4.2 SYSTEM DIAGNOSIS USING HARDWARE PROGRAMMER AIDS '

. In addition to the techniques described in which the user applies oscil-
loscopes and his own innovative techniques for analyzing data, Rockwel? makes
available to the user several hardware aids which assist in the debuﬁglng of

a microcomputer system and also a software aid called the "Emulator. Thé
hardware aids are a Keyboard Input Monitor (KIM) and a Teletype Inpet Monitor
(TIM). Each of these aids attempts to reduce the problem of debugging the
code to the same techniques that are available on a large computer system, and
each is designed to allow the debugging of microprocessor code without need to
resort to scopes or other data-trapping techniques.

The basic assumption of each of both the KIM and TIM hardware and the
Emulator software, is that the microprocessor system is connected correctly,
that all of the electrical characteristics have already been checked and wet,
and that the only problem to be solved is one of debugging programs and 1/0
hardware which have been entered into the microcomputer. ‘

Each of the hardware techniques assumes that the user will start his
design sequence with all of his programming being done in some form of random-
access memory which is loadable from an 1/0 device, examinable by the I/O'
device, and changeable by the 1/0 device. This is the normal first step in
developing a microcomputer system, and one that should be used prior to commit-
ting any of the hardware to PROMs or alterable memory. The only exceptio? to
this 1s if the user is taking advantage of the software Emulator and if his
program is such that the Emulator can give him a significant degree‘of con—
fidence in his coding. In this case the user of the KIM or TIM devices is
primarily that of allowing him to have final debugging access to his various
memory locations. Therefore, the common characteristic of all these approaches
is that by some technique (in the case of the Emulator by reading an Input
file, in the case of TIM by reading an input tape from the output Cross-
Assembler, and in the case of KIM loading a program into memory by hand) the
program has been entered into a program storage. Each of these techniques

ions and to
allows the user to initialize various memory and register locations

4-10

"start execution" of this program at a memory location. Techniques are imple-

mented which permit the user to stop his program at a particular point and

analyze the results of the operations which have just been completed. If the

the coding between the start point and the stop point is
correct. If the coding is incorrect,

results are correct,

the user analyzes the data which he dis-
plays by means of the I/0 device and the hardware or software that interfaces

it, and determines by inspection of the data and analysis of his coding the

error which could cause the results detected.

1f the technique of merely analyzing coding is insufficient, each of

these systems has the ability to allow the user to 80 in and re-execute the
code with new data or the original data,

stopping only at earlier stop-points
until he is able to trap the operation that causes the erroneous data to occur,
The Emulator has additional features which permit the user to analyze the
operation of imstructions as they occur which is very useful in determining
which part of the program causes operations to be performed incorrectly.

The normal design cycle should actually include a combination of

techniques. The user should write his code on a Cross-Assembler and debug

much of his loops and non-1/0 programming using the Emulator. The Emulator

has been designed to allow very easy analysis of data paths, loops and per-
formance of program on a non-hardware basis. It is particularly valuable for
the user who is developing routines which have significant loop and subroutin-

ing or any completed algorithm.

The use of emulation has the following advantages:

1. It gives the power of a large machine to allow tracing operations

which are not feasible at the hardware level.

2. It may indicate prior to the time that the hardware is committed that

more memory or more time is required to perform an operation which may

dramatically change the hardware implementation to be committed.

In any case, attempting to bring up the microprocessor system without

assemblers and an interface module such as TIM is not the most efficient use

of the designer's time.

For the user who is just "starting out" with microprocessors, the KIM

technique is acceptable because the length and complexibility of the programs

to be written should be shorter, and the user can program directly in Hex and

debug using KIM exclusively.

4.2.1 KIM -- Keyboard Input Monitor

KIM allows the user to key in Hex values into specified memory loca-
tions and to monitor results.

KIM is available to the system designer in several forms. In its
simplest form, a single device of the R6530 type including 1024 bytes of pre-
programmed ROM may be included as a component in an existing system. The
array includes a monitor program which provides the following features:

1. Data input and output control from serial teletypewriters (ASR 33,

Silent 700, etc.)

2. Data input and system control from a 22-key keyboard

3. Address and data display on a 6-digit, 7-segment type display

A microprocessor system designed to include the KIM array will allow
the designer to perform the following operations:

1. The user may select keyboard (KB) or teletypewriter (TTY) mode

for entry, display and control.

