AIM 65

MICROCOMPUTER

REFERENCE
MANUAL

‘I Rockwell International
$5.00
Document No 29650 N49

* ROCKWELL INTERNATIONAL CORPORATION March 1979

TABLE OF CONTENTS

100 Installing BASIC in the AIM 65

200 Getting Started With Basic
201 BASIC Command Set
202 Direct and Indirect Commands
203 Operating on Programs and Lines
204 Printing Data
205 Number Format
206 Variables
207 Relational Tests
208 Looping
209 Matrix Operations
210 Subroutines
211 Entering Data
212 Strings

300 Statement Definitions
301 Special Characters
302 Operators
303 Commands
304 Program Statements
305 Input/Output Statements
306 String Functions
307 Arithmetic Functions

A Error Messages

Space Hints

Speed Hints
Converting BASIC Programs not Written for AIM 65 BASIC
ASCII Character Codes .
Assembly Language Subroutines

Storing AIM 65 BASIC Programs on Cassette

ATN Implementation

TOTMTMOO®

INTRODUCTION

Before a computer can perform any useful function, it must be *'told’’ what to do. Unfortunately,
at this time, computers are not capable of understanding Engtish or any other “human” language.
This is primarily because our languages are rich with ambiguities and implied meanings. The
computer must be told precise instructions and the exact sequence of operations to be performed
in order to accomplish any specific task. Therefore, in order to facilitate human communication
with a computer, programming languages have been developed.

Rockwell AIM 65 8K BASIC by Microsoft is a programming language both easily understood and

simple to use. It serves as an excellent “‘tool” for applications in areas such as business, science,
and education. After only a few hours of using BASIC, you will find that you can already write
programs with an ease that few other computer languages can duplicate.

Originally developed at Dartmouth, University, the BASIC language has found wide acceptance in
the computer field. Although it is one of the simplest computer languages to use, it is very powerful.
BASIC uses a small set of common English words as its “commands.”” Designed specifically as an
“interactive’’ language, you can give a command such as PRINT 2 + 2.’ and BASIC will immediately

reply with “4.” [t is not necessary to submit a card deck with your program on it and then wait
hours for the results. Instead, the full power of the computer is “*at your fingertips.”’

We hope that you enjoy BASIC, and are successful in using it to solve all of your programming
problems.

SECTION SUBJECT
INSTALLING BASIC IN THE AIM 65

ROM INSTALLATION PROCEDURE

Before handling the BASIC ROM circuits, be sure to abserve the precautions outlined in Section 1.4
of the AIM 65 User’s Guide.

To install the ROMs, turn off power to the AIM 65. Inspect the pins on the two BASIC ROMs to

ensure that they are straight and free of foreign material. While supporting the AIM 65 Master
Module beneath the ROM socket, insert ROM number R3225 into Socket 225, being careful to
observe the device orientation. Now insert ROM number R3226 into Socket Z226. Be certain that

both ROM’s are completely inserted into their sockets, then turn on power to the AIM 65.

ENTERING BASIC

To enter and initialize BASIC, type 5 after the monitor prompt is displayed. AIM 65 will respond
with:

<5>

MEMORY SIZE? A

Type the highest address in memory that is to be allocated to the BASIC program, in decimal. End
the entry by typing RETURN. BASIC will allocate memory from 530 (212 in hex) through the
entered address. |f BASIC is to use all available memory, type RETURN without entering an
address. The highest address is 1024 (400 hex) in the 1K RAM version of AIM 65 and 4096
{1000 hex) in the 4K RAM version.

BASIC will then ask :

WIDTH? A

Type in the output line width of the printer (or any other output device that is being used) and end the
input with RETURN.

The entered number may vary from 1 to 255, depending on the output device. 1f RETURN is typed
without entering a number, the output line width is set to a default value of 20, which is the column
width of the AIM 65 printer.

l | Page 1 0f 4

100
SECTION SUBJECT

INSTALLING BASIC IN THE AIM 65

BASIC will respond with:
XXXX BYTES FREE

where XXXX is the number of bytes available for BASIC program, variables, matrix storage, and
string space. If alf available memory was allocated, BASIC will reply with:

494 BYTES FREE (for 1K RAM:; i.e., 1024-530)

or

3566 BYTES FREE (for 4K RAM; i.e., 4096-530)

BASIC will display :
A AIM 65 BASIC Vn.n

where n.n is the version number.

BASIC is now in the command entry mode as indicated by the BASIC prompt (~) in the display
column 1. Subject 201 gets you started into the BASIC commands.

Read the following paragraphs first, however, 1o understand how to exit and reenter the BASIC
and how the BASI|C cursor prompt operates.

CAUTION

Entering BASIC with the 5 key causes the allocated
memory to be initialized with AA (hex] in all bytes,
starting with address 532. This, of course, destroys
any previous BASIC programs, data in the AIM 65
Editor Text Buffer, or machine level routines that
may have been stored in this portion of memory.
Be sure to save any desired data or programs that

may exist in this area before entering BASIC with
the 5 key.

Note that text in the Text Buffer or machine level
routine may co-exist in memory with BASIC by
locating such text or routines in upper memory
and entering the highest BASIC address with a
value lower than the starting address of such text

or routines.

100
SECTION SUBJECT

INSTALLING BASIC IN THE AIM 65

EXITING BASIC

To escape from BASIC and return to the AIM 65 Monitor, type ESC any time the BASIC command

cursor is displayed. You can also escape BASIC while a program is running, by pressing the F1 key
{see Subject 301).

Pressing RESET will also cause the AIM 65 Monitor to be entered as well as performing a hardware
reset of AIM 65.

REENTERING BASIC

BASIC may be reentered by typing 6 whenever the AIM 65 Monitor prompt is displayed. In this
case, however, any existing BASIC program is retained in memory. AIM 65 will respond to a
Key 6 entry with:

<6 >
AnB >

BASIC CURSOR

The BASIC cursor (A), displayed in column 1 whenever BASIC is in the command entry mode,
indicates that a BASIC command can be entered. The last displayed data resuiting from the previous
command 15 retained except for column 1 to provide information continuity with the previous
command or displayed output data. This is especially helpful when the printer control is turned off
to preserve printer paper.

When the first character of the next command is typed, the display will blank except for the newly
typed character. The cursor then advances across the display in accordance with typed characters
to indicate the character input position.

The displayed cursor does not appear on the printer output, thus any data printed in column 1 will
be retained.

CAUTION

The minus sign associated with any negative values
that are displayed starting in column T will be
replaced with the cursor in the BASIC command
entry mode. In the case of direct commands, the

minus sign will only flash before the cursor is
displayed if the printer control is on or may not

appear at all 1f the printer control is off. In order
to retain the minus sign, a leading blank should
be displayed before the value is displayed (see
Subject 204).

T B

100
BECTION SUBJECT

INSTALLING BASIC IN THE AIM 65

— g e———— e ey kP ——

PRINTER CONTROL

While in the BASIC command entry mode, the printer may be turned on or off by typing PRINT
while CNTL is pressed (CNTL PRINT). The on/off state of the printer is displayed after typing

PRINT.

tf the printer is turned off, statements in the BASIC command entry mode and data output from
PRINT commands will be directed to the display only. 1f the printer is turned on_ all commands
and data from PRINT commands will be directed to both the printer and display. With the printer
off, data can still be directed to the printer by using the PRINT! command (see Subject 305).

Similarly, INPUT statements will output data to the printer in response to the printer control state.
An INPUT! statement will output data to the printer even if the printer control is off {see

Subject 305).

201
SECTION SUBJECT

GETTING STARTED WITH BASIC BASIC COMMAND SET

This section is not intended to be a detailed course in BASIC programming.

It will, however, serve
as an excellent introduction for those of you unfamiliar with the language.

We recommend that you try each example in this section as it is presented. This will enhance your
“feel” for BASIC and how it is used. Table 201-1 lists all the AlM 65 BASIC commands.

NOTE

Any time the cursor (r) is displayed in column 1,
a BASIC command may be typed in. End all
commands to BASIC by typing RETURN. The
RETURN tells BASIC that you have finished
typing the command. If you make an error, type
aDEL (RUBOUT on a TTY) to eliminate the
last character. Repeated use of DEL will

eliminate previous characters. An @ symbol
will eliminate that entire line being typed.

l ‘ Page 1 of 2

SECTION

GETTING STARTED WITH BASIC

SUBJECT

201

BASIC COMMAND SET

Table 201-1. AIM 65 BASIC Commands

Commands

CLEAR
CONT
FRE
LIST
LOAD
NEW
PEEK
POKE
RUN
SAVE

_Program Statem_gnyi

DEF FN
DIiM
END
FOR

GOSUB
GOTO
IF...GOTO
IF ... THEN
LET

NEXT

ON ... GJSUB

ON...GOTO
REM

RESTORE

RETURN
STOP
USR

WAIT

Input/Qutput

DATA
GET
INPUT
POS
PRINT
READ
SPC
TAB

String Functions

ASC
CHR$
LEFTS
LEN
MID$
RIGHTS
STR$
VAL

Arithmetic Functions

ABS
ATN?®
COS
EXP
INT

LOG
RND
SIN

SGN
SQR
TAN

*Although the ATN function is not included in AIM 65 BASIC,
the ATN command is recognized (see Appendix H).

N

—

202

SECTION SUBJECT
GETTING STARTED WITH BASIC DIRECT AND INDIRECT COMMANDS
DIRECT COMMANDS

Try typing in the following:
PRINT 10-4 (end with RETURN)
BASIC will immediately print;

6

The print statement you typed in was executed as soon as you hit the RETURN key. This is called
a direct command. BASIC evaluated the formula after the “PRINT” and then typed out its value,
in this case “6"’.
Now try typing in this:

PRINT 1/2,3*10 (""" means multiply, '/’ means divide)

BASIC wilt print:

.5 30

As you can see, BASIC can do division and multiplication as well as subtraction. Note how a 0
(comma) was used in the print command to print two values instead of just one. The command
divides a line into 10-character-wide columns. The comma causes BASIC to skip to the next
10-column field on the terminal, where the value 30 is printed.

INDIRECT COMMANDS

There is another type of command called an Indirect Command. Every Indirect command begins
with a Line Number. A Line Number is any integer from 0 1o 63999,

Try typing in these lines:

10 PRINT 243
20 PRINT 2-3

A sequence of indirect Commands is called a "Program.’* Instead of executing indirect statements
immediately, BASIC saves Indirect Commands in memory., When you type in RUN BASIC will
execute the lowest numbered indirect statement that has been typed in first, then the next higher,
etc., for as many as were typed in.

I | Page 1 of 2

202
SECTION SUBJECT

GETTING STARTED WITH BASIC DIRECT AND INDIRECT COMMANDS

In the examplie above, we typed in line 10 first and line 20 second. However, it makes no difference

in what order you type in indirect statements, BASIC always puts them into correct numerical order
according to the Line Number.

Suppose we type in
RUN
BASIC will print:

5
-1

203

SECTION SUBJECT
GETTING STARTED WITH BASIC OPERATING ON PROGRAMS AND LINES

1 i w‘“—#‘_-—‘—"

In Subject 202, we typed a two-line program into memory. Now let’s see how BASIC can be used
to operate on either or both lines.

LISTING A PROGRAM
If we want a listing of the complete program currently in memory, we type in
LIST

8ASIC will reply with:

10 PRINT 2+3
20 PRINT 2-3

DELETING A LINE

Sometimes it is desirable to delete a line of a program altogether. This is accomplished by typing
the Line Number of the line to be deleted, foliowed by a carriage return.

Type in the following:

10
LIST

BASIC will reply with;
20 PRINT 2-3

We have now deleted line 10 from the program.

REPLACING A LINE

You can replace line 10, rather than just deleting it, by typing the new line 10 and hitting
RETURN.

Type in the following:

10 PRINT 3-3
LIST

| l Page 1 of 2

203

SECTION SUBJECT
GETTING STARTED WITH BASIC OPERATING ON PROGRAMS AND LINES

-_"'_""'—'—l-".—-——'——-'—-—--—-——_—-—-__-_ ——

BASIC will reply with:

10 PRINT 3-3

20 PRINT 2-3
J

it 1s not recommended that lines be numbered consecutively. 1t may become necessary to insert a
new line between two existing lines. An increment of 10 between line numbers is generally sufficient.

DELETING A PROGRAM

If you want to delete the complete program currently stored in memory, type in “NEW.” If you
are tinished running one program and are about to read in a new one, be sure to type in "NEW"’

first.

Type in the following:
NEW
Now type in:

LIST

SECTION SUBJECT
GETTING STARTED WITH BASIC PRINTING DATA

rre———_ k. - A —— e e el ML . _
el e —

If is often desirable to include explanatory text along with answers that are printed out.

Type in the following:
PRINT “ONE HALF EQUALS", 1/2
BASIC will reply with:

ONE THIRD EQUALS
.5

As explained in Subject 202, including a ”,”” in a PRINT statement causes it to space over to the
next 10-column field before the value following the **,”’ is printed.

