error condition.

VOCABULARY
"forth"
The name of the primary vocabulary. Execution makes
FORTH the CONTEXT vocabulary.

New definitions become a part of FORTH until a
differing CURRENT vocabulary is established.

User vocabularies conclude "chaining™ to FORTH, ,
so it should be considered that FORTH is 'contained
within each user's vocabulary.

- char MONITOR
L] L]
get
Leaves the ASCII value of the next available
character from the active input device and outputs
the character to the active output device.

INPUT/OUTPUT
"hang"
Waits until a key is depressed then continues

--- addr DICTIC NARY
"here"
Leaves the addres next available iictionary
location.

B-27

WORD

HEX

HLD

HOLD

ID.

IF

STACK NOTATION/DEFINITION

GRAQUP ATTR
N
— UMERIC MMEDIATE
Sets the numeric conversion BAS| to sixteen
(hexadecimal) .
--- addr F
Shala ORMAT .
Leaves the address of user variable which holds the
address of the latest character of text during
numeric output conversion.
char
- FORMAT
Used between <} and #> to insert an ASCII

EINT
character into a pictured numeric output string, ;H REERED

- CONTROL

Ii. '
Used within a DO-LOOP to copy the loop index from
the return stack to the stack. 9

nfa INPUT/OUTPUT

"i-d-dot"
Print a definition's name from its name field
address. See NFA.

flag (run-time)
addr n (compile)

CONTROL

.lt!
Used in a colon-definition in form:

IF ... THEN

IF ... ELSE ... THEN
At run-time, IF selects execution based on a j i
Boolean flag. If flag is true, the words followfiha
IF are executed and the words following ELSE 7
skipped. The ELSE part is optional.)

1
If flag is false, the words between IF and ILSE,
or between IF and THEN (when no ELSE fis used) ;

are skipped. IF-ELSE-THEN conditionals may be
nested.

At compile-time, IF compiles @BRANCH and -
reserves space for an offset at addr . Addr and n
are used later for resolution of the offset and 4
error testing.

B-28

STACK NOTATION/DIFINITION GROUP ATTR

COMPILER
"immediate"
Marks the most recently made dictionary entry as a
word which will be executed when encountered rather
than being compiled.

=== addr
- inI
Leaves the address of user variable containing the
byte offset within the current input text buffer
(terminal or disk) from which the next text will be
accepted. WORD uses and moves the value of 1IN .

INPUT/OUTPUT

COMPILER
"interpret"
The outer text interpreter which sequentially
executes or compiles text from the input stream
(terminal or mass storage) depending on STATE . If
the word name cannot be found after a search of
CONTEXT and then CURRENT it is converted to a
number according to the current BASE . That also
failing, an error message echoing the <name> with a
"?" will be given.

Text input will be taken according to the convention
for WORD . 1If a decimal point is found as part of
a number, a double number value will be left. The
decimal point has no other purpose than to force
this action. See NUMBER .
--= char INPUT/OUTPUT
" k,yn
Leaves the ASCII value of the next available
character from the active input device.

addr COMPILER
"latest"
Leaves the name field address of the top-most word
in the CURRENT vocabulary.

CONTROL
"leave"
Forces termination of a DO-LOOP at the next
opportunity by setting the loop limit equal to the
current value of the index. The index itself
remains unchanged, and execution proceeds normally
until LOOP or +LOOP is encountered.

B-29

s D R

o D

S i e

s

LIMIT

LIt

LITERAL

STACK NOTATION/DEFINITION GROUP ATTR
pfa - : 1fa DIC
s TIONARY

address (pfa) of a
link field address

Converts t| parameter f
dictionary finition te
(1fa).

MISC

Leaves the highest address plus one avnilablo'in:
data (or mass storage) buffer. Usually this i= th
highest system memory. i

T n COMPILER

Within a colon-definition LIT is auntomatically

k: ally

compiled before each 16-bit literal number encoun

:;:dc::t:ngut :o::. Later execution of LIT ca
nts o e next dictionary addr

pushed to the stack. ! Ll

n --- (compiling) -
Tltsal® COMPILER _?
TRt L Eoral, Soloh shen Inoar ock vaiue » o
S TRt 18 O e T e iniuen e
The intended use is: nltio.

: xxx [calculate] LITERAL ;

Compilation is suspended for the compile time
calculation of a value. Compilation is then resume
and LITERAL compiles this value into the E
definition.

n -
. MASS :
Begins interpretation of screen n by making i g
t the
input stream; preserves the locltarx of thg prpng#
input stream (from IN and BLK). '

If interpretation is not terminated ex ;

|8 not ed explicitly it
‘will be terminated when the input stream is eihi
Control then returns to the input stream containi
2g:n éhgetornlned by the input stream locators T1i

B-30

ESGAGE

STACK NOTATION/DEFINITION GROUP ATTR

addr n =--- (compiling) CONTROL
L] 10’0?'
Occurs in a colon-definition in form:

DO LOOP

At run-time, LOOP selectively controls branching
back to the corresponding DO based on the loop
index and limit. The loop index is incremented by
one and compared to the limit. The branch back to
DO occurs until the index equals or exceeds the
limit; at that time, the parameters are discarded
and execution continues ahead.

At compile-time, LOOP compiles (LOOP) and uses
addr to calculate an offset to DO . n is used for
error testing.

nl n2 --- 4 ARITHMETIC

"m-times"
A mixed magnitude math operation which leaves the
double number signed product of two signed number.

d nl =--- n2 n3 ARITHMETIC

*m-divides”

A mixed magnitude math operator which leaves the
signed remainder n2 and signed quotient n3, from a
double number dividend 4 and divisor nl. The
remainder takes its sign from the dividend.

udl u2 =--- u3 ud4 ARITHMETIC

"m-divide-mod™

An unsigned mixed magnitude math operation which
leaves a double quotient ud4 and remainder u3, from
a double dividend udl and single divisor u2.

n n2 --- max ARITHMETIC
"max"
Leaves ne greater of two numbers.

[s SECURITY

"message”
Displays on the selected active device the text of
line n relative to screen 4 of drive 8. n may be
positive or negative. MESSAGE may be used to
print incidental text such as report headers. If
WARNING is zero, the message will simply be
displayed as a number (no mass storage).

B-31

WORD

MIN

MOD

MON

NEGATE

NFA

NOT

NUMBER

OFFSET

STACK NOTATION/DEFINITION

GROUP ATTR ORD

nl n2 =~--= n3
"min“
Leaves the smaller number n3 of two numbers, n
n2.]

ARITHMETIC

nl n2 =-==- n3
"mod" B
Leaves the remainder n3 of nl divided by n2, with
the same sign as nl. 2

ARITHMETIC &

MONITOR , AD
"mon" I
Exits to the AIM 65 Monitor, leaving a re-entry &]
FORTH. ht

n --=- =n ARITHMETIC
"negate"” K i
Leaves the two's complement of a number, i.e. the
difference of @ less n,

pfa --- nfa DICTIONARY
Converts the parameter field address (pfa) of a 1CK
definition to its name field address (nfa). s

COMPARISON

"not" i

Leaves a true flag (1) if the number is equal i

zero, otherwise leaves a false flag. Same as v

addr --- d FORMAT
"number" b
Converts a character string left at addr with a
preceeding count, to a signed double precision
number, using the current number BASE . If a
decimal point is encountered in the text, its '
position will be given in DPL , but no other effsc |
occurs. If numeric conversion is not possible, A
error message will be given, :

--= addr MASS
"offset: :
Leaves the address of user variable which conta QUERY
block offset to mass storage. The content of OF b
is added to the stack number by BLOCK . Messa
by MESSAGE are independent of OFFSET . GSee |
BLOCK and MESSAGE . ;

B-32

STACK NOTATION/DEFINITION GROUP ATTR

nl nd =-—= n3d ARITHMETIC
Ior'
Leaves the bit-wise logical or of two 16 bit values.

nl n2i === ml n2 nl
STACK
"over"
Copies the second stack value, placing it as the new
top of stack.

——= addr DICTIONARY
Leaves the address of a scratch area used to hold
character strings for intermediate processing. The
maximum capacity is 64 characters.

nfa -—— pfa DICTIONARY
-P_f-a'

Converts the name field address (nfa) of a
dictionary definition to its parameter field address

(pfa) .

n ——— nth STACK
"pick"
Returns the contents of the nth stack wvalue, not
counting n itself. An error conditions results for
n less than one. 2 PICK is equivalent to OVER

--— addr MASS u
"prev"®
Leaves the address of a user variable containing the
address of the disk buffer most recently referenced.
The UPDATE command marks this buffer to be later
written to mass storage.

(Sorc==tt) MONITOR

-putn i
Transmits an ASCII character to the active output
device (see 70UT).

INPUT/OUTPUT
"query"
Accepts input of up to 88 characters of text, (or
until a 'return") from the keyboard into the

terminal input buffer (TIB) . WORD may be used to
accept text from this buffeer as the input stream,
by setting IN and BLK to zero.

|
|
|

| WORD STACK NOTATION/DEFINITION GROUP ATTR Gf Rﬂ; STACK NOTATION/DEFINITION GROUP ATTR f
i A] >
QuIT MISC B n2 n3 n2 n3 nl STACK
"quit” 3 '.' "rote -
Clears the return stack, stops compilation, and ' J Rotat the top t ¢ values on the stack, bringin
| returns control to the keyboard. No message is / k. the t rd to the '
given. i ;
L L PRIMITIVE
1 R - n STACK 8 2 "r-p-store”
) " ‘e b
K | Copies the top of the return stack to the coupu4 f . Initializes the return stack pointer from user
| tation stack.) , variable RO .
] R/W addr blk flag --- MASS -—- addr STACK
i *r-slash-w) 1 "r-p-fetch"
i The mass storage read-write linkage., addr specif Y i Leaves the address of a variable containing the
b the source or destination block buffer, blk is the . return stack pointer.

} sequential number of the referenced block; and flag
specified read or write (flag = @ is write and flag

=1 is read). R/W determines the location on »f‘ 3D n -— d ARITHMETIC
storage, performs the read-write and performs any 3 "s-to-d"

i error checking. R/W executes the cfa found in Extends the sign of single number n to form double

. UR/W . On cold start this is the address of IARn, 3 number 4. S

R> === n STACK T --- addr PRIMITIVE

] "r-from" 3 i "s-zero"

i Removes the top value from the return stack and ;7 : Leaves the address user variable that contains the

4 leaves it on the computation stack. See >R and = 3 initial value for the parameter stack pointer. See

i ! SP!

i RO -=-- addr PRIMITI /E N 3

3 "r-zero" E v --= addr MASS
Leaves the address ¢ variable contaiiing the ! "geg-r" : ’
initial value of the 1 stack pointer. GSee RP { Leaves the address of user variable containing the

k- : screen number most recently referenced by LIST .

p: READ addr n ~--- MONITOR

k "read” ! n 4 --- 4d FORMAT

: Inputs n characters from the active input device ap "sign"

Inserts the ASCII "-" (minus sign) into the pictured
numeric output string if n is negative. n is
discarded, but double number d is maintained. Must

[stores the ASCII value starting at addr.

