RM 65 FAMILY

RM 65 RUN-TIME
BASIC

USER’'S
MANUAL

‘1‘ Rockwell International Documen t No.

29801N10
Order No. 810
June 1982

RM 65 FAMILY

RM 65 RUN-TIME
BASIC

USER’'S
MANUAL
Document No.
29801N10
€ ' i No. 810
‘ Al Flonis Fasaar ovposton, 1562 Unaer June 1982

Printed in U.S.A.

NOTICE

Rockwell International does not assume any liability arising
out of the application or use of any products, circuit, or
software described herein, neither does it convey any license
under its patent rights nor the patent rights of others.
Rockwell International further reserves the right to make
changes in any products herein without notice.

ii

TABLE OF CONTENTS

Section Page

SECTION 1. INTRODUCTION

1.1 OVEIVIeW ticeecosrsoccsccosossossccosssnsnoncnssnss 1-1
1.2 Run-Time BASIC User's Manual Description 1-2
1.3 Reference DOCUMENES ..ccoccoccsssassscssssnsssns 1-3

SECTION 2. INSTALLATION

2.1 Installation in an RM 65 SBC Module ...cceoccces 2-4
2,2 Installation in an RM 65 PROM/ROM Module 2-7
2.3 Installation in an AIM 65 Microcomputer 2~-8

SECTION 3. OPERATION

3.1 Development on an AIM 65 Microcomputer 3-5
3.2 Relocating the Application Driver ...ceeceececces 3-8
3.3 Relocating the Application Program ..cececccccscs 3-9
3.4 Preparing the PROM/ROM ..cccceeccecccccccccccces 3-12
3.4.1 Merged Application Driver and
PYOGram sessssscovssosssosnsososssosssivas 3-12
3.4.2 Separate Application Driver
and Program ec.cccecececcccesscecccancccss 3-12

SECTION 4. APPLICATION DRIVER REQUIREMENT AND EXAMPLES

4.1 Application Driver Requirements .c.ceccecececccess 4-1
4.1.1 Startup ROUtineS .ecececessocnssvsnncass 4-1
4.1.2 I/0 Vectors and Handlersceceeeeeces 4-7
4.1.3 Interrupt Vectors and Handlers 4-7
4.2 Example Application Drivers ...ceececceccccccccs 4-13
4.2.1 Interactive Operation On An AIM 65
Microcomputer i.cesscscscssssosvsssnsssse 4-13
4.2.2 Run-Time Operation in an
RM 65 SBC Module ...ccoesesccccccscncsas 4-18
APPENDIX A. BASIC VARIABLES
APPENDIX B. RM 65 AND AIM 65 BASIC DIFFERENCES B-1

iii

LIST OF FIGURES

2-1 RM 65 and AIM 65 BASIC Memory MapsS .ccecceccescces 2-2
2-2 RM 65 Module Firmware Memory Map ..cececceccccocccss 2-3
2-3 Example Base Address Selection Header 2-5

3=1 Typical Development of a 4K-Byte Application

Program .ccececcsccccccccscccccsccscsssssccsscsscsccas 3-3
3-2 Typical Development of a 16K-Byte Application

Program ccccecocscccccsccccsceccscccsassccccsccse 3-4
3-3 Relocator Assembly LiSting ..ccccecccscccccccses 3-11
4-1 Application Driver Flowchartccececececceces 4-2
4-2 Model Application Driver Assembly Listing 4-4
4-3 Typical AIM 65 Development Configuration 4-14
4-4 Example AIM 65 Interactive Driver ...ceccecececcss 4-15
4-5 Typical RM 65 Run-Time Configuration ..c..ceccee. 4-19
4-6 Example RM 65 SBC Run-Time Driver ..ccecececocss 4-20

LIST OF TABLES

Table Page
2-1 RM 65 SBC Module PROM/ROM Selection Jumpers 2-6
4-1 I/0 Vector SUMMAIY ceccecccccccccscscnscsccsscssse 4-8
4-2 1/0 Vector Description cissscssssssssssscssssses 4-9
A-1 RM 65 Run-Time BASIC Page Zero USage .cceecececes A-2
A-2 RM 65 Run-Time BASIC Page Two US3ge .cccecccccses A-4
A-3 AIM 65 BASIC Page Zero USAge .cceesccsccsccscssns A-5

iv

SECTION 1

INTRODUCTION

l.1 OVERVIEW

The RM 65 Run-Time BASIC is a ROM-resident BASIC system
designed to operate with an R6502 CPU-based RM 65 Single Board
Computer (SBC) module. Contained in one 8K-byte ROM, this
BASIC run-time package allows an application program written in
BASIC, developed on the AIM 65 Microcomputer and located in
PROM/ROM, to execute immediately on the RM 65 SBC module upon
power turn-on. Vectored I/0O and user provided I/0 drivers
allow complete application flexibility. The application
program, up to 8K-bytes in length and programmed in a PROM/ROM,
may be installed in one PROM/ROM socket on an RM 65 SBC module
while the run-time BASIC ROM is installed in the other PROM/ROM
socket. This allows a wide variety of applications requiring a
parallel interface, a serial interface, and/or one or two
counters/timers to be programmed in BASIC and implemented in a
single RM 65 SBC module using its user dedicated R6522
Versatile Interface Adapter (VIA) device as the application
interface.

Larger application programs and other interfaces can be
installed using the RM 65 PROM/ROM module and other RM 65
peripheral interface and I/0 modules. For example, peripheral
equipment with an RS-232C interface can be connected to an RM
65 Asynchronous Communications Interface Adapter (ACIA) module
(RM65-5451), while peripherals with a parallel interface can be
connected to the RM 65 SBC, Multi-Function Peripheral Interface
(MPI) or General Purpose Input/Output and Timer (GPIO) modules,
(RM65-5223 and RM65-5222, respectively).

In the AIM 65 Microcomputer based system with RM 65 module
expansion, floppy disk drives and CRT display can be connected
for development or production use. Either.-5 1/4- or 8-inch
floppy disk drives can be controlled using the RM 65 Floppy
Disk Controller (FDC) module (RM65-5101), while CRT displays up
to 25 lines by 80 columns can be driven using the RM 65 CRT
Controller (CRTC) module (RM65-51062).

1.2 RUN-TIME BASIC USER'S MANUAL DESCRIPTION

This manual describes the installation and operation of the RM
65 Run-Time BASIC. The BASIC language description is not
included in this manual, however, the language reference in the
AIM 65 BASIC User's Manual is fully applicable to RM 65
Run-Time BASIC. Any differences in the operation and use
between RM 65 Run-Time BASIC and AIM 65 BASIC are described in
this manual.

Section 1, Introduction, scopes the RM 65 Run-Time BASIC,
describes this manual, and lists reference documents.

Section 2, Installation, tells how to install the Run-Time
BASIC ROM in an RM 65 SBC or PROM/ROM module.

Section 3, Operation, describes how to operate the RM 65
Run-Time BASIC on an RM 65 SBC module in the run-time mode or
on an AIM 65 Microcomputer, in either the run-time or
development mode.

Section 4, Application Driver Requirements and Examples,
defines the requirements for the user-provided startup routine
and I/0 drivers and also describes some example hardware
configurations and software drivers.

1.3 REFERENCE DOCUMENTS

Rockwell

29650N30 R6500 Microcomputer Programming Manual

Order No. 202

29650N31 R6500 Microcomputer Hardware Manual

Order No. 201

29650N36 AIM 65 Microcomputer User's Guide

Order No. 209

29650N49 AIM 65 BASIC User's Manual

Order No. 221

29650N55 AIM 65 8K BASIC Reference Card

Order No. 233

29650N76 AIM 65 PROM Programmer & CO-ED User's

Order No. 269 Manual

29650N01 RM 65 General Purpose Input/Output

Order No. 801 and Timer (GPIO) Module User's Manual

29801N@2 RM 65 Floppy Disk Controller (FDC)

Order No. 802 Module User's Manual

29801NQ4 RM 65 Asynchronous Communications

Order No. 804 Interface Adapter (ACIA) Module User's
Manual

29801N@5 RM 65 8K Static RAM Module User's

Order No. 865 Manual

29801N06 RM 65 16K PROM/ROM Module User's Manual

Order No. 806

29801N@8 RM 65 32K Dynamic RAM Module User's

Order No. 808 Manual

29801NG9 RM 65 Single Board Computer (SBC)

Order No. 809 User's Manual

29801N14 RM 65 CRT Controller (CRTC) Module

Order No. 814 User's Manual

29801N15 RM 65 IEEE-488 Bus Interface Module

Order No. 815 User's Manual

29801N17 RM 65 Multi-Function Peripheral

Order No. 817 Interface (MPI) Module User's Manual

SECTION 2

INSTALLATION

The RM 65 Run-Time BASIC (RM65-0#122) is provided in a Rockwell
8K-byte R2364 ROM (R29#6). After installing the ROM in an RM
65 SBC or PROM/ROM module, the run-time BASIC is ready for use
in either the run-time or development mode of operation. A
short user-provided program segment must be included in the
system prior to use, however, in either mode. This segment
must call the BASIC initialization subroutine, load program and
variable location vectors, load I/0 driver vectors and provide
the I/0 drivers themselves. These driver requirements are
described in Section 3.

Figure 2-1 shows the memory map for the RM 65 Run-Time BASIC,
along with the AIM 65 BASIC, for reference. The RM 65 module

firmware memory map is also shown for reference in Figure 2-2.

Note that the RM 65 CRTC, FDC and IEEE-488 modules are mapped
at their firmware addresses. If a module ROM is not used, the
corresponding module I/0 can be mapped elsewhere by selecting a
different base address on the module.