It we use a " instead of a comma, the next value will be printed immediately following the
previous value,

NOTE

Numbers are always printed with at least one

trailing space. Any text to be printed must
always be enclosed in double quotes.

Try the following examples:

1. PRINT “ONE HALF EQUALS’"; 1/2
ONE HALF EQUALS .5

2. PRINT 1,2, 3
1 2
3

3. PRINT 1:2;3
1 23

4. PRINT -1;2; -3
-1 2-3

I | Page 1 of 1

205
SECTION SUBJECT

GETTING STARTED WITH BASIC NUMBER FORMAT

We will digress for a moment to explain the format of numbers in BASIC. Numbers are stored
internally to over nine digits of accuracy. When a number is printed, only nine digits are shown.
Every number may also have an exponent (a power of ten scaling factor).

The largest number that may be presented in AIM 65 BASIC is 1.70141183* 1038 while the
smallest positive number is 2.93873588* 1039

When a number is printed, the following rules define the format:

1. 11 the number is negative, a minus sign ({-) is printed. if the number is positive, a space IS
printed.

2. If the absolute value of the number is an integer in the range O to 999999999, it is
printed as an integer,

3. |f the absolute value of the number is greater than or equal to 0.01 and less than or equal
to 999999999, it is printed in fixed point notation, with no exponent.

4. If the number does not fall under categories 2 or 3, scientific notation is used.

Sctentific notation is formatted as follows: SX. XXXXXXXXESTT. (Each X is some integer,
0to9.)

The leading “’S” is the sign of the number: a space for a positive number and a **-** for
tor a negative one. One non-zero digit is printed before the decimal point. This is
foliowed by the decimal point and then the other eight digits of the mantissa. An

“E" is then printed (for exponent), followed by the sign (S) of the exponent: then

the two digits {TT) of the exponent itself. Leading zeroes are never printed: i.e.,

the digit before the decimal is never zero. Trailing zeroes are never printed. 1f there
is only one digit to print after all trailing zeroes are suppressed, no decimal point I$
printed. The exponent sign will be '+’ for positive and **-" for negative. Two
digits of the exponent are always printed; that is, zeroes are not suppressed in the

exponent field. The value of any number expressed thus is the number to the left
of the “E’ times 10 raised to the power of the number to the right of the “E*".

Regardless of what format is used, a space is always printed following a number. BASIC checks
to see it the entire number will fit on the current line. 1f it cannot, a carriage return/line feed is

executed before printing the number.

l I Page 1 of 2

205
SECTION SUBJECT

GETTING STARTED WiTH BASIC NUMBER FORMAT

Following are examples of various numbers and the cutput format in which BASIC will output them:

NUMBER OUTPUT FORMAT
+1 1
-1 -1
6523 6523
-23.460 -23.46
1E20 1E+20
-12.3456E-7 -1.23456E-06
1.234567E-10 1.23457E-10
1000000000 1E+Q9
999999999 999999999
n N
.01 01
000123 1.23E-04

A number input from the keyboard or a numeric constant used in a BASIC program may have as
many digits as desired, up to the maximum length of a line (72 characters) or maximum numeric
value. However, only the first 10 digits are significant, and tenth digit is rounded up.

PRINT 1.23456789876543210
1.2345679

206
SECTION SUBJECT

GETTING STARTED WITH BASIC VARIABLES

ASSIGNING VARIABLES WITH AN INPUT STATEMENT

Following is an example of a program that reads a value from the keyboard and uses that value to
calculate and print a resuit:

10 INPUT R

20 PRINT 3.14163*R*R
RUN

? 10

314.159

Here's what's happening: When BASIC encounters the input statement, it outputs a guestion mark
{?) on the display and then waits for you to type in a number. When you do {in the above example,

10 was typed), execution continues with the next statement in the program after the variable (R)
has been set (in this case to 10). In the above example, line 20 would now be executed. When the
formula after the PRINT statement is evaluated, the value 10 is substituted for the variable R each
time R appears in the formula. Therefore, the formula becomes 3.14159*10* 10, or 314.159.

If we wanted to calculate the area of various circles, we could rerun the program for each successive
circle. But, there’s an easier way to do it simply by adding another line to the program, as foliows:

30 GOTO 10
RUN

710
314.159

?3
28.27431%

?4.7
69.3977231
¢

By putting a “GOTO" statement on the end of our program, we have caused it to go back to line 10
after it prints each answer for the successive circles. This could have gone on indefinitely, but we
decided to stop after calculating the area for three circles. This was accomplished by typing 2

carriage return to the input statement (thus a biank line).

VARIABLE NAMES

The letter “R" in the program above is a ‘'variable.”” A variable name can be any alphabetic
character and may be followed by any alphanumeric character (letters A to 2, numbers 0 to 9).

Any alphanumeric characters after the first two are ignored.

l l Page 1 0f 3

SECTION SUBJECT

GETTING STARTED WITH BASIC VARIABLES

Here are some examples of legal and illegal variable names:

Legal legal

A % (first character must be alphabetic)

2 ZIABCD (variable name too long)

TP TO (variable names cannot be reserved words)

PSTGS RGOTO (variabie names cannot contain reserved words)
COUNT

ASSIGNING VARIABLES WITH A LET OR ASSIGNMENT STATEMENT

Besides having values assigned to variables with an input statement, you can also set the value of a
variable with a LET or assignment statement.

'
Try the following examples:

A=bH

PRINT A, A*2
5 10

LET Z=7

PRINT Z, Z-A
7 2

As you will notice from the examples, the “"LET"’ is optional in an assignment statement.

BASIC “remembers” the values that have been assigned to variables using this type of statement.
This “remembering” process uses space in the memory to store the data.

The values of variables are discarded (and the space in memory used to store them is released) when
one of four conditions occur:

¢ A new line is typed into the program or an old line is deleted

e ACLEAR command is typed in

e A RUN command is typed in

e NEW is typed in

’ _ l '

SECTION SUBJECT

GETTING STARTED WITH BASIC VARIABLES

-- T . N e e e o S . =g, e R W T R T e — N ——— e — ———piafle

T — e —— s e ———

Another important fact is that if a variable is encountered in a formula before it is assigned a vaiue,
it is automatically assigned the value zero. Zero is then substituted as the value of the variable in the
particular formula. Try the example below:

PRINTQ; Q+2:Q*2
0O 2 O

RESERVED WORDS

The words used as BASIC statements are “reserved”’ for this specific purpose. You cannot use these
words as variable names or inside of any variable name. For tnstance, “FEND’’ would be illegal
because “END" is a reserved word.

Table 206-1 is a list of the reserved words in BASIC.

Table 206-1. AIM 65 BASIC Reserved Words

ABS FN LIST PRINT SPC
AND FOR LOAD POS SQR
ASC FRE LOG READ STEP
ATN GET MID$ REM STOP
CHRS GOSUB NEW RESTORE STRS
CLEAR GOTO NEXT RETURN TAB
CONT tF NOT RIGHTS TAN
COS INPUT NULL RND THEN
DATA INT ON RUN 10
DEF LEFTS OR SAVE USR
DIM LEN PEEK SGN VAL
END LET POKE SIN WAIT
EXP

REMARKS

The REM (short for "“remark’’) statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement, the rest of the line is ignored.

This serves mainly as an aid for the programmer, and serves no useful function as far as the operation
of the program in solving a particular problem.

I l 3

207

SECTION SUBJECT
GETTING STARTED WITH BASIC RELATIONAL TESTS

Suppose we wanted to write a program to check whether a number is zero. With the statements
we’'ve gone over so far, this could not be done. What is needed is a statement which can be used
to conditionally branch to another statement. The “IF-THEN" statement does just that.

Type in the following program: (remember, type NEW first)

10 INPUT B

20 IF B=0 THEN 50

30 PRINT ““NON-ZERQO"
40 GOTO 10

50 PRINT “ZERQ"

60 GOTO 10

When this program is typed and run, it will ask for a value for B. Type in any value you wish.
The AIM 65 will then come to the “IF" statement. Between the “IF'* and the “THEN’’ portion
of the statement there are two expressions separated by a “’relation.”

A relation is one of the following six symbols:

RELATION MEANING

= EQUAL TO

> GREATER THAN

< LESS THAN

<> NOT EQUAL TO

<=0or=< LESS THAN OR EQUAL TO

=> 01> = GREATER THAN OR EQUAL TO

The IF statement is either true or false, depending upon whether the two expressions satisfy the
relation. For example, in the program we just did, if O was typed in for B the IF statement would
be true because 0=0. In this case, since the number after the THEN is 50, execution of the program
would continue at line 50. Therefore, “ZERO" would be printed and then the program would
jump back to line 10 (because of the GOTQ statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the I|F statement would be false and the program

would continue execution with the next line. Therefore, “NON-ZERO" would be printed and the
GOTQ in line 40 would send the program back to line 10.

' | Page 1 of 2

207
SECTION SUBJECT

GETTING STARTED WITH BASIC RELATIONAL TESTS

. Tl T . ey e —— - FUEE

A PROGRAM USING RELATIONS

Now try the foliowing program for comparing two numbers:

10 INPUT A, B

20 IFA<=BTHENDSO

30 PRINT “A IS BIGGER"”

40 GOTO 10

50 IF A<BTHEN 80

60 PRINT “THEY ARE THE SAME"”
70 GOTO 10

80 PRINT B IS BIGGER"

90 GOTO 10

When this program is run, line 10 will input two numbers from the keyboard. At line 20, if A is
greater than B, A <= B will be false. This will cause the next statement to be executed, printing
“A IS BIGGER" and then line 40 sends the computer back to line 10 to begin again.

At line 20, it A has the same value as B, A <= B is true so we go to line 50. At line 50, since A has
the same value as B, A < B is false; therefore, we go to the following statement and print “THEY
ARE THE SAME.”” Then line 70 sends us back to the beginning again.

At line 20, if A Is smaller than B, A <=8 is true so we go to line 50. At line 50 A < B will be true
so we then go to line 80. “B IS BIGGER" is then printed and again we go back to the beginning.

Try running the last two programs several times. It may be easier to understand if you try writing
your own program at this time using the IF-THEN statement. Actually trying programs of your
own is the quickest and easiest way to understand how BASIC works. Remember, to stop these
programs just give a RETURN to the input statement.

Qe —— g —— — gy — B oy s . S.......... i .

208
SECTION SUBJECT

GETTING STARTED WITH BASIC LOOPING

One advantage of computers is their ability to perform repetitive tasks. Let’s take a closer look and
see how this works.

A SQUARE ROOT PROGRAM

Suppose we want a table of square roots from 1t0 9. The BASIC function for square root is "SQR";

the form being SQR(X}, X being the number whose square root is to be calculated. We could write
the program as follows:

10 PRINT 1, SOR(1)
20 PRINT 2, SQR(2)

30 PRINT 3, SQR(3)
40 PRINT 4, SQR(4)

50 PRINT 5, SQR({5)
60 PRINT 6, SQR(6)

70 PRINT 7, SQR(7)
80 PRINT 8, SQR(8)
90 PRINT 9, SQR(9)

AN IMPROVED SQUARE ROOT PROGRAM

This program will do the job, but is terribly inefficient. We can improve the program considerably
by using the |F statement just introduced as follows:

10 N=]

20 PRINT N; SQR(N)
30 N=N+1

40 IFN<=9THEN 20

When this program is run, its output will look exactly like that of the 9 statement program above
it. Let’s look at how it works:

At line 10 we have a LET statement which sets the value of the variable N equal to 1. At line 20

we print N and the square root of N using its current value. [t thus becomes 20 PRINT 1: SQR(1).
and this calculation is printed out.

At hine 30 we use what will appear at first to be a rather unusual LET statement. Mathematically,
the statement N=N+1 is nonsense. However, the important thing to remember is that in a LET
statement, the symbol “=" does not signify equality. In this case, “="* means "‘to be replaced
with.” All the statement does is to take the current value of N and add 1 to it. Thus, after the
first time through line 30, N becomes 2.

i I Page 1 of 4

208
SECTION SUBJECT

GETTING STARTED WITH BASIC LOOPING

At line 40, since N now equals 2, N <=9 is true so the THEN portion branches us back to line 20,
with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated, each time adding 1 to the value of N.
When N finally equals 9 at line 20, the next line will increment it to 11. This results in a false
statement at line 40, and since there are no further statements to the program it stops.

BASIC STATEMENTS FOR LOOPING

This technique is referred to as “looping” or “iteration.’” Since it is used quite extensively in
programming, there are special BASIC statements for using it. We can show these with the
following program :

10 FORN=1T0O9
20 PRINT N: SQR(N)
30 NEXTN

The output of the program Ii;;ted above will be exactly the same as the previous two programs.

At line 10, N is set to equal 1. Line 20 causes the value of N and the square root of N 1o be printed.
At line 30 we see a new type of statement. The “NEXT N’ statement causes one to be added to N

and then if N <=9 we go back to the statement following the “FOR’’ statement. The overall
operation then is the same as with the previous program.