REPEAT addr n --- (compiling) CONTROL be used between <} and #> .
4 "repeat"
’ Used within a colon-definition in the form:] - S
: e = = e DICTIONARY
| BEGIN ... WHILE ... REPEAT] "smudge"

Used during word definition to toggle the "smudge
bit" in a definitions name field. This prevents an
uncompleted definition from being found during
dictionary searches, until compiling is completed
without error.

At run-time, RE rces an unconditional bramf
back to just aft >rresponding BEGIN .

At compile-time, compiles BRANCH and the
offset from HER ir. n is used for error
testing.

B-34 3: i B-35

WORD

SOURCE

SP!

SPACE

SPACES

STATE

SWAP

TASK

STACK NOTATION/DEFINITION GROUP ATTR

MONITOR
"source"”)
A procedure which identifies the active input deyls
for batch compilation. The procedure is:

SOURCE <RETURN> IN = [INPUT DEVICE CODE]

If the device code = M, compilation starts at
top of the AIM 65/4¢ Editor Text buffer. Compila
tion continues until FINIS is encountered.

STACK
"s-p-store”
Initializes the stack pointer from 5@ .

--- addr STACK - 100G LE
"s-p-fetch” g p
Returns the address of the top of the stack a
was before SP@ was executed. (e.g., 1 2 &P
- - wol.lld typ. 2 2 1, 3

INPUT/QUTPUT
Transmits an ASCII blank to the active output deyl

N ==
"spaces"”
Transmit n ASCII blanks to the active output

—-=-= addr
"state"
Leaves the address of user variable rontaining
compilation state. A non-zero value indicates |
compilation.

COMPILER

nl n2 =--- n2 nl STACK
"swap" :
Exchanges the top two values on the stack.

DICTIONARY,
"task*" f [
A no-operation word which can mark the hnundar

between applications. By forgetting TASK and
compiling, an application can be discarded inl its
entirety. 1Its definition is : TASK ; . 3

STACK NOTATION/DEFINITION GROUP ATTR

CONTROL
"then"
Used within a colon-definition, in the form:

IF ... ELSE . .. THEN or
IF THEN

THEN is the point where execution resumes after
ELSE or IF (when no ELSE is present).

=== addr INPUT/OUTPUT
"t-i-b" v

Leaves the addtess of user variable containing the
starting address of the terminal input buffer.

addr b -—-
"toggle"
Complements the contents of addr by the B-bit
pattern byte.

MEMORY

addr n --- INPUT/OUTPUT
“"type" ’

Transmits n characters beginning at addr to the
active output device. No action takes place for n

less than one.

unl un2 === ud ARITHMETIC
"u-times"”

Performs and unsigned multiplication of unl by un2,
leaving the unsigned double number product of two

unsigned numbers.

-—-— addr PARAMETER
"u-dash-carriage return"
Leaves the address of the user variable containing

the code field address of the U-CR orphan word.

ud ul =--- u2 u3 ARITHMETIC
"u-divide"”
Performs the unsigned division of double number ud
by ul, leaving the unsigned remainder u2 and
unsigned quotient n3 from the unsigned double

dividend ud and unsigned divisor ul.

unl un2 =--- flag ARITHMETIC
"u-less-than”

Leaves the flag representing the magnitude
comparison of unl < un2 where unl and un2 are

treated as 16-bit unsigned integers.

B=37

3 ATTR
WORD STACK NOTATION/DEFINITION GROUP ATTR STACK _NOT TIOl TION GROUP ATIR
R u
UZIN = =- agdy PARARMETER S ERRRESR
"u-question mark-in" "u-emit" i inin
Leaves the address of the user variable containing Leaves th ss of th; uier ;;;;abiitgzztié:d.g
the .code field address of the U?IN orphan word the code ddress of the
u
uz2ouT —== addr PARAMETER = EREHERSR
"u-question mark-out" “u-first" ¢ i tainin
Leaves the address of the user variable contai Leaves th §ios R nreE var;zziesizzaqe) .
the code field address of the U?0UT orphan w the first ~ the data (or
buffer.
UZTERMINAL ==— addr PARAMETER PARAMETER U
"u-guestion mark-terminal® s T
Leaves the address of the user variable contai "u-key 3 inin
the code field address of the U?TERMINAL orp Leaves tF s of the user varla?le iozgid !
: Verd. o/ code fiel s of the the KEY 1inpu s
i i
! UABORT —== addr PARAMETER i-T— PARAMETER
] "u-abort" _ "u-limit’ i in
¥ Leaves the address of the user variable containing Leaves tt s of the u?eéh:a;;:EIToioggzin 2
| the code field address of the ABORT word. i the last PAEEE g
i storage)
[
UB/BUF === ‘addr PARAMETER 3
I "u-bytes-per-buffer" / 1 . {run—@;mel_) A
b Leaves the address of the user variable containi add: = GFENPRRESCARe
the number of bytes per buffer. :
“antil® e : £ 5
Occurs w szolon-definition in the form:
i UB/SCR --- addr PARAMETER
[
"u-blocks-per-screen” . BEG kAT '
Leaves the address of the user variable containi i d
; < . flag is true, the loop is terminated.
| the number of blocks per screen. ?E Egzgt ' eiecution returns to the first word
1 ifter B BEGIN — UNTIL structures may be
| uc/L -—-— addr PARAMETER nested.
i "u-characters-per-line"
y Leaves the address of the user variable containing At compi et compllgs EB§A§§E e??gran
the number of characters per line. offset f ¢ to addr. n 1s use
tests.
UCLOSE --- addr PARAMETER MASS
"u-close" ;
Leaves the address of the user variable containing "update" inted to
5 ; ecently referenced block (pointe
the code field address of the UCLOSE orphan wo S;rk:Rgg tered. The block will subsequently
be trans utomatically to mass storage, should
UCR o=, ‘333 PARAMETER its huff quired for storage of a different
"u-carriage return" bloc

1 Leaves the address of the user variable containing®
[the code field address of the UCR orphan word.

STACK NOTATION/DEFINITION GROUP ATTR
VOCABULARY
"vocabulary"
A defining word used in the form:
b = STACK NOTATION/DEPINITION GROUP ATTI VOCABULARY ~<name>
3 UR/W --- add to create (in the CURRENT vocabulary) a dictionary
'“""d‘"fltﬁf PARANRTER entry for <name>, which specifies a new ordered

1ist of word definitions. Subsequent execution of %
<name> will make it the CONTEXT vocabulary. When A
<name> becomes the CURRENT vocabulary (see b
DEFINITIONS), new definitions will be created in

that list.

New vocabularies 'chain' to FORTH. This is, when a
all of dictionary search throéugh a vocabulary is
exhausted, FORTH will be searched.

Leaves the address of the user variable ¢

ontaini
the code field address of the mass storage I/0 w:?ﬁ J
Initialized to (ABORT) on a cold start, y

USE --- addr
A "use"”
i Leaves the address of user variable containing the

address of the block buff
least recently written. SEIS SRR i

MASS

; USER n =---
3 "user"
1 A defining word used in the form:

DEPINING VOCABULARY

"y-list®
Lists the names of the definitions in the CONTEXT
vocabulary. Depression of any key will terminate

[\ USER
! i cname> the listing.

which creates a user variable <name> 3
!1o1q of <name> contains n as a :1:.5 o}g:-gaizgiier
tlv;-to the user pointer register UP for this user
variable. When <name> is later executed, it places
the sum of its offset and the user area base addres
; ?2rt5::?§§f: asogg:.::orzg;saddrns- of that particu- i
. ! . o i

! il sendions ek) P to $7F are availabln.f i

-== addr SECURITY u
"warning”
Leaves the address of user variable containing a
value controlling messages. If value = 1 mass
storage is present and screen 4 of drive @ is the
base location for messages. If value = 8, no disk
is present and messages will be presented by number.

VARIABLE n --- <name> (compute-time) DEFINING If value = -1, execute (ABORT) for a user a
“vlri::;::> T (run-time) specified procedure. See MESSAGE and ERROR . <o

3 A defining word executed in the form:

n VARIABLE <name> £l -== (run-time) CONTROL

ag
addrl nl -> addrl nl addr2 n2

to create a dictionary entry for <name> and
) allot
:::.Egt:: fo: storage in the parameter field. =hon
ater executed, it
address on the stack. ! ¥ill plaze the stoeag

"while"
Occurs in a colon-definition in the form:

i St
BEGIN ... WHILE (tp) ... REPEAT
VOC-LINK ——— addr

"voc=link"™

Leaves the addrusi_ot user variable

contai
address of a field in the definition :? :n21:3-:h°
recently created vocabulary. All vocabulary names
:rc linked by these fields to allow control for
ORGETting through multiple vocabularies.

voganuﬁaay At run-time, WHILE selects conditional execution

based on Boole . .8 3 G =
WHILE continues execution of the true part through :

to REPEAT , which then branches back to BEGIN .
If flag is false (zero), execution skips to just
after REPEAT , exiting the structure.

i} ; At compile-time, WHILE emplaces (@BRANCH) and
i i leaves addr2 of the reserved offset. The stack
- 4 values will be resolved by REPEAT .

B-40 B-41

WORD

WIDTH

WORD

WRITE

XOR

[COMPILE]

STAZX NOTATION/DIFINITION GROUP ATTR E 3 APPENDIX C

--- addr SECURITY q ' ! AIM 65/40 FORTH ASSEMBLER FUNCTIONAL SUMMARY
"width" 2
Leaves the address of user variable containing t& e

maximum number of letters saved in the compilatioh 'gq% appendix contains a summary of the AIM 65/40 FORTH
of a definitions name. It must be 1 through 31, 1 3

with a default value of 31, The name character | jssenbler word definitions grouped by area of primary function
count and its natural characters are saved, up to] ‘lopsult appendix D for the detail definition of each word.

the value in WIDTH . The value may be changed
any time within the above limits.

;mck Notation
char =--- COMPILER
"word"

- i-'ltack operation is denoted in parenthesis. The symbols on
Receives characters from the input stream until ;

non-zero delimiting character in the stack is 3 1 H?«l.ft indicate the order in which input parameters must be
encountered or the input stream is exhausted, . placed on the stack prior to FORTH word execution. Three

i ri 1 . 18 ; .
sgggodnza :.gigg.g.it:ggar:lthwggcczgz:::::: :::n” jashes (---) indicate the FORTH word execution point dlny -
in the first character position. The actual meters left on the stack after execution are listed on
delimiter encountered (char or null) is stored b th ight.

the end of the text but not included in the count fight. The top of the stack is to the rig

If the input stream was exhausted as WORD is
called, then a zero length will result. Bibo1 pefinition

'writ:edr o dodie il A/T Assembly-time
Outputs n characters to the active output device k R/T Run-time
starting at addr. f f H/B High-byte
E | L/B Low-byte
‘x-—orel B o 8 ARLIVRELIC] . addr, addrl,.. Address
Leaves the bit-wise logical exclusive or of two va ’
{,) OP-CODES
COMPILER) : LSR SEC
*left-bracket" . 1 ::gt ggﬁ: HOP: SED:
Ends the compilation mode. The text from the inp ASL' DEY ORA, SEI,
stream is subsequently executed. See] . i ;- . BIT. eon: PHA, STA,
X r
o , BRK, INC, PHP, gg '
: : cLe INX PLA, '
.) comprLER | oo, INY, PLP, TAX,
bracket compile | (4 b CLI JMP, ROL, TAY,
Used in a colon-definition in form: y P CLV' JSR, ROR, TSX,
4 .
1 i . LDA RTI TXA,
~~ [COMPILE] <name> 78 b '%j LDX, RTS, Tﬁ'
3 3 SBC T
Forces compilation of the following word. This 6 3 CPY, KDYy ! !

allows compilation of an IMMEDIATE word when i: A
would otherwise be executed. | 8 2

COMPILER b p
"right bracket" :
Sets the compilation mode. The text from the i
stream is subsequently compiled. See [.

