
RM 65 FRMILY :U

RM 65 RUN-TIME
BRSIC

' ,,

USER'S
MANUAL

'l.' Rockwell International

s:
01
U1
-n :n s:
[c

Document No.
29801N10

· Order No. 810
June 1982

•

RM 65 FAMILY :0

RM 65 RUN-TIME
BRSIC

USER'S
MANUAL

s::
01
U1 ,,
:II
s::
le

Document No.
29801N10

© Rockwell lntemational Corporation, 1982 Order No. 810
All Rights Reserved June 1982
Printed in U.S.A.

NOTICE

Rockwell International does not assume any liability arising

out of the application or use of any p~oducts, circuit, or
software described herein, neither does it convey any license

under its patent rights nor the patent rights of others.
Rockwell International further reserves the right to make

changes in any products herein without notice.

ii

TABLE OF CONTENTS

Section .Page

SECTION 1. INTRODUCTION

1.1

. 1.2

1.3

Overview

Run-Time BASIC User's Manual Description •••••••

Reference Documents

SECTION 2. INSTALLATION

2.1

2.2

2.3

Installation in an RM 65 SBC Module ••••••••••••

Installation in an RM 65 PROM/ROM Module •••••••

Installation in an AIM 65 Microcomputer ••••••••

SECTION 3. OPERATION

3.1

3.2

3.3

3.4

Development on an AIM 65 Microcomputer •••••••••

Relocating the Application Driver ••••••••••••••

Relocating the Application Program •••••••••••••

Preparing the PROM/ROM•••••••••••••••••••••••••

3.4.1

3.4.2

Merged Application Driver and
Program ••••••••••••••••••••••••••••••••
Separate Application Driver
and Program ••••••••••••••••••••••••••••

SECTION 4. APPLICATION DRIVER REQUIREMENT AND EXAMPLES

4.1

4.2

Application Driver Requirements ••••••••••••••••

4.1.1
4.1.2
4.1.3

Startup Routines •••••••••••••••••••••••
1/0 Vectors and Handlers •••••••••••••••
Interrupt Vectors and Handlers •••••••••

Example Application Drivers ••••••••••••••••••••

4.2.1 Interactive Operation On An AIM 65

1-1

1-2

1-3

2-4

2-7

2-8

3-5

3-8

3-9

3-12

3-12

3-12

4-1

4-1
4-7
4-7

4-13

Microcomputer.......................... 4-13
4.2.2 Run-Time Operation in an

RM 65 SBC Module••••••••••••••••••••••• 4-18

APPENDIX A. BASIC VARIABLES
APPENDIX B. RM 65 AND AIM 65 BASIC DIFFERENCES•••••• B-1

iii

Figure

2-1
2-2
2-3

3-1

3-2

3-3

4-1
4-2
4-3
4-4
4-5
4-6

~

2-1

4-1
4-2

A-1
A-2
A-3

LIST OF FIGURES

RM 65 and AIM 65 BASIC Memory Maps•••••••••••••
RM 65 Module Firmware Memory Map•··•·····••••··
Example Base Address Selection Header ••••••••••

Typical Development of a 4K-Byte Application
Program ••
Typical Development of a 16K-Byte Application
Program ••
Relocator Assembly Listing••····•···••••·•·····

Application Driver Flowchart •••••••••••••••••••
Model Application Driver Assembly Listing ••••••
Typical AIM 65 Development Configuration •••••••
Example AIM 65 Interactive Driver ••••••••••••••
Typical RM 65 Run-Time Configuration •••••••••••
Example RM 65 SBC Run-Time Driver ••••••••••••••

LIST OF TABLES

RM 65 SBC Module PROM/ROM Selection ·Jumpers ••••

I/O Vector Summary •••••••••••••••••••••••••••••
I/0 Vector Description ··•··••·•··•••···•·•····•

RM 65 Run-Time BASIC Page Zero Usage •••••••••••
RM 65 Run-T~me BASIC Page Two Usage ••••••••••••
AIM 65 BASIC Page Zero Usage•••••••••••••••••••

iv

Page

2-2
2-3
2-5

3-3

3-4
3-11

4-2
4-4

4-14
4-15
4-19
4-20

Page

2-6

4-8
4-9

A-2
A-4
A-5

SECTION 1

INTRODUCTION

1.1 OVERVIEW

The RM 65 Run-Time BASIC is a ROM-resident BASIC system

designed to operate with an R6502 CPU-based RM 65 Single Board

Computer (SBC) module. Contained in one SK-byte ROM, this

BASIC run-time package allows an application program written in

BASIC, developed on the AIM 65 Microcomputer and located in

PROM/ROM, to execute immediately on the RM 65 SBC module upon

power turn-on. Vectored I/0 and user provided 1/0 drivers

allow complete application flexibility. The application

program, up to SK-bytes in length and programmed in a PROM/ROM,

may be installed in one PROM/ROM socket on an RM 65 SBC module

while the run-time BASIC ROM is installed in the other PROM/ROM

socket. This allows a wide variety of applications requiring a

parallel interface, a serial interface, and/or one or two

counters/timers to be programmed in BASIC and implemented in a

single RM 65 SBC module using its user dedicated R6522

Versatile Interface Adapter (VIA) device as the application

interface.

Larger application programs and other interfaces can be

installed using the RM 65 PROM/ROM module and other RM 65

peripheral interface and I/0 modules. For example, peripheral

equipment with an RS-232C interface can be connected to an RM

65 Asynchronous Communications Interface Adapter (ACIA) module

(RM65-5451), while peripherals with a parallel interface can be

connected to the RM 65 SBC, Multi-Functi~n Peripheral Interface

(MPI) or General Purpose Input/Output and Timer (GPIO) modules,

(RM65-5223 and RM65-5222, respectively).

1-1

In the AIM 65 Microcomputer based system with RM 65 module

expansion, floppy disk drives and CRT display can be connected

for development or production use. Either- 5 1/4- or 8-inch

floppy disk drives can be controlled using the RM 65 Floppy
Disk Controller (FDC) module (RM65-5101), while CRT displays up

to 25 lines by 80 columns can be driven using the RM 65 CRT

Controller (CRTC) module (RM65-5102).

1.2 RUN-TIME BASIC USER'S MANUAL DESCRIPTION

This manual describes the installation and operation of the RM

65 Run-Time BASIC. The BASIC language description is not

included in this manual, however, the language reference in the
AIM 65 BASIC User's Manual is fully applicable to RM 65

Run-Time BASIC. Any differences in the operation and use

between RM 65 Run-Time BASIC and AIM 65 BASIC are described in
this manual.

Section 1, Introduction, scopes the RM 65 Run-Time BASIC,

describes this manual, and lists reference documents.

Section 2, Installation, tells how to install the Run-Time

BASIC ROM in an RM 65 SBC or PROM/ROM module.

Section 3, Operation, describes how to operate the RM 65

Run-Time BASIC on an RM 65 SBC module in the run-time mode or

on an AIM 65 Microcomputer, in either the run-time or

development mode.

Section 4, Application Driver Requirements and Examples,

defines the requirements for the user-provided startup routine

and I/O drivers and also describes some example hardware
configurations and software drivers.

1-2

1.3 REFERENCE DOCUMENTS

Rockwell

29650N30
Order No. 202

29650N31
Order No. 201

29650N36
Order No. 209

29650N49
Order No. 221

29650N55
Order No. 233

29650N76
Order No. 269

29650N01
Order No. 801

29801N02
Order No. 802

29801N04
Order No. 804

29801N05
Order No. 805

29801N06
Order No. 806

29801N08
Order No. 808

29801N09
Order No. 809

29801Nl4
Order No. 814

29801Nl5
Order No. 815

29801Nl7
Order No. 817

R6500 Microcomputer Programming Manual

R6500 Microcomputer Hardware Manual

AIM 65 Microcomputer User's Guide

AIM 65 BASIC User's Manual

AIM 65 SK BASIC Reference Card

AIM 65 PROM Programmer & CO-ED User's
Manual

RM 65 General Purpose Input/Output
and Timer (GPIO) Module User's Manual

RM 65 Floppy Disk Controller (FDC)
Module User's Manual

RM 65 Asynchronous Communications
Interface Adapter (ACIA) Module user's
Manual

RM 65 SK Static RAM Module User's
Manual

RM 65 16K PROM/ROM Module User's Manual

RM 65 32K Dynamic RAM Module User's
Manual

RM 65 Single Board Computer (SBC)
User's Manua 1

RM 65 CRT Controller (CRTC) Module
User's Manual

RM 65 IEEE-488 Bus Interface Module
User's Manual

RM 65 Multi-Function Peripheral
Interface (MPI) Module User's Manual

1-3

SECTION 2

INSTALLATION

The RM 65 Run-Time BASIC (RM65-0122) is provided in a Rockwell

SK-byte R2364 ROM (R2906). After installing the ROM in an RM

65 SBC or PROM/ROM module, the run-time BASIC is ready for use

in either the run-time or development mode of operation. A

short user-provided program segment must be included in the

system prior to use, however, in either mode. This segment

must call the BASIC initialization subroutine, load program and

variable location vectors, load I/0 driver vectors and provide

the I/0 drivers themselve5. These driver requirements are

described in Section 3.

Figure 2-1 shows the memory map for the RM 65 Run-Time BASIC,

along with the AIM 65 BASIC, for reference. The RM 65 module

firmware memory map is also shown for reference in Figure 2-2.

Note that the RM 65 CRTC, FDC and IEEE-488 modules are mapped

at their firmware addresses. If a module ROM is not used, the

corresponding module I/0 can be mapped elsewhere by selecting a

different base address on the module.

2-1

FFFF

E000
DFFF
D000
CFFF

8000
AFFF
A000
9FFF

200

AIM 65 BASIC

AIM 65
Debug Monitor/

Text Editor ROMS
User

Available
AIM 65
BASIC
ROMs
AIM 65

1/0

User
Available

lFF R6502 CPU
100 Stack

FF Audio Tape
A0 Buffer
9F - - - - User - - - -
D7 Available
D6 - - - - BAS IC - - - -

0 Variables

FFFF

D000
CFFF

8000
AFFF

300
2FF
200
lFF
100

FF

6E
6D

0

RM 65 Run-Time·BASIC

User
Available

RM 65
Run-Time BASIC

ROM

User
Available

BASIC
Variables
R6502 CPU

Stack

User
Available

- - - - BAS IC - - -
Variables

Figure 2-1. RM 65 and AIM 65 BASIC Memory Maps

2-2

FFFF

A000
9FFF
9800
97FF
9000
8FFF
8000
7FFF
7000
6FFF

800
7FF
700
6FF
600
SFF
561
560
4A0
49F
400
3FF
347
346
300
2FF
200
IFF
100

FF
F0
EF
EA
E9
OF
DE
D7
D6

0

RM 65 Module Firmware

User
Available

CRTC Module
ROM and IfO cktc Modu e

RAM
FDC Module
ROM and I/0

IEEE-488 Module
ROM and I/0

User
Available

FDC Module
Default In~ut Buffer

FDC Mo u!e
Default Output Buffer

FDC module
Variables & Constants

CRTC Module
Variables & Constants

IEEE-488 Module
Variables & Constants

Reserved for R6502
CPU Stack

Reserved for Syst.em
Variables

- - - IEEE=4~8-Module - - -
____ Variables _____

- - - - -FDC Module - - - -
____ Variables ____

Figure 2-2. RM 65 Module Firmware Memory Map

2-3

2.1 INSTALLATION IN AN RM 65 SBC MODULE

The following procedure describes an installation of the RM 65

Run-Time BASIC ROM and a 4K-byte application program PROM in

the RM 65 SBC module (RM65-1000). The run-time BASIC ROM is to

be installed in one PROM/ROM socket while the application

program PROM is to be installed in the other PROM/ROM socket.