1

Notice that the variable following the “FOR" is exactly the same as the variable after the “NEXT."
There is nothing special about the N in this case. Any variable could be used, as long as it is the

same in both the ““FOR’ and the “NEXT’’ statements. For instance, “Z 1’ could be substituted
everywhere there is an “N” in the above program and it would function exactly the same.

ANOTHER SQUARE ROOT PROGRAM

Suppose we want to print a table of square roots of each even number from 10 to 20. The
following program performs this task :

10 N=10
20 PRINT N;: SQR(N)
30 N=N+2

40 JF N <=20THEN 20

I -

208
SECTION SUBJVECT

GETTING STARTED WITH BASIC LOOPING

Note the similarity between this program and our “improved” square root program. This program
can also be written using the “FOR’’ loop just introduced.

10 FORN=10TO 20 STEP 2
20 PRINT N; SQR(N)
30 NEXTN

Notice that the only major difference between this program and the previous one using “FOR"
loops is the addition of the “'STEP 2" clause.

This tells BASIC to add 2 to N each time, instead of 1 as in the previous program. {f no “STEP”
s given in a “"FOR" statement, BASIC assumes that 1 is to be added each time. The 'STEP” can
be followed by any expression.

A COUNT-BACKWARD PROGRAM

Suppose we wanted to count backward from 10 to 1. A program for doing this would be as

foliows:
10 =10
20 PRINT)
30 1={-1

40 [F!>=1THEN 20

Notice that we are now checking to see that | is greater than or equal to the final value. The reason
is that we are now counting by a negative number. In the previous examples it was the opposite, SO
we were checking for a variable less than or equal to the final value.

SOME OTHER LOOPING OPERATIONS

The ""STEP” statement previously shown can also be used with negative numbers to accomplish this
same result. This can be done using the same format as in the other program:

10 FORI=10TO 1 STEP -1
20 PRINT |

30 NEXT |

] | ’

208
SECTION SUBJECY

GETTING STARTED WITH BASIC LOOPING

A e o —— T . e — - — —— - i . — e L ey gy E— -

“"FOR’ loops can also be “"nested.” For example:

10 FORI=1TO5
20 FORJ=1TO3

30 PRINT L, J
40 NEXTJ

50 NEXTt

Notice that “NEXT J* precedes "NEXT 1.’ This is because the J-loop is inside the |-loop. The
following program is incorrect; run it and see what happens:

10 FORI=1TOS5
20 FORJ=1TO3
30 PRINT I, J

40 NEXT |

50 NEXTJ

It does not work because when the “NEXT |” is encountered, all knowledge of the J-loop is lost.
This happens because the J-loop is “inside’’ the 1-loop.

209
SECTION BUBJECT

GETTING STARTED WITH BASIC MATRIX OPERATIONS

pl———— -
—isinfly, o ———— i — e ————— - i ——

It is often convenient to be able to select any element in a table of numbers. BASIC allows this to
be done through the use of matrices.

A matrix is a table of numbers. The name of this table (the matrix name) is any legal variable name,
“A"" for example. The matrix name “A"’ is distinct and separate from the simple variable A" and
you could use both in the same program.

To select an element of the table, we subscript “A”*: that is, to select the {’th element, we enciw% '
in parentheses (1) and then follow ““A” by this subscript. Therefore, ’A{1)” is the |'th element in

the matrix “A.’"

“A(l)” is only one element of matrix A, and BASIC must be told how much space to allocate for
the entire matrix. This is done with a “DIM*” statement, using the format 'DIM A{15).” in this
case, we have reserved space for the matrix index "’l”’ to go from Q to 15. Matrix subscripts always
start at 0, therefore, in the above example, we have aliowed for 16 numbers in matrix A.

I “A{1)" is used in a program before it has been dimensioned, BASIC reserves space for 11 elements
(O through 10).

A SORT PROGRAM

As an example of how matrices are used, try the following program to sort a list of B numbers, in
which you pick the numbers to be sorted:

10 DIM A(8) HO A{l)=A{1+1)

20 FORI=1T7T08 120 A(I1+1)=T

30 INPUT A1) 130 F=1

50 NEXT I 140 NEXT

70 F=0 150 IF F=1THEN 70
80 FORI1=1T07 160 FORI=1TOB8

90 IF A(l) <= A{l+1} THEN 140 170 PRINT A(l)
100 T=A(l) | 180 NEXT |

When line 10 is executed, BASIC sets aside space for 9 numeric values, A(0) through A(8).
Lines 20 through 50 get the unsorted list from the user. The sorting itsetf is done by going through

the list of numbers and switching any two that are not in order. “F* is used to indicate if any
switches were made; if any were made, line 150 telis BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order, lines 160 through 180 will print
out the sorted list. Note that a subscript can be any expression.

I Page 1 of 1

210
SECTION SUBJECT

GETTING STARTED WITH BASIC SUBROUTINES

If you have a program that performs the same action in several different places, you could duplicate
the same statements for the action in each place within the program.

The "GOSUB" and “RETURN"’ statements can be used to avoid this duptication. When a “GOSUB”
is encountered, BASIC branches to the line whose number follows the “GOSUB.* However, BASIC

remembers where it was in the program before it branches. When the “"RETURN?" statement is

encountered, BASIC goes back to the first statement following the last ’"GOSUB"* that was
executed. Observe the following program :

10 PRINT “WHAT IS THE NUMBER"";
30 GOSUB 100

40 T=N

50 PRINT “SECOND NUMBER";

70 GOSUB 100

80 PRINT “THE SUM IS”; T+N

90 STOP

100 INPUT N

110 IF N = INT(N) THEN 140
120 PRINT “MUST BE INTEGER.”

130 GOTO 100
140 RETURN

This program asks for two numbers {which must be integers), and then prints their sum. The
subroutine in this program is lines 100 to 140. The subroutine asks for a number, and if it is not
an integer, asks for a new number. It will continue to ask until an integer value is typed in.

The main program prints “"WHAT IS THE NUMBER," and then calls the subroutine to get the value
of the number into N. When the subroutine returns {to line 40}, the value input is saved in the

variable T. This is done so that when the subroutine is called a second time, the value of the first
number will not be lost.

"“SECOND NUMBER" is then printed, and the second value is entered when the subroutine is
again called.

When the subroutine returns the second time, “THE SUM IS is printed, followed by the sum,

T contains the value of the first number that was entered and N contains the value of the second
number.

| l Page 1 of 2

210

SECTION SUBJECT
GETTING STARTED WITH BASIC SUBROUTINES
STOPPING A PROGRAM

The next statement in the program is a “STOP* statement. This causes the program to stop
execution at line 90. If the “STOP** statement was excluded from the program, we would “*fall
into” the subroutine at line 100. This is undesirable because we would be asked to input another

number. If we did, the subroutine would try to return; and since there was no “GOSUB”’ which
called the subroutine, an RG error would occur. Each “GOSUB’’ executed in a program should

have a2 matching “RETURN® executed later. The opposite also applies: a “"RETURN" should be
encountered only if it is part of a subroutine which has been called by a *GOSUBS.*

Either “STOP” or "END" can be used to separate a program from its subroutines. “STOP’’ will
print a message saying at what line the "STOP* was encountered.

211

SECTION SUBJECT

GETTING STARTED WITH BASIC ENTERING DATA

Suppose you had to enter numbers to your program that did not change each time the program was

run, but you would like it to be easy to change them if necessary. BASIC contains special state-
ments, “READ" and "DATA," for this purpose.

Consider the following program:

10 PRINT “GUESS A NUMBER";
20 INPUT G

30 READD

40 IF D =-999999 THEN 90

°0 IF D<> G THEN 30

60 PRINT “YOU ARE CORRECT”

70 END

90 PRINT “BAD GUESS, TRY AGAIN. "

95 RESTORE
100 GOTO 10
110 DATA 1, 393, -39, 28, 391, -8, 0, 3.14, 90
120 DATA 89, 5, 10, 15, -34, -999999

When the "READ" statement is encountered, the effect is the same as an INPUT statement. But,
tnstead of getting a number from the keyboard, a number is read from the “"DATA’ statements.

The first time a number is needed for a READ, the first number in the first DATA statement is
read. The second time one is needed, the second number in the first DATA statement is read.
When the all numbers of the first DATA statement have been read in this manner, the second
DATA statement will be used. DATA is always read sequentially in this manner, and there may
be any number ot DATA statements in your program.

The purpose of this program is to play a little game in which you try to guess one of the numbers

contained in the DATA statements. For each guess that is typed in, we read through all of the
numbers in the DATA statements until we find one that matches the guess.

It more values are read than there are numbers in the DATA statements, an out of data (OD) error
occurs. That is why in line 40 we check to see if -999999 was read. This is not one of the numbers
to be matched, but is used as a flag to indicate that all of the data (possible correct guesses) has
been read. Therefore, if -999999 was read, we know that the guess was incorrect.

Betore going back to line 10 for another guess, we need to make the READ’s begin with the first
piece of data again. This is the function of the *"RESTORE.” After the RESTORE is encountered,
the next piece of data read witi be the first number in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only READ statements make use

of the DATA statements in a program, and any other time they are encountered during program
execution they will be ignored.

I l Page 1 of 1

212
SECTION SUBJECT

GETTING STARTED WITH BASIC STRINGS

A list of characters is referred to as a “String.”” Rockwell. R6500. and THIS IS A TEST are all

strings. Like numeric variables, string variables can be assigned specific values. String variables are
distinguished from numeric variabtes by a “‘$* after the variable name.

For example, try the following:

A$="ROCKWELL R6500"
PRINT A

ROCKWELL R6500

In this example, we set the string variable A$ to the string value “ROCKWELL R6500.” Note that
we also enclosed the character string to be assigned to A$ in quotes.

LEN FUNCTION

Now that we have set A$ to a string value, we can find out what the length of this value is {the
number of characters it contains). We do this as follows :

PRINT LEN(AS), LEN{(”"MICROCOMPUTER")
14 13

The “LEN" function returns an integer equal to the number of characters in a string.

A string expression may contain from Q to 255 characters. A string containing 0 characters is called
the “null” string. Before a string variable is set to a value in the program, it is initialized to the null
string. Printing a null string on the terminal wilt cause no characters to be printed, and the printer
of cursor will not be advanced to the next column. Try the following:

PRINT LEN(Q$): Q$: 3
0 3

Another way to create the null string is: Q$=""""

Setting a string variable to the null string can be used to free up the string space used by a non-null
string variable,

| I Page 1 of 6

SECTION
GETTING STARTED WITH BASIC

LEFTS FUNCTION

SUBJECT

STRINGS

212

- - — —— e e — o — — Cm——— — e L i e e —

It is often desirable to access parts of a string and manipulate them. Now that we have set A$ to
"ROCKWELL R6500,” we might want to print out only the first eight characters of A$. We would

do so like this:

PRINT LEFT$ (AS, 8)
ROCKWELL

“"LEFTS$" is a string function which returns a string composed of the leftmost N characters of its

w.ring argument. Here is another example:

FORN=1TO LEN(AS):PRINT LEFTS(AS, N):NEXTN

R

RO

ROC

ROCK
ROCKW
ROCKWE
ROCKWEL
ROCKWELL
ROCKWELL R

ROCKWELL R6
ROCKWELL R65
ROCKWELL R650
ROCKWELL R6500

Since A$ has 14 characters, this loop will be executed with N=1 2,3,...,13, 14. The first time
through only the first character will be printed, the second time the first two characters will be

printed, etc.

RIGHTS FUNCTION

Another s_trin‘g function, called “RIGHTS,"” returns the right N characters from a string expression,
Try substituting "RIGHTS$" for “LEFTS$"” in the previous example and see what happens.

MID$ FUNCTION

There is also a string function which allows us to take characters from the middle of a string. Try

the following:

) _

—

212
BECTION SUBJECT

GETTING STARTED WITH BASIC STRINGS

FOR N=1TO LEN(AS$) :PRINT MID${AS$, N):NEXT N
ROCKWELL R6500
OCKWELL R6500

CKWELL R6500
KWELL R6500

WELL R6500
ELL R6500
LL R6500

L R6500

R6500
R6500
6500
500
00
)

“MIDS$" returns a string starting at the Nth position of A$ to the end (last character) of A$. The
first position of the string is position 1 and the last possible position of a string is position 255,

Very often it is desirable to extract only the Nth character from a string. This can be done by

calling MID$ with three arguments. The third argument specifies the number of characters to
return.

For example:

FOR N=1TO LEN(AS):PRINT MIDS$(AS, N, 1), MID$(AS, N, 2) :NEXT N
R RO
O OC
C CK
K KW
W WE
E EL
L LL
L

L
R

R R6
6 65
3 50
0 00
0 0

T -

212
ECTION SUBJECT

GETTING STARTED WITH BASIC STRINGS

CONCATENATION—JOINING STRINGS

Strings may also be concatenated {put or joined together) through the use of the “'+" operator.
Try the following:

B$"’":AS|C FOH"""” II+A$

PRINT B$
BASIC FOR ROCKWELL R6500

Concatenation is especially usefut if you wish to take a string apart and then put it back together
with slight modifications. For instance:

C$=LEFT$(BS, 9)+"-""+MID$(B$, 11, 8)+"-""+RIGHTS(BS, 5)
PRINT C$
BASIC FOR—ROCKWELL-R6500

VAL AND STR$ FUNCTIONS

Sometimes it is desirable to convert a number to its string representation, and vice-versa. ““VAL"
and 'STR$" perform these functions.