AIM 65 BASIC RM 65 Run-Time ‘BASIC

FFFF AIM 65 FFFF
Debug Monitor/ Gaar
E000 Text Editor ROMs
DFFF 7Y Available
D@o O Available DOOO _
CFFF AIM 65 CFFF RM 65
BASIC Run-Time BASIC
BOOGO ROMs BOOO ROM
AFFF AIM 65 AFFF
AGOO 1/0
9FFF
User User
Available Available
300
2FF BASIC
200 200 Variables
1FF R6502 CPU 1FF R6502 CPU
100 Stacﬁ; 100 Stack
FF Audio Tape FF User
gg = s %:éfgt_ i Available
D7 |_ _ _ Available 6E | _ _ _ . ____
D6 T BASIC T T T T 6D ~ T T TBAsSIC
"] Variables "] Variables

Figure 2~-1. RM 65 and AIM 65 BASIC Memory Maps

2-2

RM 65 Module Firmware

FFFF
User
Available
AQGOO
9FFF CRTC Module
9800 ROM and 1I/0
97FF CRTC Module
9000 RAM
8FFF FDC Module
8000 _ROM and 1/0
TFFF IEEE-488 Module
7000 ROM and I/0
6FFF
User
Available
800
7FF FDC Module
700 Default Input Buffer
6FF FDC Module
600 Default Output Buffer
SFF
561 _
560 FDC module
4A0 Variables & Constants
49F
400
3FF CRTC Module
347 Variables & Constants
346 IEEE~-488 Module
300 Variables & Constants
2FF
200
1FF Reserved for R6502
100 CPU Stack
FF Reserved for System
Fo Variables
EF T T T IEEE-488 Module ~ T
EA Variables
E9 T T T e T T T T T T
DF | _ _ o o o o e _
DE FDC Module
D7 Variables
pe |- T T -7 =TT B e
[}

Figure 2-2. RM 65 Module Firmware Memory Map

2-3

2.1 INSTALLATION IN AN RM 65 SBC MODULE

The following procedure describes an installation of the RM 65
Run-Time BASIC ROM and a 4K-byte application program PROM in
the RM 65 SBC module (RM65-100@). The run-time BASIC ROM is to
be installed in one PROM/ROM socket while the application
program PROM is to be installed in the other PROM/ROM socket.

Consult Section 2 of the RM 65 SBC Module User's Manual for
general installation instructions.

CAUTION
The Run-Time BASIC ROM is manufactured
using the Metal-Oxide Semiconductor (MOS)
process. Since the inadvertent applica-
tion of high voltages may damage this
ROM or other MOS devices, be sure to
discharge any static electrical charge
accumulated on your body by touching a
ground connection (e.g., a grounded
equipment chassis) before touching the
ROM or module into which it is to be
installed. This precaution is especially
important If you are working in a
carpeted area or in an environment with
low relative humidity.

a. Ensure that power is turned OFF to the module in which the
ROM is to be installed. Remove the Run-Time BASIC ROM from
the shipping container. Inspect the ROM to be sure that
the pins are straight and free of foreign material.

b. 1Install the RM 65 Run-Time BASIC ROM (R29¢6) in socket 28.

c. Install the application PROM in socket Z18.

d. Wire a base address selection header and install it in

socket Z13 as shown in Figure 2-3 to select the base

addresses as follows:

PUIEOSG

Map Socket Z16 (Application PROM)
(Run-Time BASIC ROM)

Map Socket Z8
Map I/0
Map RAM

Address_Range
SFO0O0@-SFFFF
$BOOG-SCFFF
SAQP@O-SAFFF
$0000-$OFFF

e. Install jumper E1 in position B and install jumper E6 to
assign Bank Address Select (BADR/) to Bank #.

PROM/ROM Section

PROM/ROM Section

I/0

RAM

Figure 2-3.

1 (z19)
g (Z8)
9000
3000
2000
Section
Section
1000
5000

4000

Example

Rin Top Bim
1 20
2 19
3 18
4 17
5 16
6 o—————0 15
7 OO0 14
8 o 13
9 o 12

10 o 11

Foo0
EQ00
Dpoo
Cooo
BOGO
AGOO
0000
8000
7000
6000

Base Address Selection Header

f. 1Install jumpers E2-E4 as follows to select the PROM/ROM
size (see Table 2-1):

Table 2-1.

RM 65 SBC Module PROM/ROM Selection Jumpers

Edge Connector Euroconnector
Version Version
Section PROM/ROM
(Socket) (see note 1) Jumper |Position|{Jumper|Position
2K E2A OFF E2A ON
(see note 2) E2B ON . E2B OFF
Section @
(28) 4K E2A OFF E2A ON
E2B ON E2B OFF
8K E2A ON E2A OFF
E2B OFF E2B ON
2K E3 B E3 B
(see note 3) E4 A or B E4 A or B
Section 1
(210) 4K E3 B E3 B
E4 A E4 A
8K E3 A E3 A
E4 A E4 A
NOTES
1. Typical PROM/ROM devices:
2K = TMS2516/i2716 PROM, R2316 ROM, or equivalent.
4K = TMS2532 PROM, R2332 ROM, or equivalent.
8K = MCM68764 PROM, R2364A ROM, or equivalent.
2. Enabled in lower 2K-byte address space ($X000-$X7FF)
only (pin 18 = all = @).
3. Enabled in either half of the 4K-byte address space

depending upon the position of jumper E4:

E4 = A:

E4 = B:

Enabled in lower half of the 4K-byte address
space ($X000-$X7FF) only (pin 18 = All = @).

The 2K-byte PROM/ROM is mapped into both the
lower ($X@00-$X7FF) and the upper ($X800-
$XFFF) halves of the 4K-byte address space.
This allows the RES, IRQ and NMI vectors
located at $X7FA-$X7FF in a 2K-byte PROM to
be mapped at $XFFA-$XFFF on the SBC module.

2.2

Socket Z8 (8K-byte Run-Time BASIC ROM):

E2A
E2A

ON, E2B
OFF, E2A

OFF (Edge Connector Version)
ON (Euroconnector Version)

Socket Z1@ (4K-byte application PROM):

E3
E4

B
A

Install jumper ES to select internal clock reference.

Remove jumper E7 to force the DMA terminate (BDMT/) signal
to a logic 1 (inactive),

Set switches S2-1 through S$2-3 to OPEN to assign on-board
RAM, I/0 and PROM/ROM to both Bank @ and 1. (Switches S2-4
through S2-6 may be in either position.)

INSTALLATION IN AN RM 65 PROM/ROM MODULE

The following procedure describes the installation of the RM

65 Run-Time BASIC ROM and an 8K-byte application program
PROM/ROM in an RM 65 16K PROM/ROM module (RM65-3216). Refer
to Section 2 of the RM 65 PROM/ROM Module User's Manual for
general installation instructions.

a.

Install the RM 65 Run~Time BASIC ROM (R2906) in socket Z12.
Install the application program PROM/ROM in socket Z14.

Set switches S1-1 through S1-4 and S2-1 through S2-4 to
assign the base address of each of the 4K-byte address
spaces in socket Z12 for the RM 65 Run-Time BASIC ROM:

(1) Assign $BPOGP to the upper 4K-bytes of socket Z12:

sl-1 CLOSED
S1-2 CLOSED
S1-3 OPEN

Sl-4 CLOSED

(2) Assign $CP00 to the lower 4K-bytes of socket 212:

s2-1 OPEN
§2-2 OPEN
S2-3 CLOSED
S2-4 CLOSED

d. Set switches S3-1 through S3-4 and S4-1 through S4-4 to
assign the base address of the rest of the PROM/ROM module
to address ranges not applicable to the specific
application, i.e., that do not conflict with either the RM
65 Run-Time BASIC or the application program.

2.3 INSTALLATION IN AN AIM 65 MICROCOMPUTER

The RM 65 Run-Time BASIC ROM may not be installed in the AIM
65 Microcomputer since it is an 8K-byte ROM and the AIM 65
Master Module may accommodate only 4K-byte (or less) PROM/ROM
devices.

The application program, however, may be installed in an AIM
65 Master Module if it is programmed in compatible 2K- or
4K-byte PROM/ROMS. In this case, sockets Z25 and Z26 must be
unpopulated (since the run-time BASIC at this $BO@O-S$CFFF
address range will be installed off-board, e.g., in an RM 65
PROM/ROM Module).

If the application PROM/ROM is installed in socket 224 (at
address $DXXX) and the Monitor ROMs are installed, the program
may be started by pressing the N key from the Monitor command
level. The startup routine must begin at $D#@@ in this
configuration. Application interrupt handlers can be linked
to the Monitor IRQ and NMI interrupt linkage.

If the AIM 65 Monitor ROMs are not used, up to 12K-bytes of
application PROM/ROM may be installed in sockets 222, Z23 and
Z24. One application PROM/ROM must be installed in socket Z22
to provide the RES, IRQ and NMI interrupt vectors at
SFFFA-SFFFF.

SECTION 3

OPERATION

The RM 65 Run-Time BASIC can operate in one of two modes,
interactive (sometimes called development) or run-time. In
the interactive mode, all BASIC direct and indirect commands
available in AIM 65 BASIC (except as defined in Appendix B)
may be entered by an operator from a keyboard with BASIC
response directed to a display/printer. 1In the run-time mode,
only BASIC indirect commands may be executed since BASIC is
initialized to run-time operation upon power turn-on or reset.

In either mode of operation, all I/O operations are
application dependent, with I/O processing performed by I/O
handlers, either user-provided as part of an application
driver or located elsewhere. 1In both cases, the I/O handlers
are pointed to by I/0 vectors loaded by a startup routine
within the application driver. The user-provided application
driver, consisting of the startup routine and I/0O handlers
must be resident in memory in order to operate RM 65 Run-Time
BASIC in either mode of operation,

This section describes how to operate the RM 65 Run-Time BASIC
in the interactive mode and how to migrate the application
driver (written in assembly language) and/or the application
program (written in BASIC) to addresses for execution in the
run-time mode in either an RM 65 microcomputer or RM 65 SBC
environment.

The application driver and programs are first hosted on the
AIM 65 Microcomputer in an interactive mode. This allows an
application program, initially developed using the AIM 65
BASIC, to be integrated with the application driver and
executed interactively on the AIM 65 Microcomputer for final
test. Any corrections to the driver or the application
program can easily be made using the AIM 65 Assembler and RM
65 Run-Time BASIC before rehosting them on the RM 65 module.

In fact, after installing RM 65 Run-Time BASIC on the AIM 65
Microcomputer, you may want to develop subsequent application
programs in this configuration due to the flexibility of the
vectored I/0. The I/O can first be vectored to AIM 65 Monitor
I/0 subroutines for development then changed ﬁo point to
run-time drivers to production operation. In addition,
development-oriented peripherals, such as floppy disk drives,
a CRT display and an 8#-column printer can be interfaced to
the AIM 65 Microcomputer using RM 65 FDC (with DOS firmware
installed), CRTC, and MPI (or GPIO) modules installed in the
same card cage as the RM 65 16K PROM/ROM module containing the
run-time BASIC. Use of these peripherals greatly improves
programmer efficiency thus lowering program development costs.

Figures 3-1 and 3-2 shows the general flow of an application
driver and BASIC programs from interactive operation on the
AIM 65 Microcomputer to run-time operation on the RM 65 SBC
module., Figure 3-1 illustrates migration of a 4K application
program to an RM 65 SBC module, while Figure 3-2 shows
migration of a larger program to an RM 65 PROM/ROM module.

The described procedure carries an example program from
development on an AIM 65 Microcomputer to run-time on an RM 65
SBC module. After using this procedure to become familiar
with the methodology, modify the procedure as required for
operation in your development and application environment.

Refer to Section 4 for a detailed discussion of the
application driver requirements.