B-42

C.4

BEGIN,

ADDRESS MODES

A
#
X
oY
X)

)Y

CONDITIONAL SPECIFIERS
B< A/T: cc

= A/T: cc
Vs A/T: ce

C8s A/T:
A/T:

CONTROL

A/T: --- addrB 1

1l ¢c

Accumulator addres
mode. 3
Immediate address
Indexed X address g
Indexed Y address.g
Indexed Indirect
address mode. F
Indirect Indexed ¥
address mode.
Indirect Absolute
address mode,

Branch
(N=1).
Branch zero (2=1
Branch overflow
(v=1). E
Branch

At A/T, leaves the
dlctionary pointer

address and the valuy
1l for later testing o

conditional pairing

At R/T, marks the
beginning of a
repeatedly executed.
assembly sequence,

At A/?, assembles a |
?ondltional branch
instruction to addrB

(BEGIN, point)

based on condition gg

CC.

At R/T, conditionallyl

branches to the B

negative

A/T:

addrB 1 addrWw 3 ---

addrB 1

addrB

addrl

1 addrW 3

-—= addr2

At A/T, assembles a JMP
instruction to the
BEGIN, point

At R/T, jumps to the
BEGIN, point.

At A/T, assembles a
conditional branch
instruction to the
instruction following
REPEAT, based on the
condition code cc.

At R/T, conditional
branches to the point
following REPEAT, if
cc is false, or continues
ahead if cc is true.

At A/T, creates an
unresolved forward
conditional branch
based on cc and leaves
addr for resolution by
ELSE, or THEN,.

At R/T, conditionally
branches to the ELSE,
point (or THEN, point
if ELSE is not p:esent}

if cc is false, or continues

ahead if cc is true.

2 At A/T, assembles a

forward JMP instruction
to THEN, and resclves
the forward conditional
branch from IF, .

At R/T, marks the start
of an assembly seguence
conditionally branched
to from 1IF, if cc is
false,

At A/T, marks the con-

clusion of a conditional

structure started by IF,
and resolves the forward
conditional branch from
iF, (if ELSE, 1is not
present) .

point (if cc is fa
or continues ahead {
cc is true).

At A/T, assembles a JMI
instruction to addrB

(BEGIN, point) At R/T, marks the conclu-

At R/T, - : y { sion of a conditional
¢+ JuUmps: to: thely ' structure started by 'IF,

BEGIN, point.
Alias for THEN, .

C.5
PUSH

PUT

PUSH@A

PUT@A

NEXT

RETURN

A/T: addre
R/T

A/T: --- addr
R/T: n2
A/T addr
R/T:

A/T addr
R/T

A/T: addr
R/T: nl n2
A/T --= addr

R/T nl n2

A/T addr

At A/T, leaves the
address of the R/T
return point which
will add the accumu-
lator (H/B) and the

top machine stack byt&l

(L/B) to the data stack,
j
At A/T, leaves the
address of the R/T
return point which i
will write the accumu-
lator (H/B) and the t
machine stack byte (L
to replace the existing
top data stack lc- b!t
value (nl).

At A/T, leaves the
address of the R/T
return int which
will pull a 16-bit
value from the data

interpretation.

At A/T, leaves the
address of the R/T
return point which :
will push a zero (H/B)
and the accumulator
(L/B) onto the data
stack.

At A/T, leaves the
address of the R/T
return point which
will write a zero (H/B)
and the accumulator
(L/B) to replace
the existing data stack
16-bit Value (nl).

At assembly-time, leave
the address of the
run-time return point
which will pull two

—16=bit values from t
data stack and confinus
interpretation.

At assembly-time, lraves
the address of the
FORTH inner-interpre

101 (hex)

STACK

A/T:

R/T: nl n2 --
A/T:

AT

A/T

REGISTERS

A/T: — addr
A/T: addr
A/T: addr
A/T: addr
A/T: addr
A/T addr

At A/ leaves the

addr s of a return
poin which, at R/T,
will wll two 16-bii:
valu from tthe stack
and sh the accumu-
lato (H/B) und the top
mach e stack byte (L/B)
to t data stack.

At A/T, used to address
the boti:om of the
Return {tack.

At A/T, used to address
the top item on the
data stack.

At A/T, use to address
the second tem on the
data stack

Leaves the address of a
nine-byte work space in
page zero.

Leaves the address of a
utility routine to move
items from the stack to
the N area on z-page.

Leaves the address of
the pointer to the next
FORTH execution address
in a colon-definition
to be interpreted.

Leaves the address of
the pointer to the base
of the user area.

Leaves the address of
the pointer to the code
field of the FORTH word
being eXecuted.

Leaves the address of a
tauporarg buffer for
saving the X register.

INTVECT

c.9

INTERRUPT
A/T: --- addr

R/T:

A/T:

R/T:

MISCELLANEOUS

END-CODE A/T: -—--

A/T:

E 1 APPENDIX D
At A/T, leaves the
address of the o AIM 65/42 FORTH ASSEMBLER GLOSSARY
interpretive flag
byte on page zero,

h:dQ{::.I:;v:;‘r?:é. fhi: glossary contains the definitions of all words in the AIM
pretive 1nhnrrnptf1 g FORTH ASSEMBLER vocabulary with exception of the >

VECHE » E- p-codes, The definitions are presented in ASCII sort order.

itack Notation

Marks the end of a €0l
definition, 3 he first line of each entry shows a symbolic description of

he action of the procedure on the parameter stack. The

ols on the left indicate the order in which input
grameters have been placed on the stack. Three dashes "---"
ndicate the execution point; any parameters left on the stack
fter execution are listed on the right._ In this notation, the

{;nE the stack is to the right.

jmbol Definition

memory idress
conditi 1 code
16-bit igned number

fronunciation

he natural language pronunciation of FORTH names is given in
buble quotes (").

dpitalization

for¢ names as used within the glossary are conventionally
}tten in upper-case characters. Lower case is used when
gference is made to the run-time machine codes (not directly
jccessible), e.g9., VARIABLE is the user word to create a
griahic Each use of that variable makes use of a code
jguence 'variable' which executes the function of the

articnlay variable.

e P ——

Group Key Words (GROUP)

ADDRESS
OP-CODE
CONTROL
STACK
REGISTER
CONDITION
RETURN
INTERRUPT

Addressing Mode
Operation Code
Control Structures
Stack Addressing
Assembly Register
Conditional Specifier
Return of Control
Interrupt Processing

p-2

o

STACK NOTATION/DEFINITION GROUP
"immediate" ADDRESS

Specifies 'immediate' addressing mode lor the
next op-code generated.

"indirect" ADDRESS
specifies 'indirect absolute' addressing mode for
the next op-code generated.

e ADDRESS
"indirect indexed Y"

Specifies 'indirect indexed Y' addressing
mode for the next op-code generated.

ars ADDRESS
"indexed x"

Specifies '"indexed X' addressing mode for
the next op-code generated.

pu—— ADDRESS
"indexed Y"

Specifies 'ii1 lexed Y' addressing mode for
the next op-code ¢ nerated.

- ADDRESS
"accumulator" ,
Specifies accumulator addressing mode for the
next op-code generated.

~=- cc (assembly-time) CONDITION
"zero-less"
Specifies that the immediately following
conditional will branch based on the processor
negative flag status bit being negative (N=1),
i.e., less than zero. The flag cc is left at
assembly-time; there is no run-time effect on the
stack.

-=-= ¢¢ (assembly-time) CONDITION
"zero-equals"®
Specifies that the immediately following
conditional will branch based on the processor

zero flag status bit being equal to one (Z=1);
i at-——

i.e. equal to zero. The flag cc is 1
assembly-time; there is no run-time effect on the
stack.

g

AGAIN,

BEGIN,

BINARY,

Cs

STACK NOTATION/DEFINITION GROUP !

addr 1 --- (assembly-time) CONTR LS
=== (run-time) .

"again"
Occurs in a CODE-definition in the form:

BEGIN, . . . AGAIN,

assembles a JMP {:

At assembly-time, AGAIN,
The number 1 is issued for

instruction to addr.
error checking.

At run-time, AGAIN, branches UHCOnditionally:i 7
its matching BEGIN, . 3 j

--=- addr 1 (assembly-time) cnmmné{
— (run-time) ,

Occurs in a CODE-definition in the form:
£i)-CODE

BEGIN, . s . cc UNTIL,

At assembly time, BEGIN , leaves the dictionary
pointer address addr and the value 1 for later
testing of conditional pairing by UNTIL, or

AGAIN, .

b
At run-time, BEGIN, marks the start of an
assembly sequence repeatedly executed. It serves
as the return point for the corresponding
UNTIL, . When reaching UNTIL, a branch to
BEGIN, will occur if the processor status hit
given by cc is false; otherwise execution 4
continues ahead.

B DITF

=== addr (assembly-time

nl n2 =--- (n) (run-time)
"binary"
At assembly-time constant which leaves the -
machine address of a return point which, at i
run-time, will pull two 16-bit values from the
stack and push the accumulator (high-byte) ~nd
the top machine stack byte (as low-byte) to the
data stack. '

; -=—_cc (assembly-time)
"carry-set"

Specifies that the immediately following ;
conditional will branch based on the rocnlloé
carry status flag being set (C=1). e flag cc
is left at assembly-time; there is no run-rime
effect on the stack. s ;

CONDITION

D=4

STACK NOTATION/DEFINITION GROUP

addrl 2 --- addr2 CONTROL
2 (assembly-time) =-- (run-time)
“else"

Occurs within a CODE-definition in the form:

ELSE, <false part>

cc IF, <true part>
THEN,

At assembly-time, ELSE, assembles a forward
jump to just after THEN, and resolves a pending
forward conditional branch from IF, . The value
2 is used for error checking of conditional
pairing.

At run-time, if the condition code specified by
cc is false, execution will skip to the machine
code following ELSE, .

— MISC
"end-code"
An error check word marking the end of a
CODE-definition. Successful execution to and
including END-CODE will - the most
recent CURRENT vocabulary definition, making it
available for execution. END-CODE also exits
the ASSEMBLER making CONTEXT the same as
CURRENT .

addr 2 --- (assembly-time) CONTROL
--= (run-time)
"end-if"

Another name for THEN, .
=== addr 2 (assembly-time) CONTROL
cc =--- addr 2 (run-time)

Ii:l
occurs within a code definition in the form:

cc 1IF, <false part>

<true part> ELSE,

At assembly-time IF, creates an unresolved
forward branch based on the condition code cc,
and leaves addr and 2 for resolution of the
‘branch by the corresponding ELSE, or THEN, .
Conditionals may be nested.