Try the following:

STRING$=""567.8"

PRINT VAL{STRINGS
567.8

STRING$=STR$(3.1415)

PRINT STRINGS, LEFTS{STRINGS, 5)
3.1415 3.14

“STR$’’ can be used to perform formatted |/O on numbers. You can convert a number to a string
and then use LEFT$. RIGHTS$, MID$ and concatenation to reformat the number as desired.

“STR$’ can also be used to conveniently find out how many print columns a number will take.
For example: !

PRINT LEN(STR${3.157))
6

If you have an application in which a user is typing in a question such as “WHAT IS THE VOLUME
OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1 FEET?"” you can use “VAL" to
extract the numeric values 5.36 and 5.1 from the question.

R r——*

SECTION
GETTING STARTED WITH BASIC

212
SUBJECT

STRINGS

CHRS FUNCTION

CHRS is a string function which returns a one character string which contains the alphanumeric
equivalent of the argument, according to the conversion table in Appendix E. ASC takes the first
character of a string and converts it to its ASCH decimal value.

One of the most common uses of CHRS is to send a special character to a terminal.

100
110
t12
114
120
130
140
150
160
170
180
185
190
200
202
204
220
230
240
250
260
270
280

DIM A${15)
FORI=1TO 156
READ A$(l)

NEXT 1

F=0: =1

IF A$(l) < =AS${1+1) THEN 180
TS$=A$(1+1)
AS{1+1)=AS(1)
AS(1)=T$

F=1

f=}+1

IF | < 15 THEN 130
IF F THEN 120
FOR I=1TO 15
PRINT A$(1)

NEXT |
DATA AIM 65, DOG

DATA CAT, R6500

DATA ROCKWELL, RANDOM

DATA SATURDAY, “***ANSWER"**"

DATA MICRO, FOO

DATA COMPUTER, MED

DATA NEWPORT BE-ACH, DALLAS, ANAHEIM

ADDITIONAL STRING CONSIDERATIONS

1.

.

A string may contain from 0O to 255 characters. Ail string variable names end in a dollar
sign ($); for example, A$, B9$, K$, HELLOS.

String matrices may be dimensioned exactly like numeric matrices. For instance,

DIM AS$(10, 10) creates a string matrix of 121 elements, eleven rows by elevon columns
{rows O to 10 and columns 0 to 10). Each string matrix element is a complete string,
which can be up to 255 characters in length.

.

BECTION

GETTING STARTED WITH BASIC

NAME

DIM

INPUT

READ

PRINT

212
SUBJECT

STRINGS

e r—————— e e s st~ e e — - S e e

EXAMPLE

25 DIM A$(10, 10)

27 LET A$="F00’'+V$

30 LET Z2$=R$+Q$

40 INPUT X$

50 READ X3

60 PRINT X$
70 PRINT “FO0"'+A$

N — - e iipli— i w4

PURPOSE/USE

Allocates space for a pointer and length for
each element of a string matrix. No string
space is allocated.

Assigns the value of a string expression to
a string variable. LET is optional.

String comparison operators. Comparison
is made on the basis of ASCI| codes, a
character at a time until a difference is
found. If during the comparison of two
strings, the end of one is reached, the
shorter string is considered smaller,

Note that A’ is greater than A" since
trailing spaces are significant.

String concatenation. The resulting string

must be less than 256 characters in length
or an LS error will occur.

Reads a string from the keyboard. String
does not have to be quoted; but if not,
leading blanks will be ignored and the
string will be terminatedona *’,” or *:"
character.

Reads a string from DATA statements
within the program. 5Strings do not have
to be quoted; but if they are not, they

are terminated ona’’,’’ or *:” character

and leading spaces are ignored. See
DATA for the format of string data.

Prints the string expression on the
display/printer.

301

SECTION SUBJECT
STATEMENT DEFINITIONS SPECIAL CHARACTERS
CHARACTER USE
o Erases current line being typed, and types a carriage return/tine
teed.
DEL Erases last character typed. If no more characters are left on

the line, types a carriage return/line feed.

RETURN A RETURN must end every line typed in. Returns cursor to
the first position {leftmost) on line, and prints the line if the
printer is on.

F1 Interrupts execution of a program or a list command. F1 has
effect when a statement finishes execution, or in the case of
interrupting a LIST command, when a complete line has

finished printing. In both cases a return is made to BASIC's
command level and OK is typed.

Prints “BREAK IN LINE XXXX,”” where XXXX is the line
number of the next'statement to be exectted.

Thereisno F1 keyona TTY. However, when TTY is being
used, the AIM 65°s F1 key is operational and can be used.

. {colon) A colon is used to separate statements on a line. Colons may

be used in direct and indirect statements. The only limit on
the number of statements per line is the line length. It is not
possible to GOTO or GOSUB to the middle of a line.

? Question marks are equivalent to PRINT. For instance, ? 2+2
is equivalent to PRINT 2+2. Question marks can also be used
in indirect statements. 10 ? X, when listed, will be typed as
T0 PRINT X.

$ A dollar sign ($) suffix on a variable name establishes the
variable as a character string.

. I Page 1 of 2

SECTION
STATEMENT DEFINITIONS

CHARACTER

%

ESC

CNTL PRINT

301

SUBJECT

SPECIAL CHARACTERS

USE

A percent sign {%) suffix on a variabie name establishes the
variable as an integer

An exclamation sign {{) suffix on an INPUT, PRINT, or ?
command causes the input or output to be printed even
though the printer is turned off.

Returns control to the Monitor.

Turns the AIM 65 printer on if it is off, and off if it is on.

302

SECTION SUBJECT
STATEMENT DEFINITIONS OPERATORS
SYMBOL SAMPLE STATEMENT PURPOSE /USE
= A=100 Asstgns a value to a variable
LET Z2=2.5 The LET is optional
- B=-A Negation. Note that 0-A is subtraction,

while -A is negation.

A (F3 key) 130 PRINT XA3 Exponentiation (equal to X* X* X in
in the sample statement)

0~,0=1 O to any other power = ()

AAB, with A negative and B not an
iInteger gives an FC error.

* 140 X=R*{(B *D) Multiplication.
/ 150 PRINT X /1.3 Division.

+ 160 Z=R+T7-+Q Addition

- 170 J=100-1 Subtraction

RULES FOR EVALUATING EXPRESSIONS:

1} Operations of higher precedence are performed before operations of lower precedence.
This means the multiplication and divisions are performed before additions and subtractions.
As an example, 2+10/5 equals 4, not 2.4. When operations of equal precedence are found
in a formula, the left hand one is executed first: 6-3+5=8, not - 2.

2) The order in which operations are performed can always be specified explicitly through the
use of parentheses. For instance, to add 5 to 3 and then divided that by 4, we would use
(54+3)/4, which equals 2. 1f instead we had used 5+3/4, we would get 5.75 as a result
{5 plus 3/4).

l l Page 1 of

302

SECTION SUBJECT

STATEMENT DEFINITIONS OPERATORS

—— e ———— . et Tl p——— - s e e e e e e ——— — S e ™ el " . e o = i wm e . _— - e P — i — ——
T e — e e - e —— - - W

The precedence of operators used in evaluating expressions is as follows, in order beginning with the
highest precedence:

NOTE

Operators listed on the same line have the same
precedence.

1) Expressions in parentheses are always evaluated first

2) A (F3KEY) Exponentiation
3) NEGATION -X where X may be a formula
4) "and/ Multiplication and Division
5) +and - Addition and Subtraction
6) RELATIONAL OPERATORS: = Equal
(equal precedence for all six} <> Not Equal
< Less Than
> Greater Than

=< ofr <= Less Than or Equal
=> 0r >= Greater Than or Equal

(These three below are Logical Operators)

7) NOT Logical and bitwise “NOT"’ like
negation, not takes only the formula
to its right as an arqument

8 AND Logical and bitwise "AND"
9) OR Logical and bitwise “OR"’
A relational expression can be used as part of any expression.

Relational Qperator expressions will always have a value of True (-1) or a value of False (0).
Therefore, (b = 4)=0, (6=5)=-1, (4>5)=0, (4<5}=-1, etc.

] B

302
SECTION SUBJECT

STATEMENT DEFINITIONS OPERATORS

The THEN clause of an |F statement is executed whenever the formula after the IF is not equal to O.
Thatistosay, IF X THEN. .. isequivalentto |F X<>0 THEN

SYMBOL SAMPLE STATEMENT PURPOSE /USE

= 10IF A=15 THEN 40 Expression Equals Expression

<> 70 1F A<>0THENS - Expression Does Not Equal Expression

> 301FB>100 THEN 8 Expression Greater Than Expression

< 160 IF B<2 THEN 10 Expression Less Than Expression

<=,=< 180 IF 100<=8+C THEN 10 Expression Less Than or Equal To
Expression

>==> 190 IF Q=> R THEN 50 Expression Greater Than Or Equal To
Expression

AND 2IF A<5 ANDB<2 THEN 7 If expression 1 (A <5) AND expression 2
(B < 2) are both true, then branch to
line 7

OR IF A<1Q0QR B<2THEN 2 If either expression 1 (A< 1) OR
expression 2 {B <2) is true, then branch
to line 2

NOT |F NOT Q3 THEN 4 If expression “NOT Q3" is true {Because

Q3 is false), then branch to line 4

Note: NOT -71=0 (NOT true=1alse}
AND, OR, and NOT can be used for bit manipulation, and for performing boolean operations.
These three operators convert their arguments to sixteen bit, signed two’s-complement integers in
the range -32768 to +32767. They then perform the specified logical operation on them and return

a result within the same range. |f the arguments are nat in this range, an *“FC’’ error results.

The operations are performed in bitwise fashion, this means that each bit of the result is obtained
by examining the bit in the same position for each argument.

] s

302
SECTION SUBJECY

STATEMENT DEFINITIONS OPERATORS

e I —————— - ol —— e — bl e —

The following truth table shows the logical relationship between bits:

OPERATOR ARGUMENT 1 ARGUMENT 2 RESULT

AND | 1 1
0 1 O
1 0 0
0 O 0
OR ’ L 1 1
1 O t
0 1 1
0 0 0
NOT 1 - 0
0 — 1

EXAMPLES: (/n all of the examples below, leading zeroes on binary numbers are not shown.]

63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 10000, the result
of the AND is binary 10000 or 16.

15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110, so 15 AND 14
equals binary 1110 or 14.

-1 AND 8=8 -1 equalsbinary 1111111111111111 and B equals binary 1000, so
the result is binary 1000 or 8 decimal.
4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the result is binary O
because none of the bits in either argument match to give a 1 bit in
the result.
4 OR 2-=6 Binary 100 OR’d with binary 10 equals binary 110, or 6 decimal.
10 OR 10=10 Binary 1010 OR’d with binary 1010 equals binary 1010, or 10 decimal.
-1 OR -2=-1 Binary 1111111111111111 {(-1) OR'd with binary 1111111111111110

{-2) equals binary 1111111111111111, or -1.

NOT 0=-1 The b1t complement of binary 0 to 16 places is sixteen ones
(1111111111111111) or -1, Also NOT -1=0.

. | -

302

SECTION SUBJECT
STATEMENT DEFINITIONS OPERATORS
NOT X NOT X is equal to -{X+1). This is because to form the sixteen bit

two's complement of the number, you take the bit {one's)
complement and add one.

NOT 1=.2 The sixteen bit complement of 1is 1711111111111 110, which is
equal to -{1+1) or -2

A typical use of the bitwise operators is to test bits set in the computer’s locations which reflect the
state of some external device.

Bit position 7 is the most significant bit of a byte, while position Q is the least significant.

For instance, suppose bit 1 of location 40963 is 0 when the door to Room X is closed, and 1 if the
door is open. The following program will print “Intruder Alert” if the door is opened:

10 1F NOT (PEEK(40963) AND 2) THEN 10 This line will execute over and over until

bit 1 {masked or selected by the 2)
becomes a 1. When that happens, we go
to line 20.

20PRINT “INTRUDER ALERT"” Line 20 will output “INTRUDER
ALERT.”

However, we can replace statement 10 with a ""WAIT" statement, which has exactly the same effect,

10 WAIT 40963, 2 This line delays the execution of the

next statement in the program until

bit 1 of location ADQ3 becomes 1. The
WAIT is much faster than the equivalent
IF statement and also takes less bytes

of program storage.

The following is another useful way of using relational operators:

125 A=-{(B>C}*B-(B<=C)*C This statement will set the variable A

to MAX(B, C) = the larger of the two
variables B and C.