PREVIOUSLY 1
DEVELOPED APPL Lo
ON AIM 65 PROG
BASIC
Ms
Am 65 wiTH | [assemeLE RELOCATE| |ReLOCATE
RM 85 RELOCATOR| _|DEVELOP/

APPL PROG AND
9 CHECKOUT |- -
MODULE AND APPL PROG OBJECT

EXPANSION | |[DRIVER CODE DRIVER

> DEVELOPMENT

MS=MASS STORAGE

AIM 65 AT=AUDIO TAPE
WITH PROM
PROGRAMMER
MODULE
L 4
PROM
INSTALL INSTALL
RM 65 RUN-TIME APPL DRIVER | | VALIDATE RUN
SBC MODULE ROM IN > prOM IN 1 appLPROG [P N APPLICATION
BASED SBC MODULE SBC MODULE PRODUCTION

Figure 3-1. Typical Development of a 4K-Byte Application Program

3-3

PREVIOUSLY
DEVELOPED APPL &‘J‘;ﬁg
ON AIM €6 PROG o
BASIC
MS NS
AIM 66]
DUMP RELOCATE
NITH assemsLe | | PEVELOP/ |1 op) proG | | anD
Aades oriver | |SHECKoDT | |ossecT | |RELINK
EXPANSION APPL P o BELINK
MS-MASS STORAGE
AT=AUDIO TAPE
AIM 65
WITH PROM
PROGRAMMER
MODULE
P
.
INSTALL INSTALL INSTALL
RUN-TIME APPL PROG APPL DRIVER
AM 85 ROM IN PROM(S) IN “| PROM IN
e opuLEd [secMoouLe| | prow MoDuULE SBC MODULE
BASED T
VALIDATE | _Irun
APPL PROG ["]IN PRODUCTION
J

Figure 3-2.

3-4

Typical Development of a 16K-Byte Application Program

SDEVELOPMENT

} APPLICATION

3.1 DEVELOPMENT ON AN AIM 65 MICROCOMPUTER

This procedure describes the steps to take to develop an
application program on an AIM 65 Microcomputer. The
application I/0 can be easily tested using the AIM 65 1/0
subroutines if the application I/0 is similar. The following
memory map, corresponding to a 4K-byte application program is
used as an example:

Address Contents
$0300 - SO3FF Driver Object Code
$0400 - S$1BFF Application Program and Variables
$1CPP - $1FFF Assembly Symbol Table
$2000 - $2FFF Driver Source Code

It is assumed that additional RAM is available beyond the

4K bytes on-board the AIM 65 Microcomputer for development.
RAM can easily be added in the RM 65 card cage using an RM 65
32K Dynamic RAM module (RM65-3132) or an RM 65 8K Static RAM
module (RM65-31¢8). 1If additional RAM is not available, the
upper limit of the application program and variables cannot
exceed $@FFF. 1In this case, the application driver should be
assembled separately and object code loaded when needed.

a. Install the RM 65 Run-Time BASIC ROM in an RM 65 16K
PROM/ROM module as described in Section 2.2, however, do
not install an application PROM/ROM.

b. 1Install the PROM/ROM module along with any other peripheral
and memory modules in a RM 65 card cage and connect the
card cage to an AIM 65 Microcomputer.

c. On the AIM 65 Master Module, install an Assembler (A65-010)
ROM into socket 224 and remove any PROM/ROM drives
installed in sockets 225 and Z26.

Load the source code for the application driver shown in
the Figure 4-2 assembly listing into the Text Editor, and
return to the Monitor. Locate the Text Buffer from
$2000-$2FFF for this example.

Note that the startup driver will extend from $0300 to the
label BEGIN. The application program will start at BEGIN
while the variables will initially start at BEGIN+2. The
variables must be located above the program during
development (their starting address will increase as the
application program increases in size).

The application driver source code is kept resident in the
Text Buffer throughout this procedure for ease in changing
it during migration to run-time operation. For extended
use in the development mode, the application driver may be
programmed in PROM and installed on the AIM 65 Micro-
computer (e.g., at $DXXX) for immediate operation upon
power turn-on.

Assemble the application driver. Locate the symbol table
at $1COPP-$1FFF for this example.

After verifying the assembled driver is correctly coded,
save the driver source code on mass storage for backup and
future use.

Press the Fl key to enter BASIC and to perform a cold
start, i.e., to clear a previously loaded program.

<[>

Enter/load the application program as required, e.g.:

19 FOR N = 1 TO 1000
114 PRINT "TEST", I
1260 NEXT I

130 GOTO 100

NOTE

The ATAN function is provided in the RM 65
Run-Time BASIC whereas it must be user-
provided when using the AIM 65 BASIC (see
Appendix B). If the application program
was developed on AIM 65 and calls the ATAN
function, remove both the altering of the
ATAN vector and the ATAN machine code sub-
routine from the application program before
running the program on RM 65 Run-Time BASIC.

i. Execute the application program as required, e.g.:

RUN

3.

NOTE

For continuous operation of the application
program in the run-time mode, ensure the
following:

1. The application program is designed to

remain in execution (e.g., in an endless
loop), and there are no END or STOP
statements.

The application program is fully debugged
and there are no external conditions
(e.g., input data type, amount, or value)
that will cause BASIC to detect an error,
stop execution, and attempt to report the
error (see Appendix A in the AIM 65 BASIC
Language Reference Manual).

A $5B code (BREAK command) is not input
from a keyboard while running.

j. Press <ESC> to stop execution, i.e., to cause a BREAK, and
return to the BASIC command level.

k. Press <ESC> to return to the Monitor command level from the
BASIC command level.

1. Press the F2 key to reenter BASIC and to perform a warm
start, i.e., to retain the previously loaded program.

<1>
m. Enter and execute the application program as required.

n. Press <ESC> to return to the Monitor command level from the
BASIC command level.

o. Save the BASIC application program on mass storage for
backup or future use.

3.2 RELOCATING THE APPLICATION DRIVER

After the application program has been validated in the
interactive mode, the application driver and application
program are ready to be relocated to their final run-time
locations. The application driver will usually be relocated
to the lower part of PROM/ROM addresses. This relocation
consists merely of changing the starting address of the object
code, for example from $308 to $F@0G, then reassembling.
Other changes to the driver source code must first be made,
however, to add interrupt vectors ($FFFA-$FFFF), and to add
any application dependent I/0 (replacing linkage AIM 65 I1/0,
if used). h

a. Reenter the Text Editor from the AIM 65 Monitor.

b. Change the startup routine origin, add the I/0 vectors, and
replace linkage to AIM 65 I/O subroutines with run-time I1/0
handlers (see Figure 4-3).

c. Return to the Monitor and assemble without generating
object code (LIST-OUT = <RETURN> and OBJ?Y OUT=X).

d. After verifying that the driver is assembled correctly,
reassemble and direct object code to audio tape.

e. Save the run-time application driver source code on mass

storage for backup or future use.
3.3 RELOCATING THE APPLICATION PROGRAM

In many cases the application program must be relocated from
locations used during development in interactive mode to
locations used for run-time operation. For example, a program
residing at $4006-$12F9 during development can be moved to
$F100-$FFF9 for PROM/ROM installation (after merging with the
application driver and interrupt vectors ($FP@0-$F@FF and
$FFFA-SFFFF) .

For larger programs, (e.g., l6K-bytes) it may be desired to
map the application at the same addresses for development (in
RAM) as in run-time (in PROM/ROM). This simplifies the
migration to PROM/ROM since the application program only has
to be programmed into PROM/ROM without relocation. 1In this
case, only the application driver need be relocated, usually
to the $FXXX area, since interrupt vectors must be mapped at
$FFFA-SFFFF. Note that this mapping may be either separate or
redundant, whichever best satisfies the application
requirements.

In this example, the application program is relocated to $DXXX
so the resultant PROM/ROM can be installed on-board an AIM 65

3-9

microcomputer (in socket Z24) or on an RM 65 SBC module (in
socket Z8 with the base address header wired to redundantly
map the socket to $DXXX and $FXXX).

a. If the Relocator object code is not available on mass
storage, assemble the program (see the assembly listing in
Figure 3-3) and direct the object code to mass storage.
Note that the object code cannot be directed to memory
during assembly since the assembler uses zero page (where
the Relocator object code is also located).

b. Load the Relocator object code.

c. Enter the old and new starting addresses of the program,
i.e., $0309 and $D@PP, respectively, in this example:

<M>@P84 XX XX XX XX
</>0004 00 03 00 DO

d. Execute the Relocator program,

<*>=p006C
<G>/.

The program returns to the Monitor command level upon
completion.

NOTE

The application program cannot be executed
after the statement addresses have been
changed by the Relocator until the applica-
tion program is installed at the new
addresses, e.g., $D@@O-SDFFF.

PRAGE 0001

ACDR OBJECT

208C
©B6E
2010
0011
eo12
0014
8016
0017
8913

2918
oo1D
Q01F
eozi
023
eezs

eez7
0029
oaze

0020
Q02E
0020
8031
eaz3
8035
0az7
2938
083A

@azC
893D
QazF
8040
Qa42
8045

BASIC RELOCATOR FOR AIM S5 AND RM &5 R/T BRASIC

SOURCE

FIRST SET CORRECT VALUES INTO PGMST AND OLDADR .

5 THEN EXECUTE THE PROGRAM STARTING AT RELOC

*=4
COMIN=$E1A1

FGMST #=k+2

OLDADR *=%+
NEXT Rz
OFFSET *=%+,

H

2
2
2

+AIM 85 MONITOR RETURN
s NEW FROGRAM START ADDRESS

5 0LD PGMST FROM DEVELOPMEN

i RELOCATOR PROGRAM BEGINS HERE ..

5 FIRST CALCULATE THE OFFSET TO NEW LOCATION
+ NEW PROGRAM START ADDR

FOl

s NEXT LINE ADDR LOW

R EACH STATEMENT

s MNEAXT LINE ADDR HIGH

i1

s L

iR

F ZEROS ==>

INE MUMBER LOW

==

==0

ETURN TO MONITOR

04 RELOC LDA PGMST
8s LDX PGMST+1
cLD
SEC
25 SBC OLDRDR
BA STA OFFSET
TXA
=rg SBC OLDADR+1
aB STR OFFSET+1
5 SET UP POINTERS FOR FIRSET STATEMENT
[=1%] LDX #0
o1 LDY #1
06 LDA OLDADR
ag STAH NEKT
87 LDA OLDADR+1
@9 STA NEXT+1
; EXECUTE THIS CODE ONCE
o8 DONECK. LDA (NEXT, X>
03 ORA (NEXT>, Y
i& BEGQ DONE
;5 RELOCATE THE CURRENT LINE
RELCLN CLC
83 LDA (NEXT, X3
PHA
B8R ADC OFFSET
og STA (NEXKT, X>
28 LDA (NEXT>. V¥
PHA
2B ADC OFFSET+1
08 STA (NEXTO>. Y
5 POINT TO THE NEXT PROGRAM LINE
PLA
[z] STR NEAT+1
FLA
03 5TA MEXT
27 oo JMF DONECK
A1 E1 DONE JMP COMIN
END

ERRORS=0060

Figure 3-3. Relocator Assembly Listing

3-11

==

T MODE

3.4 PREPARING THE PROM/ROM

fhe AIM 65 PROM PROGRAMMER & CO-ED module (A65-9066) may be used
to program PROMs up to 4K-byte in size, for installation

RM 65 SBC and PROM/ROM modules and in the AIM 65 Microcomputer.
Refer to the AIM 65 PROM Programmer & CO-ED User's Manual for
the detailed operating procedure.