2. If in KB mode, the user may enter address or data fields from the
keyboard. The user may display the contents of any address loca-
tion in the system and can modify the contents of any address loca-
tion (other than preprogrammed ROM locations). The step operation
(STEP key) provides a convenient method for displaying the data
contained in successive memory locations. Program execution may
be authorized to begin from any selected starting address using the
RUN key.

3. If in the TTY mode, the user may obtain a printing of the data at
any memory location. He can modify the data contained in any
memory location. Program listing from any start address to any
end address may be authorized. Paper tapes may be loaded or gen-
erated automatically. Finally, program execution may be initiated
from any selected starting address.

4, 1In either mode, the user terminates program execution by depressing
the STOP key to return control of the system to the KIM program.
Alternatively, a depression of the RST key causes a total reset of

the system and a return of the system to KIM program control.

e

The KIM array is also available to the system designer as a part of a
special design-in subsystem provided in the form of a printed-circuit card.
Included on this card are the following functional elements:

1. R6502 microprocessor array

2. R6530-002 array (containing the KIM monitor program)

3. 22-key keyboard and mode-select switch

4, 6-digit, 7-segment LED display

5. 1024 x 8 RAM

6. R6530-003 array providing an interval timer, 16 I/0 pins, and 64

bytes of RAM

7. All interface circuits for operation with serial teletypewriters

This subsystem provides the same operating features described earlier,
but is supplied as an operating unit requiring the user to provide only the
+5-volt power supply in order to commence operating. As a ''stand-alone"
subsystem, the KIM permits the user to enter and debug programs of up to 1024
steps and to control the action of up to 16 I/0 pins

For further details on physical and operating characteristics of the
KIM array and subsystem, the reader is referred to the KIM manual supplied

separately,

4.2.2 TIM -~ Teletype Input Monitor

TIM is a pre-programmed R6530, Its application is to allow the user
to interface to an ASCII device such as a Teletype, CRT, Execuport, etc,
using the ASCII serial communication techniques to communicate to and from the
the microprocessor. This effectively allows the user to load memory from
the keyboard or from paper tape or cassetts which are attached to his device.
By the addition of a single TTL package to the system, TIM can be configured
so that it is the starting point for the microprocessor, but once the initial-
ization has been accomplished it transfers itself out of the start-up mem-
ory, changes the rest of the microprocessor memory to normal configuration,
and operates transparent to the microprocessor.

The proper time for using TIM to develop a microprocessor system is
primarily after the system is determined to be wired correctly by the tech-
niques already described. TIM is then utilized to debug the user's code by
allowing the user to input prespecified values, execute portions of the code,

and examine the results.

It should be noted that because I/0 devices are extensions of memory
debugging techniques are simplified, They can be configured to control 1/0
devices to test that lights can be 1it, switches tested, motors started and
stopped, etc. For instance, all of the connections to lights and switches
can be checked from the teletype keyboard by writing into the I/0 registers
the appropriate code for turning on the lights. Correct operation of switches
can be checked without the program running by putting the switches in either
state and reading the I/0 device result indicated to the programmer, This
type of checking totally 'shakes out" the I/0 connections to make sure the I/0
device is located in the correct memory address determines that the wiring to
in the correct memory address, determines that the wiring to the I/0 devices 1is
correct, and checks on the microprocessor bus.

A rational technique for applying either TIM or KIM is to intercomnect
the device into the system to get the microprocessor to pass the single-step
start-up sequence, and then to use the debugging capability of the TIM prior
to executing any of the user's code to verify that all input/output connec-—
tions are correct. 1In cases concerned with the stopping of the motors and
other devices which require timing, the proper connection to the motors and
other devices can be checked without the motor itself physically being checked
by disconnecting leads, opening up connectors, and verifying with a 'scope or
a meter that the microprocessor's influence at that point is as would be
expected on a static basis, Therefore, this technique 1s recommended as the
second step of a start-up sequence.