Consult Section 2 of the RM 65 SBC Module User's Manual for

general installation instructions.

CAUTION
The Run-Time BASIC ROM is manufactured

using the Metal-Oxide Semiconductor (MOS)

process. Since the inadvertent applica­

tion of high voltages may damage this

ROM or other MOS devices, be sure to

discharge any static electrical charge

accumulated on your body by touching a

ground connection (e.g., a grounded

equipment chassis) before touching the

ROM or module into which it is to be

installed. This precaution ~s especially

important If you are working in a

carpeted area or in an environment with

low relative humidity.

a. Ensure that power is turned OFF to the module in which the

ROM is to be installed. Remove the Run-Time BASIC ROM from

the shipping container. Inspect the ROM to be sure that

the pins are straight and free of foreign material.

b. Install the RM 65 Run-Time BASIC ROM (R2906) in socket Z8.

c. Install the application PROM in socket Zl0.

2-4

d. Wire a base address selection header and install it in

socket Zl3 as shown in Figure 2-3 to select the base

addresses as follows:

Purpose

Map Socket Zl0 (Application PROM)

Map Socket ZS (Run-Time BASIC ROM)

Map I/O

Address Range

$F000-$FFFF

$B000-$CFFF

$A000-$AFFF

$0000-$0FFF Map RAM

e. Install jumper El in position Band install jumper E6 to

assign Bank Address Select (BADR/) to Bank 0.

PROM/ROM Section 1 (Zl0)

PROM/ROM Section 0 (ZS)

9000

3000

2000

I/O Section

RAM Section

1000

5000

4000

Pin.

1

2

3

4

5

6

7

8

9

10

Top

o-----o

o-----o

o-----o

0 0

0 0

0 0

Pin

20

19

18

17

16

15

14

13

12

11

F000

E000

D000

C000

8000

A000

0000

8000

7000

6000

Figure 2-3. Example Base Address Selection Header

f. Install jumpers E2-E4 as follows to select the PROM/ROM

size (see Table 2-1):

2-5

Table 2-1. RM 65 SBC Module PROM/ROM Selection Jumpers

Edge Connector Euroconnector
Version Version

Section
(Socket)

PROM/ROM
(see note 1) Jumper Position Jumper Position

Section 0
(ZS)

Section 1
(Zl0)

2K
(see note 2)

4K

8K

2K
(see note 3)

4K

8K

E2A
E2B

E2A
E2B

E2A
E2B

E3
E4

E3
E4

E3
E4

NOTES

1. Typical PROM/ROM devices:

OFF E2A ON
ON - E2B OPP

OFF E2A ON
ON E2B OPP

ON E2A OFF
OFF E2B ON

B E3 8
A or B E4 A or

8 E3 8
A E4 A

A E3 A
A E4 A

2K = TMS2516/i2716 PROM, R2316 ROM, or equivalent.
4K = TMS2532 PROM, R2332 ROM, or equivalent.
8K = MCM68764 PROM, R2364A ROM, or equivalent.

2. Enabled in lower 2K-byte address space ($X000-$X7FF)
only (pin 18 =All= 0).

3. Enabled in either half of the 4K-byte address space
depending upon the position of jumper E4:

B

E4 = A: Enabled in lower half of the 4K-byte addr~ss
space ($X000-$X7FFj only (pin 18 =All= 0).

E4 = B: The 2K-byte PROM/ROM is mapped into both the
lower ($X000-$X7FF) and the upper ($X800-
$XFFF) halves of the 4K-byte address space.
This allows the RES, IRQ and NMI vectors
located at $X7FA-$X7FF in a 2K-byte PROM to
be mapped at $XFFA-$XFFF on the SBC module.

2-6

Socket ZS (SK-byte Run-Time BASIC ROM):

E2A
E2A

ON, E2B = OFF
OFF, E2A = ON

(Edge Connector Version)
(EuroconRector Version)

Socket Z10 (4K-byte application PROM):

E3 B
E4 = A

g. Install jumper ES to select internal clock reference.

h. Remove jumper E7 to force the DMA terminate (BDMT/) signal

to a logic 1 (inactive).

i.

2.2

Set switches S2-l through S2-3 to OPEN to

RAM, 1/0 and PROM/ROM to both Bank 0 and

through S2-6 may be in either position.)

INSTALLATION IN AN RM 65 PROM/ROM MODULE

assign on-board

1. (Switches S2-4

The following procedure describes the installation of the RM

65 Run-Time BASIC ROM and an SK-byte application program

PROM/ROM in an RM 65 16K PROM/ROM module (RM65-3216). Refer

to Section 2 of the RM 65 PROM/ROM Module User's Manual for

general installation instructions.

a. Install the RM 65 Run-Time BASIC ROM (R2906) in socket Z12.

b. Install the application program PROM/ROM in socket Z14.

c. Set switches Sl-1 through Sl-4 and S2-l through S2-4 to

assign the base address of each of the 4K-byte address

spaces in socket Z12 for the RM 65 Run-Time BASIC ROM:

(1) Assign $8000 to the upper 4K-bytes of socket Zl2:

Sl-1 CLOSED

Sl-2 CLOSED

Sl-3 OPEN

Sl-4 CLOSED

2-7

d.

(2) Assign $C000 to the lower 4K-bytes of socket Zl2:

S2-l OPEN

S2-2 OPEN
S2-3 CLOSED

S2-4 CLOSED

Set switches S3-l through S3-4 and S4-l through S4-4 to

assign the base address of the rest of the PROM/ROM module

to address ranges not applicable to the specific

application, i.e., that do not conflict with either the RM

65 Run-Time BASIC or the application program.

2.3 INSTALLATION IN AN AIM 65 MICROCOMPUTER

The RM 65 Run-Time BASIC ROM may !!2,! be installed in the AIM
65 Microcomputer since it is an SK-byte ROM and the AIM 65

Master Module may accommodate only 4K-byte (or less) PROM/ROM

devices.

The application program, however, may be installed in an AIM

65 Master Module if it is programmed in compatible 2K- or

4K-byte PROM/ROMS. In this case, sockets Z25 and Z26 must be

unpopulated {since the run-time BASIC at this $B000-$CFFF
address range will be installed off-board, e.g., in an RM 65

PROM/ROM Module).

If the application PROM/ROM is installed in socket Z24 (at
address $DXXX) and the Monitor ROMs are installed, the program

may be started by pressing the N key from the Monitor command

level. The startup routine must begin at $D000 in this

configuration. Application interrupt handlers can be linked
to the Monitor IRQ and NMI interrupt linkage.

If the AIM 65 Monitor ROMs are not used, up to 12K-bytes of

application PROM/ROM may be installed in sockets Z22, Z23 and
Z24. One application PROM/ROM must be installed in socket Z22

to provide the RES, IRQ and NMI interrupt vectors at

$FFFA-$FFFF.

2-8

SECTION 3

OPERATION

The RM 65 Run-Time BASIC can operate in one of two modes,

interactive (sometimes called development) or run-time. In

the interactive mode, all BASIC direct and indirect commands

available in AIM 65 BASIC (except as defined in Appendix B)

may be entered by an operator from a keyboard with BASIC

response directed to a display/printer. In the run-time mode,

only BASIC indirect commands may be executed since BASIC is

initialized to run-time operation upon power turn-on or reset.

In either mode of operation, all I/0 operations are

application dependent, with I/0 processing performed by I/0

handlers, either user-provided as part of an application

driver or located elsewhere. In both cases, the I/0 handlers

are pointed to by I/0 vectors loaded by a startup routine

within the application driver. The user-provided application

driver, consisting of the startup routine and I/0 handlers

must be resident in memory in order to operate RM 65 Run-Time

BASIC in either mode of operation.

This section describes how to operate the RM 65 Run-Time BASIC

in the interactive mode and how to migrate the application

driver (written in assembly language) and/or the application

program (written in BASIC) to addresses for execution in the

run-time mode in either an RM 65 microcomputer or RM 65 SBC

environment.

The application driver and programs are first hosted on the

AIM 65 Microcomputer in an interactive mode. This allows an

application program, initially developed using the AIM 65

BASIC, to be integrated with the application driver and

executed interactively on the AIM 65 Microcomputer for final

test. Any corrections to the driver or the application

program can easily be made using the AIM 65 Assembler and RM

65 Run-Time BASIC before rehosting them on the RM 65 module.

3-1

In fact, after installing RM 65 Run-Time BASIC on the AIM 65

Microcomputer, you may want to develop subsequent application

programs in this configuration due to the flexibility of the

vectored I/O. The I/O can first be vectored to AIM 65 Monitor
I/0 subroutines for development then changed to point to

run-time drivers to production operation. In addition,

development-oriented peripherals, such as floppy disk drives,

a CRT display and an 80-column printer can be interfaced to
the AIM 65 Microcomputer using RM 65 FDC (with DOS firmware

installed), CRTC, and MPI (or GPIO) modules installed in the

same card cage as the RM 65 16K PROM/ROM module containing the

run-time BASIC. Use of these peripherals greatly improves

programmer efficiency thus lowering program development costs.

Figures 3-1 and 3-2 shows the general flow of an application

driver and BASIC programs from interactive operation on the
AIM 65 Microcomputer to run-time operation on the RM 65 SBC

module. Figure 3-1 illustrates migration of a 4K application

program to an RM 65 SBC module, while Figure 3-2 shows

migration of a larger program to an RM 65 PROM/ROM module.

The described procedure carries an example program from

development on an AIM 65 Microcomputer to run-time on an RM 65

SBC module. After using this procedure to become familiar
with the methodology, modify the procedure as required for

operation in your development and application environment.

Refer to Section 4 for a detailed discussion of the

application driver requirements.