SECTION

SUBJECT

STATEMENT DEFINITIONS ~ COMMANDS

303

A BASIC command may be entered when the cursor is displayed. This is called the “Command Level.*
Commands may be used as program statements. Certain commands, such as LIST, NEW, and LOAD

will terminate program execution when they finish. Each command may require one or more
arguments in addition to the command statement, as defined in the syntax/function description. An

argument without parenthesis is required to be entered without parenthesis. Arguments contained
within parenthesis are required to be entered with the shown parenthesis. Arguments within brackets
are optional. Optional arguments, if included, must be entered with or without accompanying
parenthesis, however shown.

STATEMENT

CLEAR

CONT

]

SYNTAX/FUNCTION

CLEAR

Clears all program variables, resets "'FOR"’
and "GOSUB‘ state, and restores data.

CONT

Continues program execution after the F 1
key or a STOP or INPUT statement termi-
nates execution. You cannot continue after
any error, after modifying your program, or
before your program has been run. Qne of
the main purposes of CONT is debugging.
Suppose at some point after running your
program, nothing ts printed. This may be
because your program is performing some
Lime consuming calculation, but it may be
because you have fallen into an “infinite

loop.”” An infinite loop is a series of BASIC
statements from which there is no excape.
BASIC will keep executing the series of
staterments over and over; until you inter-
vene or until power to the AIM 65 is
turned off. |f you suspect your program

is in an infinite loop, press F1 until the
BREAK message is displayed. The line
number of the statement BASIC was
executing will be displayed. After BASIC
has displayed the cursor, you can use
PRINT to type out some of the values of
your variables. After examining these
values you may become satistied that your
program is functioning correctly. You

EXAMPLE

CLEAR

CONT

| Page 1 of 4

SECTION

STATEMENT DEFINITIONS

STATEMENT

FRE

LIST

LOAD

SUBJECT

SYNTAX/FUNCTION

should then type in CONT to continue

executing your program where it left off, or

type a direct GOTO statement to resume

execution of the program at a different line.

You could also use assignment statements

to set some of your variables to different
values. Remember, if you interrupt a

program with the F1 key and expect to
continue it later, you must not get any
errors or type sin any new program lines.

If you do, you won't be able to continue
and will get a “CN" {continue not) error.
It is)/mpossible to continue a direct
command. CONT always resumes
execution at the next statement to be

executed in your program when F1 was

typed.

FRE (expression)

Gives the number of memory bytes
currently unused by BASIC. A dummy
operand —0 or 1 —must be used.

LIST [[startline] |- [end line]}]
Lists current program optionally starting at
specified line. List can be interrupted with

the F1 key, {BASIC will finish listing the
current line.)

Lists entire program

l.ists just tine 100.

Lists lines 100 to 1000.

Lists from current line to line 1000.

Lists from line 100 to end of program.

LOAD

Loads a BASIC program from the cassette
tape. When done, the LOAD will display
the cursor. See Appendix G for more
information.

COMMANDS

303

- —— — S L — i

EXAMPLE

270 PRINT FRE(O}

LIST

LIST 100
LIST 100- 1000

LIST -1000

LIST 100-

LOAD

—

SECTION SUBJECT
STATEMENT DEFINITIONS COMMANDS
STATEMENT SYNTAX/FUNCTION
NEW NEW
Deletes current program and all variables.
PEEK PEEK (address)
The PEEK function returns the contents of
memory address | in decimal. The value
returned willbe=>0and <=265. If | is
> 65535 or <0, an FC error will occur.
An attempt to read a non-existent memory
address will return an unknown vaiye.
POKE POKE location, byte

The POKE statement stores the byte
specified by its second argument (J) into
the location given by its first argument (i).
The byte to be stored must be => 0 and

< =255, or an FC error will occur. The
address (I) must be =>0 and <=65535, or

an FC error result. Caution: Careless use
of the POKE statement may cause your
program, BASIC, or the Monitor functions
to operate incorrectly, to hang up, and/or

cause loss of your program. Note that
Pages O and 1 in memory are reserved for

use by BASIC and should not be used for
user program variable storage. A POKE to
a non-existent memory location is hanmless.
One of the main uses of POKE is to pass
arguments to machine language subroutines.
{See Appendix F.) You could also use
PEEK and POKE to write a memory
diagnostic or an assembter in BASIC.

303

- e - e — e ———— —

EXAMPLE

NEW

356 PRINT PEEK (I}

357 POKE 1, J

SECTION

SUBJECT

STATEMENT DEFINITIONS COMMANDS

STATEMENT

RUN

SAVE

SYNTAX/FUNCTION

RUN line number

Starts execution of the program currently in
memaory at the specified line number. RUN
deletes all variables (does a CLEAR) and
restores DATA. If you have stopped your
program and wish to continue execution at
some point in the program, use a direct
GOTO statement to start execution of your
program at the desired line, or CONT to
continue after a break.

Start program execution at the lowest
numabpered statement.

SAVE

Saves the current program in the AIM 65
memory on cassette tape. The program in
memory is left unchanged. More than one
program may be stored on cassette using
this command.

See Appendix G for more information.

303

— T —T—— Rl —— -_——— L

EXAMPLE

RUN 200

RUN

SAVE

SECTION

STATEMENT DEFINITIONS

SUBJECT

304

PROGRAM STATEMENTS

— ————E——— . L w —EEE.

In the following description of statements, an argument of 8, C, V or W denotes a numeric vanable,
X denotes a numeric expression, X$ denotes a string expression and an { or J denotes an expression
that is truncated to an integer before the statement is executed. Truncation means that any
fractional part of the number is lost, e.g., 3.9 becomes 3, 4.01 becomes 4.

An expression is a series of variables, operators, function calls and constants which after the
operations and function calls are performed using the precedence rules, evaluates to a numeric

or string value.

A constant is either a number (3. 14) or a string literal {"’F00").

STATEMENT

DEF

OIM

SYNTAX/FUNCTION

DEF FNx [(argument list})] = expression
The user can define functions like the built-
in functions (SQR, SGN, ABS, etc.) through
the use of the DEF statement. The name
of the function is “FN"’ followed by any
legal variable name, for example: FNX,
FNJ7, FNKO, FNR2. User defined func-
tions are restricted to one line. A function
may be defined to be any expression, but
may only have one argument. In the
example, B and C are variables that are used

in the program. Executing the DEF state-
ment defines the function. User defined
functions can be redefined by executing
anather DEF statement for the same

function. "V" is called the dummy variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

DIM variable (size 1, [size 2...})
Allocates space for matrices. All matrix
elements are set to zero by the DIM
statement.

Matrices can have from one to 255
dimensions.

EXAMPLE

100 DEF FNA(V)=V/B+C

100 Z=FNA(3)

113 DIM A(3), B{10)

114 DIM R3{5,5),
D$(2,2,2)

I Page 1 of 7

SECTION

STATEMENT DEFINITIONS

STATEMENT

END

FOR

SUBJECT

SYNTAX/FUNCTION

Matrices can be dimensioned dynamically
during program execution. If a matrix is
not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single
subscript may range 0 to 10 (eleven
elements).

| this statement was encountered before 3
DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-

tion of line 117. All subscripts start at
zero {0), which means that DIM X{100)

really allocates 101 matrix elements.

END
Terminates program execution without

printing a BREAK message. (See STOP.)
CONT after an END statement causes
execution to resume at the statement after

the END statement. END can be used
anywhere in the program, and is optional,

FOR variable = expression to expression
[STEP expression] (See NEXT statement)

V is set equal to the value of the expression
following the equal sign, in this case 1. This

value is called the initial value. Then the
statements between FOR and NEXT are

executed. The final value is the value of the

expression following the TO, The step is

the value of the expression following STEP.

When the NEXT statement is encountered,
the step is added to the variable.

304

PROGRAM STATEMENTS

EXAMPLE

115 DIM Q1(N]}, Z{(2*1)

117 A{B)=4

999 END

300 FORV=1T09.3
STEP .6

SECTION

STATEMENT DEFINITIONS

STATEMENT

GOsSuB

SUBJECT

SYNTAX/FUNCTION

{f no STEP was specified, it is assumed to |
be one. If the step is positive and the new

value of the variable is <= the final value
(9.3 in this example}, or the step value is
negative and the new value of the variable
is => the tinal value, then the first state-
ment following the FOR statement is
executed. Otherwise the statement

following the NEXT statement is execu ted.

All FOR loops execute the statements
between the FOR and the NEXT at least
once, even in cases like FOR V=1 T0 0.

Note that expressions (formulas) may be
used for the initial, final and step values

in a FOR loop. The values of the expres-

stons are computed only once, before the
body of the FOR ... NEXT loop is
executed,

When the statement after the NEXT is
executed, the loop variable is never equal
to the final value, but is equal to whatever
value caused the FOR ... NEXT loop to
terminate. The statements between the

FOR and its corresponding NEXT in both
examples above (310 and 320) would be

executed nine times.

Error: do not use nested FOR .. . NEXT
loops with the same index variable.

FOR loop nesting is {imited only by the
available memory. {See Appendix C.)

GOSUB line number
Branches to the specified statement {910)

until a RETURN is encountered: when a

branch is then made to the statement after

the GOSUB. GOSUB nesting is limited
only by the available memory.

304

PROGRAM STATEMENTS

EXAMPLE

J1I0FOR V=1T0 9.3

31I5FOR V=10*NTO
3.4/Q STEP SQR(R)

320 FOR V=9TO 1
STEP -1

330 FORW=1T7T0 10:

FORW=1TOS5:NEXT
W:NEXTW

10 GOSUB 3910

T

SECTION

STATEMENT DEFINITIONS

SUBJECT

STATEMENT

GOTO

IF...GOTO

IF ... THEN

LET

NEXT

SYNTAX/FUNCTION

GOTO tine number
Branches to the statement specified.

IF expression GOTO line number. ..
Equivalent to IF . . . THEN, except that
IF ... GOTO must be followed by a line
number, while IF . .. THEN can be
followed by either a line number or
another statement.

I expression THEN line number . . .

Branches to specified statement if the
relation is True.

¢
Executes all of the statements on the

remainder of the THEN if the reiation
15 T rye.

WARNING: The “Z=A" will never be
executed because if the relation is true,

BASIC will branch to fine 50. If the

relation is false BASIC will proceed to
to the line following line 25.

In this example, if X is less than O, the
PRINT statement will be executed and

then the GOTO statement will branch to
line 350. 1f the X was O or positive,
BASIC will proceed to execute the lines
after line 20.

[LET]) variable = expression
Assigns a value to a variable.

“LET" i1s optional.

NEXT [variable] {, variabie] ...
Marks the end of a FOR loop.

304

PROGRAM STATEMENTS

e ———— - =
o — s — ey — I ke —. e — e — N

EXAMPLE

50 GOTO 100

32 1F X<=Y+23.4
GOTO 92

IF X<10THENS

20 IF X<OTHEN PRINT
“X LESS THAN QO

25 IF X=56 THEN 50:Z2=A

26 IF X<O THEN PRINT
“ERROR, X NEGATIVE":

GOTO 350
300 LET W=X

310 V=51

340 NEXT V

—

BECTION

STATEMENT DEFINITIONS

STATEMENT
ON... GOSUB
ON...GOTO

SUBJECT

SYNTAX/FUNCTION

If no variable is given, matches the most
recent FOR loop.

A single NEXT may be used to match
multiple FOR statements. Equivalent

to NEXT V:NEXT W.

ON expression GOSUB line [, line] . ..
Identical to “ON . .. GOTO,"” except that
a subroutine calt {GOSUB) is executed

instead of a GOTQO. RETURN from the
GOSUB branches to the statement after
the ON ... GOSUB.

ON expression GOTQ line [, line] . ..
Branches to the line indicated by the
I'th number after the GOTQ. Thatis:

[F 1=1, THEN GOTO LINE 10
IF 1=2, THEN GOTO LINE 20
IF 1=3, THEN GOTO LINE 30
IF 1=4, THEN GOTO LINE 40.

H

1t 1=0, or | attempts to select a nonexistent
line (> =5 in this case), the statement after
the ON statement is executed. However, if
I is > 265 or <0, an FC error message will
result. As many line numbers as will fit on
a line can foliow an ON . .. GOTO.

This statement will branch to line 40 if the
expression X is less than zero, to line 50 if
It equals zero, and to line 60 if it is greater
than zero.

304

PROGRAM STATEMENTS

EXAMPLE

345 NEXT

350 NEXT V, W

110 0N | GOSUB 50, 60

100 ON | GOTO 10, 20,
30, 40

105 ON SGN(X) +2
GOTO 40, 50, 60

BECTION

STATEMENT DEFINITIONS

STATEMENT

REM

RESTORE

RETURN

STOP

USR

SUBJECT

SYNTAX/FUNCTION

REM any text

Allows the programmer to put comments
in his program. REM statements are not
executed, but can be branched to. A REM
statement Is terminated by end of line, but
notbya’":".

{n this case the V=0 will never be executed
by BASIC.

In this case V=0 will be executed.