At run-time, IF, branches based on the
condition code cc (@< or @= or CS). If the
specified processor status is true, execution
continues ahead, otherwise branching occurs to
just after ELSE, (or THEN, when ELSE, Iis
not present). At ELSE, execution resumes at

the corresponding THEN, .

D-5

5
]

INTFLAG

INTVECT

STACK NOTATION/DEFINITION GROUP
--- add (assembly-time INTERRUBTS
s (run-time) I

"interrupt £1, '

A constant whi ! value is the ss of the
interpretive : :errupt flag by zero page
It is used in code-definitio the form:

INTFLAG LDA, (MOVE THE INTFLAG BYTE TO A

Bit 7 of INTFLAG is the interpretive interrupt
bit. 1 means interrupt. Bit 6 of INTFLAG is
the interpretive interrupt mask bit, If bit 6 is
on, bit 7 is not tested for an interpretive)
interrupt. 1If bit 6 is off and bit 7 is on, the
word whose code field address is in INTVECT ;
will be executed on return to NEXT . After that
word finishes, regular FORTH word execution
continues.

--- addr (assembly-time) INTERRURT
— (run-time) i

"interrupt vector"

A constant whose value is the address of the

1ntcrfrttlvo interrupt vector. This vector must

contain the code field address of the FORTH word

to execute on interpretive interrupt, &

--- addr (assembly-time) REGTST
®jap”

Used in a CODE-definition in the form:

IP STA, or 1IP)Y LDA, -
0T
At assembly-time, a constant which leaves the '
address of the pointer to the next FORTH
execution address in a colon-definition to be
interpreted.

At run-time, NEXT moves IP ahead within a
colon-definition. Therefore, IP points just
after the execution address being interpreted.
If an in-line data structure has been compiled
(i.e., a character string), indexing ahead by I
can access this data:

IP STA, or 1IP)Y LDA,

loads the third byte ahead in the colon-
definition being interpreted.

STACK NOTATION/DEFINITION GROUP
- MISC
"memo!'y"

Used vithin the
defau..t value f
Z-pagit.

mbler to set | I to the
rect memory ad¢ :ssing on

-=-= addr ADDRESS
"mode”
System variable used to determine the assembler
addressing mode.

--- addr (assembly-time) REGISTER
Ind
Used in a CODE-~definition in the form:

N 1l-STA, or N 2+)Y ADC,

A constant which leaves the address of a 9 byte
workspace in, z-page. Within a single CODE-
definition, free use may be made over the range
N-1 thru N+7. See SETUP .

=== addr (assembly-time) RETURN
"next"
A constant which leaves the machine address of
the FORTH address interpreter. All CODE-
definitions must return execution to NEXT, or
include code that returns to NEXT
(i.e., PUSH , PUT , PUSHOA , PUTGA , BINARY ,
POP , POPTWO).

ccl --- cc2 (assembly-time) CONDITION
"not"
When assembling, reverse the condition code for

the following conditional. For example:
@= NOT IF, <true part> THEN,

will branch based on "not equal to zero".

--- addr (assembly-time) RETURN
n === (run-time)
.popﬂ
A constant which leaves (during assembly) the
machine address of the return point which, at
run-time, will pull a 16-bit value from the data
stack and continue interpretation.

D-7

POPTWO

PUSH

PUSHBA

PUT

PUTOA

‘At assembly time, constant which leaves the

STACK NOTATION/DEFINITION wROUP! MSNORT

--=- addr (assembly-time) RETURNS REPRAT

nl n2 --- (run-time)
"pop-two*" . 3
At assembly time, constant which leaves machine
address of the return point which, at run-time,
will pull two 16-bit values from the data stack

and continue interpretation.

==- addr (assembly-time) RETURN

=== n (run-time) : ¥
"push"
At assembly-time, constant which leaves the
machine address of the return point which, at
run-time, will add the accumulator '(as high-byts)
and the top machine stack byte.(as low-byte) to
the data stack. r

=== addr (assembly-time) RETU]
-—= N (run-time)
‘"push-g-a*
At assembly-time, constant which leaves the
machine address of the return point which, at
run-time, will add a zero (as high byte) and the
accumulator (as low byte) to the data stack.:

=== addr (assembly-time) RETURN'S
" 'nl === n2 (run-time) ' '
put SEC
machine address of the return point which, at
run-time, will write the accumulator (as
high-byte) and the top machine stack byte (as
low-byte) over the existing data stack 16-bit
value (nl).

- === addr (assembly-time) RETURN 3

nl =--- n2
"put-zero-a”
At aascnblx-tlnc, constant which leaves the S cE T
machine address of the return point which, at E
run-time, will write a zero (as high-byte) and
the accumulator as low-byte) over the existing
data stack 16-bit value (nl).

(run-time) ¢

STACK NOTATION/DEFINITION GROUP

addrB 1 addrWw 3 --- CONTROL
(assembly-time) =--- (run-time)
"repeat"”

Occurs in a code definition in the form:
BEGIN, ess ©C WHILE, ... REPEAT,

At assembly-time, REPEAT, assembles as JMP
instruction to the instruction immediately
following the BEGIN, word.

At run-time REPEAT, unconditionally branches
back to its matching BEGIN, .

=== 181 (assembly-time) STACK
"return-pointer”
Used in a CODE-definition in the form:

RP) LDA, or RP) 3+ STA,

Addresses the top byte of the return stack
(containing the low byte) by selecting the X
mode and leaving n=$101. n may be modified to
another byte offset. Before operating on the
return stack the X register must be saved in
XSAVE and TSX, executed. Before returning to
NEXT, the X register must be restored.

--- 2 (assembly-time) STACK
"second”
Used in a CODE-definition in the form:

SEC LDA, or SEC 1+ STA,
Addresses the second 16-bit item on the data

stack by selecting the , X,X address mode and
leaving 2 on the stack.

-== addr (assembly-time) STACK
"setup”
A constant whose value is the address of a
utility routine to move items from the stack to
the N area of zero page. The number of items to
move (1, 2; 3 or 4 only) is in the A register.

THEN

TOP

UNTIL,

STACK NOTATION/DEFINITION GROUP

addr 2 --- (assembly-time) CONTRGﬁﬂ i
=== (run-time) 3
"then"

Occurs in a CODE-definition in the form:
cc IF, <true part> ELSE, <false part> THEN,

At assembly-time, THEN, marks the conclusion of
a conditional structure. The conditional branch
instructions generated by IF, and the JMP
instruction generated ELSE, point to the
instruction immediately following THEN, . When
assembling, addr and 2 are used to resolve the
pending forward branch to THEN, . L

At run-time THEN, marks the conclusion of a

WORD

conditional structure. Execution of either the :5

true part or false part resumes following = |
THEN, . b I

--- B (assembly-time) STACK
L] top' 1
Used during code assembly in the form:

TOP LDA, or TOP 1+ X) STA,

Addresses the top of the data stack (containing
the low byte) by selecting the ,X mode and
leaving n=0, at assembly-time. This value of n
may be modified to another byte offset into the
data stack. Must be followed by a multi-mode
op-code mnemonic.

addr 1 cc --- (assembly-time)
=== (run=time)

"until"

Occurs in a CODE-definition in the form:

CONTROL
i

B!GIN! sea cc UNTIL,

At assembly-time, UNTIL, assembles a i
conditional relative branch to addr based on the

condition code cc. The number 1 is used for O HTT.F

error checking. !

At run-time, UNTIL, controls the conditional
branching back to BEGIN, ., If the processor
status bit specified by cc is false, execution
returns to BEGIN, ; otherwise execution
continues ahead.

D-10

STACK NOTATION/DEFINITION GROUP

-=- addr (assembly-time) REGISTER

"user inter"
U:ed igoa CODE-definition in the form:

UP LDA, or UP)Y STA,

A constant which leaves the address of the
pointer to the base of the user area. The
instructions

HEX 12 # LDY, UP)Y LDA,

will load the low byte of the sixth user
variable, DP.

--- cc (assembly-time) CONDITION

"overflow set"

Specifies that the immediately following
conditional will branch based on the processor
status overflow flag being on (V=1). The flag cc
is left at assembly-time; there is no run-time
effect on the stack.

--- addr (assembly-time)
Used in a CODE-definition in the fo:n{'

W l+ STA, or W1l - JMP, or W)Y ADC,

At assembly-time constant which leaves at
assembly-time the address of the pointer to the
code field (execution address) of the FORTH
dictionary word being executed. Indexing
relative to W can yield any byte in the
definitions parameter field. For example, the
instructions

2 # LDY, W)Y LDA,
will fetch the first byte of the parameter field.

addrB 1 --- addrB 1 addrW 3 CONTROL
(assembly-time) — (run-time)
"while”

occurs in a CODE-definition in the form:
BEGIN, ... ©Cc WHILE, ... REPEAT,

At assembly-time WHILE, assembles a condi-
tional relztive ﬁranch instruction to the
jnstruction immediately following the REPEAT,
based on the condition code cc.

WORD

WHILE,
(Cont.)

X)

XSAVE

STACK NOTATION/DEFINITION GRoOUP ;

||
At run-time WHILE, controls the conditional
branching to just past REPEAT, . If the
processor status bit specified by cc is true, X
WHILE, continues execution through to REPEAT,
which then branches back to BEGIN, . 1If cc is

false a jump is made to just after REPEAT, ﬂnd;

execution continues.

“indexed indirect X" ADDRESJ

Specifies "indexed indirect X" addressing mode
for the next op-code generated.

--- addr (assembly-time)
"x-save"” i

Used in a CODE-definition in the form: 3

XSAVE STX, or XSAVE LDX, p

A constant which leaves the address at assembly
time of a temporary buffer for saving the X
register. Since the X register indexes to the
data stack in z-page, it must be saved and
restored when used for other purposes.

n

.

B

REGTSTER

APPENDIX E

ERROR MESSAGES AND RECOVER

STANDARD ERROR MESSAGE

.%e standard FORTH error message is "?" . This question mark
l{: output along with the most recently interpreted word when
ithat word can not be found in the dictionary and will not
convert into a number in the current BASE . For example:

ROCKWELL AIM 65/48

{5}
AIM 65/4¢ FORTH V1.4

QUERTY
QUERTY ?

ABC
ABC ?

HEX OK

ABC OK
DECIMAL . <RETURN> 2748 OK

iUpon initialization, QUERTY and ABC were not in the
fﬁrrtonary. therefore, the ? error message was displayed when
‘they were entered. After the number base of the I/0 was
‘changed to HEX , however, ABC became a valid number. ABC
‘yas then accepted as a valid number upon the record entry
5¢tempt, converted to internal two's complement binary format,

Lin stored on the stack. The number was then removed from the
&fark and displayed in decimal.