3-2

•

PREVIOUSLY
DEVELOPED
ONAIM66
BASIC

AIM 66 WITHl EMBLE
RM 66 RELOCATOR
MODULE AND
EXPANSION DRIVER

AIM66 { WITH PROM
PROGRAMMER
MODULE

RM66
SBC MODULE
BASED {

INSTALL
RUN-TIME
ROMIN
SBC MODULE

INSTALL
APPL DRIVER
PROM IN
SBC MODULE

MERGE
AND
PROGRAM
PROM

VALIDATE
APPLPROG

Ms-MASS STORAGE
AT•AUDIO TAPE

DEVELOPMENl

RUN l IN APPLICATION
PRODUCTION

Figure 3-1. Typical Development of a 4K-Byte Application Program

3-3

PREVIOUSLY
DEVELOPED
ONAIM66
BASIC

~~~H

66 

~ASSEMBLE 
RMe& DRIVER 
EXPANSION ----

AH { WITH PROM 
PROGRAMMER 
MODULE 

INSTALL 
RUN-TIME 
ROMIN 

RM66 SBC MODULE SBC MODULE 
BASED 

DEVELOP/ 
CHECKOUT 
APPLPROG 

DUMP 
APPLPROG 
OBJECT 
CODE 

PROGRAM 
APPL 
PROO 
PROMCS) 

PROM(S) 

INSTALL 
APPLPROG 
PROM(S) IN 
PROM MODULE 

RELOCATE 
AND 
RELINK 
DRIVER 

PROGRAM 
APPL 
DRIVER 
PROM 

INSTALL 
APPL DRIVER 
PROM IN 
SBC MODULE 

VALIDATE 
APPLPROG 

Ms-MASS STORAGE 
DEVELOPMENT 

AT•AUDIO TAPE 

APPLICATION 

RUN 
IN PRODUCTION 

Figure 3-2. Typical Development of a 16K-Byte Application Program 

3-4 

• 



3.1 DEVELOPMENT ON AN AIM 65 MICROCOMPUTER 

This procedure describes the steps to take to develop an 

application program on an AIM 65 Microcomputer. The 

application 1/0 can be easily tested using the AIM 65 1/0 

subroutines if the application 1/0 is similar. The following 

memory map, corresponding to a 4K-byte application program is 

used as an example: 

Address 

$0300 - $03FF 

$0400 - $1BFF 

$1C00 - $1FFF 

$2000 - $2FFF 

Contents 

Driver Object Code 

Application Program and Variables 

Assembly Symbol Table 

Driver Source Code 

It is assumed that additional RAM is available beyond the 

4K bytes on-board the AIM 65 Microcomputer for development. 

RAM can easily b~ added in the RM 65 card cage using an RM 65 

32K Dynamic RAM module (RM65-3132) or an RM 65 SK Static RAM 

module (RM65-3108). If additional RAM is not available, the 

upper limit of the application program and variables cannot 

exceed $0FFF. In this case, the application driver should be 

assembled separately and object code loaded when needed. 

a. Install the RM 65 Run-Time BASIC ROM in an RM 65 16K 

PROM/ROM module as described in Section 2.2, however, do 

not install an application PROM/ROM. 

b. Install the PROM/ROM module along wi~h any other peripheral 

and memory modules in a RM 65 card cage and connect the 

card cage to an AIM 65 Microcomputer. 

c. On the AIM 65 Master Module, install an Assembler (A65-010) 

ROM into socket Z74 and remove any PROM/ROM drives 

installed in sockets Z25 and Z26. 

3-5 



d. Load the source code for the application driver shown in 

the Figure 4-2 assembly listing into the Text Editor, and 

return to the Monitor. Locate the Text Buffer from 

$2000-$2FFF for this example. 

Note that the startup· driver will extend from $0300 to the 

label BEGIN. The application program will start at BEGIN 

while the variables will initially start at BEGIN+2. The 

variables must be located above the program during 

development (their starting address will increase as the 

application program increases in size). 

The application driver source code is kept resident in the 

Text Buffer throughout this procedure for ease in changing 

it during migration to run-time operation. For extended 

use in the development mode, the application driver may be 

programmed in PROM and installed on the AIM 65 Micro­

computer (e.g., at $DXXX) for immediate operation upon 

power turn-on. 

e. Assemble the application driver. Locate the symbol table 

at $1C00-$1FFF for this example. 

f. After verifying the assembled driver is correctly coded, 

save the driver source code on mass storage for backup and 

future use. 

g. Press the Fl key to enter BASIC and to perform a cold 

start, i.e., to clear a previously loaded program. 

<[> 

h. Enter/load the application program as required, e.g.: 

100 FOR N = 1 TO 1000 
110 PRINT "TEST", I 
120 NEXT I 
130 GOTO 100 

3-6 



NOTE 

The ATAN function is provided in the RM 65 

Run-Time BASIC whereas it must be user­

provided when using the AIM 65 BASIC (see 

Appendix B). If the application program 

was developed on AIM 65 and calls the ATAN 

function, remove both the altering of the 

ATAN vector ~nd the ATAN machine code sub­

routine from the application program before 

running the program on RM 65 Run-Time BASIC. 

i. Execute the ijpplicatfon program as required, e.g.: 

RUN 

NOTE 

For continuous operation of the application 

program in the run-time mode, ensure the 

following: 

1. The application program is designed to 

remain in execution (e.g., in an endless 

loop), and there are no END or STOP 

statements. 

2. The application program is fully debugged 

and there are no external conditions 

(e.g., input data type, amount, or value) 

that will cause BASIC to detect an error, 

stop execution, and attempt to report the 

error (see Appendix A in the AIM 65 BASIC 

Language Reference Manual). 

3. A $5B code (BREAK command) is not input 

from a keyboard while running. 

3-7 



j. Press <ESC> to stop execution, i.e., to cause a BREAK, and 

return to the BASIC command level. 

k. Press <ESC> to return to the Monitor command level from the 

BASIC command level. 

1. Press the F2 key to reenter BASIC and to perform a warm 

start, i.e., to retain the previously lQ.aded program. 

<]> 

m. Enter and execute the application program as required. 

n. Press <ESC> to return to the Monitor command level from 

BASIC command level. 

o. Save the BASIC application program on mass storage for 

backup or future use. 

3.2 RELOCATING THE APPLICATION DRIVER 

the 

After the application program has been validated in the 

interactive mode, the application driver and application 

program are ready to be relocated to their final run-time 
locations. The application driver will usually be relocated 

to the lower part of PROM/ROM addresses. This relocation 

consists merely of changing the starting address of the objec·t 

code, for example from $300 to $F000, then reassembling. 
Other changes to the driver source code must first be made, 

however, to add interrupt vectors ($FFFA-$FFFF), and to a~d 

any application dependent I/O (replacing linkage AIM 65 I/O, 

if used) • 

a. Reenter the Text Editor from the AIM 65 Monitor. 

3-8 



b. Change the startup routine origin, add the I/O vectors, and 

replace linkage to AIM 65 I/O subroutines with run-time I/O 

handlers (see Figure 4-3). 

c. Return to the Monitor and assemble without generating 

object code (LIST-OUT= <RETURN> and OBJ?Y OUT=X). 

d. After verifying that the driver is assembled correctly, 

reassemble and direct object code to audio tape. 

e. Save the run-time application driver source code on mass 

storage for backup or future use. 

3 . 3 RELOCATING THE APPLICATION PROGRAM 

In many cases the application program must be relocated from 
locations used during development in interactive mode to 

locations used for run-time operation. For example, a program 

residing at $400-$12F9 during development can be moved to 

$Fl00-$FFF9 for PROM/ROM installation (after merging with the 
application driver ~nd interrupt vectors ($F000-$F0FF and 

$FFFA-$FFFF). 

For larger programs, (e.g., 16K-bytes) it may be desired to 
map the application at the same addresses for development (in 

RAM) as in run-time (in PROM/ROM). This simplifies the 
migration to PROM/ROM since the application program only has 

to be programmed into PROM/ROM without relocation. In this 
case, only the application driver need be relocated, usually 

to the $FXXX area, since interrupt vectors must be mapped at 

$FFFA-$FFFF. Note that this mapping may be either separate or 

redundant, whichever best satisfies the application 
requirements. 

In this example, the application program is relocated to $DXXX 

so the resultant PROM/ROM can be installed on-board an AIM 65 

3-9 



microcomputer (in socket Z24) or on an RM 65 SBC module (in 

socket ZS with the base address header wired to redundantly 

map the socket to $0XXX and $FXXX). 

a. If the Relocator object code is not available on mass 

storage, assemble the program (see the assembly listing in 

Figure 3-3) and direct the object code to mass storage. 

Note that the object code cannot be directed to memory 

during assembly since the assembler uses zero page (where 

the Relocator object code is also located). 