RESTORE
Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data

read will be the first piece listed in the first
DATA statement of the program. The
second piece of data read will be the second
piece listed in the first DATA statement,
and so on as in a normal READ operation.

RETURN

Causes a subroutine to return to the state-

ment after the most recently executed
GOSUB.

STOP

Causes a program to stop execution and to
enter command mode.

Prints BREAK IN LINE 900. {As per this
example.) CONT after a STOP branches

to the statement following the STOP.

USR (argument)

Calls the user’s machine language subroutine
with the argument. See PEEK and POKE in
Subject 303, and Appendix F.

304

PROGRAM STATEMENTS

- - - - Te——— L a————liball o A e—— e gl o Vg —]t * remlam . M

EXAMPLE

500 REM NOW SET
V=0

505 REM SET V=0:
V=0

505 V=0: REM SET
V=0

510 RESTORE

50 RETURN

900 STOP

200 V=USR(W)

SECTION

STATEMENT DEFINITIONS

SYMBOL

WAIT

SUBJECT

SYNTAX/FUNCTION

WAIT (address, mask [select])
This statement reads the contents of the

addressed location, does an Exclusive—OR

with the select value, and then ANDs the
result with the mask, This sequence is

repeated until 2 non-zero result is obtained,
at which time execution continues at the
statement that follows WAIT. (f the WAIT
statement has no select argument, the
select value i1s assumed to be zero. If you
are waiting for a bit to become zero, there
should be a “one” in the corresponding

bit position of the select value. The select
value (K) and the mask value {J} can range
from O to 255. The address {1} can range
from O to 65535.

304

PROGRAM STATEMENTS

EXAMPLE

805 WAIT I, J, K
806 WAIT |, J

SECTION

STATEMENT DEFINITIONS

STATEMENT

DATA

INPUT

SUBJECT

SYNTAX/FUNCTION

DATA item [, item . . .]

Specifies data, read from left to right.
information appears in data statements in
the same order as it will be read in the
program.

Strings may be read from DATA state-
ments. {f you want the string to contain

leading spaces {blanks), colons (:) or
commas (,}), you must enclose the string
in double quotes. It s iliegal to have a
double quote within string data or a
string literal. {("""'BASIC"" is illegal.}

INPUT {!) [“'prompt string literal’’:]
variable [, variable) . . .
Requests data from the keyboard {to be

typed in). Each vatue must be separated
from the preceeding value by a comma {,).
The last value typed should be followed by

a carriage return. A “?"" is displayed as a
prompt character. Only constants may be
typed in as a response to an INPUT state-
ment, such as 4.5€-3 or “CAT."”” If more
data was requested in an INPUT statement
than was typed in, 2 "'?? is printed and

the rest of the data should be typed in. If

more data was typed in than was requested,

the warning “EXTRA IGNORED’ will be
displayed. Strings must be input in the
same format as they are specified in DATA
statements.

Optionally displays a prompt string
(" VALUE"} before requesting data from
the keyboard. 1f RETURN is typed to an

input statement, BASIC returns to com-

command mode. Typing CONT after an
INPUT command has been interrupted
will cause execution to resume at the
INPUT statement.

305

INPUT/OUTPUT STATEMENTS

EXAMPLE

10 DATA 1, 3, -1E3, .04

20 DATA "F00", 21

3INPUT V, W, W2

5 INPUT “"VALUE"”: V

l Page 1 of 3

SECTION

STATEMENT DEFINITIONS

STATEMENT

POS

PRINT

SUBJECT

SYNTAX/FUNCTION

If the optional character ! is included
following INPUT, then the prompts from

the INPUT statement and the user’s entries

will be printed {even if the printer is
turned off} and displayed.

POS (expression)
Gives the current position of the cursor on

the display. The leftmost character position

on the display is position zero. A dummy
operand—0 or 1—must be used.

PRINT {!] expression |, expression)

Prints the value of expressions on the
display/printer. If the list of values to be
printed out does not end with a comma

{,) or a semicolan (;), then a carriage
return/line feed is executed after all the
values have been printed. Strings enclosed
in Quotes (‘) may also be printed. If a

semicolon separates two expressions in
the list, their values are printed next to

each other. If a comma appears after an
expression in the list, and the print head
Is at print position 11 or more, then a
carriage return/line feed is executed. If
the print bead is before print position 11,
then spaces are printed until the carriage
is at the beginning of the next 10 column
field. |f there is a blank string enclosed in
quotes, as in line 370 of the examples,

then a carriage return/line feed is
executed.

“VALUE IS will be displayed and printed.

String expressions may be printed.

305

INPUT/OUTPUT STATEMENTS

P — e l——— = e —— ——— e —— e —— Pr———

EXAMPLE

15 INPUTI “VALUE; V

260 PRINT POS(1)

360 PRINT X, Y: Z

370 PRINT ** 7

380 PRINT X, Y;

390 PRINT “VALUE IS": A

400 PRINT A2, B,

410 PRINT | “VALUE
1S A

420 PRINT MIDS(AS, 2);

l————————-

SECTION

STATEMENT DEFINITIONS

STATEMENT

READ

SPC

TAB

SUBJSECT

SYNTAX/FUNCTION

READ variable [, variable]

Read data into specified variables from a

DATA statement. The first piece of data
read will be the first piece of data listed in
the first DATA statement of the program.
The second piece of data read will be the
second ptece listed in the first DATA
statement, and so on. When all of the data
have been read from the first DATA state-
ment, the next piece of data to be read will

be the first piece listed in the second DATA

statement ¢of the program. Attempting to

read more data than there is in af! the
DATA statements in a program will cause
an OD {out of data) error.

SPC (expression}

Prints | space (or blank)} characters on the
terminal. May be used only in a PRINT
statement. | must be => 0 and <=255 or

an FC error will resuit.

TAB {expression)

Spaces to the specified print position
{column) on the printer. May be used
only in PRINT statements. Zero is the
leftmost column on the termainl. 19 the
rightmost. If the carriage is beyond pos
position |, then no printing is done. | must
be =>0 and <=255.

If) i1s greater than 19, the printer will skip
the required number of lines to arrive at
the specified position,

305

INPUT/OUTPUT STATEMENTS

EXAMPLE

490 READ V, W

250 PRINT SPC({1})

240 PRINT TAB{#)

SECTION

STATEMENT DEFINITIONS

STATEMENT

ASC

CHRS

GET

LEFTS

LEN

SUBJECT

SYNTAX/FUNCTION

ASC (string expression)

Returns the ASCl} numeric value of the
first character of the string expression X$.
See Appendix E for an ASCl}/number

conversion table. An FC error will occur
if X$ is the null string.

CHR$ {expression)
Returns one character, the ASCI| equiva-
lent of the argument {l) which must be a

number between 0 and 255. See Appendix E.

GET string variable

inputs a single character from the keyboard.
|f data is at the keyboard, it is put in the
variable specified in the GET statement.

|f no data is available, the BASIC program
will continue execution.

GET can only be used as an indirect
command.

LEFTS (string expression, length)

Gives the leftmost ! characters of the string
expression X$. If I<=0 or > 265 an FC
error occurs.

LEN (string expression)
Gives the length of the string expression X$
in characters {(bytes). Non-printing charac-

ters and blanks are counted as part of the
length.

306

STRING FUNCTIONS

EXAMPLE

300 PRINT ASC{X$)

275 PRINT CHRS$(1)

10 GET AS

310 PRINT LEFTS${XS$, I)

220 PRINT LEN(XS$)

l Page 1 of 2

SECTION

STATEMENT DEFINITIONS

STATEMENT

MID$

RIGHTS

STRS

VAL

SUBJECT

SYNTAX/FUNCTION

MID$ (string expression, start [, fength])
MiD$ called with two arguments returns
characters from the string expression X$

starting at character position |, If

1> LEN{I$). then MID$ returns a nul!
(zero length) string. (f 1 <=0 or > 255,
an FC error occurs.

MID$ called with three arguments returns
a string expression composed of the
characters of the string expression X$

starting at the Ith character for J characters.

If 1> LEN(XS), MID$ returns a null string.

1f | or J <=0 or > 285, an FC error occurs.

i1t J specifies more characters than are left
in the string, all characters from the Ith on
are returned.

RIGHTS (string expression, length)
Gives the rightmost | characters of the
string expression X$. When 1 <=0 or
> 255 an FC error will occur. f

I > =1 EN{X$) then RIGHTS$ returns alt
of X$.

STR$ (expression)

Gives a string which i1s the character repre-
sentation of the numeric expression X.
For instance, STR$(3.1)="3.1.”

VAL (string expression)

Returns the string expression X$§ converted
to a number. For instance,
VAL{’3.17}=3.1. If the first non-space
character of the string is not a plus (+) or
minus (-) sign; a digit or a decimat point {.)
then zero will be returned.

306

STRING FUNCTIONS

EXAMPLE

330 PRINT MID$(XS$, 1}

340 PRINT MID$(XS,
1, J)

320 PRINT RIGHTS$
(X3, 1)

290 PRINT STR$(X)

280 PRINT VAL{XS)

SECTION

STATEMENT DEFINITIONS

STATEMENT

ABS

ATN

COS

EXP

INT

LOG

SUBJECY

SYNTAX/FUNCTION

ABS {expression)
Gives the absolute value of the expression
X. ABS returns X if X> =0, -X otherwise.

ATN (expression)

Gives the arctangent of the expression X.
The result is returned in radians and ranges
from -P1/2 to P1/2 (P1/2=1.5708). If you

want to use this function, you must provide
the code in memory. See Appendix H for

implementation details.

COS (expression)
Gives the cosine of the expression X. X is

interpreted as being in radians.

EXP {expression)
Gives the constant “E’* {2.71828) raised to
the power X {EAX}. The maximum arqu-

ment that can be passed to EXP without
overflow occurring s 88.0296.

INT (expression)

Returns the largest integer less than or
equal to its expression X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1,
INT(-2)=-2, INT(1.1)=1.

The following would round X to D decimal
places:

INT(X*10,AD+.5)/10AD

LOG (expression)

Gives the natural (Base E} logarithm of its
expression X. To obtain the Base Y
logarithm of X use the formula LOG{X)/
LOG(Y)}. Example: The base 10 {com-
mon) log of 7= LOG(7)/LOG{10).

307

ARITHMETIC FUNCTIONS

—— el — el — e —r————

EXAMPLE

120 PRINT ABS(X)

210 PRINT ATN(X)

200 PRINT COS{X)

150 PRINT EXP{X}

140 PRINT INT(X)

160 PRINT LOG({X)

I Page 1 of 4

SECTION ’

STATEMENT DEFINITIONS

STATEMENT

RND

SGN

SIN

SAR

TAN

SUBJECT

SYNTAX/FUNCTION

RND {parameter)
Generates a random number between O
and 1. The parameter X controls the

gegneration of random numbers as follows:

X< () starts a new sequence of random
numbers using X. Calling RND with the

same X starts the same random number
sequence.,. X=0 qgives the last random
number generated. Repeated calls to
RND(Q) will always return the same

random number. X> 0 generates a new
random number between O and 1.

Note that (B-A) * RND{1)+A will

generate a random number between
A and B.

SGN {expression)
Gives 11t X>0, 0if X=0, and -1 if

X<0.

SIN (expression)

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS(X)=SIN(X +3.14159/2} and that
! Radian = 180/P] degrees =57.2958
degrees, so that the sine of X degrees=
SIN(X /57.2958).

SQR (expression)
Gives the square root of the expression X.

An FC error will occur if X is less than zero.

TAN (expression)

Gives the tangent of the expression X. X is

interpreted as being in radians.

307

ARITHMETIC FUNCTIONS

— e T s+ et ——— i —

EXAMPLE

170 PRINT RNO({X)

230 PRINT SGN(X)

190 PRINT SIN(X)

180 PRINT SQR(X)

200 PRINT TAN({X)

307
SECTION SUBJECT

STATEMENT DEFINITIONS ARITHMETIC FUNCTIONS

DERIVED FUNCTIONS

The following functions, while not intrinsic to BASIC, can be calculated using the existing BASIC

functions:
FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
SECANT SEC(X) = 1/COS(X)
COSECANT CSC{X} = 1/SIN{X)
COTANGENT COT(X) = 1/TAN(X)
INVERSE SINE* ARCSIN(X)} = ATN{X/SQR(-X* X+ 1)}
INVERSE COSINE* ARCCOS(X} = -ATN(X/SQR(-X* X+1))+1.5708
INVERSE SECANT® ARCSEC(X}) = ATN(SQR{X* X-1}}+(SGN(X)-1)* 1.5708

INVERSE COSECANT?® ARCCSC(X} = ATN(1/SQR({X* X-1)}+{SGN{X)-1)* 1.5708
INVERSE COTANGENT* ARCCOT({X) = -ATN({X)+1.5708
HYPERBOLIC SINE SINH{X) = {(EXP{X)-EXP{-X})/2

HYPERBOLIC COSINE COSH{X) = (EXP(X) +EXP(-X))/2

HYPERBOLIC TANGENT TANH(X) = -EXP{-X}/{EXP{X)+EXP(-X))*2+1
HYPERBOLIC SECANT SECH({X) = 2/{EXP{X) +EXP({-X))

HYPERBOLIC COSECANT CSCH(X) = 2/{EXP(X)}-EXP{-X))

HYPERBOLIC
COTANGENT COTH(X) = EXP(-X)/(EXP(X}-EXP(-X))*2+1

*These functions require the user-defined ATN function. See Appendix H for details.