E.2 STANDARD ERROR MESSAGE WORD

AIM 65/48 FORTH has a standard error message word llumbe r

?ERROR s i 0

which takes two items from the stack:
t n 2ERROR

where t is Boolean and n is the desired error number. 1

If the Boolean is false, nothing happens; but if it is true,
one of three things happen depending on the value of the user
variable WARNING . If WARNING

is zero, the number n is i
printed as an error message. If

WARNING is greater than 2
zero, a disk is assumed to be in use. Then n becomes the linag

number relative to line @, screen 4 of drive @ and that line i
number is displayed in ASCII. The line number may be negative,v
zero or positive and greater than fifteen., The line number is %
simply an offset from line @ screen 4. If WARNING

ABORT

is less [N 3

than zero, the word is executed.

E.3 AIM 65/4@ FORTH ERROR DEFINITIONS o

The error conditions detected by AIM 65/4@ FORTH are listed ind

Table E-1. For increased utility the two most common errors

STACK EMPTY 4
NOT UNIQUE . A

are given in English. These are error message 1,

and warning message 4,

The last action of error messages processing is to clear the

stacks and execute
UNIQUE'

QUIT . However, the warning message 'NOT
is simply output, it has no effect on the stacks and
execution continues normally.

Error message number 3 is slightly different in that it prints:
the name of the code word being defined, the name of the
assembler op-code word being interpreted, and the message
number or message.

AIM 65/40 FORTH Error Message

the last one inter-
preted. Name is not

in the dictionary

and is not a number.

is less than $AQ.

for that assembler

The dictionary entry

Table E-1l.

Message Definition

? Echoed word was

STACK Parameter stack

EMPTY is empty.

DICTIONARY The dictionary

FULL space is used
up. FIRST HERE -

HAS The address mode

INCORRECT

ADDRESS op-code is

MODE incorrect.

NOT

UNIQUE

<name> just created

is not unique.

Not assigned

Action
Define the named
item. Check number

conversion base.

Don't pull more
items off of the
stack than are

there.

Increase space for
dictionary by

FORGETing entries
or moving FIRST .
Use a correct

address mode. See
R6502 Programming

Manual.

Be aware that the
new definition of
<name> obscures
the old one and
all future refer-
ences to <name>
will be to the
new entry (often

an advantage).

Table E-1. AIM 65/40 FORTH Error Message (Continued) ; s Table E-1. AIM 65/48 FORTH Error Message (Continued)

| Number Message Definition Action E llunber Message Definition Action
[e e &
l i
L 6 DISC The disk block This is available { 121 IN The word in question Cease trying to
J RANGE? asked for is out for the user to 8 J PROTECTED is below the FENCE FORGET. a protected
of range. put in his e DICTIONARY word or move FENCE.
: definition of R/Wil
I \ 22 USE ONLY Incorrect use of Use the word
| ' e --> only while
X 7 FULL The parameter Remove some stack WHEN the word > only
. di .
i STACK stack is full item. DROP or LOADING loading
b
! (more than 65 output.
items).
i de. 7 . 1
o 8 DISC There has been a This is available &
ERROR! disk error. for the user's R/wﬁ

definition.

9-16 - Not assigned e
17 COMPILATION The word just Don't use compila-
$ ONLY interpreted must tion words inter-
i be used in a pretively. 1

'; definition.

i 18 EXECUTION The word just Don't use interpre%
! ONLY interpreted must be tive words in a
used outside of a definition,

definition.

19 CONDITIONALS Omitted word or Pair conditionals
NOT PAIRED incorrect nesting correctly. 3

of conditionals. |

20 DEFINITION The current defini- Finish definition.L
NOT tion is not yet '
FINISHED finished.

He e

e

Eif

APPENDIX F

PAGE ZERO and ONE MEMORY MAP

Cold Warm
Start Start
| Hex No. Hex Hex
ldiress Bytes Value Value
ipe-00F 16
jlo-a9. 138
197-097 2
54-9595
196-naF
197-0A0 98 C2 98 C2
1 6C 6C
2 80 07 @90 07
oy = i
1 20 -
JAB-BA9 2 45 D2 -
IAA-PEF 69
Fﬁ—ﬁF‘F 16
lj-1FF 256

Parameter
__Name

up
XSAVE

INTFLAG
INTVECT

F-1

Parameter Description

Stack overflow.
Parameter Stack.
Error storage for

BLK .

Brror storage for 1IN
N Area temporary
buffer.

Interpretive Pointer --
initialized to STRTUP .
Op-Code for Indirect
JMP .

Working address for
jump to next FORTH
word.

User area pointer

X register temporary
storage.

Interrupt flag.
Interrupt vector.
Initialized to ABORT .
Unused by FORTH.

Used by AIM 65/48 I/0
ROM and Monitor

FORTH and R6502 return
stack.

*pesn 3sn(i1s3jng abeiols ssen
*@sn 03 1833nq sbeiols ssew
*193ujod 1933ng andul [eUTWIdY
*SS9Ippe 8seq jOe3ls uinlay

*Sselppe 9seq }oe3s iajsuweled
*piom ueydio M/HN FO VdAD
*paom ueydio LyO€VN 3FO VIO
*juir Aierngesoa HITAWISSY
*3e3jurod Aierngqeson HITAWISSY
*peay uteyd ¥ITAWISSY

*auyr Aaernqeocon HLMOL
*3e3utod AieTnqedcoA HIHOJ
‘peey ujeys> HIWOJ
*useiods/saeiing 3o "ON
*1e833nq ysip/se3iq jo °"oN
*aujl/siejoeieysd Jjo "ON
“PI®13 OD0A 3se]

*1e3jujod Aieuoyiold

*3utod uoyioejoad 3ebaog
*yo3IMs uojloe sbesssw 10113
*aweu uy S133387 3O °"ON

*paom ueydio ¥ON IO V4D

“piom ueydio TYNIWHELIN FO VD
*paom ueydio ¥MD-n 3O VdD
‘piom ueydio LIWIN FO VIO
*paom ueydio xaMn 3o VI
*piom ueydioc FSOION FO VD
*paom ueydio 1noin 3o ¥vdo
*paom ueydio NIZN 3O ¥ID

uojadjaoseq lejeweled

A3ud
asn
g1

1.}

s
M/dn
Lyogvn

4ds/an
ang/sn
1/0n
MNIT-D0A
da

80N3d
ONINYVM
HLOQIM
¥on
TYNIWNELZN
Ho-n
LIWan
A3dn
@s0710n
noen
NIZN

SuweN
lajsuweled

oy
14
LD @8 L@
18 42 10
20 26 00
za
za
Lo
aa
ov
00
8@
ov
-]
0o
20
Le
80
80
ee
29
€2
£2
€2
€2
€2
€2
€2

€9

eo
20
28
ad
(4]
sy
14
144
£2
18
29
0o
18
1]
o8
oy
¥z
a0
1]
89
a1
Ly
-1
aa
.14
£t
(£}
¥S
8s

NN NN N NN NN NN NN NN NN e NN NN NN

ante; enyTeA
31e3g 33eag
wieM pTod

dV¥W WYY SITAVIHVA H3SN

D XIAN3ddv

se3Ad
-

6EL-8C1
LEL=9¢]
SEL=PEl
EEL=7F)
TEL=-0EL
dTL=78
aze=ot
|z L=v?
62L-51
LEL=9T8
STL=¥L
€TL-220
TZL=02L
AT [-a1
ati-o1
ar/-v1
61L-81f
LIL=91F
STL=-v1}
ETL-CT

TTL=01

Qqn?ﬁk’}_

¥ay

| Cold Warm
Hex No. Start Start Parameter

Address Bytes Value Value Name Parameter Description

=iz

! 73A-738 0@ 40 UFIRST Start of mass storage b
L,; 73C-73D 08 40 ULIMIT End of mass storage buffe
i 738-73r 00 20 BLK Number of current block. APPENDIX H
% HMe-741 IN Byte offset in current ip ASCII CHARACTER SET
*I T % stream. ETS ASCII | HEX DEC ASCII | HEX DEC ASCII | HEX DEC ASCII
. ol = BER Most recently listed sc s wuL |20 32 sp @ 64 @ 60 96 i
-745 2 - OFFSET Block offset to disk dr 3 oo |22 3 o+ e e a« N\
| 746-747 2 22 87 22 07 CONTEXT CONTEXT vocabu i 3 ETX 3 33 3 J4a .f ? 3 3 \
I lary point 1 %
. 7a8-749 2 22 87 22 87 cu i 4 EOT 24 36 § 144 68 64 100 4
] RRENT CURRENT vocabulary pointep 5 ENQ 25 37 % 45 69 B 65 101 e 3
1 :::—:u 2 0060 0060 STATE Contains state of computak . a2 09 o R 8 15 4
| e 2 e - msr Current 170 base s PR o@ o8 B8 m \
4E-74F 2 - DPL Number of decimals in doub 19 LF A 42 % A 74 3 6A 106 3
i 11 vr 2B 43 % 14 715 K 68 107 k
i i precision input. % FFP g “ :c ‘rg L :«g 108 1
bl - 2 CR 45 = 1 40 7 M 189 m
| sesaei g csp Check Stack Pointer. v 14 so 2 46 . & 18 N 66 119 n
N i WD Address of current ourpu g 5 18 By 1m2 %9 02
4 2 MODE ASSEMBLER addressing mod 17 el |31 4 g Q 58 0 |73 g
L 756~ 18 DC 50 . 52 R 2 r
: ?:: ;7! 42 User available. 19 DC3 33 51 : ’.53 83 -] 73 115 []
i rF 128 Terminal Input Buffer :: ::: ;; gg :z ! 2; :; E EE }ig :
' 22 SYN 36 54 ; 56 86 v 118 v
o 23 ETB 37 55 7 57 87 w 7 119 w
\ 24 CAN 38 56 8 58 BB X 78 120 =x
I] 25 EM 39 57 9 #se 89 ¥ 79 121 y
Y | 26 suB 3Aa 58 5A 90 z TA 122 z
] | i 27 ESC 38 59 4 5B 91 | 78 123 { 3
1¢ 28 Fs 3c 60 5C 92 N\ 7C 124
G 1t 29 GS 3D 61 5D 93 '} 70 125
| 1 4H 30 RS 3e 62 Y SE 94 1 7E 126 ~
Ir k) Vs 3F 63 13 95 = 7F 127 DEL
d e - Null DLE - Data Link Escape
: o - Start of Heading DC - Device Control
LT - Start of Text NAK - Negative Acknowledge
A 3] - 4} of Text S¥YN - Synchronous Idle
0T - End of Transmission ETB - End of Transmission Block
e - Enguiry CAN - Cancel
4 = Acknowledge EM - End of Medium
i 1 - Bell suB - Substitute
| - Backspace FsC - Escape
B | - Horizontal Tabulation FS - File Separator
b g = Line Feed GS - Group Separator
' i = Vertical Tabulation RS - Record Separator
f 1 -~ Porm Feed us - Unit Separator
4 = - Carriage Return sP - Space (Blank)
(50 - Shift Out DEL - Delete
! - Bhift In

H-1

APPENDIX I

b E |
| FORTH STRING WORDS

1 I:. i
I E N
~ WThi- appendix defines FORTH words that can be created to handle
chararter string data. The FORTH words defined are similiar to
o string handling functions provided in AIM 65/40 BASIC. The
? . Miefinec words are based on, and extend, functions described by
. 5; }alph Deane in an article entitled "A Proposal On Strings for
M oari,” published in Dr. Dobbs Journal of Computer Calisthenics
" :ﬁorthodonia, Novombor/Doceﬁbar 1980 (See Appendix N).