b. Load the Relocator object code. 

c. Enter the old and new starting addresses of the program, 

i.e., $0300 and $0000, respectively, in this example: 

<M>0004 XX XX XX XX 

</>0004 00 03 00 00 

d. Execute the Relocator program, 

<*>=000C 

<G>/. 

The program returns to the Monitor command level upon 

completion. 

NOTE 

The application program cannot be executed 

after the statement addresses have been 

changed by the Relocator until the applica­

tion program is installed at the new 

addresses, e.g., $D000-$DFFF. 

3-10 



PAGE 0001 BASIC RELOCATOR FOR AIM 65 AND RM 65 R/T BASIC 

ADOR OBJECT SOURCE 

000C AS 04 
000E A6 05 
0010 08 
0011 38 
001.2 ES 06 
001.4 85 0A 
001.6 SA 
001.7 ES 07 
0019 85 0B 

001.B A2 00 
001.D A0 01. 
001F AS 06 
0021. 85 08 
0023 A5 07 
0025 85 09 

0027 A1 08 
0029 1:1. 08 
0028 F0 :1.8 

0020 :1.8 
002E A:1. 08 
003:0 48 
0031 65 0A 
003:3: 81. 08 
0035 B1. 08 
003:7 48 
0038 65 0B 
003A 91. 08 

003:C 68 
0030 85 09 
003:F 68 
0040 85 08 
0042 4C 27 00 
0045 4C A1 E:1 

ERf.:ORS=0000 

FIRST SET CORRECT VALUES INTO PGMST AN[> OLDAOR 
; THEN EXECUTE THE PROGRAM START It,IG AT RELOC . 

•=4 
COMIN=$E1A1 
PGMST *=•+2 
OLDADR •=•+2 
NEXT *=*+2 
OFFSET *=*+2 

; AIM 65 MONITOR RETURN 
; NEW PROGRAM START ADDRESS 
;OLD PGMST FROM DEVELOPMENT MODE 

; RELOCATOR PROGRAM BEGINS HERE ... 
; FIRST CALCULATE THE OFFSET TO NEW LOCATION 
RELOC LOA PGMST _; NEl,l PROGRAM START AODR 

LOX PGMST+1. 
CLO 
SEC 
SBC OLDAOR 
STA OFFSET 
TXA 
SBC OLDAOR+1 
STA OFFSET+:1 

SET UP POINTERS FOR FIRST STATEMENT 
LOX #0 
LOY #1 
LOA OLDADR 
STA NEXT 
LOA OLDADR+:1 
STA NEXT+1 

EXECUTE THIS CODE ONCE FOR EACH STATEMENT 
OONECK LOA <NEXT, X) ; NEXT LI NE ADDR LOI.J 

ORA <NEXT>, Y ; NEXT LI NE ADDR HIGH 
BEQ DONE ; IF ZEROS ==> 

; RELOCATE THE CURREl'-ff LINE 
RELCLN CLC 

LDA <NEXT, X> 
PHA 
ADC OFFSET 
STA <NEXT,X) 
LDA <NEXT>, Y ; LINE NUMBER LOW 
PHA 
ADC OFFSET+1 
STA <NEXT>,Y 

; POINT TO THE NEXT PROGRAM LINE 
PLA 

DONE 

STA NEXT+:1 
PLA 
STA NEXT 
JMP DONECK 
JMP COMIN 

END 

; ==> 
; RETURN TO MONITOR==> 

Figure 3-3. Relocator Assembly Listing 

3-11 



3.4 PREPARING THE PROM/ROM 

rhe AIM 65 PROM PROGRAMMER & CO-ED module (A65-006) may be used 
to program PROMs up to 4K-byte in size, for installation 

RM 65 SBC and PROM/ROM modules and in the AIM 65 Microcomputer. 
Refer to the AIM 65 PROM Programmer & CO-ED User's Manual for 

the detailed operating procedure. 

Install the PROM Programmer & CO-ED module on an AIM 65 
~icrocomputer. 

3.4.1 Merged Application Driver and Program 

Use this procedure to program a merged application driver and 

application program; for example, to prepare a single PROM at 

$FXXX for installation of a 4-byte application program in an RM 

65 SBC module. 

a. Zero memory in the PROM address area. 

b. Load the application program object code from audio 

cassette. 

c. Load the application driver object code from audio 

cassette. 

d. Program the PROM. 

3.4.2 Separate Application Driver and Program 

Use this procedure to program separate PROMs for the 

application driver and program; for example, to prepare a 

16R-byte application program in four 4R-byte PROMs for 
installation in an RM 65 16K PROM/ROM module and an 

application in a 2R-byte PROM for installation in the RM 65 
SBC module. 

3-12 



a. Zero memory in the PROM area. 

b. Ldad the application driver or program object code. 

c. Program the PROM. 

3-13 



SECTION 4 

APPLICATION DRIVER REQUIREMENTS AND EXAMPLES 

4.1 APPLICATION DRIVER REQUIREMENTS 

This section defines the requirements for the application 

driver for both interactive and run-time operation. 

The application driver consists of three major parts: 

Startup Routine 

I/0 Vectors and Handlers 

Interrupt Vectors and Handlers 

A flowchart of the application driver is shown in Figure 4-1. 

An annotated assembly listing of a model driver is shown in 

Figure 4-2. This model driver should be adapted and expanded 

as required for your specific application requirements. Two 

example drivers are described in Section 4.2. 

4.1.1 Startup Routine 

The startup routine must initialize the run-time BASIC, load 

the program, variable and 1/0 handler vectors, and jump to the 

BASIC entry point. This driver is usually entered by keyboard 

command through the Monitor in the interactive mode, or vec­

tored to from the RES vector in the run-time mode. Some of the 

steps may be reordered without affecting operation. Thorough 

testing should be performed in the interactive mode if any 

changes are made, however, including the incorporation of 

application 1/0 handlers. 

Be sure that the variables are located above the program during 

interactive operation (they can be located anywhere-in RAM 

later for run-time operation). 

4-1 



STARTUP' ROUTINE 

( 
RDIT } 
VICTOR _ 

CALLBAIIC 
INIT IUIROUTINE 

INITIALIZE 1/0 
VECTOR TABLE 

INITIALIZE 
MEMORY 
POINTERS 

CALLINIT 
RAM SUBROUTINE 

ZERO START OF 
PROGRAM RAM 

RUN-TIME 

Figure 4-1. Application Driver Flowchart 

4-2 



110 VECTORS AND HANDLING 

APPLICATION PROGRAM 
I~ STATEMENTS 

C RETURN TO }-
APPLICATION PROO - - -

INTERRUPT VECTORS AND HANDLING 

C RES,iiioAND= )------
- INTERRUPTS _ 

RETURN TO 
APPLICATION PROG 

l~VECT'OM 
TAILE 

INTIRflUl'T 
VICTOM 

NMI INTERRUPT 
HANDLER 

Figure 4-1. Application Driver Flowchart (Cont'd) 

4-3 



PAGE 0001 RM 65 RUN-TIME BASIC DRIVERS - STANDARD MODEL 

AC•C•f.: OBJECT soui.:CE 

THI S IS A MODEL R/T BASIC DRIVER 

R/T BASIC ENTRY POINTS 
INIT=$CF11 
WARM=-$B099 
CLEARC=$B5A4 
RUNC=$B5A4 
NEWSTT=$B6DB 

, R/T BASIC VARIABLES 
VECTBL=$200 
OUTFLG=$243: 
CLRLIN=$242 
SAVFLG=$2DF 

, INITIALIZE BASIC PARAMETERS 
; WAf.~ ENTRY POINT FOR R/T BASIC 
, INITIALIZE VARIABLE SPACE 
; SET Ei,:ECUTION FOR FIRST LINE 
; INITIALIZE VARIABLE SPACE 

jVECTOR TABLE OF I/0 DRIVERS 
1 AOD FOR R/T BASIC 
j ISSUED TO CLEAR EACH LINE 
; TEMPORARY PRIFLG STORAGE 

PGMST IS THE ADDRESS WHERE THE PROGRAM IS DEVELOPED 
; (DEVELOPMENT MODE) OR WHERE THE PROGRAM IS EXECUTED 
, (RUN-TIME MODE). IF THESE ADDRESSES ARE DIFFERENT, 
, THE FINAL PROGRAM MUST BE RELOCATED TO THE RUN-TIME 

ADDRESS USING THE BASIC RELOCATER PROGRA~ 
PGl'IST=::$3:01 

VARST IS THE ADDRESS OF RAM IMMEDIATELY ABOVE TH~ 
; C•EVELOPING PROGF-:AM <C•E',,'ELOPMENT MOC:•E) OF-: F.:AM AVAILABLE 
j IN FINAL SYSTEM (RUN-TIME ~JDE) 
VARST=$3:03: 
j TOPMEM IS THE TOP 
; ( C•EVELOPMENT MOC•E 
TOPMEl'1=$800 
STAF-:T=$F000 

OF VARIABLE RAM 
AND F-~N-TIME MODE). 

., TOP OF USER RAM 
,ADDRESS OF THE USER PROM 

RUN TIME BASIC DRIVER PROGRAM 
, C~ INITIAL ENTRY TO R/T BASIC, USE COL~ 

( COLD IS THE USER DRIVER PROGRAM) 

ON RE-ENTRY TO R/T BASIC, USE WARM 
WARM IS IN THE R/T BASIC ROM 

*=START jADDRESS OF THE USER PROM 
F000 20 11 CF COLD JSR INIT ; COLD RESET INTO R/T BASIC 

F003: A2 17 
F005 B[i 3C 
F008 9D 0(1 
F00B CA 
F00C 1e, F, 

F0 
e,2 

, DOWNLOAD THE I/0 VECTORS FROM TABLE INTO RAM 
L~: #$17 ; 12 VECTORS 

SETUP LDA TABLE,X 
STA VECTBL :,< 
[:•E> 
BPL SETUP 

CLRLIN CHARACTER IS ISSUED AT THE END OF EVERY LINE 
F00E A9 02 LDA #2 
F010 8D 42 02 STA CLRLIN 

, SET POINTER TO USER PROGRAM PROM 
F013 A9 01 LDA #<PGMST 
F015 A0 03 LDY #>PGMST 
F017 85 22 STA $22 
F019 84 23 STY S23 

Figure 4-2. Model Application Driver Assembly.Listing 

4-4 



PAGE 0002 RM 65 RUN-TIME BASIC DRIVERS - STANDARD MODEL 

AC•C•R OB.JECT SOURCE 

F01B A9 03 
F0:1.[) A0 03 
F01F 85 24 
F021 84 25 

F023: A9 00 
F025 A0 08 
Fl":127 85 2E 
F029 84 2F 

SET POINTER TO SCRATCH PAD RAM. 
C•URING PROGRAM DEVELOPMENT, THIS AREA 
MUST BE ABOVE THE PROGRAM AREA IN RAM. 

LC•A tt•:VARST 
LO',' l)VARST 
STA $24 
ST',' $25 

SET POINTER TO TOP OF MEMOR'T' . 
, C•UR I NG PROGRAM DEVELOPMEI-.IT, TH IS LIMIT MUST 

BE ABOVE THE PROGRAM AND VARIABLE SPACE. 
LDA tt<TOPMEM 
LD'T' I> TOPl'1EM 
STA $2E 
ST',' $2F 

CHANGE LENGTH OF LINE (LINWID) IF REQUIRED 
, ( AFFECTS LIST AND PRIIH 1-.IITH , ) 

DEFAULT WIDTH IS 80 CHARACTERS ($50). 
; CHANGE POSIT I ON OF LAST PF.: I 1-.IT FI ELC• ( NCMW ID) IF REQU I REC• . 

C AFFECTS PRINT WITH, BUT LINWID OVERRIDES) 
C•EFAUL T POSITION IS THE :rnTH CHARACTER ($1E) 

INITIALIZE RAM POINTERS TO A CLEARED STATE 
F02B 20 A4 85 JSR CLEARC 

F02E 
F030 
F03:3; 
F036 
F03:9 

Fl!:GC 
F03:E 
F040 
F042 
F044 
F046 
F048 
F04A 
Fl!:14C 
H:14E 
F050 
F052 

FOR DEVELOPMENT MODE USE THIS COC)E TO START 
AT THE BOTTOM OF AVAILABLE F.:AM. THIS IS NOT THE 