Install the PROM Programmer & CO-ED module on an AIM 65
Microcomputer.

3.4.1 Merged Application Driver and Program

Use this procedure to program a merged application driver and
application program; for example, to prepare a single PROM at
$FXXX for installation of a 4-byte application program in an RM
65 SBC module.

a. Zero memory in the PROM address area.

b. Load the application program object code from audio
cassette,

c. Load the application driver object code from audio
cassette.

d. Program the PROM.

3.4.2 Separate Application Driver and Program

Use this procedure to program separate PROMs for the
applicatioﬁ driver and program; for example, to prepare a
16K-byte application program in four 4K~byte PROMs for
installation in an RM 65 16K PROM/ROM module and an
application in a 2K-byte PROM for installation in the RM 65
SBC module.

a. Zero memory in the PROM area.

b. Load the application driver or program object code.

c. Program the PROM.

SECTION 4

APPLICATION DRIVER REQUIREMENTS AND EXAMPLES

4.1 APPLICATION DRIVER REQUIREMENTS

This section defines the requirements for the application

driver for both interactive and run-time operation.

The application driver consists of three major parts:

Startup Routine
I1/0 Vectors and Handlers
Interrupt Vectors and Handlers

A flowchart of the application driver is shown in Figure 4-1.
An annotated assembly listing of a model driver is shown in
Figure 4-2. This model driver should be adapted and expanded
as required for your specific application requirements. Two
example drivers are described in Section 4.2.

4.1.1 Startup Routine

The startup routine must initialize the run-time BASIC, load
the program, variable and I/O0 handler vectors, and jump to the
BASIC entry point. This driver is usually entered by keyboard
command through the Monitor in the interactive mode, or vec-
tored to from the RES vector in the run-time mode. Some of the
steps may be reordered without affecting operation. Thorough
testing should be performed in the interactive mode if any
changes are made, however, including the incorporation of
application I/0 handlers.

Be sure that the variables are located above the program during
interactive operation (they can be located anywhere-in RAM
later for run-time operation).

STARTUP ROUTINE

RESET
VECTOR

CALL BASIC
INIT SUBROUTINE

INITIALIZE I1/0
VECTOR TABLE

¥

INITIALIZE
MEMORY
POINTERS

CALL INIT
RAM SUBROUTINE

RUN-TIME

DEVELOPMENT

ZERO START OF
PROGRAM RAM

\ 4
JUMP TO
BASIC ENTRY

Figure 4-1. Application Driver Flowchart

4-2

1/0 VECTORS AND HANDLING

APPLICATIONPROGRAMY _ __ _ _ ——»] o VECTORS
1/0 STATEMENTS TABLE

g

10O HANDLER feef 1/O HANDLER

5 9
mg:%gumoe _—__(il) (ki)

INTERRUPT VECTORS AND HANDLING

RES,IRGANDNMI \ o WTERAUPT
INTERRUPTS VECTORS
] 1
smm» IRQ INTERRUPT NMI INTERRUPT
ROUTINE HANDLER umm.sn

- =) ()

Figure 4-1. Application Driver Flowchart (Cont'd)

4-3

FAGE oasl

ACCR OBJECT

Foae

FEEs
Faps
Faas
FBOE
FEEC

FGEE
Faio

Falz

28

Az
BL
20

H

1e

R

SOURCE

THIS IS5 A MODEL
. RST BASIC
IMIT=$CF11
WARM=$E622
CLERRC=$B3A4
RUNC=4¢ETA4
HEWSTT=$B5DB

:

ENTRY

+ RJT BRSIC
YECTBL=$zZ8&
OUTFLG=¢$24%
CLRLIMN=$242
SAYFLG=$2DF

YARIA

PGMST I35 THE RD
CDEVELOFMENT H0

THE FINAL FROGR
ADDRESS USING
FGMST=$Z61

i WARST I5 THE RDDRESS

s DENVELOFING FROG

s IM FINAL SYSTEM
VARST=$ZAZ
i TOPMEM IS THE T

;5 COEVYELOPMENT MO
TOPHMEM=£30&
START=3FQaa

+ BUN TIME BRSIC
» ON IMITIAL ENTE

B ¢oooLh IS THE
s UM RE-EMTRY TO
F < WARM IS IN T
«=START
11 CF oLk JoROINIT
COMMLORD THE I
iv LD #4517
L F® SETUR LDA TRELE.
ag az TR WECTEL. »
DER
F7 BEFL SETUF
s CLRELIM CHRARACTE
@z LDA #2
42 az STR CLRELIM

;o SET FOINTER TO

ai DA
(o LOvy
22 ZTA

STv

Figure 4-2.

55 RUN-TIME BRSIC

CRUN-TIME MODEX

THE BRSIC

DRIVERS - STAMDARD MODEL

EST BASIC DRIVER

FOINTS
s INITIALIZE BRSIC FPARAMETERS
s WARM ENTRY FOINT FOR RAT BASZIC
S INITIALIZE WARIABLE SPACE
s SET EXECUTION FOR FIRST LINE
SINITIALIZE VYARIABLE SPACE

ELES
SWECTOR TRELE OF 1.0 DRIVERS
S AOD FOR RAT BRSIC
S ISSUED TO CLEAR EACH LIME
; TEMFORARY FRIFLG STORAGE

DRESS WHERE THE FROGRAM IS DEVELOFED
DE» OF WHERE THE FROGRAM IS EXECUTED
IF THEZE RADDRESZES ARE DIFFERENT
AM MUST BE RELOCATED TGO THE RUM-TIME
RELOCATER PROGRAM

OF BAM IMMEDIATELY ABUVE THE
RAM CDEVELOFMENT MODE) OR RAM AVAILAELE
CRUM-TIME MODED |

QOF OF
DE AND

YARIABLE RAM
RUN-TIME MODED
. TOP OF USER RAM
s ADDRESS OF THE USER FPROM

DRIVER PROGRAM
¥ OTO RAT BRSIC . USE COLD
LZER DRIVER PROGRAM >

RAT BARASIC . USE BARM
HE RA/T BRZIC ROM >

SADDRESS OF THE 'Y3ER FROM

5 COLD RESET INTO RAT BRSIC
0 WECTORS FROM TRELE INTO RAM

;18 WECTORS
OIS IS3SUED AT THE ENMD OF EVERY LINE

UZER PROGRAF FROM

Model Application Driver Assembly Listing

4-4

PRIGE

ACCR

FO1E
Fail
FB1iF
Fo21

Fazz
Fa23
Fezv
Fazs

FazE

FozE
Faza
FOz3
Fass
Fazsa

Fazc
F@ZE
FR40
Faaz
Fiid4
Fade
FB43
F@af
Fa4c
FR4E
FB58
Fasz

=15 =4

QBJECT

As
21%]
=

34

A2
Ra

a5

34 Z

Pl

2]
30
ar
3D
4C

54
=
-]
=]
=1
SE
2]
(e
&4
£€
&3
=]

Figure 4-2.

oz
B3
24
25

aa

A

ae
2]
a1
Bz
9%

=t

Fa
Fa
Fa
Fa
Fa
Fe
Fa
Féa
Fa

Fa
Fa

RM 85 RUN-TIME BRZIC DRIVERS - STANDARD NdDEL

ES

B3
ez
83
=15

W oW MeLNE M MM e W

S o % W

P

SOURCE

SET FOINTER TO SCRATCH PRD RAM
CURING FROGRAM DEVELOFMENT, THIS ARERA
MUST BE RABOWE THE PROGRAM ARER IM RAM.
LDA #<VARST
LDY #VARST
STA $24
STY $25
SET POINTER TO TOP OF MEMORY
DURING FPROGRAM DEVELOFMENT, THIS LIMIT MUST
BE ABOVE THE FROGRAM AND YARIABLE SPACE
LDA #<TOFMEM
LDY #2TOPMEM
STA $2E
STY $2F
CHAMGE LENGTH OF LINE CLINWID» IF REQUIRED
¢ AFFECTS LIST AND FRINT WITH .,
DEFALLT WIDTH IS 38 CHARACTERS ($358)

CHANGE FOSITION OF LAST FRINT FIELD (NCMWID: IF REQUIRED

¢ AFFECTS PRINT WITH . BUT LINWID OVERRIDES »
DEFAULT FOSITION IS THE Z@TH CHRARACTER J($1E>

IMNITIALIZE RAM FOINTERS 7O A CLERRED STRTE
JEZR CLERARC

FOR DEYELOPMEMT MODE . USE THIS CODE TO START
AT THE BOTTOM OF AYAILAELE RAM. THIS IS NOT THE
ADDRESS WHERE THE FIMAL PROGRAM WILL RESIDE

LDA %0

TR PGMST-1

STH FPGHMST

STA PGMST+1

JHF WARR s COME UF IN EBRASIC
FOR EUN-TIME MODE . USE THISZ CODE TO COME UF RUMMING
JER RUNC SETUF E-/T BRASIC FOR RUN
JHFP NEWSTT +AND EXECUTE RMHAY . .
H=ht g » ADJUST THE FROGAM COUNTER

I/0 YECTOR TRELE IS5 SET UP MWITH USER I~0 DRIVERZ

JOPEN INPUT & SET IM
; OFEN OUTPUT & SET QUT
JOUTPUT ©R TO TERMINAL

ABLE . WOR WHERIM
. WOR WHERCOT
. WOR SCRLOM

. WOR CRLF s OUTFUT A CR TO THE AOC
L HOR QUTCLD S CLOSE THE OUTPUT FILE
CWOR TNCLC s CLOSE THE INFUT FILE

- WOR INALL s INPUT THROUGH THE RID
- WOR QUTALL S OUTRUT TO THE AOD

- MR ANYEEY SRETURM Z=1 IF NO KEY

. WOR RESPFTR
. WOR FORCER
. WOR CHECTC

;s RESTORE FRINTER STRME
SFORCE FRINT & SAVE STRTUS
s RETURN KEY DOMN IN A

Model Application Driver Assembly Listing (Cont'd)

4-5

_—

PRGE 9983 RM 55 RUN-TIME BRSIC DRIVERS - STANDARD MODEL

ACCR OBJECT SOURCE
+ THESE I./0 ROUTIMES MWILL BE DEPENDENT ON THE SYSTEM
5 TYPICALLY EACH WOFP WOULD BE REFLACED
i WITH APPLICABLE CODE OR ELIMINRTED

FaS4 ER WHERIN NOP

Fa55 6&v RTS
FeSe EA WHEROT NOF
Fas? &o RTZ
Fass ER SCRLOW NOP
Fa353 6B RTS
FBSA EA CRLF NOF
FOSE S8 RTZ
;
FEsc EA QUTCLO NOP
Fa50 &9 RTS
FaSE ERA INCLO NOPR
FO5SF &8 RTS
Faes ER INALL NOF
Fasl oa RTS
Feez ER QUTALL NOP
FBs3 6a RTS
Feed ER ANYKEY HOF
FBsS 58 RTS
Fees EA RESFTR NOF
FREY &8 RTS
i
Foes EA FORCEF NOF
Fasd 68 RTS
FeER ERA CHECTC NOF
FREE 29 RT3

THE ACTUARL BRS5IC PROGRAM MILL BEGIM HERE ..
5 THIS IS THE RUN TIME ADDRESS BEGIN).