:i ﬁhe following string handling words can be implemented using
‘the colon-definitions listed in Table I-1:

3 ‘1 FORTH Word Function
E | STRING Define a string
| . Enter text
| s Store entire string
5 SUB Substitute part of string
i% MIDS Get m characters of string
E LEFTS Get left-most n characters of
ki E string
4 f RIGHTS Get right-most n characters of
. string
B : VAL Convert string to numeric value
' E 3 STRS$ Convert numeric to string
. LEN Get current length of string
;- E | MLEN Get maximum length of string
l' '#; S+ Add strings
P . s= Compare strings

;The easiest way to implement these functions is to enter the
colon-definitions shown in Table I-1 into the AIM 65/48 Text

{ Editnr and to batch compile.

i Table I-1. FORTH String Words g Table I-1. FORTH String Words (Continued)

I SRCH i | : MIDS
I DUP BEGIN DUP 3 SWAP >R ROT
| C@ SWAP 1+ SWAP o MIN 1 MAX SWAP OVER
i = END SWAP - 1- ; o MAX OVER - 1+ SWAP
R | R> + 1- SWAP OVER
SRCH MIN ;
STRING
<BUILDS ABS .
I 255 MIN 1 MAX DUP " : LEFTS
i Cy E | >R >R 1 SWAP
' 8@ DO 32 C, LOOP B C, 5 R> R> MIDS ;
0 DOES> 1+ DUP SRCH ;
i & .
1 8 VARIABLE IB £ : RIGHTS
| 254 ALLOT L >R >R 256

e A R> R> MIDS$;

: (") B |

-4 R COUNT DUP 1+ ; : S+

ki R> + >R ; . ROT >R ROT R>

i ! SWAP OVER IB SWAP

5 E CMOVE SWAP OVER +
255 MIN DUP >R OVER

b 34 STATE @ IF - - SWAP IB + SWAP
; COMPILE (") WORD I CMOVE R> @ OVER IB
I HERE CE@ 1+ ALLOT ; + C! IB SWAP ;

K ELSE WORD HERE COUNT
I IB SWAP ROT OVER IB g
i SWAP 1+ CMOVE 2DUP : : SUB

i + 0 SWAP C! THEN ; E] ROT MIN 1 MAX
i IMMEDIATE - CMOVE ;
VAL . : 8= ’
| OVER + BL SWAP 1 ROT OVER
4 C! 1- NUMBER ; | = IF 1 SWAP @ DO
i 1 DROP OVER
i E Cé OVER C@ = IF 1+
4 : 'STRS 1 SWAP 1+ SWAP 1 ELSE
] SWAP OVER DABS 1 @ LEAVE THEN LOOP
1l <# #S SIGN #> ; il ELSE DROP § THEN
i - SWAP
: ' DROP SWAP DROP ;
i : MLEN g
DROP 1- C@ ;
; HI- |
3 DROP DUP 1- C@

ROT MIN 1 MAX 2DUP
+ @ SWAP C! CMOVE ;

LEN
SWAP DROP ;

| 1.1 COMPILATION PROCEDURE 42 WORD DESCRIPTIONS

The procedure to enter and compile is ~ Miach of the string words are described below. Note that there
irg two words, SRCH and (") , and a variable area, 1IB ,

{E} (Enter from AIM 65/48 Monitor that are used internally by the string functions and are not

EDIT FROM=20@# TO=48P@ IN=<RETURN

t SRCH 'dp.t:r‘r{haﬁ
1: & (Enter from Table I-1)
1 . STRING
;. t 8= ... ;
i ." CR DONE" -
FINIS ; STRING creates a word in the dictionary up to 255
; CANIUR ; ' characters. The string is initialized to all spaces
END £ with a zero at the end and the maximum length at the
={0} . beginning. For example,
1 {5} :
i AIM 65/40 FORTH V1.4 ' -
SOURCE <RETURN> IN=M E | 38 STRING AS
3 DONE 3

i Creates a string named A$ which has room for 30
i i: . characters. When the name A$ is executed, the
f ; 1 cu:r.né length and the address of the text is put on
0 the stack in the order required for the word TYPE .

-

" enters text into an intermediate buffer called 1B ,
if used in the immediate mode. In the compile mode,
the text is put into the dictionary. 1In either case

% :' the length and text address is left on the stack.
Text is terminated by another " .

i I-4 i i
4 b 2

e

S! moves the entire string text from one string to

another, for example, 1
" COWS EAT CORN" AS S!
puts the text "COWS EAT CORN" into the string A$

Also as an example, define another string BEST and

move AS$S inte it

4¢ STRING BEST :
A$ BEST S!

MIDS 3

MID$ gets the m characters of a string starting at

the nth character position, for example,
6 3 AS MIDS TYPE

will print the word EAT . ;f

LEFTS

LEFT$ gets the left-most n characters of a string, 1
for example,

3 BEST LEFT$ TYPE |

will print the word COW

RIGHTS

In like manner RIGHTS gets the right-most n
characters of a string. The sequence

18 A$ RIGHTS BEST S!

makes the string BEST now contain the word CORN
verified by

BEST TYPE

VAL

VAL converts a string to a double-precision number,

for example,
" 128" VAL D.

gives
128

STRS

Conversely, STRS converts a double-precision number

into text. The sequence

567. STR$ &S SI

makes the string A$ equal to "567.".

LEN

LEN returns the current length of a string, such as

AS LEN . <return> 3

=
[3
z

APPENDIX

MLEN return th riaximum length of a string, such as USER 24-HOUR CLOCK PROGRAM IN FORTH

A§$ MLEN ., <RETURN> 30 3
| thiz appendix describes a 24-~hour clock program written in

SUB o ForTH using either machine level or interpretive interrupt
T |"anding. The 24-hour clock is maintained under interrupt
SUB allows substitution of characters in a string, f control, using Timer 1 in the AIM 65/48 SBC Module User R6522
for example, o T The program allows you to initialize the clock, enter a
i nessage that will be displayed with the time, and display the
" COWS EAT CORN" A$ S! Jtime either upon command or continuously.

" ATE" 6 3 AS$ MID$ SUB i

i HOW TO OPERATE THE PROGRAM

replaces EAT with ATE in string AS$.
The 24-hour clock program is compiled into FORTH words as

S+ S described in the next section. Once compiled you must be in
- M FORTH to command the 24-hour clock functions. Once initiated
S+ adds strings together and puts the result in 1IB . g fowever, the clock will continue to run as long as the User
for example, 412 is not reset, the User R6522 Timer 1 operating mode is no
_Miltered, or the IRQ Priority Latch mask (PRIRTY at address
" AND HAY"™ BEST S| N s7FRp) is not altered to inhibit the TRQ interrupt from the
A$ BEST S+ BEST 8I ? [User VIA (TRQ3 on the AIM 65/48 SBC Module --refer to Section

f':Lf in the AIM 65/40 System User's Manual).
adds BEST to A$. Verify by
‘Once FORTH has been entered, the program compiled and

BEST TYPE W initialized with a time value, control may be returned to the
) fuh 65/40 Monitor. Be sure to re-enter FORTH with the 6 key,
and get ;ﬂihnwnvar, or the program will have to be re-compiled.
COWS EAT CORN AND HAY M e 24-hour clock functions are entered from FORTH using any of
~d i keys. These four keys are defined as FORTH words and are
8= ~Menrered into the FORTH vocabulary. The keys, their functions
W anc the associated operating procedure is:
8= compares : Ings to see they are equal in
length and te: 1f so, a s returnid on the |

stack,. else a

M Key Allows a message of up to 30 characters to be 3 C Key Causes the message and time to be continuocusly
displayed preceding the time value. Enter the displayed. For example,
message as follows 4
; C<RETURN>
i (1) Type M. FORTH TIME 16:05:30
i (2) Press <RETURN>. ’ 4 Press a key to terminate the display (although)
3; (3) Type a message up to 38 characters 1 | the clock will continue to run). The key will

long. i i also be interpreted as a FORTH command or data
(4) Press <RETURN> (do not press 1 character.

<RETURN> if exactly 30 characters are

entered). An example is: 1 1.2 HOW TO COMPILE THE PROGRAM

' MCRETURN> AIM 65/44 FORTH TIME 1§ a. Load the program listed in Pigure J-1 or Figure J-3
| <RETURN>OK

into the AIM 65 Text Editor and compile it, The

)] program listed in Figure J-1 contains a machine level
: * by Mlows the initial time value to be entered, 'F interrupt handler (see Section 7.2) while the program
:f Enter it as follows: i listed in Figure J-3 contains an interpretive
. : : interrupt handler (see Section 7.3). The load and

1 {¥) Type in the time in the format

| it i compile procedure is:

i HH.MM.SS (not HH:MM:SS). i

A (2) Press <SPACE>. E (E)

9 (3) Type T. E EDIT FROM=2000 TO=3FFF IN=<RETURN>
(4) Press <RETURN>, ; (24-HOUR CLOCK)

I HEX

. For example: F CODE DISABLE

j 1 : (Figure J-1 or J-3 Program)
! 16.85. 00 <SPACE>T<RETURN>OK 2 ol '

] 4 CR D QUIT ;

& D Key Causes the message and time to be displayed.. ,i ;;HISR DONE*®

: (and printed if the printer is ON) once each h <RETURN>

? time D is typed. The display format is: i

. ={0}

b <MESSAGE>HH:MM:SS i {5}

) 3 AIM 65/40 FORTH V1.4

i) SOURCE <RETURN> IN=M
i The time is displayed immediately after the : D NOT UNIQUE

L message, for example, = DONE
] : OK
D<RETURN> E b. Run a VLIST and verify that the compiled words are

AIM 65/40 FORTH TIME 16:85:10 3 entered into the FORTH vocabulary as listed in Figure

b J=2 or J-4.

The system remains in the FORTH command mode.

J=-2 8 J=3

(24-HOUR CLOCK USING IR@ INTERRUPTS >
HEX 822D CONSTANT UIRGQAM

FEA® CONSTANT IRGRTN

FFA4 CONSTANT UT1

FFAB CONSTANT UARCR

FFAD CONSTANT UIFR

FFRE CONSTANT UIER

C34F CONSTANT PERIOD

@ VARIABLE DAY# ¢ 2 BYTES)
® VARIABLE TICKS ¢ 4 BYTES) @ ,

CODE DISABLE ¢ DISABLE USER VIA INT)
7F # LDA,

UIER STA.

NEXT JMP.