; ADDRESS ~lHERE THE FINAL PROGRAM ~ULL RESIDE. 
A9 1:10 u,,A #0 
8D 00 03 STA PGMST-1 
E:C• 01 03: STA PGMST 
8D 02 03 STA PGMST+1 
4C 99 80 JMP 1-.IARt'l ; COME UP IN BASIC 

FOR RUN-TIME MODE USE THIS CODE TO COME UP RUl·INING 
JSR RUNC ; SETUP F.:,-•'T BASIC FOR RUN 
.JMP NE~lSTT ., AND E:•(ECUTE AWAY ... 
*=*+8 ; AC•JUST THE PROGRM COUNTER 

1/0 VECTOR TABLE IS SET UP ~IITH USER I/0 DRIVERS. 

54 F0 TABLE . l•lOR ~lHERIN _; ciPEN INPUT .s:c SET IN 
56 F0 . WOR WHEROT ; OPEN OUTPUT 8: SET OUT 
58 F0 . ~lOR SCRLO~l ., OUTPUT CR TO TERMINAL 
5A F0 . WOR CF.:LF ; OUTPUT A CR TO THE AOD 
5C F0 . ~lOR OUTCLO ., CLOSE THE OUTPUT FILE 
5E F0 . WOR INCLO ; CLOSE THE INPUT FILE 
60 F0 . ~lOR INALL ., INPUT THROUGH THE AID 
62 F0 . HOR OUTALL ; OUTPUT TO THE AOD 
64 F0 . l·lOR AN','KE'T' ., RETURN Z=1 IF NO KE',' 
66 F0 . 1-.IOR RESPTR ; RESTORE PRit-ffER STff: E 
68 F0 . ~lOR FORCEP ., FORCE PRINT & SAVE STATUS 
6A FO . l•lOF.: CHKCTC ; F.:ETURN KE'T' C•OI-.IN IN A 

Figure 4-2. Model Application Driver Assembly Listing (Cont'd) 

4-5 



PAGE 0003 RM 65 RUN-TIME BASIC DRIVERS - STANDARD MODEL 

ADDR OBJECT SOURCE 

F054 EA 
F055 60 

F056 EA 
F057 60 

F058 EA 
F059 60 

F05A EA 
F05B 60 

F05C EA 
F05[) 60 

F05E EA 
F05F 60 

F06'-:I EA 
F061 60 

F062 EA 
F063 60 

F064 EA 
F065 60 

F066 EA 
F067 60 

F068 EA 
F069 60 

F06A EA 
F06B 60 

F06C 00 
F06D 0(1 00 

_; THESE I/0 ROUTINES 1,IILL BE DEPENDENT ON THE SYSTEM . 
; TYPICALL'r' EACH NOP WOULD E:E REPLACED 
; WITH APPLICABLE CODE OR ELIMINATED. 

WHERIN NOP 
RTS 

1-IHEROT NOP 
RTS 

SCf.:LOW NOP 
RTS 

Cf.:LF NOP 
RTS 

OUTCLO NOP 
RTS 

ll~CLO NOP 
RTS 

INALL NOP 
RTS 

OUTALL NOP 
RTS 

AN'r'KE'-r' NOP 
RTS 

RESPTR NOP 
RTS 

FOf.:CEP NOP 
RTS 

CHKCTC NOP 
RTS 

THE ACTUAL BASIC PROGRAM WILL BEGIN HERE 
1 THIS IS THE RUN TIME ADDRESS (BEGIN). 

. B'-r'T (1 

BEG I I~ . C•B'r' (1 

. END 

EF-:RORS-=(1000 

Figure 4-2. Model Application Driver Assembly Listing (Cont'd) 

4-6 



4.1.2 I/O Vectors and Handlers 

Since all I/O on the RM 65 Run-Time BASIC is vectored, both 

vectors and I/O handlers must be included in the application 

driver. Table 4-1 summarizes the vectors and identifies 

equivalent AIM 65 subroutines corresponding to the vectors. 

Table 4-2 describes the detailed I/O subroutine requirements. 

Dummy I/O subroutines are shown in the model driver in Figure 
4-2. If no I/O is required in the application program, these 

dummy drivers are not needed since the BASIC initialization 
subroutine (!NIT) loads the I/O vectors to point to RTS 

instructions internal to RM 65 Run-Time BASIC. If application 
dependent I/O is needed, replace the NOP instructions with the 

required instructions. 

4.1.3 Interrupt Vectors and Handlers 

During interactive operation, the R6502 CPU haTdware interrupt 
vectors at $FFFA-$FFFF are included in the AIM 65 Monitor. 

User a·1 terable vectors ( IRQV4 at $A400, NMIV2 at $A402, and 
IRQV2 at $A404) provide linkage to the application program 

interrupt handler during development. Refer to Section 7.8 in 
the AIM 65 User's Guide for additional information. 

For run-time operation, these three vectors must be included 

in the run-time ROM mapped into $FXXX address range. The RES 
vector should point to the first address of the startup 

routine while the IRQ and NMI vectors should point to their 

respective handlers. Interrupt handler linkage is included in 

the model driver as a guideline. 

4-7 



Table 4-1. I/O Vector Summary 

Vector Vector 
Location Name Used by 

$200-$201 WHERE! LOAD 

$202-$203 WHEREO SAVE 

Purpose 

Determine AID. 

Determine AOD. 

AIM 65 
Subroutine 

WHERE! 

WHEREO 

(See Note 1) 

$204-$205 SCRLOW Command Output CR & LF to CRCK 

Processing display/printer. 

$206-$207 CRLF System 

Output 

$208-$209 OUTCLO PRINT 

Output a CR to 

the AOD. 

Close the AOD. 

Close to AID. 

CRLF 

DUll 

DU13 

Input a character. !NALL 

(See Note 1) 

AIM 65 
Addr 

$E848 

$E871 

$EA24 

$E9F0 

$E50A 

$E520 

$E993 

PRINT! 

$20A-$20B INCLO INPUT 

INPUT! 

$20C-$20D !NALL INPUT 

INPUT! 

READ 

$20E-$20F OUTALL PRINT 

PRINT! 

$210-$211 ANYKEY GET 

Output a charac­

ter to the AOD. 

Check keyboard 

for key down. 

Close printer 

input. 

OUTALL $E9BC 

$212-$213 CLOPTR INPUT! 

PRINT! 

$214-$215 OPNPTR INPUT! 

PRINT! 

$216-$217 CHKCTC Command 

iriput 

(See Note 1) 

ROONEK $ECEF 

Open printer 

output. 

(See Note 1) 

( See Note 2) 

(See Note 2) 

Input a character ROONEK 

from the keyboard. (See Note 1) 

NOTES 

$ECEF 

1. Call from user-provided subroutine which performs other 

processing (see Figure 4-2). 

2. Call from user-provided subroutine (see Figure 4-2). 

4-8 



Table 4-2. I/0 Vector Description 

Subroutine Description 

WHERE! 

WHEREO 

SCRLOW 

WHERE! is called by the LOAD function to 

determine the active input device (AID). WHERE! 

must return a character in the A register which 

identifies the AID. The subroutine called 

through the !NALL vector will then input a 

character from the AID. 

No register values must be saved. 

In an AIM 65 sy$tem, this vector should point to 

the AIM 65 Monitor WHERE! subroutine. 

WHEREO is called by the SAVE function to 

· determine the active output device (AOD). 

WHEREO must return a character in the A register 

which identifies the AOD. The subroutine called 

through the OUTALL vector will then output a 

characters to the AOD. 

No register values must be saved. 

In an AIM 65 system, this vector should point to 

the AIM 65 Monitor WHEREO subroutine. 

SCRLOW is called to output a CR ($0D) to the 

system terminal. It is called only if the value 

of the OUTFLAG ($0243) is zero; otherwise, all 

CR characters are output through vector CRLF. 

The X and Y register values must be saved and 

the A register must not return a value of $FF. 

In an AIM 65 system, this vector should point to 

the AIM 65 Monitor CRCK subroutine. 

4-9 



Table 4-2. I/O Vector Description (Continued) 

Subroutine Description 

CRLF 

OUTCLO 

INCLO 

INALL 

CRLF is called to output a CR ($00) to the AOD 

used by OUTALL. 

The X and Y register values must be saved and 

the A register must not return a value of $FF. 

In an AIM 65 system, this vector should point to 

the AIM 65 Monitor CRLF subroutine. 

OUTCLO is called to close the current AOD used 

by OUTALL and to restore the system terminal as 

the AOD. 

No register values need to be saved. 

In an AIM 65 system, this vector should point to 

the DUll subroutine. 

INCLO is called to close the current AOD used 

by OUTALL and to restore the system terminal as 

the AID. 

No register values must be saved. 

In an AIM 65 system, this vector should point to 

the DU13 subroutine. 

!NALL is called by the input command processing 

and the INPUT and READ functions. !NALL must 

input a character from the AID. It does not 

have to echo characters nor process DELETE ($7F) 

characters. The Y register is the index into 

the input buffer. 

The ASCII value of the input characters must be 

returned in the A register. The X register 

value must be saved. The Y register must 

contain the character count minus one. 

In an AIM 65 system, this vector should point to 

the AIM 65 Monitor INALL subroutine. 

4-10 



Table 4-2. 1/0 Vector Description (Continued) 

Subroutine Description 

OUTALL 

ANYKEY 

CLOPTR 

OUTALL is called to output a character to the 

AOD. Run-Time BASIC also outputs a Clear Screen 

to Right character through OUTALL. The value 

of this character (normally $02) must be stored 

in variable CLRLIN ($242). CLRLIN is initially 

set to $FF. 

The ASCII value of the output character must be 

in the A register. All registers must be saved. 

In an AIM 65 system this vector should point to 

the AIM 65 Monitor OUTALL subroutine. 

ANYKEY is called by the GET function to sample 

the system terminal keyboard. The CPU zero flag 

(Z) is set if a key is not depressed, otherwise 

the zero flag is reset. 

No register values must be saved. 

In an AIM 65 system, this vector should point to 

a user provided subroutine which sets the ROLLFL 

flag ($A47F) and calls ROONEK. 

CLOPTR is called by the PRINT! and INPUT! 

functions. CLOPTR must close the printer 

output and restore the printer status in PRIFLG 

($0247) to the value it was before the OPNPTR 

subroutine was called. The printer status can 