Fasl ag . BYT &
Faet aa oa EBEGIN . DEY @
. EML

ERRORS=0Q38

Figure 4-2. Model Application Driver Assembly Listing (Cont'd)

4-6

4.1.2 1/0 Vectors and Handlers

Since all I/0 on the RM 65 Run-Time BASIC is vectored, both
vectors and I/0 handlers must be included in the application
driver. Table 4-1 summarizes the vectors and identifies
equivalent AIM 65 subroutines corresponding to the vectors.
Table 4-2 describes the detailed 1/0 subroutine requirements.

Dummy I/0 subroutines are shown in the model driver in Figure
4-2. If no I/0 is required in the application program, these
dummy drivers are not needed since the BASIC initialization
subroutine (INIT) loads the I/0 vectors to point to RTS
instructions internal to RM 65 Run-Time BASIC. If application
dependent I/0 is needed, replace the NOP instructions with the
required instructions.

4.1.3 Interrupt Vectors and Handlers

During interactive operation, the R6502 CPU hardware interrupt
vectors at $FFFA-SFFFF are included in the AIM 65 Monitor.
User alterable vectors (IRQV4 at $A400, NMIV2 at $A402, and
IRQV2 at $A404) provide linkage to the application program
interrupt handler during development. Refer to Section 7.8 in
the AIM 65 User's Guide for additional information.

For run-time operation, these three vectors must be included
in the run-time ROM mapped into $FXXX address range. The RES
vector should point to the first address of the startup
routine while the IRQ and NMI vectors should point to their
respective handlers. Interrupt handler linkage is included in
the model driver as a guideline.

Table 4-1.

I1/0 Vector Summary

Vector Vector AIM 65 AIM 65
Location Name Used by Purpose Subroutine Addr
$200-S201 |WHEREI | LOAD Determine AID. WHEREI SE848
$202-$203 | WHEREO | SAVE Determine AOD. WHEREO SE871

(See Note 1)
$204-$205| SCRLOW | Command Output CR & LF to |CRCK SEA24
Processing |display/printer.
$206-$207|CRLF System Output a CR to CRLF SE9F(
Output the AOD.
$208-$209 |OUTCLO|PRINT Close the AOD. DU11 SES50A
PRINT!
$20A-$20B|INCLO |INPUT Close to AID. DU13 $SE520
INPUT!
$20C-$20D | INALL |INPUT Input a character.|INALL $F993
INPUT! (See Note 1)
READ
$20E-$20F |OUTALL | PRINT Output a charac- OUTALL SE9BC
PRINT! ter to the AOD. (See Note 1)
$210-$211 |ANYKEY|GET Check keyboard ROONEK SECEF
for key down. (See Note 1)
$212-$213 |CLOPTR)] INPUT! Close printer (See Note 2) -
PRINT! input.
$214-$215|OPNPTR| INPUT! Open printer (See Note 2) -
PRINT! output.
$216-$217 | CHKCTC| Command Input a character |ROONEK SECEF
input from the keyboard.| (See Note 1)
NOTES
1. Call from user-provided subroutine which performs other
processing (see Figure 4-2).
2. Call from user-provided subroutine (see Figure 4-2).

Table 4-2. 1I/0 Vector Description

Subroutine

Description

WHEREI

WHEREI is called by the LOAD function to
determine the active input device (AID). WHEREI
must return a character in the A register which
identifies the AID. The subroutine called
through the INALL vector will then input a
character from the AID.

No register values must be saved.

In an AIM 65 system, this vector should point to
the AIM 65 Monitor WHEREI subroutine.

WHEREO

WHEREO is called by the SAVE function to
determine the active output device (AOD).

WHEREO must return a character in the A register
which identifies the AOD. The subroutine called
through the OUTALL vector will then output a
characters to the AOD.

No register values must be saved.

In an AIM 65 system, this vector should point to
the AIM 65 Monitor WHEREO subroutine.

SCRLOW

SCRLOW is called to output a CR ($0D) to the
system terminal. It is called only if the value
of the OUTFLAG ($0243) is zero; otherwise, all
CR characters are output through vector CRLF.

The X and Y register values must be saved and

the A register must not return a value of $FF.

In an AIM 65 system, this vector should point to
the AIM 65 Monitor CRCK subroutine.

Table 4-2. 1I1/0 Vector Description (Continued)

Subroutine

Description

CRLF

CRLF is called to output a CR ($0D) to the AOD
used by OUTALL.

The X and Y register values must be saved and

the A register must not return a value of SFF.

In an AIM 65 system, this vector should point to
the AIM 65 Monitor CRLF subroutine.

OUTCLO

OUTCLO is called to close the current AOD used
by OUTALL and to restore the system terminal as
the AOD.

No register values need to be saved.

In an AIM 65 system, this vector should point to
the DUll subroutine.

INCLO

INCLO is called to close the current AOD used

by OUTALL and to restore the system terminal as
the AID.

No register values must be saved.

In an AIM 65 system, this vector should point to
the DUl3 subroutine.

INALL

INALL is called by the input command processing
and the INPUT and READ functions. INALL must
input a character from the AID. It does not
have to echo characters nor process DELETE (S7F)
characters. The Y register is the index into
the input buffer.

The ASCII value of the input characters must be
returned in the A register. The X register
value must be saved. The Y register must
contain the character count minus one.

In an AIM 65 system, this vector should point to
the AIM 65 Monitor INALL subroutine.

Table 4-2. 1/0 Vector Description (Continued)

Subroutine

Description

OUTALL

OUTALL is called to output a character to the
AOD. Run-Time BASIC also outputs a Clear Screen
to Right character through OUTALL. The value

of this character (normally $02) must be stored
in variable CLRLIN ($242). CLRLIN is initially
set to SFF.

The ASCII value of the output character must be
in the A register. BAll registers must be saved.

In an AIM 65 system this vector should point to
the AIM 65 Monitor OUTALL subroutine.

ANYKEY

ANYKEY is called by the GET function to sample
the system terminal keyboard. The CPU zero flag
(Z) is set if a key is not depressed, otherwise
the zero flag is reset.

No register values must be saved.

In an AIM 65 system, this vector should point to
a user provided subroutine which sets the ROLLFL
flag ($SA47F) and calls ROONEK.

CLOPTR

CLOPTR is called by the PRINT! and INPUT!
functions. CLOPTR must close the printer
output and restore the printer status in PRIFLG
($90247) to the value it was before the OPNPTR
subroutine was called. The printer status can
be saved in SAVFLG (S@2DF).

The X and Y register values must be saved.
In the AIM 65 system,'the saved printer status
must be stored in PRIFLG (SA411)

Table 4-2. 1I/0 Vector Description (Continued)

Subroutine

Description

OPNPTR

OPNPTR is called only by the PRINT! and INPUT!
functions. OPNPTR must save the current printer
status in PRIFLG (at $0247) into a temporary
location, e.g., SAVFLG at $02DF, and open the
printer output by storing $8¢ into PRIFLG. Do
not save the printer status on the stack.

The X and Y register values must be saved.

In the AIM 65 system, the printer status in
PRIFLG (at $A4l1ll) must be saved and $80 stored
in PRIFLG (at S$A41l).

CHKCTC

CHKCTC is called by the command input function.

CHKCTC must check to see if a character is

available from the system terminal keyboard
and, if it is, load the ASCII value for the key

into the A register. The character code will
then be checked for a break command, in this

case, $1B (ESC).
The X and Y register values need not be saved.

In the AIM 65 system, the ROONEK subroutine
should be called.

4.2 EXAMPLE APPLICATION DRIVERS

4.2.1 Interactive Operation On An AIM 65 Microcomputer

Figure 4-3 shows a typical AIM 65 Microcomputer-based
development configuration. An example application driver to

support this system is shown in Figure 4-4.

DEVELOPMENT APPLICATION

A —

l v N
APPLICATION APPLICATION
EQUIP. EQUIP.
INTERFACE APPLICATION INTERFACE
CONNECTOR
AIM 65 I
Il prinTER
| AlM 65 I
| Ames MASTER | |
DISPLAY MODULE | |
1-4 - I
PRINTER| |Disk piseLav | AIM 65 |
RIVES
D KEYBOARD EXPARSION
l l I e |3 CONNECTOR
RM 66
RM 65 AM 65 AM 66 RM 65
AM65 | [RM65 | RMES | 1o, camor| |aDaPTeR/ | |16k PrOM/ | {ax RAMOR] | MP!.
WP FDC RTC ACIA, OR
mopuLe| [mopuLe| ImopuLe| |32K RAM | |BUFFER ROM K RAM IEEE488
mobuLe | |mooure | Jmooure | |moouLe
MODULE
l 1 1 | 1 | 1 |
N J \ vl
OPTIONAL OPTIONAL
DEVELOPMENT APPLICATION
EXPANSION EXPANSION