307

SECTION SUBJECT
STATEMENT DEFINITIONS ARITHMETIC FUNCTIONS
FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

INVERSE HYPERBOLIC
SINE ARGSINH(X) = LOG{X+SQR(X* X+1))

INVERSE HYPERBOLIC
COSINE ARGCOSH(X) = LOG(X+SQR({X* X-1))

INVERSE HYPERBOLIC
TANGENT ARGTANH(X} = LOG((1+X)/(1-X}}/2

INVEHRSE HYPERBOLIC
SECANT ARGSECH{X) = LOG{(XQR{-X* X+ 1)+ 1)/X

INVERSE HYPERBOLIC
COSECANT ARGCSCH({X} = LOG({SGN(X)*SQR(X*X+1)+1)/X)

INVERSE HYPERBOLIC
COTANGENT ARGCOTH(X) = LOG{{X+1)/(X-1)}/2

SECTION SUBJECT

APPENDICES ERROR MESSAGES

el ey ——_ . e e sy ———— e e el e s N o o e — o o ————— - ., e—— —_————— —— e e m——

I an error occurs, BASIC outputs an error message, returns to command leve! and displays the

cursor. Variable values and the program text remain intact, but the program can not be continued
and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed.
Format of error messages:

Direct Statement XX ERROR

Indirect Statement XX ERRORIN YYYYY

In both of the above examples, ‘““XX" will be the error code. The “YYYYY' will be the line
number where the error occured for the indirect statement.

The following are the possible error codes and their meanings:

ERROR CODE MEANING

BS Bad Subscript. An attempt was made to reference a matrix element
which is outside the dimensions of the matrix. This error can occur
if the wrong number of dimensions are used in a matrix reference;
for instance, LET A(§,1,1)=2 when A has been dimensioned DIM
A{2 2).

CN Continue error. Attempt to continue a program when none exists, an
error occured, or after a new line was typed into the program.

DD Double Dimension. After a matrix was dimensioned, another DIM
statement for the same matrix was encountered. This error often
occurs if a matrix has been given the default dimension 10 because

a statement like A(1)=3 is encountered and then later in the program
a DIM A({100) is found.

FC Function Call error. The parameter passed to a math or string func-
tion was out of range. FC errors can occur due to:

1. A negative matrix subscript (LET A(-1)=0)

2. An unreasonably large matrix subscript (> 32767}

l , Page A-1 of 3

SECTION SUBJECT
APPENDICES ERROR MESSAGES
ERROR CODE MEANING

3. LOG-negative or zero argument
4. SQR-negative argument
5. AAB with A negative and B not an integer

6. A call to USR before the address of the machine language
subroutine has been patched in

7. Calls to MIDS, LEFTS, RIGHTS, WAIT, PEEK, POKE,
TAB, SPC or ON. . .GOTO with an improper argument.

10 Illegal Direct. You cannot use an INPUT, DEF or GET statement as
a direct command.

LS Long String. Attempt was made by use of the concantenation operator
to create a string more than 255 characters long.

NF NEXT without FOR. The variable in a NEXT statement corresponds
to no previously executed FOR statement.

0D Out of Data. A READ statement was executed but all of the DATA
statements In the program have already been read. The program tried
to read too much data or insufficient data was included in the

program.

OM Out of Memory. Program too large, too many variables, too many
FOR foops, too many GOSUB's, too complicated an expression, or
any combination of the above. (see Appendix B)

oV Overflow. The result of a calculation was too large to be represented
in BASIC's number format. If an underflow (too small result) occurs,
zero is given as the result and execution continues without any error
message being printed.

RG RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

SN Syntax error. Missing parenthesis in an expression, illegal character in
a line, incorrect punctuation, etc.

SECTION

APPENDICES

ERROR CODE

ST

™

UF

us

/0

SUBJECT

ERROR MESSAGES

MEANING

String Temporaries. A string expression was too compilex. Break it
into two or more shorter expressions.

Type Mismatch. The left side of an assignment statement was a
numeric vaniable and the right side was a string, or vice versa: or, a
function which expected a string argument was given a numeric
one or vice versa.

Undefined Function. Reference was made to a user function which
has never been defined.

Undefined Statement. An attempt was made to GOTO, GOSUB or
THEN to a statement which does not exist.

Division by Zero

,__—T

SECTION SUBJECTY

APPENDICES SPACE HINTS

e . e g e e e e 1t e . i it ki i S i, T e = —mm o o = = oy s r w A Wl R —— e T —

In order to make your program smaller and save space, the following hints may be useful.

1. Use multiple statements per line. There is a five-byte of overhead associated with each
line in the program. Two of these five bytes contain the line number of the line in binary.
This means that no matter how many digits you have in your line number {minimum line
number is O, maximum is 63999), it takes the same number of bytes. Putting as many
statements as possible on a line will cut down on the number of bytes used by your
program.

2. Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX,Y,Z
Note: All spaces between the line number and the first non-blank character are ignored.

3. Delete all REM statements. Each REM statement uses at least one byte plus the number
in the comment text. For instance, the statement 130 REM THIS IS A COMMENT uses
24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of memory
including the colon before the REM.

4, Use variables instead of constants. Suppose you use the constant 3.14159 ten times in
your program. If you insert a statement

10 P=3.14159

in the program, and use P instead of 3.14159 each time it is needed, you will save 40
bytes. This wil! also result in a speed improvement.

5. A program need not end with an END, so an END statement at the end of a program
may be deleted.

6. Reuse variables. If you have a variable T which is used to hold a temporary result in one
part of the program and you need a temporary variable later in your program, use it
again. Or, if you are asking the terminal user to give a YES or NO answer to two differ-
ent questions at two different times during the execution of the program, use the same
temporary variable A$ to store the reply.

| l Page B-1 of 2

SECTION SUBJECT

APPENDICES SPACE HINTS

7. Use GOSUB’s to execute sections of program statements that perform identical actions.
8. Use the zero elements of matrices; for instance, A{0), B(0, X).

STORAGE ALLOCATION INFORMATION

Simple {non-matrix) numeric and strong variables like V use 7 bytes; 2 for the variable name, and
6 {or the value. Simple non-matrix string variables also use 7 bytes; 2 for the variable name, 1 for the
length, 2 for a pointer, and 2 are unused.

Matrix variables require 7 bytes to hold the header, plus additional bytes to hold each matrix element.
Each element that is an integer variable requires 2 bytes. Elements that are string variables or floating

point variables require 3 bytes or 5 bytes, respectively.

String variables also use one byte of string space for each character in the string. This is true
whether the string variable is a simple string variable like A$, or an element of a string matrix
such as Q1$(5.,2).

When a new function is defined by a DEF statement, 7 bytes are used to store the definition.
Reserved words such as FOR, GOTO or NOT, and the names of the intrinsic functions such as
COS, INT and STR$ take up only one byte of program storage. AN other characters in programs
use one byte of program storage each.
When a program is being executed, space is dynamically allocated on the stack as follows:

1. Each active FOR. . .NEXT loop uses 22 bytes.

2. Each active GOSUB (one that has not returned yet) uses 6 bytes.

3. Each parenthesis encountered in an expression uses 4 bytes and each temporary result
calculated in an expression uses 12 bytes.

SECTION SUBJECT
APPENDICES SPEED HINTS

The hints below should improve the execution time of your BASIC program. Note that some of
these hints are the same as those used to decrease the space used by your programs. This means
that in many cases you can increase the efficiency of both the speed and size of your programs at

the same time.

1. Delete all unnecessary spaces and REM’s from the program. This may cause a small
decrease in execution time because BASIC would otherwise have to ignore or skip

over spaces and REM statements.

2. THISISPROBABLY THE MOST IMPORTANT SPEED HINT.

Use variables instead of constants. It takes more time to convert a constant to its
floating point representation than it does to fetch the value of a simple or matrix
variable. This ts especially important within FOR. . .NEXT loops or other code that

IS executed repeatedly.

3. Variables which are encountered first during the execution of a BASIC program are
allocated at the start of the variable table. This means that a statement such as
5 A=0:B=A:C=A, will place A first, B second, and C third in the symbol table
(assuming line b is the first statement executed in the program). Later in the program,
when BASIC finds a reference to the variable A, it wilt search only one entry in the
symbol table to find A, two entries to find B and three entries to find C, etc.

4. Use NEXT statements without the index variable. NEXT is somewhat faster than

NEXT | because no check 1s made to see whether the variable specifted in the NEXT
is the same as the variable in the most recent FOR statement.

\ | Page C-1 of 1

SECTION SUBJECT

APPENDICES CONVERTING BASIC PROGRAMS NOT
WRITTEN FOR AIM 65 BASIC

Though implementations of BASIC on different computers are in many ways similar, there are some
incompatibilities which you should watch for if you are planning to convert some BASIC programs
that were not written in AlM 65 BASIC.

1. Matrix subscripts. Some BASICs use [and “]** to denote matrix subscripts. AIM 65
BASIC uses u‘u and n)n-

2. Strings. A number of BASICs force you to dimension (declare) the length of strings
before you use them. You should remove all dimension statements of this type from
the program. In some of these BASICs, a declaration of the form DIM AS$(i J} declares
a string matrix of J elements each of which has a length |. Convert DIM statements of
this type to equivalent ones in AIM 65 BASIC: DIM AS$(J).

AlIM 65 BASIC uses “'+°° for string concatenation, not “"or ""&".

AIM 65 BASIC uses LEFTS, RIGHTS$ and MID$ to take substrings of strings. Other
BASICs uses A${1} to access the 1th character of the string A$, and A$(1,J) to take a
substring of A$ from character position | to character position J. Convert as follows:

OLD AlIM 65
AS{l) MID${AS$,1.1)
A$() J) MID$(AS,1,J-1+1)

This assumes that the reference to a substring of AS$ is in an expression or is on the
right side of an assignment. [f the reference to A$ is on the left hand side of an
assignment, and X$ is the string expression used to replace characters in A$, convert

as follows:
OLD AlM 65
AS(1)=X$ A$=LEFTS$(AS,1-1)+X$+MIDS(AS,I+1)
AS(l,J)=X$ AS=LEFTSHAS,I-1)+XS+MIDS(AS, J+1)

3. Multiple assignments. Some BASICs allow statements of the form: 500 LET 8=C=0.
This statement would set the variables B & C to zero.

I | Page D-1 of 2

SECTION SUBJECT

APPENDICES CONVERTING BASIC PROGRAMS NOT
WRITTEN FOR AIM 65 BASIC

L s e e ——
e i e — .y m— —

In AIM 65 BASIC this has an entirely different effect. Al the “=’s’’ to the right of the
first one would be interpreted as logical comparison aperators. This would set the
variable B to -1 if C equaled 0. If C did not equal O, B would be set to 0. The easiest
way to convert statements like this one is to rewrite them as follows:

500 C=0:B=C.

4 Some BASICs use /" instead of ;"' to delimit multiple statements per line. Change all
occurrences of °/’ to ”:" in the program.

5. Programs which use the MAT functions available in some BASICs will have to be
re-written using FOR. . .NEXT loops to perform the appropriate operations.

6. A PRINT statement with no arguments will not cause a paper feed on the printer. To
generate a paper feed (blank line), use PRINT ‘‘space’”

SECTION SUBJECT

APPENDICES ASCll CHARACTER CODES

- g e T . . e s n . gl Mg~ s m s amiy e o, - B — S ——

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 V
001 SOH 044 . 087 W
002 STX 045 - 088 X
003 ETX 046 : 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 (
006 ACK 049 1 092 /
007 BEL 050 y, 093]
008 BS 051 3 094 t
009 HT 052 4 095 -
010 LF 053 5 096 '
011 VT 0%4 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 St 068 : 101 e
016 DLE 059 ; 102 f
017 DC1 060 < 103 Q
018 DC2 D61 = 104 h
019 DC3 062 > 105 i
020 DCa 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 I
023 ETB 066 B 109 m
024 CAN 067 C 110 N
025 EM 068 D 111 0
026 SuUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 72 H 115 S
030 RS 073 l 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 | 076 L 119 W
034 "’ 077 M 120 X
035 # 078 N 121 Y
036 $ 079 O 122 Z
037 % 080 P 123 {
038 & 081 Q 124 I
039 ' 082 R 125 }

]

| Page E-1 of 2

SECTION SUBJECT
APPENDICES ASCIl CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
040 { 083 S 126 ~
041) 084 T 127 DEL
042 ¢ 085 L

!
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubouton TTY

SECTION SUBJECT

APPENDICES ASSEMBLY LANGUAGE SUBROUTINES

AIM 65 BASIC allows a user to link to assembly language subroutines, via the USR{W) function.
This function allows one parameter to be passed between BASIC and a subroutine,

The first step is to allocate sufficient memory for the subroutine. AIM 65 BASIC always uses all
RAM memory locations, beginning at decimal location 530 {(hex location 212), unless limited by
the user. You can limit BASIC's memory useage by answering the prompt MEMQORY SIZE? (see
Subject 100} with some number less than 4096, assuming a 4K system. This will leave sufficient
space for the subroutine at the top of RAM.