be saved in SAVFLG ($02DF). 

The X and Y register values must be saved. 

In the AIM 65 system, 'the saved printer status 

must be stored in PRIFLG ($A411) 

4-11 



Table 4-2. I/O Vector Description (Continued) 

Subroutine Description 

OPNPTR 

CHKCTC 

OPNPTR is called only by the PRINT! and INPUT! 

functions. OPNPTR must save the current printer 

status in PRIFLG (at $0247) into a temporary 

location, e.g., SAVFLG at $02DF, and open the 

printer output by storing $80 into PRIFLG. Do 

not save the printer status on the stack. 

The X and Y register values must be saved. 

In the AIM 65 system, the printer status in 

PRIFLG (at $A411) must be saved and $80 stored 

in PRIFLG (at $A411). 

CHKCTC is called by the command input function. 

CHKCTC must check to see if a character is 

available from the system terminal keyboard 

and, if it is, load the ASCII value for the key 

into the A register. The character code will 

then be checked for a break command, in this 

case, $1B (ESC). 

The X and Y register values need not be saved. 

In the AIM 65 system, the ROONEK subroutine 

should be called. 

4-12 



4.2 EXAMPLE APPLICATION DRIVERS 

4.2.1 Interactive Operation On An AIM 65 Microcomputer 

Figure 4-3 shows a typical AIM 65 Microcomputer-based 

development configuration. An example application driver to 

support this system is shown in Figure 4-4. 

4-13 



DEVELOPMENT 

APPLICATION 
EOUJP. 

APPLICATION 

INTERFACE~ APPLICATION 
CONNECTOR -- -----

AIM85 . 
DISPLAY 

1 
I 
I 
I 
I 

1-4 I 
PRINTER DISK AIM 86 

DRIVES I KEYBOARD ---------c ______ ◄~--J---~~~R 
RM86 
MPI 
MODULE 

RM86 
FDC 
MODULE 

RM66 
RTC 

MODULE 

OPTIONAL 
DEVELOPMENT 
EXPANSION 

RM86 
BK RAM OR 
32K RAM 
MODULE 

RM86 
ADAPTER/ 
BUFFER 
MODULE 

RM86 
16K PROM/ 
ROM 
MODULE 

RM86 
1K RAM OR 
32K RAM 
MODULE 

OPTIONAL 
APPLICATION 
EXPANSION 

Figure 4-3. Typical AIM 65 Development Configuration 

4-14 

APPLICATION 
EQUIP. 
INTERFACE 

RM86 
MPI, 
ACIA,OR 
IEEE--181 
MODULE 



PAGE 0001. RM 65 RUN TIME BASIC DRIVERS - DEVELOPMENT MODE 

ADDR OBJECT SOURCE 

; THIS EXAMPLE IS TO DEVELOP SHORT BASIC PROGRAMS ( LESS 
; THAN 4K B'-r'TE ) ON A I 11 65 1,1 I THOUT AC•D IT I ONAL RAM . 

AIM 65 MONITOR I/0 ROUTINES EQUATES 
WHEREI=$E848 
WHEREO=$E871 
CRCK=$EA24 
CRLF=$E9F0 
DU1.1.=$E50A 
DU1.3=$E520 
ROONEK=$ECEF 
GETKY=$EC43 
INALL=$E993 
OUTALL=$E9BC 
PSLS=$E7DC 
CUREAD=$FE83 

; A I 11 65 VAR I ABLES USEC• B'-r' THE I r''O f.'.OUTI NES 
OUTDE\1=$A4B 
INFLG=$A41.2 
PRIFLG=$A41.1 
ROLLFL=$A47F 

; R/T BASIC ENTRY POINTS 
INIT=$CF1.:1. 
WARM=$B099 
CLEARC=$.85A4 

; R/T BASIC VARIABLES 
VECTBL=$200 
OUTFLG=$243 
CLRLIN=$242 
SAVFLG=$2DF 

; INITIALIZE BASIC PARAMETERS 
; l.tARM ENTR°T' PO I NT FOR R/T BASIC 
; INITIALIZE VARIABLE SPACE 

; VECTOR TABLE· OF I /0 C•R IVERS 
, AOC> FOR R/ T BASIC 
; I SSUEC• TO CLEAR EACH LI NE 
; TEMPORARY PRIFLG STORAGE 

; PROGRAM EQUATES FOR 
PGMST=BEGIN 

DEVELOPING THE PROGRAM 

VARST=BEG IN+2 
TOP11El1=$1.000 
START=$300 

; USEf.: Pf.:OGf.:AM STAf.:T AC•DRESS 
., F I RST B','TE OF SCRATCH PAD RAM 
; TOP OF USER RAM 
; ADDRESS TO START FROM 

; SET UP MONITOR LINKAGE TO ENTER R/ T BASIC FROM KEYBOARD 
<:Fi> = COLC• EtHR°T' 
<F2> = WARM ENTRY 

*=$1.0C 
01.0C 4C 00 03 JMP COLD 
01.0F 4C 99 80 JMP WARM 

Figure 4-4. Example AIM 65 Interactive Driver 

4-15 



PAGE 0002 RM 65 RUN TIME BASIC DRIVERS - DEVELOPMENT MODE 

ADDR OBJECT SOURCE 

0300 20 

0303: A2 
0305 BD 
03:08 9C• 
030B CA 
03:0C 1.0 

03:0E A9 
03:10 8D 

03:13 A9 
031.5 A0 
03:17 85 
011.9 84 

03:1.B A9 
03:10 A0 
f13:1.F 85 
0321 84 

~3323 A9 
03:25 A0 
0327 85 
0129 84 

03:28 20 

03:2E A9 
03:30 8[) 

03:3:3: 8C• 
0336 8D 
03:3:9 4C 

03:3:C 4E: 
033E 54 
03:40 24 
0342 F0 
03:44 85 
0346 21Z1 
03:48 64 
O:::AA 7E 
fG4C Ft4 
034E 95 
IZG50 E:B 
03:52 9C 

1:1. CF 

1.7 
3C 03 
00 02 

F7 

02 
42 02 

B4 
03: 
·"') ·"') ...... 
23: 

B6 
03 
24 
25 

00 
1.0 
2E 
2F 

A4 85 

00 
B3 03 
B4 03 
B5 03 
99 E:0 

EE: 
03 
EA 
E9 
03: 
E5 
03: 
03 
tG 
0""' ..> 

0,· 
03 

; ON IMITIAL ENTR',' TO R/T BASIC .• IJSE COL[). 
< COLD IS THE USER DRIVER PROGRAM) 

ON RE-EtHR',' TO R/T BASIC .• USE 1,!ARM 
WARl1 IS IN THE R/T BASIC t.:Dl1 

*=START _; ADDRESS OF THE PROM 
COLD JSFi: It-HT ; COLC• RESET ItHO R,,'T BASIC 

D01,INLOAD THE 1/0 VECTORS FROM TABLE I t-lTO RAM 
LD:X: #$1.7 ; 1.2 VECTORS 

SElUP L[>A lABLE., :.: 
STA 1/ECTBL, >:: 
DE>l 
BPL SElUP 

CLRLIN CHARACTER IS ISSUE[> _AT THE END OF EVER'T' LINE 
LC•A #2 
STA CLRLIN 

SET POINTE!s: TO USEJ.: Pt.:OGJ.:AM PROM 
LC>A #<'.PGMST 
LC•'r' #>PGMST 
STA $22 
ST1

T
1 $23: 

_; SET POINTER TO SCRATCH PA() RAM. 
LC•A #S::\/ARST 
LC>'T' =ID·'v'ARST 
STA $24 
ST'-r' $25 

; SET POINTER TO TOP OF MEMOJ.:'r'. 
LDA #<'.TOPMEM 
LC•'r' #)-TOPMEM 
STA $2E 
ST'T1 $2F 

INITIALIZE RAM POHITERS TO A CLEARED STATE 
JSf.: CLEARC 

CLEAR PROGRAM AREA 
LDA #0 
STA PGMST-:1 
STA PGMST 
STA PGMST+:1 
JMP l-lARM ; COME UP IN BASIC 

; R/T BASIC 1/0 TABLE STJ.:UCTURE ANC• 1 / 0 ROUTINES 

TABLE . WOR 1--IHEf.:EI ; l-.lHERIN - OPEt~ ll~PUT & SET IN 
. 1--lOF: 1--IHROUT _; l,IHEROT - OPEN OUTPUT ~~ SET OUT 
. WOR CRCK ; SCl<:LOl-1 - OUTPUT CR TO TERMINAL 

l·IOR CRLF _; CRLF - OUTPUT A CF: TO THE AOD 
. l•!CIR OUTCLS ; OUTCLO - CLOSE THE OUTPUT FI: F.: 
. l,lOR [>U:13 INCLO - CLOSE THE INPUT FILE 
. l-.lOR INU i INAI..L - INPUT THROUGH THE F1 I c, 
. 1--lOF: OUTU _; OUTfiLL - OUTPUT TO THE AOD 
. l.JOf.: f.:OONU ; At~'r'KE'r' l<:ETURN 2=1 IF NO KE'T" 

1--lOR CLOPTF: .• RESPTR - RESTORE PF:Ir-.lTER STATE 
l·KIR OPr-.lPTR ; FORCEP - FOF.:CE Pt.:INT S: SAVE STATUS 
l•!OF: CHKCTC _; CHKCTC - F:ETIJRN f:'.E'T" [:oO~lt-1 rn A 

Figure 4-4. Example AIM 65 Interactive Driver (Cont'd) 

4-16 



PAGE 0003 RM 65 f.:UN TIME BASIC DRIVEf.:S - C•EVELOPMENT MODE 

ADDR OBJECT SOURCE 

1/0 ROUTINES NOT COMPATIBLE WITH AIM 65 MONITOR 

~)354 20 71 E8 WHROUT .JSR 1,IHEREO .: OUTPUT C>EVICE? 
03:57 AC• 1.J; A4 LDA OUTDEV 
035A C9 0D CMP #$0() 
03:5C D0 02 BNE STOROT 
035E A9 00 STOR00 LDA #0 .: DEVICE 00 TO SUPPRESS EOF 
03:60 8C• 43: 02 STOROT STA OUTFLG 
0363 60 C>ORTS RTS 

0364 AD 12 A4 INU LDA INFLG 
03:67 C9 0C• CMP #$0C• 
0369 F0 06 BEQ C>OTERM .: TERl'1 I NAL MUST ALSO ECHO 
03:6B 4C 93: E9 JMP !NALL 

03:6E 2(1 C•C E7 C•EL JSR PSLS , BACK UP C•ISPLA'T' 
0371 20 83 FE DOTERM .JSR CUREAD 
03:74 C9 7F CMP #$7F ; C•ELETE 
0376 D0 EB BNE C>ORTS ., ','ES ==) 

03:78 88 C•E'T' ; E:ACKUP THE C•ISPLA'T' 
0379 10 F3 BPL C>EL 
03:7B C€: INY 
037C 10 F3 BPL (lOTERM .• ALWA','S ==) 

l)37E C9 02 OUTIJ CMP #2 .• CLEAR LINE CHARACTER? 
03:8(1 F0 E1 BEQ DORTS ; 'T'ES ==> IGNORE IT 
0382 4C BC E9 .JMP OUTALL 

1;;)385 20 0A E5 OUTCLS .JSF: DIJ11 
03:88 4C 5E 0,· JMP STOR00 ; SET TEf.:MINAL AS OUTPUT ==> 

03:88 AC• 11 A4 OPNPTR LDA PRIFLG ; SAVE PRIIHER STATUS 
038E 8(> DF 02 STA SAVFLG 
0391 A9 80 LDA #$80 , FORCE PRIIHER ON 
0393 ()0 03 8NE STRPTR ., ALWA','S ==) 

0395 AD C>F 02 CLOPTR LC)A SAVFLG .• RECOVER PRINTER STATUS 
0398 8C• 11 A4 STRPTR STA Pf.:IFLG 
039B 60 RTS 

fl39C 20 EF EC- CHl<CTC .JSR ROONEI< .: t<E',' C>Ol,lN? 
03:9F F0 C2 8EQ C•ORTS ; NO ::;=)-

03A1 4C 43 EC .JMP GETK',' 

03A4 A9 FF ROONU L()f1 #$FF 
03:A6 8Co 7F A4 STA ROLLFL I , MAKE IT READ KE'T' AGAIN 
03A9 20 EF EC .JSR ROONEI< 
(GAC A9 FF LC•A #$FF 
03AE 8D 7F A4 STA ROLLFL ., MAl<E IT READ l<E'T' NE>'.T TIME 
03:81 98 T'T'A ; SET OR CLEAR z FLAG 
03B2 60 RTS 

THE ACTUAL BASIC PROGRAM l,!ILL BEGIN HERE 
(13:B3: 00 . B'T'T 0 
133B4 01) 1)(1 BEGIN . DB'T1 0 

. Et·K-

Figure 4-4. Example AIM 65 Interactive Driver (Cont'd) 

4-17 



4.2.2 Run-Time Operation in an RM 65 SBC Module 

A typical RM 65 run-time configuration is shown in Figure 4-5. 

An example run-time driver is shown in Figure 4-6. This 

example system uses a CRT display/keyboard terminal with an 

RS-232C serial interface as one application interface and an 

80-column printer with a parallel interface as a second 

application connection. 

4-18 



APPLICATION 
EQUIP. 
INTERFACE 

I 

RM8& 
SBC 
MODULE 

I 

RM8& RM8& 
BK RAM 11K OR32K PROM/ROM RAM MODULE MODULE 

I ..... us I 

OPTIONAL 
APt'LICATION 
EXPANSION 

APPLICATION 
IQutP. 
INTIR,ACE 

I .... .... 
ACIA.Ofl 
IEEE .... 
MOOU'°'E 

I 

Figure 4-5. Typical RM 65 Run-Time Configuration 

4-19 



PAGE 0001 RM 65 RUN-TIME BASIC DRIVERS - RUN-TIME MODE 

ADDR OBJECT SOURCE 

0800 
(18(10 
0800 
0800 
0800 

0800 
0800 
0800 
0800 

080€1 
0800 
0800 
(1800 

1aa0~3 
7€100 
7001 