END-CODE

DISABLE

ASSEMBLER
HERE PHR. ¢ SAVE IRQ YECTOR>
cLC,
S # LDA. ¢ 50 MS>
TICKS 3 + RDC,
TICKS 2 + STR,
64 # CMP, ¢ AT 1867)
CS IF, ¢ p= 188>
@ # LDA.
TICKS 3 + 5TA.
TICKS 2+ INC,
TICKS 2+ LDA.
3C # CMP,
CS IF, ¢ >= 68>
® % LDA,
TICKS 2+ STA.
TICKS 1+ INC,
TICKS 1+ LDA.
2C & CMP,
CS IF, ¢ >= e8>
@ # LDA.
TICKS 1+ STA,
TICKS INC.
TICKS LDA.
18 # CMP,
CS IF. ¢ >= 24>
@ & LDA,
TICKS STA.
DAY# INC.
e= IF,
DAY# 1+ INC.
THEN.
THEN,
THEN.
THEN,
THEN.
UIFR LDA:. ¢ CLEAR USER VIA IRA)>
UIFR STA, ,
PLA.)
IRGRTN JMP. ¢ RETURN TO I/0 ROM>

Pigure J-1. 24-Hour Clock Program
Using a Machine Level Interrupt Handle

J-

UIRGAM ! SET IR@ VECTOR)

FORTH
: INIT ¢ INITIALIZE THE USER VIAD
4@ UACR C! < SET T1i FREE-RUN MODE>
PERIOD UT1 ! ¢ LOAD T1 YALUE = 1/108 SEC
Ce UIER C! ; ¢ ENRBLE USER VIA Ti INT)

DECIMAL
: DD ¢ TYPE M OR S
5-5D <# % # 58 (:> HOLD #> TYPE

. T ¢ PRINT TIME>

TICKS C@ ¢ HRS> 2 .R TICKS 1+ Ce < M>»
:DD ¢ SAVE & PRINT SEC.)

TICKS 2+ C@ DUP :DD

BEGIN < WAITING)

TICKS 2+ Cce

OVER = NOT UNTIL DROP ;

© M ¢ ENTER 30 CHAR MESSAGE>
PAD 1+ DUF 2@ EXPECT PAD
BEGIN

i+ DUP Ce e=
UNTIL ¢ NULL FOUND>
PAD 1+ - (# OF CHARACTERS)
PAD C! ¢ FOR TYPE)

© .M ¢ PRINT MESSAGE>
PAD COUNT 20 MIN TYPE

D
DECIMAL .M . T

. T! SET TIMED

ie@ U/ ¢ GET SEC)

188 /MOD ¢ MIN HRS)

TICKS C! ¢ LOAD HRS»

TICKS 1+ C! ¢ MIND

TICKS 2+ C! ¢ & SEC>

B TICKS 2 + C! ¢ ZERO 188THS)>

¢ T ¢ SET TIME & GO>
T! INIT

: £. ¢ CONTINUOUSLY DISPLAY MSG & TIME>
BEGIN 24 EMIT ¢ BLANK CURSOR >

43 EMIT ¢ STAY ON LINE> D ?TERMINAL
UNTIL 23 EMIT ¢ RESTORE CURSOR) QUIT

. b ¢ DISPLAY MSG & TIME ONCE>
CR D QUIT

CR . " DONE
FINIS
wEND»

Figure J-1. 24-Hour Clock Program
Using a Machine Level Interrupt Handler (Cont'd)
J=5

¢ 24-HOUR CLOCK USING FORTH INTERRUPTS

HEX 8220 CONSTANT UIRGAM

FEA@® CONSTANT
FFA4 CONSTANT
FFAB CONSTANT

'FFAD CONSTANT

FFAE CONSTANT
C24F CONSTANT

IRGRTN
uTi
UACR
UIFR
UIER
PERIOD

g ? VARIABLE DAY# (2 BYTES)>
b @ YARIABLE TICKS < 4 BYTES) @ .,

CODE DISABLE ¢ DISABLE USER VIA INT>
7F # LDA,

UIER STA.

NEXT JMP.

END-CODE

DISABLE

¢ MACHINE CODE INTERRUPT SERVICE >
ASSEMBLER

o HERE PHA. ¢ SAVE IRG VECTOR>

" 80 # LDR, ¢ SET INT REQUEST>

: INTFLAG ORA.

INTFLAG STA,

UIFR LDA. ¢ CLEAR USER VIR IRQ>

UIFR STA.

PLA,

IRARTN JMP., ¢ RETURN TO 1/0 ROM>

CODE ARM ¢ RETURN FROM FORTH INTERRUPTS)
BF # LDA, (RESET INT REQUEST BIT >
INTFLAG AND,

INTFLAG STA.

“ i3S JMP. ¢ RESTORE INTERRUPTED IP >
END-CODE

UIRGAM ! ¢ SET IR@ VECTOR)

A FORTH

i INIT ¢ INITIALIZE THE USER VIA)

I 48 UACR C! ¢ SET T1 FREE-RUN MODE>

; C24F UTL ! ¢ LOAD T1 VALUE = 1/100 SEC>
Ca UIER C! ; < ENABLE USER VIA Ti INT)

DECIMAL I
: +'L ¢ INCREMENT / STORE / LIMIT CHECK>
OVER +! < ADD INC.>
SWAP OVER C@ < DUP
IF & ROT C!
ELSE SWAP DROP
THEN

Figure J-2. VLIST of 24-Clock Program
Using a Machine Lovné Interrupt Handler b
J- i

Figure J-3. 24-Hour Clock Program
Using an Intcrprotlv; Interrupt Handler
J=-

T+ (FORTH LEVEL INTERRUPT SERVICE >
99 TICKS 2 + S +!L ¢ 1/188 SEC COUNT)
IF 59 TICKS 2+ 1 +'L < SECONDS)

IF 59 TICKS 1+ 1 +!L ¢ MINUTES >
IF 23 TICKS 1 +!L ¢ HOURS
IF 23 TICKS 1 +!L ¢ HOURS >

N
T! ¢ SET TIME>
188 U/ ¢ GET SEC?

100 /MOD ¢ MIN HRS)

TICKS C! ¢ LORD HRS»

TICKS 1+ C! ¢ LORAD MIN)

TICKS 2+ C! ¢ LOAD SEC)
EN ® TICKS 2 + C' ; ¢ ZERO 1@@THS SEC
. THEN
i THEN . T ¢ SET TIME & GOO
'8 THEN

T! INIT

. C ¢ BONTINUDUSLY DISPLAY MSG & TIME>
BEGIN 24 EMIT ¢ BLANK CURSOR >

12 EMIT ¢ STAY ON SAME LINE> D ?TERMINAL
UNTIL 23 EMIT ¢ RESTORE CURSOR > GQUIT ;

ARM [SMUDGE ¢ SIMILAR TO ;

w0 “ T+ CFA < PUT ADDRESS ON STACK >
- | ASSEMBLER INTVECT ! ¢ SAVE INT VECTOR)

FORTH
: :bD < TYPE M OR S)
S->D <# # # S8 ¢ :> HOLD #> TYPE ;

: . T ¢ PRINT TIME>
TICKS C® ¢ HRS) 2 . R
TICKS 41+ C@ :DD ¢ MIN>
TICKS 2+ C@ DUP :DD ¢ SAVE & DISP SEC)
BEGIN ¢ WAITING FOR A SECOND CHANGE)>
TICKS 2+ Ce
1 OVER = NOT
i UNTIL DROP ;

. D ¢ DISPLAY MSG & TIME ONCE>
CR D QUIT

CR . " DONE"
FINIS
HEMND*

: M ¢ ENTER 38 CHAR MESSAGE »
PAD 1+ DUP 2@ EXPECT PAD
BEGIN
i+ DUP C@ o=
UNTIL ¢ NULL FOUND> .
; PAD 1+ - ¢ # OF CHARACTERS>
PAD C! < FOR TYPE) ;

.M (PRINT MESSRGE)
PAD COUNT 20 MIN TYPE ;
. D -

DECIMAL .M . T ;

3 Figure J-3. 24-Hour Clock Program ! Pigure J;‘; rv:zsfvgtlgzzggz;trggg;;:r
Using an Interpretive Interrupt Handler (Cont'd) Using an Interp 329
J-8

APPENDIX
UTILITY EXAMPLES
K.l MEASURING FORTH WORD EXECUTION TIME

It is often desired to know how long it takes for a FORTH word
to execute, expecially in time critical aplications. The
following words measure such execution time in AIM 65/4@ clock
cycles, i.e., microseconds.

HEX
1+ ON FFFF FFA4 ! ;
: OFF FFA4 @ 12B + DUP CR
IF FFFF DNEGATE D.
ELSE . THEN ;
The word ON initializes and starts Timer 1 in the AIM 65/40
SBC module User 6522 VIA. The word OFF displays the number
of cycles elapsed from the start of the timer minus ON and
OFF word overhead. Use these words as shown in the following
colon-definition example to measure the execution time of a
FORTH word, in this case DUP .

DECIMAL OK

: TDUP ON DUP OFF ;
OK

TDUP

76 OK

Using this technique, the execution time of most AIM 65/40 or
other FORTH words defined using colon- or CODE-definitions can
be measured. Set up and run similiar colon-definition words as
needed for your application.

Many problems can be programmed in FORTH using different
combinations of FORTH words with differing resultant execution
speed. If speed is important, measure the execution time of
each approach to decide which solution to use.

If the execution time of a FORTH word defined in high level,
i.e., colon-definitions, is too long, redefine portions, or
all, of the word in assembly code, i.e., colon-definitions,
then remeasure. Comparing the execution time of the word

K-1

defined in assembly code versus FORTH will show the performance APPENDIX L
improvement. For cases where the execution time exceeds the
16-bit counter capacity, other timing words can easily be) AIM 65/48 FORTH VERSUS FIG-FORTH

defined to accumulate the time.

K.2 AIM 65/40 ROM CHECK-SUM PROGRAM ! This table is a comparison of AIM 65/4@ FORTH V1.4 and the

 FIG-FORTH model from which it is derived. 3
The object code bit pattern in the AIM 65/40 Monitor and FORTH : '
ROMs (as well as other PROM/ROMs) can be easily verified by ' a. Words in AIM 65/4¢ FORTH V1.4 that are not in

performing a check-sum on them using the FORTH word CHECK-SUM : FIG-FORTH 1.0:

described below. The check-sum value is displayed on the ' Ny,

'-l%‘
second line. Word Name .%\
. . N
a. Definition : .S ?%
9 l_ ,
AIM 65/40 FORTH V1.4] 2- ﬁk
OK 2DROP
: CHECK-SUM (ADDR COUNT —---, 32-bit CHECKSUM)] 2DUP
8 S->D (ACCUM.)] 4
ROT (GET COUNT) ?IN
@ DO (COUNT TIMES) . 20UT
3 PICK (GET BASE) : ASSEMBLER
I+ (FORM ADDR.) ; BOUNDS
Cce s-.D (32 BITS) i c/L
D+ (SUM IT) ; CLIT
LOOP - CLOSE
CR D. (PRINT SUM) ! CODE
DROP ; (BASE ADDR.) : CURRENT
! DNEGATE
b. Execution] FINIS
1 FLUSH
HEX OK] GET
AP@@ 1888 CHECK-SUM (R32U5-11 Monitor ROM) ¥ HANG
7374D OK) NEGATE
B@@P 108@¢ CHECK-SUM (R32U6-11 Monitor ROM) NOT
6EAQ6 OK - PICK
COBP 108@ CHECK-SUM (R32PB-11 FORTH ROM) i READ
82647 OK : PRE
D@PO 1808 CHECK-SUM (R32P1-11 FORTH ROM)] SOURCE
8C1D3 OK u<
F@@@ @F7F CHECK SUM (R32T3-12 I/0 ROM)* b UABORT
74588 OK y UB/BUF
FFE@ @@1F CHECK-SUM (R32T3-12 I/0 ROM)* E UB/SCR
117B OK 1 uc/L
' UEMIT
: UFIRST
: UKEY
| *Skip AIM 65 SBC Module I/0 (SFF8@-SFFDF) ; ULIMIT
| UR/W
WRITE

ek ks

The following words are in FIG-FORTH 1.8 but are not
in AIM 65/40 FORTH V1.4 (however, some of the words
are in the AIM 65/40 FORTH Assembler vocabulary):

Word Name Where Used Comment
+ORIGIN system
?LOADING system
BACK system
BLOCK~-READ user disk word
BLOCK-WRITE user disk word
DLIST duplicate name (VLIST)
DMINUS new name (DNEGATE)
DR#@ disk
DR1 disk
FLD not used
INDEX disk
LIST disk
MINUS new name (NEGATE)
MOVE N/A (word addressing
computers)
NEXT AIM 65/40 FORTH
Assembler
ouT not used
POP AIM 65/40 FORTH
Assembler
PUSH AIM 65/40 FORTH
Assembler
PUT AIM 65/48 FORTH
Assembler
R system
TRAVERSE system
TRIAD disk
X system (null)

APPENDIX M

FORTH AND THE RM 65 FDC MODULE

This appendix describes the actual code used to interface the

RM 65 FDC module with AIM 65/40 FORTH.