Figure 4-3. Typical AIM 65 Development Configuration

4-14

PAGE 0001 RM &5 RUN TIME BRSIC DRIVERS - DEVELOPMENT MODE

ADDR OBJECT

9168C 4C 90 B3
@16F 4C S9 EBG

SOURCE

i THIS EXAMPLE IS TO DEVELOP 5HORT BRSIC PROGRAMS (LESS
5 THAN 4K BYTE> ON AIM €5 WITHOUT ACDITIONAL RAM
H

AIM 65 MONITOR I/0 ROUTINES EQUATES
WHEREI=$E84&
WHEREO=$E871
CRCK=$ERZ4
CRLF=$E3FQ
DU11=$ECBA
DUL3=$ES20
ROONEK=$ECEF
GETKY=$EC42
INALL=$ESSZ
OQUTALL=$E3BC
FELS=$EVDC
CURERD=3$FE3Z
i
5 AIM €5 VARIABLES USED EBY THE 10 ROUTINES
OUTDEV=3$R41Z
INFLG=¢R412
PRIFLG=$R411
ROLLFL=%$R47F

i RAT BASIC ENTRY FOINTS

INIT=$CF11 s INITIALIZE BRSIC PARAMETERS
WARM=$EGSS s WARM ENTRY FOINT FOR RAT BRSIC
CLERRC=$B5A4 S INITIALIZE VYARIABLE SPARCE

5 RST BRSIC YARIRBLES

YECTEL=$%200 ; YECTOR TRBLE- OF I/0 DRIVERS
DUTFLG=$24Z SROD FOR RAT BRSIC

CLRLIN=$242 s ISSUED TO CLERR ERACH LINE
SAVFLG=$2DF + TEMPORARY PRIFLSG STORAGE

5 PROGRAM EQUATES FOR DEVELOPIMG THE PROGRAM
FGMET=BEGIN i USER FROGRAM START ADDRESS
YARST=BEGIN+2 +FIRST BYTE OF SCRATCH PRD RAM
TOPMEM=$1006 ; TOF OF USER RAM

START=$3200 #ADDRESS TO START FROM

;
i SET UP MONITOR LINKAGE TO EMTER R/T BRSIC FROM KEYBOARD
5 <F1> = COLD ENTRY
i <F2%> = WARM ENTRY
#=$10C
JMP COLD
JMF WARM

Figure 4-4. Example AIM 65 Interactive Driver

4-15

PRGE

ROCR

azoa

@zas

305
X
2308
@zac

@azeE
9318

831z
@azi1s
8317
@z1s

@Z1E
@310
@ziF

321

9323
azzs
8327
azes

0002

RM &5 RUN TIME BASIC DRIVERS - DEVELOPMENT MODE

OBJECT

Az
BD
oo
CR

A
f=1v]

A2
AQ
33
G4

AS
RS
a5

34

A2
A
35

g4 2

A3
20

11

17
3C
ea
F7
az
42
B4
@z

22

EBES

83

a0
4C

4€
54
24
Fa

=]

s z@
;64

SE

1

a3
E@

i
i
i
i
i
i

coLp JSR INIT

SOURCE

ON IMITIAL ENTRY TO RST BRSIC . USE COLD
¢ COLD IS THE USER DRIVER FROGRAM O

OM RE-EMTRY TO RA/T BRSIC . WUSE MWARM
< WARM 1S IN THE RAT BRASIC ROM O

*=3TART i ADDRESS OF THE PROM
5 COLD RESET INTO RA/T EBRZIC
DOWHLOAD THE I/0 WECTORS FROM TRABLE INTO RAM

LDx #$17 1z WECTORS

SETUP LDA TRBLE. X

;

THELE . WOR WHEREI

STA VYECTEL, ¥
DEX
EFL SETUF
CLRLIN CHARACTER I3 IS3UED AT THE ENRD OF EVERY LIHE
LDA #2
STA CLRLIN
SET FOINTER TO UZER FROGRAM FROM
LDA #{PGMST
LOY #ZFGMST
STR $22
STY %23
SET POINTER TO SCRATCH PRAD RAM
LOA #IVARST
LDY #ZVARST
STA %24
STY $25
SET FOINTER TO TOF OF MEMORY.
LDA #ITOPMEM
LODY #IZ:TOFMEM
STR $2E
STY $2F
INITIALIZE RAM FOINTERS TO A CLEARED STHTE
JER CLERRC
CLEAR FPROGRAM RRER
LA #a
STR PGMST-1
STA PGMST
STR POMST+1
JMF WARM ; COME UF IM BRSIC

EAT BASIC IA0 TAEBLE STRUCTURE AMD 1.0 ROUTINES

;s WHERIN ~ COFEN INFUT & ZET IN

- WOR WHROUT SHWHEROT - DPEW QUTFUT & SET OUT
. WOR CRCE ; SCRLOW - QUTPUT CR TO TERMIMAL
. WOR CRLF JCRLF - OQUTFPUT A CR TO THE ROD
- WOR QUTCLS ;OUTCLO - CLOSE THE QUTRUT FIN E
S HOR DULZE SIMCLD - CLOSE THE IMFUT FILE

- WOR THU INALL - IMFUT THROUGH THE AID
. WOR QuTu SOUTALL - DUTFUT TO THE AQD

. WOR ROOMU i ANYKEY — RETURM Z=1 IF NO KEY
CWOR CLOFTR +RESFTR - RESTORE FRINTER STATE
. WMOR OFMFTR ; FORCEF — FORCE FRINT & SAVE STATUS
L MWOR CHECTC SCHECTC — RETURM EEY DOWM IMN A

Figure 4-4. Example AIM 65 Interactive Driver (Cont'd)

4-16

FPRGE

RDDR

9354
@z57
B35A
azoc
B35E
azen
363

D364
azer
B389
azeb

BzeE

371
azIv4
B37e
@zve
Qaz7o
azve
837c

B37E
azea
8332

9335
azee

azee

38E
@zs1
8333

B335
@z58
azse

B353c
azoF
B3IAL

BDEAS
azhe
B3R
B3IAC
B3AE
=)=

BIBZ

azez
\zZE4

apex

OBJECT

28
Al
c3
oa
A3
=1
58

AD
ce
Fa3
4C

2a
29
ce
[=1]
28
18
(=]
18
ca
Fe
402

28
4C

Al

A9
D3

AD
&b
56
28

4

1
1z
20
az
B0
43

12
at
25
a3

(o]

11 A

DF
ca
B3

DF
11

EF
cz

FF

EF
FF
TF

=
=

E3
A4

EV
FE

az
A

EC

EC

A
EC

A4

SOURCE

RM €5 RUN TIME BASIC DRIVERS - DEVELOPMENT MODE

; I/0 ROUTINES MOT COMPATIBLE WITH AIM 85 MOMITOR

WHROUT

5TOROB
STOROT
DORTS

B
INU

DEL
DOTERM

.
QUTH

s

QUTCLS

CFMFTR:

CLOPTR
STRFTR

CHECTC

ROOML

BEGINM

Figure 4-4.

J5R
LDA
CHP
ENE
LDA
STA
RT3

LDRA
CHP
BE®
JuF

SR
J5R
CHP
BNE
DEY
BFL
INY
BFL

CHF
BEG
JIMP

JSR
JHF

LDA
STA
LDA
BMHE

LDR
=TA
RTS

J5R
EEQ
JMP

LDA
=TAH
J5R
LCA
STH
TR
RTS

WHERED
QUTDEY
#2080
STOROT
#9
QUTFLG

INFLG
#£ab
DOTERM
INALL

FSLS
CURERD
#E7F
DORTS

DEL
COTERM

#2
DORTS
QUTALL

DUl
STORDE

FRIFLG
SAVFLG
#4580

STRFTR

SAVFLG
FRIFLG

RODNEK
LORTS
GETKY

#5FF
ROLLFL
ROONEE,
#EFF
ROLLFL

CBYT &

. DY

[}

. END

s DUTPUT DEVICE?

sDEVICE @3 TO SUPPRESS EOF

+ TERMINAL MUST ALSO ECHO

» BACK. UP DISPLAY

i DELETE

SWES ==3

» BACKUF THE CISFLAY
+ ALWAYS ==

+CLEAR LINE CHARACTER?
i YES == IGNCORE IT

5 SET TERMINAL AS OUTRUT ==3
5 SAVE FRINTER STRTUS

» FORCE FRINTER ON
s ALMAYS ==3

s RECOVER PRIMTER STRTUS

KEY DOWNT
s NQ ==D

»MAKE 1T READ KEY AGAIN

SMAKE IT RERAD KEY MNEAXT TIME
; SET OR CLEAR £ FLAG

THE RCTUAL BRZIC FROGRAM WILL BEGIM HERE ..

Example AIM 65 Interactive Driver (Cont'd)

4-17

4.2.2 Run-Time Operation in an RM 65 SBC Module

A typical RM 65 run-time configuration is shown in Figure 4-5.
An example run-time driver is shown in Figure 4-6. This
example system uses a CRT display/keyboard terminal with an
RS-232C serial interface as one application interface and an
8@-column printer with a parallel interface as a second
application connection.

APPLICATION APPLICATION
EQUIP. gQUP.
INTERFACE INTERFACE
AM 66 AM 05
RM 65 e 8K RAM e,
s8C OR 22K 1A, OR
MODULE ok RAM IEEE408
MODULE MODULE
B | mmessus |]
— ~v— J
OPTIONAL
APPLICATION
EXPANSION

Figure 4-5. Typical RM 65 Run-Time Configuration

4-19

FPAGE BBo1 KM 65 RUN-TIME BRASIC DRIVERS - RUM-TIME MODE
ACCR DEJECT SOURCE

¢ THIS EZAMPLE IS TO COME UP RUNMING A BRSIC PROGRAM
» THE FINAL SYSTEM IS AN SBC, ACIA, ANC MPI MODULE
+ THE USER FROGRAM RESIDES IM PROM OM THE 5BC
+ RAT BASIC EMTRY POINTS

aena INIT=$CF11 ; INITIALIZE BASIC PARAMETERS

3368 RUNC=$B533 +SET EXECUTION FOR FIRST LINE
agoa NEWSTT=3$EEDE i SAME AS “NEW” COMMAND
8301 WARM=$B@332 S HARM ENTRY POIMT FOR RA/T BRSIC
Beaa CLEARC=$ETA4 s INITIALIZE YARIABLE SPACE