7£102 
·;,003: 

7't1t14 
7110 
71.11 
7112 
71.E 
? 11C 
711C• 
711E 

·;:- 11t:::: 
7'11.E 
711E 

711E 
C•FFA 00 C:•0 
C:•FFC i;:10 N) 

DFFE 00 C•0 

THIS EXAMPLE IS TO COME UP RUNNING A BASIC PROGRAM 
, THE FINAL SYSTEM IS AN SB~ ACIA, AND MPI MODULE 

THE USER PROGRAM RESIDES IN PROM bN THE SBC. 

R/T BASIC ENTRY POINTS 
I t-.lIT=$CF11 
RUNC=$B593: 
t-.1El•ISTT=$86DB 
WARM=$B099 
CLEAF-:C=$85A4 

, R/T BASIC VARIABLES 

; It-.11 TI ALI ZE BASIC PARAMETERS 
,SET EXECUTION FOR FIRST LINE 
; SAME AS ·' NEW COMMAND 
;WARM ENTRY POINT FOR R/T BASIC 
; INITIALIZE VARIABLE SPACE 

VECTBL=$200 ; VECTOR TABLE OF I/0 DRIVERS 
OUTFLG=$243: ;AOD FOR R/T BASIC 
CLF-:L I N=$242 ; CHARACTER ISSUED TO CLEAR EACH LI NE 
SAVFLG=$2C>F _; TEMPORAR'r' PR I FLG STORAGE 

; PROGRAM EQUATES FOR THE USER PROGRAM. 
PGMST=BEGIN ; START PROGRAM AFTER 1~·•0 DRIVER 
VARST=$3:01 ; FIRST FREE BYTE OF SBC RAM 
TOPMEl1=$800 ; TOP OF se:c RAM 
START=$[)000 ; COMPATIBLE WITH AIM 65 

( ( F5-232 SER I AL CRT TERM nlAL ) ) 
; ACIA MODULE F.:EGISTEf.: C•EFII-.IITIONS 

ACIA *"'*+1. 
STATUS :t:=:t:+1 
Cl'INC• *=*+:l 
CTRL *=*+:1 

;BASE ADDRESS IS 70XX 

(( CENTRONICS TYPE PRINTER INTERFACE )) 
DATA IS SET UP ON MPI VIA NQ 2 PORT A (BITS 0-6) 
DATA STROBE NOT IS ON VIA NO. 2 PORT B(BIT 0) 

, C•ATA ACKNOl..tLEC•GE NOT IS SENS EC• ON VI A NO. 2 CA2 
, MPI VIA REGISTER DEFINITIONS 

*=$71.1.0 ; BASE AC•C•RESS IS 71. :<;< 
PORTB :t:=*+:1 
POf.:TA =+==*+·1 
[)[>RB =+==*+:1 
C•C•F.:A *=:+:➔ 9 
PCR *=*+:1 
IFR *"'*+:l 
MP I DR=$71.2~3 
, MPI MODULE 
WRAB"-'$FF 

;MPI DATA DIRECTION REGISTER 
PRINTER CONSTANTS 

I MP I C•R=$Ct3 
IPCR=$04 

; BOTH DATA PORTS ARE OUTPUT 
;VIA NQ 2 PORTS A AND B OUTPUTS 
,POSITIVE EDGE ON ACKNOWLEDGE 

SET UP CPU VECTORS TO POINT TO COLD 

*=$C>FFA 
. l..tOR COLC:• 
. ~lOR COL[) 
. l..tOF-: COLD 

,ALSO DOUBLE MAPS $FFFA 
; NMl 
_; RESET 
, lRG! 

Figure 4-6. Example RM 65 SBC Run-Time Driver 

4-20 



PAGE 0002 RM 65 RUN-TIME BASIC DRIVERS - RUN-TIME MODE 

AC•DF.: OBJECT SOURCE 

RUN TIME BASIC DRIVER PROGRAM 
ON ENTF.:'T' TO R/T E:FtSIC USE COLD 

E000 :+:=START ., ADC>RESS OF THE USER PROM 
()0'3(1 20 11 CF COLC• JSR IIHT ; COLC• RESET INTO R/T BASIC 

C,OWNLOAD THE I/0 VECTORS FROM TABLE INTO RAM 
C•003: Ft2 17 Ll'.-),: #$17 , 12 VECTORS 
[)005 BC:• 41 N) SETUP LC>A TABLE.,:,; 
C•i:108 9C• 00 02 STA VECTBL :,c; 
C>00B CA DE::< 
D00C 10 F7 8PL SETUP 

INITIALIZE THE ACIA MODULE 
C•0i3E A9 OE: OPENAC LC•A #$08 , C•Tl<:=ON, IRG!=OFF, NO ECHO, NO PARIT',' 
c:-i;:1:1(1 SD 02 70 STA CMND 
()0:13 A9 .1E LDA #$:1E ., :3-BITS, 1 STOP BIT, 9600 BAUD 
c-1'31.5 8[:, €(3: 70 STA CTRL 
00:18 AD 00 70 LC>A ACIA _; CLEAR OUT RECEIVER 

CLRLIN CHARACTER IS ISSUEC• FIT THE ENC• OF EVER'r' LINE 
[)018 A9 02 LC)Ft #2 
C•0:1C• 8C• 42 02 STFt CLRLIN 

SET POINTER TO USER PROGRAM PR01'1 
Col320 A9 F0 LC•A #(PGMST 
D022 AfJ D0 LC>',' #>PGMST 
D024 85 22 STA $22 
D026 84 23 ST',' $23 

·' SET POHffER TO SCRATCH PAD RAM. 
C•028 Ft9 01 LC•Ft #<VARST 
c,02Ft A0 03 LD',' #>VARST 
C•02C 85 24 STA $24 
D02E 84 25 ST',' $25 

SET POINTER TO TOP OF MEMOR','. 
C•030 Ft9 00 LDFt #<:TOPMEM 
(>032 A0 08 LC>',' #>TOPMEM 
N:13:4 85 2E STFt $2E 
[)036 84 2F ST',' $2F 

CHANGE LENGTH OF LINE C:LINWID> IF REQUIRED 
( AFFECTS LIST FtNC• Pl<:INT WITH ; ) 

C>EFAULT i,UDTH IS 80 CHARACTERS ($50) 
CHANGE POSITION OF LAST PRINT FIELC• <NCMWID) IF REQUIRED 

C•03:8 20 A4 

D03:B 20 93 
D03E 4C DB 

D041. EE C>0 
D043 EE D0 
(>045 59 00 
D047 59 D0 

85 

B5 
86 

( AFFECTS PRINT WITH BUT LINWID OVERRIDES ) 

C,EFAULT POSITION IS THE 3:0TH CHARACTER ($1.E) 

INITIALIZE RAM POI~ITERS TO A CLEARED STATE 
JSR CLEARC 

FOR F:UN-TIME MODE USE THIS CODE TO COME UP RUNNING 
JSR RUNC ; SETUP R/T BASIC FOR RUN 
JMP NEWSTT ; AND EilECIJTE AWA'r' ... 

RUN-TIME BASIC 1/0 TABLE STRUCTURE 

TABLE . WOR RETURN 
. WOR RETURN 
. WOR CRLF 
. WOR CRLF 

., OPEN INPUT & SET IN 
; OPEN OUTPUT & SET OUT 
; OUTPUT CR TO THE TERM 
; OUTPUT CR+LF TO THE AOD 

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd) 

4-21 



PAGE 0003 RM 

AC•DR OE:JECT 

[)(149 EE D0 
D04E: EE C•0 
[)04[) 63 [>0 
C•04F E:A C•0 
[>051 BA [>0 
D05J: C:0 C•0 
[>055 C:6 [>0 
C•057 EE, C•0 

eii~59 A9 0C• 
[)1]58 2(1 8A N.1 
C•05E A9 (1A 
C:,060 4C 8A [)~3 

C•063: 20 7C• D0 
C.•066 C9 7F 
c,e168 [)13 0E 
[)IJ6A :::8 
D06E: 10 03: 
()06[) c::: 
C•136E :l.0 FJ: 
()070 A9 08 
C:•072 213 8A [:o0 
[)075 4C 63 [)0 
C:•078 C:9 08 
[H)7A F0 EE 
C•07C 60 

C•(17c,, AC• 01. 
[>080 29 08 
t.•0E:2 F0 F9 
[)084 AD 00 70 
1)087 29 7F 
[>089 60 

D08A 48 
[)088 AD 43 02 
C•08E C•0 0C 

C-090 AC• 01. 70 
[>093 29 1.0 
C-095 F0 F9 
[>097 68 
D098 8C• 00 70 
C,>09B 60 

D09C 20 A7 C•0 
C>09F 68 

65 RUN-TIME BASIC DRIVERS -· F:UN-TIME MODE 

SOURCE 

l·lOR RETURN _; CLOSE THE OUTPUT FILE 
. WOR RETURN ; CLOSE THE INPUT FIU'.: 

i,IOF.: INALL _; INPUT THROUGH THE AID 
woi.: OUTALL ; OUTPUT TO THE AOC• 
WOF: AN"T'KE',-' .• RETUF:N Z=1 IF NO KE'r' 
WOR f.:ESPTR .• RESTOF:E PF.:ItHER Sl::: 1-:: 
1,lOF: FORCEP ., FORCE PRINT .s~ SAVE STATE 
l-.lOF.: CHKCTC ; RETURN KE'r' C•Ol-.11·1 IN A 

I/0 ROUTINES MUST BE PROV IDEC> FOR USER PERIPHERALS 

ISSUE A CF.:+LF TO THE TERNit·IAL (NULLS CAN BE A[)[:oE[;::, 
CF.:LF LDA #$0[) 

.JSR OUTALL 
LC•A #$(1A 
.JMP OUTALL _; USE .JSF: TO SEND 

FETCH AN INPUT CHARACTER FROM THE ACIA 
INALL JSR SINPUT 

DELETE 

OUTBS 

NOTC•EL 

CMP #$7F 
BNE NOTC•EL 
DE'r' 
Bf'L 
ItW 
BPL 
LOA 
JSR 
.JMP 
CMF' 

OUTE6 

!NALL 
#$i<.1t:I 
OUTALL 
!NALL 
#$(18 

_; DONE ==> 

BEQ DELETE , YES==) 
F.:TS ,DC~E =•> 

RETURN A CHARACTER FROM THE TERMINAL 
SINF'UT LDA STATUS 

AND #$0:3 
BEG! SINF'UT 

SINP1 LDA ACIA 
AND #$7F , IGNORE MSB 
RTS 

; SEND AN OUTPUT CHARACTER TO THE AOD 
OUTFtLL PHA 

LDA OUTFLG 
BNE PRINTF.: 

;ON TERMINAL,WAIT TILL ACIA IS REA~,-' 
TERMNL LDA STATUS 

t·IULLS 

AND #$:1.0 ;TRANSMITTER EMPTY? 
BEG! TERMNL ; NO ==> 
PLA 
STA ACIA 
F:TS 

; ON PRINT, PASS THROUGH ONLY PRINTABLE CHARACTERS 
PRINTR JSR WAIT ;WAIT UNTIL PRINJER IS READY 

PLA 
D0A0 8D 1.:1. 7:1. CHROUT STA PORTA 
D0A3 20 
C•0A6 60 

AF .D0 .JSR STROBE 
RTS 

; SEND OUT THE CHARACTER 

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd) 

4-22 



PAGE 0004 RM 65 RUN-TIME BASIC DRIVERS - RUN-TIME MODE 

ADDR OBJECT SOURCE 

N3A7 AC• l.C• 71. 
()0AA 4A 
C•0A8 4A 
D0AC 9(1 F9 
D€1AE 60 

C1£1AF A9 00 
D08l. 8D l.0 7:l 
D0B4 A9 0:l 
D0B6 8D :l0 7:l 
C•0E:9 60 

C•0E:A AC• 01 70 
D08C) 29 0::: 
D08F 60 

C•0C0 A9 00 
D0c·2 8D 43 02 
D0C5 60 

D0C6 A9 50 
D0C8 8D 43 02 

D0C8 A9 0C• 
()0CD 8D :l:l 7:l 
C•0D0 A9 ce 
D0c.,2 8D 20 7:l 
D0()5 A9 FF 
C•0C•7 8C• i , · 7i 
()0DA 8D :12 7:l 
C•0C•D A9 04 
()0DF 8D 1C 7:l 
D0E2 20 AF C•0 
()(1E5 60 

D0E6 20 BA D0 
D0E9 F0 03 
D0E8 20 7D D0 
D0EE 60 

C•0EF 00 
D0F0 00 00 
D0F2 

; WAIT UNTIL AN ACK~JWLEDGE IS RECEIVED FROM THE PRINTER 
WAIT LDA IFR ; ACKNOWLEDGE IS C~ CA2 

LSR A ; MOVE CA2 INTO CARRY ~LAG 
LSR A 
BCC WAIT ; NOT READY? ==> 
RTS 

HANDSHAKE OFF THE CHARACTER 
STROBE LC•A #0 ; FOf.:CE STf.:OBE LOW 

STA PORTB 
LDA #:l ; FORCE STf.:OBE HIGH 
STA PORTB 
RTS 

CHECK FOR ANY KEY DEPRESSION 
AN'r'KE'r' LDFI STATUS 

AND #$08 ; SET Z=i FOR KEY DOWN 
RTS 

RESTORE THE TERMINAL AS OUTPUT 
RESPTR LDA #00 

STA OUTFLG 
RTS 

; FORCE THE PRINTER AS OUTPUT 
FOJ.:CEP LDA # ·' P ✓ 

STA OUTFLG 
ON OPEN SET UP THE VIA AND THE DATA PORT BUFFERS 

PROPEN LDA #$0D ; ISSUE A CR FIT FIRST 
STA PORTA 
LDFI #IMF'Wf.: 
STA MPIDR 
LC)A # WRAB .; PORTS A AND 8 ARE OUTPUT 
STA DDRFI 
STA DDRB 
LDA #IPCR 
STA PCR 
JSR STROBE 
RTS 

; CHECK TO SEE IF ANYTHING HAS BEEN RECEIVED 
CHKCTC JSR ANYKEY 

BEQ RETURN ; NO KE',' ==> 
JSR SINPUT 

RETURN RTS 

.; THE ACTUAL BASIC PROGRAM ~l I LL BEGIN HERE .. . 
. BYT 0 

BEGIN . DBY 0 
. END 

Figure 4-6. Example RM 65 SBC Run-Time Driver (Cont'd) 

4-23 



APPENDIX A 

BASIC VARIABLES 

The location of the variables for RM 65 Run-Time BASIC is 
different from either the AIM 65 BASIC (A65-020) or the AIM 

65/40 BASIC (A65/40-7020). Most of these variables, however, 

with the exception of the I/O vectors at $210-$214, are not 

normally accessed directly by the RM 65 Run-Time application 
program. The variable locations are listed in this appendix, 

however, should the application program need to address them 

explicitly. Application programs developed on AIM 65 or AIM 

65/40 BASIC then rehosted on RM 65 BASIC must have the 
locations of any of these variables changed as appropriate. 

Tables A-1 and A-2 list the page zero and page two usage, 