For example, if your response to MEMORY SIZE? is *‘2048"°, 1518 bytes at the top of RAM
will be free for assembly language subroutines.

Parameter (W), passed to a subroutine by USR(W), will be converted to floating-point accumulator
located at $A9. The floating-point accumulator has the following format:

ADDRESS CONTENT
$AD Exponent + $81 ($80 if mantissa = 00)
$AA - $AD Mantissa, normalized so that Bit 7 of MSB is set.

$AA is MSB, $AD is LSB.
$AE Sign of mantissa

A parameter passed to an assembly language subroutine from BASIC can be truncated by the sub-
routine to a 2-byte integer and deposited in $AC (MSB) and $AD (LSB). 1f the parameter is
greater than 32767 or less than -32768, an FC error will result. The address of the subroutine
that converts a floating-point number to an integer is located in $B006, $8007.

A parameter passed to BASIC from an assembly language subroutine will be converted to floating
point. The address of the subroutine that performs this conversion is in $8008, $B009. The
integer MSB ($AC) must be in the accumulator; the integer LSB ($AD) must be in the Y register.

Prior to executing USR, the starting address of the assembly language subroutine must be stored
in locations $04 (LSB) and $05 {MSB). This is generally performed using the POKE command.
Note that more than ocne assembly language subroutine may be called from a BASIC program,

by changing the starting address in $04 and $05.

I | | Page F-1 of 4

SECTION SUBJECT

APPENDICES ASSEMBLY LANGUAGE SUBROUTINES

e — o e rem ar— P a— e n —— —————— e . e ke . =

Figure F-1 is the listing for a BASIC program that calls an assembly language subroutine located at
$A00. Here's what the BASIC program does:

e Line 10 — Stores the starting address of the assembly language subroutine ($A00) into
tocations $04 and $05, using POKE.

® Line 20 — Asks for a number “N’’.

e Line 30 — Calls the subroutine, with N as the parameter.

e Line 40 — Upon return from the subroutine, the BASIC program prints X, the parameter
passed from the subroutine to the BASIC program.

e Line 50 — Loops back to get a new "N,

< Sr
t Moty =227z27 2048
WMIDTHY
1518 =¥T7es FFPEE
HiF a5 ERSIC Vil a
GE
10 FOKE Q5. 2. 20¢E @5
1A
S8 THRPUTUMNUMEBERY: N
= E=iISR M

I ~eINTH
S QOaTO 2y

Figure F-1. BASIC Program That Calls Assembly Language Subroutine

SECTION SUBJECT

APPENDICES ASSEMBLY LANGUAGE SUBROUTINES

The assembly language subroutine (Figure F-2) performs these operations:

e Prints the floating-point accumulator ($A9 - $AE), using Monitor subroutines NUMA
($EA46), BLANK ($EB3E) and CRLF ($E9F0Q).

¢ Converts the floating-point accumulator to an integer, using the subroutine at $8 F00.
The address $BF00 was found in locations $B006, $B007. (Address $8F00 may vary
with different versions of BASIC. Be sure to check locations $B006 and $B007 for the

correct address.)
e After conversion, the program again prints the floating-point accumulator.

¢ The program then swaps the bytes of the integer.

¢ Finally, the program converts the result to floating-point and returns to BASIC (JMP
COD3). Address 3C0D3 was found in locations $B008, $8009. (Address $C0D3 may
vary with different versions of BASIC. Be sure to check locations $8008 and $B8009

for the correct address.

1

s g +=HEE
BREEE /AN LDy 4090
Ry He L[#0587
ceia BRSO DR R3L
RS i 1SR Tage
BHEE Do TIe ESZE
GRS B2 1N

SHMD BEo DFE RS
ceti- [t Bl =04
AE1d F9 TIF ESFA
2Otd TR TRY O OH3G
SHIS PR Tz BALF
H=de HE LR HE
V=18 A9 LEY RO

S RS LI A5 | I T A
S 2 R SRR v
LT TR Ty

b L THNE PRTE
CRAT DT Y

AH L=

Figure F-2. Assembly Language Subroutine

SECTION SUBJECT

APPENDICES ASSEMBLY LANGUAGE SUBROUTINES

——— | . B il — e - e ' — fler———| —

Figure F-3 shows the print-out for various values of “‘N".

WMo F s 125
30 00 S0 3 99

a1 =H 68 o8 88 a6

¢l wd by ui 61 3y
o6

MUMEERS 4

- waill,
ALY
“~.4

LIME ¥
S SRR P o & I ST T
ol g v 10 91 oo
EREN
HIZMSERY &5%
OF T G 24 o9 pe
S ES e vloay af
K

Figure F-3. Output for Example

» -

SECTION SUBJECT
APPENDICES STORING AIM 65 BASIC PROGRAMS ON
CASSETTE

-— - —— . ——— — e, e R e —— Y- = T T o —— e . w1

— — S - ——— . N — e v T eTErEE—

AlM 65 BASIC programs can be stored on cassette tape by using BASIC’s SAVE and LOAD
commands, or by using the AIM 65 Editor. Before employing either procedure, be sure to care-

fully observe the recorder installation and operation procedures given in Section 9 of the
AlM 65 User's Guide.

RECORDING ON CASSETTE USING THE BASIC SAVE COMMAND

The procedure to store 3 BASIC program is:

1. Install a cassette in the recorder, and manually position the tape to the program record
position. Be sure to initialize the counter at the start of the tape.

Note: Since remote control must be used to retrieve a BASIC program, observe the
tape gap CAUTION in Section 9.1.5 {(Step 1) of the AIM 65 User’s Guide.

2. While in BASIC, type in SAVE. BASIC will respond with:
OuT=

3. EnteraT (for “"Tape’”). BASIC will display:
OUT=T F=

4. Enter the file name {up to five characters). If the file name is FNAME, BASIC will
display:

OUT=T F=FNAME T=
5. Put the recorder into Record mode.
6. Enter the recorder number {1 or 2) and type RETURN.

7. 1f remote control is being used, observe the procedures outlined in Section 9.1.5 of
the AlIM 65 User’s Guide.

B. When recording has been completed, BASIC will display the cursor.

9. Switch the recorder out of record mode.

l I Page G-1 of 3

SECTION SUBJECY
APPENDICES STORING AIM 65 BASIC PROGRAMS ON
CASSETTE

e — B —
- h —r— —_— . ———— —— e — s

RETRIEVING A PROGRAM FROM CASSETTE USING THE BASIC LOAD COMMAND
The procedure to retrieve a BASIC program is:

1. Install the cassette in the recorder, and manually position the tape to about five counts
before the beginning of the desired file.

Note: Remote control must be used when retrieving a file via BASIC.

2. While in BASIC, type in LOAD. BASIC will respond with:
IN=

3. Entera |l {for “Tape”). BASIC will display:
IN=T F=

4. Enter the file name. If the file name is FNAME, BASIC will display:
IN=T F=FNAME T=

§. Enter the recorder number (1 or 2) and type RETURN.

6. Put the recorder into play mode. Be sure to observe the procedures outlined in
Section 9.1.6 of the AIM 65 User’s Guide.

While the file is being read, each line will be displayed (and printed, if the printer is on).
If the printer is on, the tape gap ($A409) will probably have to be increased.

The file being loaded will not overlay any BASIC statements already entered unless
the statement numbers are the same.

7. When loading has been completed, BASIC will display the cursor.

8. Switch the recorder out of play mode.

SECTION SUBJECT
APPENDICES STORING AIM 65 BASIC PROGRAMS ON
CASSETTE

e e e e e i e —— ey« i il e eeepeel S B e ——— —

- e e — —— —

CASSETTE OPERATIONS USING THE AIM 65 EDITOR

AIM 65 BASIC programs can also be stored and retrieved from cassette using the AIM 65 Editor.

However, if the program is to be retrieved by BASIC at some future time, one rule must be
observed:

When BASIC stores a program on cassette, it inserts a CTRL/Z after the last line. The
AIM 65 Editor will strip off the CTRL/Z when it retrieves the program. Therefore,
before storing a BASIC program from the Editor, the user must insert a CTRL/Z
following the last line of the program.

SUBJECT

ATN IMPLEMENTATION

SECTION
APPENDICES

— T T e ———_T vyt i n. s —r—— N ey RIS ma

The ATN function (see Subject 307) can be programmed in RAM using the AIM 65 Mnemonic
Entry (1) and Alter Memory Locations (/) commands, as shown below. The program is written
for the AIM 65 with 4K bytes of RAM. The ATN function can be relocated elsewhere in memory
by changing the starting addresses of the instructions and constants, the conditional branch
addresses, the vector to the constants start address and the vector to the ATN function start
address.

ATN FUNCTION CONSTANTS ENTERED BY ALTER MEMORY <M>

<M>=0F80 XX XX XX XX Constants Starting Address = OF80g
</> =0F80 08 76 B3 83
</> OF84 BD D3 79 1E
</> OF88 F4 A6 F5 7B
</> OF8C B3 FC BO 10
</> OF90 7C OC 1F 67
</> OF84 CA 7C DE 83
</> OF98 CB C1 7D 14
</> OF9C 64 70 4C 70D
</> OFA0 B7 EA 51 7A
<[> OFA4 7D 63 30 88
</> OFA8 7E 7E 92 44
</> OFAC 99 3A 7E 4C
<[> OFB0 CC 91 C7 7F
<[> 0FB4 AA AA AA 13
</> 0OFBB 81 00 00 QO
</> OFBC 00

ATN FUNCTION INSTRUCTIONS STORED BY MNEMONIC ENTRY (1)

<|>

XXXX *=0FBD Instructions Starting Address = OFBD
OFBD A5 LDA AE
OFBF 48 PHA

OFCO 10 BPL OFCS
OFC2 20 JSR (CCBSB
OFCS5 A5 LDA A9
OFC? 48 PHA

OFC8 C9 CMP #8t
OFCA 90 BCC OFD3
OFCC A9 LDA #FB
OFCE A0 LDY #C6
OFDO 20 JSR (C84E

]

l Page H-1 0l 2

SECTION SUBJECT

APPENDICES ATN IMPLEMENTATION

OFD3 A9 LDA #80 }
OFD5 AQC LDY #0F
OFD7 20 JSR CD44
OFDA 68 PLA

OFDB C9 CMP #81
OFDD 90 BCC OFEG6
OFDF A9 LDA #4E
OFE1 A0 LDY #CE
OFE3 20 JSR Cb8F
OFE6 68 PLA

OFE7 10 BPL OFEC
OFE9 4C JMP CCBS8
OFEC 60 RIS

@-EeC

BASIC INITIALIZATION FOR ATN FUNCTION

Starting Address of Constants = 0F80

BASIC memory must be initialized below the memory allocated to the ATN function. The ATN
vectar in RAM must also be changed from the address of the FC error message to the starting
address of the ATN function instructions. This can be done using BASIC initialization, as follows:

<5>
MEMORY SIZE? 3968 Limit BASIC to F80,¢
WIDTH?
3438 BYTES FREE
AIM 65 BASIC V1.1

POKE 188, 189 Change ATN function vector low to BD 14

POKE 189, 15 Change ATN function vector high to OF 4¢

?ATN (TAN(.5})) Test case to verify proper ATN function program
3 Expected answer = .5

SAVING ATN OBJECT CODE ON CASSETTE

The object code for the ATN function can be saved on cassette by dumping addresses $00B8
through $00BD {Jump instruction to ATN) and $0F80 through $OF EC (constants and instructions)
after the function is initially loaded and verified.

The ATN function can then be loaded from cassette by executing the Monitor L command after
BASIC has been initialized via the S command. After the ATN function has been loaded, reenter
BASIC with the 6 command.

	Table of Contents
	Introduction
	100 Installing BASIC in the AIM 65
	200 Getting started with BASIC
	201 BASIC Command Set
	202 Direct and Indirect Commands
	203 Operating on Programs and Lines
	204 Printing Data
	205 Number Format
	206 Variables
	207 Relational Test
	208 Looping
	209 Matrix Operations
	210 Subroutines
	211 Entering Data
	212 Strings

	300 Statement Definitions
	301 Special Characters
	302 Operators
	303 Commands
	304 Program Statements
	305 Input/Output Statements
	306 String Functions
	307 Arithmetic Functions

	Appendices
	A Error Messages
	B Space Hints
	C Speed Hints
	D Converting BASIC Programs not Written for AIM 65 BASIC
	E ASCII Character Codes
	F Assembly Language Subroutines
	G Storing AIM 65 BASIC Programs on Cassette
	H ATN Implementation