- RAT BRSIC YARIABLES
Beas YECTEL=$260 S YEETOR TARELE OF 1.0 DRIVERS
B89 DUTFLG=$243 +ADD FOR RAT BRSIC
eeaa CLRELIN=$242 i CHARACTER ISSUED TO CLEAR EACH LINE
=275 0] SAVFLG=$2DF : TEMPDRARY PRIFLG STORRGE

i PROGRAM EQWJATES FOR THE USER PROGRAM
asaa FGMST=BEGIN ; START PROGREAM AFTER 1.0 CRIVER
B339 YARST=$3a1 sFIRST FREE BYTE OF SBC RAM
asee TOFMEM=$£66 s TOR OF SEC RAM
[=ta) START=$00RG i COMPATIBLE MWITH AIM &5

i RE-2Z2 SERIAL CRT TERMIMAL 2O
i ACIA MOCULE REGISTER CEFINITIONS

B30 i BRA3SE ADDRESS IS 7ERA
Teae ACIA
Teal STATUS
vaaz CHMD
a1 CTREL
¢ CEMTRONICE TYFE FPRIMTER IMTERFACE 22
, DATA IS SET UFP OM MFI YIA NO 2 PORT A CBITS B-&3
¢ DATA STROBE MNOT IS OM WIAR MO 2 PORT BOBIT 8>
» DATA ACKNOWLEDGE NOT IS SENMSED OM VIA NO. 2 CAZ
s MPI WIA REGISTER DEFINITIOMS
vaad +=$7118 » BRSE RADDRESS IS 74k
b S 85) FORTE =+l
viil FORTA
T2 CORB
o B B DDRA
FL1C PR
711l IFR :
TLE MFIDR=$7128 sMPI DATA DIRECTION REGISTER
s MRT MODULE PRIMTER COMSTAMTS
TILE IDRRAB=3FF s BOTH DATR PORTS ARE OUTFUT
T11E IMFILRE=4Ca SMIA NG 2 FORTS A AMD B QUTRFUTS
File IFCR=%$3< SPOSITIVE EDRGE OM ACKMOWLEDGE
SET WP CPUL MECTORS TO POINT T COLD
V1i1E *=$LFFA SALSD DOUBLE MARS $FFFA
LFFA oo e WOR COLD » MM
DFFC aa D L WOR COLD + RESET
GFFE @B Do L WOR COLD » IRG

Figure 4-6. Example RM 65 SBC Run-Time Driver

4-20

PRGE Q282 RM &5 RUN-TIME BASIC DRIVERS - RUN-TIME MODE
ACDR OBJECT SOURCE
RUN TIME BRSIC DRIVER PRIGRAM

; O ENTREY TO RAT BRASIC , USE COLD

B

E330 #=5TART +RADDRESS OF THE USER PROM
beaeE 26 11 CF CoLD JER OINIT » COLD RESET INTO RAT BRSIC
DOMWNLORD THE 1.0 YECTORS FROM TABLE INTO RAM
Laaz Az 17 LEo 817 » 12 WECTORS
Deas BL 41 DB SETUP LDRA TABLE. X
coas ob oo ez STA VECTBL, ¥
DRBR CH DEX
beac 18 F7 EPL SETUF
s INITIALIZE THE ACIA MODULE
DEBaE AS aB OFENAC LDA #$6B ; DTR=0N, IRGE=0FF, NO ECHO, NO PARITY
Oele S0 B2 78 STH CHMND
DELs A3 LE LDA #$1E +3-BITS., 1 STOP BIT. 39686 BAUD
Lals 2 STA CTRL
0e1s RAD Q@ 7a LDA ACIA s CLEAR QUT RECEIVER
. CLRELIN CHARACTER IS ISSUED AT THE ENC OF EVERY LINE
DElE A3 B2 LDA #2
belil 20 42 ez STA CLRLIN
+ SET POINTER TO USER PROGRAM PROM
beze AS Fa LDA #{PGMST
DBz AY DB LDY #>PGMST
Dez4 285 22 STA $22
Da2s 84 23 STY %23
s SET POINTER TO SCRATCH PRD RAM
beze AS o1 LDA #<VARST
DB2A AR 83 LDY #>VARST
DezC 85 24 STH #24
DRZE 34 25 STY $25
: SET POINTER TO TOP OF MEMORY
Daze AS @e LA #{TOPMEM
DRzZE AQ o2 LDY #>TOPMEM
Lez4 8T ZE STA $2E
Daze 84 2F STY $2F

i CHANGE LENGTH OF LIME CLINWID> IF REQUIRED

» ¢ AFFECTS LIST AND PRINT WITH ; >

+ DEFAULT WIDTH IS5 38 CHARACTERS ($56>

5 CHANGE FOSITION OF LAST PRINT FIELD C(NCMWID)> IF REQUIRED
i € AFFECTS PRINWT WITH . BUT LINWID OVERRIDES >

» DEFAULT POSITION IS THE 26TH CHARACTER ($1E>

s INITIALIZE RAM POINMTERS TO A CLEARED STATE

obeze z@ As BS JER CLERRC

+ FOR RUN-TIME MODE . USE THIS CODE TO COME UP RUNNING
DezB zé 9T BS JER RUNC 5 SETUP RAT BRASIC FOR RUN
DB3E 4C DB BS JMP NEWSTT +AND EXECUTE AWAY . .

£

; RUN-TIME BRSIC I/0 TRBLE STRUCTURE

DR41 EE DB TRABLE . WOR RETURN s OPEN INPUT & SET IN

CLe4Z EE DO . WOR RETURN ; OFEN QUTPUT & SET OUT
D@45 53 DB . WOR CRLF ;OUTPUT CR TO THE TERM
D47 S9 Da . WOR CRLF ; QUTPUT CR+LF TO THE ACD

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd)

4-21

PRGE ©0as FM &5 RUM-TIME BRASIC DRIVERS - RUN-TIME MODE

ACDR OBJECT SOURCE

Da43 EE Do . HMOR RETURM SCLOSE THE OUTPUT FILE
Céd4E EE D@ L WOR RETURN s CLOSE THE INPUT FILE
DBaDb 8% DY L MIOR THALL s IMPUT THROUGH THE RID
Led4F 2R Da L WOR OUTALL S QUTERUT TO THE ACDD
0AS1L BA DB . WOR ANYEEY SRETURN Z=1 IF HO KEY
pEss Cce oa . WOR RESFTR f TORE FRIMTER ST1:t16E

eSS Lo DY . WMOR FORCER

: CE FRINT & SAVE STRTE
Lasy Ee De L WOR CHECTC i R

URN EEY DOWN IM A

IS0 ROUTIMES MUST BE PROWIDED FOR USER PERIPHERALZ

ISSUE A CR+LF TO THE TERMIMAL CHULLS CRMN BE ADDED:

oass A2 Gl CRLF LDA ##ol

LasSeE o 3H DA JER QUTALL

LaSE A2 GA LA #FaR

Lose 4C 2R DB JMP OUTALL JUSE TSR T SEND MULLSE

.

i FETCH AN IMFUT CHRRACTER FROM THE ACIA

c @ VDo 0@ INALL JSR SIMFUT
5, B2 FF CMFP #ETF
Lees Do BE BHE NOTDEL
DRER 23 DELETE [EY
DOEE 1@ aZ EFL QUTES
Ll TS IHY
LReE 1@ FX EFL INALL i FILWAYS ==l
DarTae /3 93 OUTBS LDA #303
barz 2o A Da JSR OUTALL
pATS 4C 83 Da JHMF IMALL s DOME m==0
paveE oH os HOTDEL CHP #F68
0a7A Fa EE BER DELETE - YES
cavc & RTE » DONE

RETURM A CHARARCTER FROM THE TERMIMAL
LEvh Al G1 FE SINPUT LDR STRTUS
Dase 23 as FND #5832

pagz Fa F3 EEG SINFUT
D@34 AD BB 7B SINFL LDA ACIA
peay 2% FF AMD #E7F + TGNORE MSE
DA3s 69 ETS
5 SEMD AM DUTFUT CHRARACTER TO THE ROD
Legh 4e OUTALL FHA
a3 RD 42 B2 LDA QUTFLG
LegE De ec ENE FPRINTER

SON TERMIMAL. MAIT TILL ACIA 15 READY
cese AL 81 ¥a TERMNL LDA STATUS

DAs3 25 49 HAND #£18 s TRANSMITTER EMPTY?
Cags FO F2 EEC TERMML 5 RO ==l
De37? 63 FLA
pagsz &b ae va ZTH ACIA
Lasg 59 RTZ
ON PRINT., FASS THROUGH DMLY PRINTABLE CHARACTERS
0@9C 2@ AT D@ FRINTR JSR WAIT SWAIT UNTIL PRINTER IS READY
DB3F 3 PLA
cepe b 11 Y1 CHROUT STA FORTA
DOAZ 28 AF DB JSR S5TROBE +S3END DUT THE CHARACTER
DBRE &d ETS

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd)

4-22

PRGE 2984 RM &9 RUN-TIME BRZIC DRIVERS - RUMN-TIME MODE
ACDE QBJECT SOURCE

WRIT UMTIL AN ACENOMWLEDGE I5 RECEIVED FROM THE FPRINTER

DaAT AL 10 V1 WRIT LDA IFR s ACKNOWLEDGE 15 ON CRZ
CBAR 4R LSRR A JMOVE CR2 INTOQ CARRY FLRG
DeRE 4A LSRE A
DBAC S8 F3 BCC WALT s NOT RERDY? ==2
DBRE €6 RTE
+ HANDSHRKE OFF THE CHARACTER
DBAF AS @ STROBE LDH #6 ; FORCE STROBE LOW
DBl 3D 18 71 53TA PORTE
baed4 A9 @1 LOA #1 i FORCE STROBE HIGH
DaBe 30 19 71 STAR FORTE
LeES €@ RT=

; CHECK FOR RANY KEY DEPRESSIOM

DBBEA AD 61 7@ ANYEEY LDA STATUS
DBeD 23 a2 AND #$03 J5ET Z=1 FOR KEY DOMNM
LeEF @ RTE
RESTORE THE TERMINARL A3 DUTPUT

Léce AS oa RESFTR LDA #oa
Dacz 80 43 @2 STA QUTFLG
Lecs ea RTZ

i FORCE THE PRINTER AS OQUTPUT
bece A9 S FORCEF LDA #7F°
DBCE 3D 43 a2 STA DUTFLG

i DM OPEM . SET UP THE WIA AND THE DRTA PORT BUFFERS
DecE RS ab FROFEN LDHR #$80 ; ISSUE A CR AT FIRST
DeCh 3D 11 71 STA PORTA
bape RS Ca LDA #IMPIDR
babz 2D 28 71 TR MPIDR
DRADS A2 FF LDA #IDRAB SPORTS A AND B ARE DUTPUT
ey ab 1= 71 STA DDRA
DDA 20 12 71 STA DDRE
ekl AS a4 LDA #IFCE
DBDF 8D 1C 71 5TA PCR
DEeEZ 2@ AF D6 JSR STROEE
DBES 58 RTS

5 CHECK TO SEE IF ANYTHING HAS BEEN RECEIVED
DBEE 2@ BA D@ CHKCTC JSR ANYKEY

DBES FO B3 BEQ RETURMN S ND KEY ==3
DGEE 28 70 D@ JER SINFUT
DOEE 58 RETURN RTS
i THE ACTUAL BARSIC PROGRAM MWILL BEGIMN HERE ..
DBEF 8@ .EBYT @
DBFG ba Bo BEGIMN .DBY @
ceFz . END

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd)

4-23

APPENDIX A

BASIC VARIABLES

The location of the variables for RM 65 Run-Time BASIC is
different from either the AIM 65 BASIC (A65-0620) or the AIM
65/40 BASIC (A65/40-7020). Most of these variables, however,
with the exception of the I/0 vectors at $20@-$214, are not
normally accessed directly by the RM 65 Run-Time application
program. The variable locations are listed in this appendix,
however, should the application program need to address them
explicitly. Application programs developed on AIM 65 or AIM
65/40 BASIC then rehosted on RM 65 BASIC must have the
locations of any of these variables changed as appropriate.