respectively, by RM 65 BASIC. 

Table A-3 lists the page zero usage by AIM 65 BASIC. 

A-1 



Addr 
(Hex) 

0 

01 

02 

03 

04 

05 

06 

07 

08 

09 

0A 

0B 

0C 

0D 

0E 

0F 

10-18 

19-lA 

lB-lC 

lD-21 

22-23 

24-25 

26-27 

28-29 

2A-2B 

2C-2D 

2E-2F 

30-31 

32-33 

34-35 

36-37 

38-39 

3A-3B 

3C-3D 

Table A-1. RM 65 Run-Time BASIC Page Zero Usage 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Addr 
(Dec) 

10 

11 

12 

13 

14 

15 

16-24 

25-26 

27-28 

29-33 

34-35 

36-37 

38-39 

40-41 

42-43 

44-45 

46-47 

48-49 

50-51 

52-53 

54-55 

56-57 

58-59 

60-61 

No. 
Bytes Purpose 

1 Search Character 

1 Scan-Between-Quotes Flag 

1 Input Buffer Pointer 

l Default DIM Flag 

1 TYPE: FF=string, 00=numeric 

1 TYPE: 80=integer, 00=floating pt. 

1 Data Scan Flag; List Quote Flag; 

Memory Flag 

1 Subscript Flag; FNx flag 

l 0=Input; $40=GET; $98=READ 

1 Comparison Evaluation Flag 

l Flag; Suppress Output if Minus 

1 Position of Terminal Carriage 

1 Width (length of line) 

1 Position Beyond Output Fields 

1 Temp String Desc. Stack Pointer 

1 Last Temp String Pointer 

9 Stack of Temp String Descriptors 

2 Pointer for Number Transfer 

2 Misc. Number Pointer 

5 Product Staging Area for Multiply 

2 Pointer: Start of BASIC Memory 

2 Pointer: Start of Variables 

2 Painter: Start of Arrays 

2 Pointer: End of Arrays 

2 Pointer: Bottom of Strings 

2 Pointer: Utility String 

2 Pointer: Limit of BASIC 

2 Current BASIC Line No. 

2 Previous BASIC Line No. 

2 Integer Address 

2 Pointer to Basic Statement 

2 Current DATA Line No. 

2 Pointer to Current Data 

2 Input Vector 

A-2 



Table A-1. RM 65 Run-Time BASIC Page Zero Usage (Cont'd) 

Addr 
(Hex) 

3E-3F 

40-41 

42-43 

44-45 

46 

47-4C 

4D-4F 

50-59 

SA-SF 
60 

61 

62-67 

68 

69 

6A-6B 

6C-6D 

Addr 
(Dec) 

62-63 

64-65 

66-67 

68-69 

70 

71-76 

77-79 

80-89 

90-95 

96 

97 

98-103 

104 

105 

106-107 

108-109 

No. 
Bytes 

2 

2 

2 

2 

1 

6 

2 

10 

6 

1 

1 

5 

l 

l 

2 

2 

Purpose 

Current Variable Name 

Current Variable Memory Address 

Variable Pointer Memory Address 

Utility Pointer and Save 

Comparison Symbol Accumulator 

Misc. Numeric Work Area 

Jump Vector for Functions 

Misc. Numeric Work and Storage Area 

Accumulator No. 11 (E,M,M,M,M,S) 
Degree of Polynomial to Evaluate 

Bits to Shift Right 

Accumulator No. 2 (E,M,M,M,M,S) 

Sign of Accumulators EOR'd. 

Accumulator No. 1 Overflow 

Series Pointer 

Textual Pointer 

A-3 



Table A-2. RM 65 Run-Time BASIC Page Two Usage 

Addr 
(Hex) 

200-201 

202-203 

204-205 

206-207 

208-209 

20A-20B 

20C-20D 

20E-20F 

210-211 

212-213 

214-215 

216-217 

218-21A 

21B-239 

23A-23E 

2 3F-241 

242 

243 

244-245 

246 

247 

248-248 

Addr No. 
(Dec) Bytes 

512-513 2 

514-515 2 

516-517 2 

518-519 2 

520-521 2 

522-523 2 

524-525 2 

526-527 2 

528-529 2 

530-531 2 

532-533 2 

534-535 2 

536-538 3 

539-569 31 

570-514 5 

575-577 3 

578 1 

579 1 

580-581 2 

582 1 

583 1 

584-587 4 

24C-2CB 588-715 128 

2CC-2DC 716-732 17 

Purpose 

WHERE! Vector* 

WHEREO Vector* 

SCRLOW Vector* 

CRLF Vector* 

OUTCLO Vector* 

INCLO Vector* 

!NALL Vector* 

OUTALL Vector* 

ANYKEY Vector* 

CLOPTR Vector* 

OPNPTR Vector* 

CHKCTC Vector* 

JMP USR Instruction (Initialized 

to FCERR) 

Character GET Routine 

RND No. Seed 

JMP FILE Instruction (Initialized 

to FCERR) 

CLRLIN 

OUTFLG 

Exit to Monitor Vector 

Save Y Register 

Printer Flag 

Input Buffer Variables 

Input Buffer 

Floating Point Output Buffer 

NOTE 

*Refer to Section 3 for 1/0 subtoutine requirements 

A-4 



Addr 
(Hex) 

00-02 

03-05 

06 

07 

08 

09 

0A 

0B 

0C 

0D 

0E 

0F 

10 

11 

12 

13 

14-15 

16-SD 

SE 

SF-60 

61-69 

6A-6B 

6C-6D 

6E-72 

73-74 

75-76 

77-78 

79-7A 

7B-7C 

7D-7E 

Table A-3. AIM 65 BASIC Page Zero Usage 

Addr 
(Dec) 

0-2 

3-5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20-21 

22-93 

94 

95-96 

97-105 

106-107 

108-109 

110-114 

115-116 

117-118 

119-120 

121-122 

123-124 

125-126 

No. Purpose 
Bytes 

2 New-line Jump 

3 USR Jump 

l Search Character 

1 

l 

l 

l 

l 

l 

l 

l 

l 

l 

l 

1 

l 

2 

72 

l 

2 

9 

2 

2 

5 

2 

2 

2 

2 

2 

2 

Scan-Between-Quotes flag 

Input Buffer Pointer, No. of 

Subscripts 

Default DIM Flag 

Type: FF=string, 00=numeric 

Type~ 80=integer, 00=floating 

point 

DATA Scan Flag; LIST Quote Flag; 

Memory Flag 

Subscript Flag; FNx Flag 

0=Input; $40=GET; $98=READ 

Comparison Evaluation Flag 

flag: Suppress output if minus 

I/O for prompt suppress 

Width 

Input Column Limit 

Integer Address (for GOTO, etc.) 

Input Buffer 

Temp String Descriptor Stack 

Pointer 

Last Temp String Pointer 

Stack of Descriptors for Temp 

Strings 

Pointer for Number Transfer 

Misc. Number Pointer 

Product Staging Area for Multiply 

Pointer: Start of BASIC Memory 

Pointer: Start of Variables 

Pointer: Start of Arrays 

Pointer: End of Arrays 

Pointer: Bottom of Strings 

Pointer: Utility String 

A-5 



Addr 
(Hex) 

7F-80 

81-82 

83-84 

85-86 

87-88 

89-8A 

8B-8C 

8D-8E 

8F-90 

91-92 

93-94 

95 

96-97 

98-9B 

9C-9E 

9F-A8 

A9-AE 

AF 

B0 

Bl-B6 

87 

88 

B9-BA 

88-80 

BE 

BF-06 

07-DB 

Table A-3. AIM 65 BASIC Page Zero Usage (Cont'd) 

Addr No. 
(Dec) Bytes 

127-128 2 

129-130 2 

131-132 2 

133-134 2 

135-136 2 

137-138 2 

139-140 2 

141-142 2 

143-144 2 

145-146 2 

147-148 2 

149 1 

150-151 2 

152-155 2 

156-158 2 

159-168 10 

169-174 

175 

176 

177-182 

183 

184 

185-186 

187-189 

190 

191-214 

215-220 

6 

1 

1 

6 

1 

1 

2 

3 

1 

24 

6 

Purpose 

Pointer: Limit of BASIC Memory 

Current BASIC Line No. 

Previous BASIC line No. 

Pointer to BASIC statement No. 

Current DATA Line No. 

Pointer to current DATA item 

Input Vector 

Current Variable Name 

Current Variable Memory Address 

Variable Pointer for FOR/NEXT 

Utility Pointer and Save 

Comparison Symbol Accumulator 

Misc. Numeric Work Area 

Work Area; Garbage Yardstick 

Jump Vector for Functions 

Misc Numeric Work and Storage 

Area 

Accumulator No. 1 (E, .M,M,MS) 

Series Evaluation Constant 

Pointer 

Acc. No. 1 high-order (overflow) 

Word 

Accumulator No. 2 (E,M,M,M,M,S) 

Sign of Accumulators Eor'd 

Acc. No.l low-order (rounding) 

Word 

Series Pointer 

Error Jump 

Printer on/off status 

Subroutine: Get Basic char. 

CG, C7 = BASIC pointer 

RND No. seed 

A-6 



APPENDIX B 

RM 65 AND AIM 65 BASIC DIFFERENCES 

RM 65 Run-Time BASIC includes the code for the ATAN function 

whereas it must be provided by the application program when 

using AIM 65 BASIC (see Appendix Hin the AIM 65 BASIC Language 

Reference Manual). 

B-1 



NOTES 



NOTES 

• 



ELECTRONIC DEVICES DIVISION REGIONAL ROCKWELL SALES OFFICES 

HOME OFFICE 
Electronic Devices 01v1s1on 
Aockwell lnternat,onal 
4311 Jamboree ~oad 
Newport Beach Cahforn1a 92660 
Tel 800-85•-8099 800-854-8090 

In Cahlorma 80().,22-4230 
TWX 910 591-1698 

UNITED STATES 
Elec1ron1c Devices D1v1s1on 
Rockwell lnternat1onaI 
1842 Reynolds 
Irvine Cahforn,a 92714 
(714)632-3710 
TWX 910505-2518 

Electron,c Devices □,v,s,on 
Rockwell International 
921 Bowser Road 
R,charoson le•as 75080 
,21 41996-6500 
Telex 73-307 

Electron,c Oev,ces o,v,s,on 
Rockwell lnIerna11onaI 
10700 Wes1 H,ggms Rd Suite 102 
Rosemont llhno,s 60018 
1312)297 8862 
TWX 910 233·0\79 (RI MED ROSM) 

E1ectron1c Devices 01v1s1on 
Rockwell lnterna1,onaI 
50018 Greenlree 
Executive Campus RI 73 
Marnon New Jersey 08053 
(609) 596-0090 
TWX 710940-1377 

EUROPE 
Etectron,c Oev,ces 01v1s1on 
Aockwell lnterna11onaI GmbH 
F raunholerslrasse 11 
0-8033 Munchen-Mar11nsr1ed 
West Germany 
(089) 859-9575 
Telex 052112650 romd d 

Electronic Devices 01v1s1on 
Rockwell Internat ional 
Heathrow House Baltl R<l 
Cran lor<J )-i()UnSIOW 
M1dcUesex England 
(01 I 759-9911 Ex! 35 
Tele• 851 -25463 

Elect,omc Devices 
Rockwell Collins 
v,a Boccacc10. 23 
20123 MIiano 
lla ly 
498 74 79 

FAR EAST 
Elec1ron1c Devices 01v1s1on 
Rockwell International Overseas Corp 
l!ohp,a H,rakawa-cho Bldg 
7-6 2-chome Huakawa-cho 
Ch,yOda-ku Tokyo 102 Japan 
(031 265-8806 
Telex J22198 

YOUR LOCAL REPRESENTATIVE 

'!" Rockwell International 

... where science gets down to business 

I 
l 
\ 