This example uses a

| single 5-inch disk drive with one side and double-density
| recording and operates with the RM 65 FDC module PROM R32N5

(dated 1/4/82).
and compiled using the SOURCE word.
of the code words, refer to Section 12.
words created which supplement the use of the FDC module:

INIT

| MOTORON

| MOTOROFF

FORMAT

WIPE

LIST

2 i

Initializes the FDC module and turns
side one, in single-density mode.

Turns ON the drive from SRCDSK, side
density from SRCDEN.

Turns OFF the selected drive

Initializes the disk in the selected
formatted disk will have all sectors
which on the AIM 65/4f microcomputer
a blinking "E.", and printed as "“e".

The example is entered into the Text Editor
For a detailed description
There are seven major

ON drive one,

from SRCSID, and

drive. A
filled with SES
is displayed as

Clears screen n by filling it with null characters

($00).

n ==

Lists screen n

64 characters each.

as 16 numbered lines (@ to F) with

EDIT n ==
Places the text following EDIT (up to 64 characters)
into line n on the current screen (i.e., the last

screen accessed with LIST or WIPE).

Other words that are present in FORTH and are also useful in
the creation and execution of source code include:

LOAD n ==

Compiles source code into the dictionary starting
at screen n , line @ and continuing until a ;8
is encountered. The ;5 should be within four
lines of the last line of source code. More than
one sequential screen is loaded by using --> to

point to the next screen.

EMPTY-E FFERS
Marks

with

11 RAM block buffers as empty and £ills them
l1s ($00).

FLUSH

Writes out any updated RAM block buffers to the
disk.

Figure M-1 lists the FDC interface program in FORTH.

i

¢ AIM 65/48-FORTH DOUBLE DENSITY DISK ROUTINES >
HEX FORGET TRSK ¢ FDC RAM $4RB-$SSF) .\(
1 CONSTANT S# ¢ ONLY 1 SCREEN NEEDED » %\
166 UB/BUF ! ¢ 256 FOR DOUBLE DENSITY > b
4 UB/SCR ! (¢ 4 FOR DOUBLE DENSITY » N
LIMIT B/BUF 4 + BA/SCR * S# » — UFIRST ! ¢ TOF OF RAM) ‘k%\
© OFFSET ! ¢ OFFSET NOT NEEDED WITH 4 DRIVE> \%
FIRST DUP USE ! PREV ! < SET UP FIRST BUFFER » %
EMPTY-BUFFERS < CLEAR OUT THE BUFFER ARERA >
CODE INIT1 XSAVE STX, 8888 JSR. ¢ CALL INIT >

¢ SET DRIVE PARAMETERS IN SRCDRY. SRCSID. & SRCDEN)

9 # LDA, 4A5S STA, (DRIVE ONE INTO SRCDRY O
@ # LDY, 4AF STY. (SIDE ONE INTO SRCSID >
B # LDX, 4B1 STX, ¢ DOUBLE DENSITY INTO SRCDEN »
83E@ JSR, < MOTON » XSAVE LDX. NEXT JMP. END-CODE

INIT FD4€ 4FB ! ¢ UIRGBM > IRQOUT) 83C9 22B
! ¢ SET UP IRGHAN> INIT1 ;
: SIZEOK OMER 230 < ; ¢ 16 SECTOR * 35 TRACK >
: BBUF DUP 4F1 ¢ RDBUF > ! 4F2 ¢ WRTBUF » ! ;
. T&S SWAP 16 A/MOD ; ¢ LEAVE TRACK & SECTOR »
CODE SEEK XSAVE STX. TOP LDA, 81084 JSR. ¢ CALL SEEK >
ASAVE LDX, 99 # AND. PUSHBA JMP. END-CODE
CODE DRERD HSAVE STX, TOP LDA. B4BF JSR., ¢ CALL RDSEC »
KEAVE LDX, BD # AND, PUSHBA JMP. END-CODE
CODE DWRITE XSAVE STX, TOP LDA. 8508 JSR.
®SAVE LDX, FD # AND. PUSHBA JMF. END-CODE
: INTDIS FF FF8@ C! < MASK OUT ALL IR@ BUT FDC > ;
: INTENEB @@ FF8@ C! ¢ RESTORE THE IR® MRASK) ;
: DERROR INTENB CR ., " DISK ERROR - " ; ¢ RECOVER & PRINT
: DATA ¢ FETCH A BYTE > ROT BBUF T&S SEEK DUP
IF DERROR . " SEEK A=" . <« SEEK ERROR > ELSE DROP
THEN DROP 1+ ¢ SECTOR 1 TO 16 > SHAF
IF DREAD DUP IF DERROR . " RERD A=" .

¢ CALL WRTSEC

¢ READ ERROR -»

ELSE DROP THEN ¢ DO NOTHING >
ELSE DWRITE DUP IF DERROR . " WRITE AR=" , ¢ ERROR > '
ELSE DROP THEN < DO NOTHING > THEN DROF ;
: DISK SIZEOK IF INTDIS DATA INTENB
ELSE CR . " BLOCK TOO LARGE ERROR " ABORT THEN

” DISK CFR UR/W ! ¢ STORE INTERFACE WORD >

¢ UTILITIES THAT MUST BE AVAILABLE TO USER >

CODE FORMAT XSAVE STX, 8895 JSR, ¢ CALL FORMAT >
XSAVE LDX, NEKT JMP, END-CODE

CODE MOTOROFF HSAVE STAX. 8478 JSR.
XSAVE LDX, NEKT JMP, END-CODE

CODE MOTORON XSAVE STX., 8478 JSR,
4AS LDA, ¢ SRCDSK > 4AF LDY,
4B1 LDX, < SRCDEN > S83E@ JSR.
HSAVE LDX: NEXT JMP:; END-CODE

. EDIT SCR @ CLINE> OYER SWAP BLANKS ¢ CLEAR OUT LINE
@ WORD ¢ PARSE TEXT > HERE COUNT 48 MIN { €4 CHAR LINES
ROT SWAP CMOVE ¢ MOVE TEXT > UPDATE ¢ MARK BUFFER) ;

: LIST DUP CR ." SCR # " . ¢ PRINT SCREEN AND SAVE > SCR !
1@ @ DOCR I 3 . RSPACE I SCR @ .LINE LOOP CR ;

: WIPE BASCR » B/SCR BOUNDS ¢ SCREEN # TO BLOCK RANGE >
DO 1 BLOCK B/BUF BLANKS UPDATE LOOP FLUSH ;

: TASK ; < THROUGH WITH CODE > < FINIS >

¢ CALL MOTOFF >
¢ CALL MOTOFF >

¢ SRCSID >
¢ CALL MOTON >

Figure M-1. AIM 65/40 FORTH Floppy Disk Example

M-3

APPENDIX N

SELECTED BIBLIOGRAPH

Anderson, A. and Wasson, P. FORTH-79 Tutorial and Reference
Manual, MicroMotion, 12077 Wilshire Blvd, Suite 506, West Los
Angeles, CA, February 1981.

Bartoldi, P, "Stepwise Development and Debugging Using a Small
Well-Structured Interactive Language for Data Acquisition and
Instrument Control," Proceedings of the International Symposium
and Course on Mini and Microcomputers and their Applications.

Brodie, L., "Starting FORTH" Prentice-Hal Englewood Cliffs,
N.J., 1981.

Cassady, J. J., "Stacking Strings in FORTH", BYTE, February
1981, pages 152-162.

Deane, R., "A Proposal on Strings for FORTH", Dr. Dobb's
Journal of Computer Calisthenics & Orthodontia,
November/December 1988, pages 40-43.

Dessey, R. and M. K. Starling, "Forth Generation languages for
Laboratory Applications®™, American Laboratory, February 1988,
pages 21-36.

Ewing, M. S., The Caltech FORTH Manual, California Institute
of Technology, Pasadena CA, 1978.

Bwing, M. 8., and W. H. Hammond, "The FORTH Programming
System," Proceedings of the Digital Equipment Computer Users
Society (DECUS), San Diego, CA, November 1974, page 477. =

FORTH Interest Group, fig-FORTH Installation Manual Glossary
Model™, May 1979, Box 1105, San Carlos, CA, 94070.

FORTH Interest Group, "FORTH Dimensions" a bimonthly
newsletter, c/o FORTH Interest Group.

Harris, K., "FORTH Extensibility or How to Write a Compiler in
25 Words or Less", BYTE, August 1980, pages 164 - 184.

Hicks, 8. M., "PORTH's Forte is Tighter Programming”,
Electronics, March 15, 1979, pages 115-118.

James, J. S., "FORTH for Micro Computers", Dr. Dobb's Journal
of Computer Calisthenics & Orthodontia, May 1978; also in ACM
SIGPLAN Notices, October 1978.

James, J. S., "What Is FORTH? A Tutorial Introduction™, BYTE,
August 1980, pages 100-126.

Mannoni, M., "FORTH - An Extensible Path to Efficient
Programs", Electronic Design, July 19, 1988, pages 175-178

Moore, C. H., "FORTH: a New Way to Program a Minicomputer"®,

Astronomy and Astrophysics Supplement, 1974, number 15, pages
497-511.

Phillips, J. B. "Threaded Code for Laboratory Computers",
Software Practice and Experience, Vol, 8, 1978, pages 257-263.

Rather, E. D., and C. H. Moore, "The FORTH Approach to
Operating Systems™, ACM 1976 Proceedings, Association for
Computing Machinery, 1976.

Rather, E. D., and C. H. Moore, and J. M. Hollis, "Basic
Principles of FORTH Language as Applied to a PDP-11 Computer",
Computer Division Internal Report No. 17, National Radio
Astronomy Observatory, Charlottesville, VA; Kitt Peak National
Observatory, Tucson, AZ, March 1974.

N-2

p—

Rockwell
International

0

—

%