Tables A-1 and A-2 list the page zero and page two usage,
respectively, by RM 65 BASIC.

Table A-3 lists the page zero usage by AIM 65 BASIC.

Table A-1. RM 65 Run-Time BASIC Page Zero Usage

Addr Addr No.

(Hex) (Dec) |Bytes Purpose

"] @ 1 Search Character

g1 1 1 Scan-Between-Quotes Flag

g2 2 1 Input Buffer Pointer

@3 3 1 Default DIM Flag

94 4 1 TYPE: FF=string, @@=numeric

@5 5 1 TYPE: 80=integer, @@=floating pt.

g6 6 1 Data Scan Flag; List Quote Flag;
Memory Flag

a7 7 Subscript Flag; FNx flag

@8 8 @g=Input; $40=GET; $98=READ

29 Comparison Evaluation Flag

oA 10 Flag; Suppress Output if Minus

9B 11 Position of Terminal Carriage

gc 12 Width (length of line)

@D 13 Position Beyond Output Fields

gE 14 Temp String Desc. Stack Pointer

oF 15 Last Temp String Pointer

10-18 16-24
19-1A 25-26
1B-1C 27-28
1D-21 29-33
22-23 34-35
24-25 36-37
26-27 38-39
28-29 40-41
2A-2B 42-43
2C-2D 44-45
2E-2F 46-47
30-31 48-49
32-33 50-51
34-35 52-53
36-37 54-55
38-39 56-57
3A-3B 58-59
3C-3D 60-61

Stack of Temp String Descriptors
Pointer for Number Transfer
Misc. Number Pointer

Product Staging Area for Multiply
Pointer: Start of BASIC Memory
Pointer: Start of Variables
Painter: Start of Arrays
Pointer: End of Arrays

Pointer: Bottom of Strings
Pointer: Utility String

Pointer: Limit of BASIC

Current BASIC Line No.

Previous BASIC Line No.

Integer Address

Pointer to Basic Statement
Current DATA Line No.

Pointer to Current Data

Input Vector

NN RN NN NN NN NN ORF R B [

Table A-1,

RM 65 Run-Time BASIC Page Zero Usage (Cont'd)

Addr Addr No.

(Hex) (Dec) |Bytes Purpose

3E-3F 62-63 2 Current Variable Name

40-41 64-65 2 Current Variable Memory Address
42-43 66-67 2 Variable Pointer Memory Address
44-45 68-69 2 Utility Pointer and Save

46 7@ 1 Comparison Symbol Accumulator
47-4C 71-76 6 Misc. Numeric Work Area

4D-4F 77-79 2 Jump Vector for Functions

56-59 80-89 10 Misc. Numeric Work and Storage Area
S5A-5F 99-95 6 Accumulator No. #1 (E,M,M,M,M,S)
60 96 1 Degree of Polynomial to Evaluate
61 97 1 Bits to Shift Right

62-67 98-103) Accumulator No. 2 (E,M,M,M,M,S)
68 104 1 Sign of Accumulators EOR'4d.

69 105 1 Accumulator No. 1 Overflow

6A-6B 106-107 2 Series Pointer

6C-6D 108-109 2 Textual Pointer

Table A-2. RM 65 Run-Time BASIC Page Two Usage

Addr Addr No. Purpose
(Hex) (Dec) |Bytes
200-201 |512-513 2 WHEREI Vector*
202-203 |[514-515 2 WHEREO Vector*
204-205 |516-517 2 SCRLOW Vector*
206-207 |518-519 2 CRLF Vector*
208-209 }520-521 2 OUTCLO Vector*
20A-20B |522-523 2 INCLO Vector*
20C-20D |524-525 2 INALL Vector*
20E-20F ([526-527 2 OUTALL Vector*
210-211 |528-529 2 ANYKEY Vector*
212-213 |536-531 2 CLOPTR Vector*
214-215 {532-533 2 OPNPTR Vector*
216-217 |534-535 2 CHKCTC Vector*
218-21A |536-538 3 JMP USR Instruction (Initialized
to FCERR)
21B-239]539-569| 31 Character GET Routine
23A-23E |570-574 RND No. Seed
23F-241 |575-577 3 JMP FILE Instruction (Initialized
to FCERR)
242 578 1 CLRLIN
243 579 1 OUTFLG
244-245 |580-581 2 Exit to Monitor Vector
246 582 1 Save Y Register
247 583 1 Printer Flag
248-24B |584-587 4 Input Buffer Variables
24C-2CB |588-715(128 Input Buffer
2CC-2DC |716-732] 17 Floating Point Output Buffer
NOTE
*Refer to Section 3 for I/0 subtoutine requirements

Table A-3.

AIM 65 BASIC Page Zero Usage

Addr Addr No. Purpose

(Hex) (Dec) Bytes

00-62 -2 2 New-line Jump

#3-05 3-5 3 USR Jump

g6 6 1 Search Character

@7 7 1 Scan-Between-Quotes flag

g8 8 1 Input Buffer Pointer, No. of

Subscripts

29 9 1 Default DIM Flag

@A 10 1 Type: FF=string, @0=numeric

@B 11 1 Type: 8@=integer, #@0=floating
point

@c 12 1 DATA Scan Flag; LIST Quote Flag;
Memory Flag

@D 13 1 Subscript Flag; FNx Flag

gE 14 1l @=Input; $40=GET; $98=READ

oF 15 1 Comparison Evaluation Flag

10 16 1 flag: Suppress output if minus

11 17 1 1/0 for prompt suppress

12 18 ik width

13 19 1 Input Column Limit

14-15 20-21 2 Integer Address (for GOTO, etc.)

16-5D 22-93 72 Input Buffer

5E 94 1 Temp String Descriptor Stack
Pointer .

5F-60 95-96 Last Temp String Pointer

61-69 97-165 9 Stack of Descriptors for Temp
Strings

6A-6B 106-107 2 Pointer for Number Transfer

6C-6D 198-109 2 Misc. Number Pointer

6E-72 116-114 5 Product Staging Area for Multiply

73-74 115-116 2 Pointer: Start of BASIC Memory

75-76 117-118 2 Pointer: Start of Variables

77-78 119-12¢ 2 Pointer: Start of Arrays

79-7A 121-122 2 Pointer: End of Arrays

7B-7C 123-124 2 Pointer: Bottom of Strings

7D-7E 125-126 2 Pointer: Utility String

A-5

Table A-3.

AIM 65 BASIC Page Zero Usage (Cont'd)

Addr Addr No. Purpose

(Hex) (Dec) Bytes

TF-88 127-128 2 Pointer: Limit of BASIC Memory

81-82 129-13¢ 2 Current BASIC Line No.

83-84 131-132 2 Previous BASIC line No.

85-86 133-134 2 Pointer to BASIC statement No.

87-88 135-136 2 Current DATA Line No.

89-8A 137-138 2 Pointer to current DATA item

8B-8C 139-14¢0 2 Input Vector

8D-8E 141-142 2 Current Variable Name

8F-90 143-144 2 Current Variable Memory Address

91-92 145-146 2 Variable Pointer for FOR/NEXT

93-94 147-148 2 Utility Pointer and Save

95 149 1 Comparison Symbol Accumulator

96-97 156-151 2 Misc. Numeric Work Area

98-9B 152-155 2 Work Area; Garbage Yardstick

9C-9E 156-158 2 Jump Vector for Functions

9F-A8 159-168 10 Misc Numeric Work and Storage
Area

A9-AE 169-174 6 Accumulator No. 1 (E,M,M,MS)

AF 175 Series Evaluation Constant
Pointer

BO 176 1 Acc. No. 1 high-order (overflow)
Word

Bl1-B6 177-182 Accumulator No. 2 (E,M,M,M,M,S)

B7 183 1 Sign of Accumulators Eor'd

B8 184 1 Acc. No.l low-order (rounding)
Word

B9-BA 185-186 Series Pointer

BB-BD 187-189 3 Error Jump

BE 190 1 Printer on/off status

BF-D6 191-214 24 Subroutine: Get Basic char.
Cé, C7 = BASIC pointer

D7-DB 215-220 6 RND No. seed

APPENDIX B

RM 65 AND AIM 65 BASIC DIFFERENCES

RM 65 Run-Time BASIC includes the code for the ATAN function
whereas it must be provided by the application program when
using AIM 65 BASIC (see Appendix H in the AIM 65 BASIC Language
Reference Manual).

NOTES

NOTES

ELECTRONIC DEVICES DIVISION REGIONAL ROCKWELL SALES OFFICES

HOME OFFICE
Electronic Devices Division
Rockwell International
4311 Jamboree Road

Newport Beach. California 92660
Tel 800-854-8099. 800-854-8090
In California B00-422-4230

TWX 910591-1698
UNITED STATES

Etectronic Devices Division
Rockwell International
1842 Reynolds

Irvine Calfornia 92714
(714)632-3710

TWX 910 505-2518

Electronic Devices Division
Rockwell International

921 Bowser Road
Richardson Texas 75080
(214) 996-6500

Telex 73-307

Electronic Devices Division
Rockwell International

10700 West Higgins Rd Suite 102

Rosemont lilinois 60018
(312) 297-8862

TWX 810 233-0179 (Rl MED ROSM)

Electronic Devices Division
Rockwell International
50018 Greeniree
Executive Campus Rt 73
Mariton New Jersey 08053
{609) 596-0090

TWX 710940-1377

EUROPE

Electronic Devices Division
Rockwell International GmbH
Fraunhofersirasse 11
D-8033 Munchen-Martinsnied
West Germany

(089) 859-9575

Telex 0521/2650 nmd d

Electronic Devices Dvision
Rockwell International
Heathrow House. Bath Rd
Crantora Hounstow
Middlesex, Englang

(01) 759-9911 Ext 35
Telex 851-25463
Electronic Devices
Rockwell Colins

Via Boccaccio. 23

20123 Milano

ltaly

49874 79

FAR EAST
Electronic Devices Division

Rockwet! international Overseas Corp

Itohpia Hirakawa-cho Bidg
7-6 2-chome Hirakawa-cho
Chiyooa-ku Tokyo 102 Japan
(03) 265-8806

Telex J22198

A 4182)

Y YOUR LOCAL REPRESENTATIVE

’l Rockwell International

...where science gets downto business

P .