Significant details are given in the section on the use of restart or
start sequence and a single cycle operation to verify the interconnection of
most of the system. It should be recalled that the instructions were given
independent of the coding that was available to the programmer.,

The advantage of using the TIM or KIM in the start—up checkout is that
there is known code which is guaranteed to be accurate that should be
evoked during this start-up sequence. By referring to the coding of the ROM
as it appears in the documentation on the TIM or KIM, the user can apply the
known sequences from the TIM or KIM program to verify the start—up sequence,
thereby removing one more variable. Therefore, all initial system check-

out should be accomplished using TIM or KIM program first in the start-up

sequence to make sure that the interconnection to TIM and to memory are cor-
rect. Then, once the basic operation of TIM has been verified, there is a known
sequence which TIM will follow dynamically that allows the user to verify that
TIM 1s operational. The user should then verify the remainder of the memory
and I/0 connections by writing and reading in the memory locations using the
debugging feature of the TIM or KIM. This procedure verifies the connection
and operation of each of the chips of the system as well as all the intercon-
nections to all outboard devices,

Now the problem is truly reduced to making sure that the programmer's
code is correct and the user's program can be loaded by means of either
through-the-keyboard or through-the-auxiliary devices,

The program can be debugged as a program rather, with no concern as to
whether or not the problem is one of hardware or software, By definition
other than incorrect timing to 1/0 devices, the problem is reduced to one of
programming mistakes.

For a more detailed discussion on the programming on TIM, the user is

referred to the TIM manual supplied separately,

4.3 MICROPROCESSOR START-UP PROCEDURE

This section attempts to tie together all of the techniques previ-
ously discussed into one ordered procedure. This procedure is based on
experience gained in bringing up systems using processors from several
different manufacturers. While it is certainly true that no single pro-
cedure can be expected to catch all of the software and hardware errors that
can exist in microcomputer systems, it is hoped that this step-by-step
approach will allow the designer to bring up his system with an absolute
minimum of difficulty.

This procedure assumes the existence of Single Cycle and/or Single
Instruction logic. Any of the System Development tools discussed in Sec-
tion 4.2 will assist the user in bringing up his system. These devices
allow convenient entry of test programs as well as modification of the sys-

tem program and data.

Each step in the procedure includes the following information:

@ Section of the system hardware/software to be checked.

® Hardware, gest equipment, etc. required to perform the test.

® Action to be taken in implementing the test.

® Expected results.

® Suggested procedures for analyzing failure modes.

It cannot be emphasized too strongly that one must utilize a very
methodical, step-by-step procedure aimed at solving a single problem at a
time within the system, It is very easy for several problems to amplify each
other to such an extent that nothing within the system seems to be operat-
ing properly. Correcting problems one-at-a-time will ultimately yield a

complete working system with minimum frustration.

4.3.1 System Power

It is generally recommended that first prototypes of microcomputer
systems be built using sockets for the ICs (processor, memories, etc.).
One distinct advantage of this technique is that it permits the designer to

verify that VC and V are properly connected to each socket before the

C SS

chips are inserted. The V line should be within the tolerances specified

about the 5 volt nominal riiative to VSS' This basic first step can help
avoid power supply connections which may be fatal to the chips in the system.

After checking power connections with a voltmeter or oscilloscope, to
insert the processor into its socket and verify that the additional cur-
rent drain is within specifications for this device.

Before inserting the other devices, examine the address lines, SYNC
line and the output clocks to make sure that the processor is generating
signals. The address lines should be incrementing and the sync line
should be generating regular, positive going pulses. The RES line and
the RDY line should be high (> +2.4V) for this test.

If the processor appears to be operating and power consumption is rea-
sonable, the rest of the devices in the system can be inserted into their

sockets,

4.3.2 Basic System Timing

Before one can expect a microprocessor system to function, proper

operation of the basic system timing signals (01,] etc.) must be verified.

2
The most important of these signals is the system clock,

4-16

In the 6502, both phases (01 and 02) are available for driving the rest
of the system. In this system it is necessary to check the clock timing very
carefully to assure that the timing of the clock signals within the processor
is compatible with that used on the support chips.

Using an oscilloscope, compare the 011nput clock and the 02 clock
presented to the support chips to verify that the delay due to clock buffer-

ing does not exceed the allowable maximum.

4.3.3 System Reset

Static and dynamic analysis of the Reset function can provide very
detailed information on how the system is operating. In fact, it is this
step which will verify the operation of most of the basic system hardware.
The tools required are:

e Single-Cycle/Single~Instruction Logic

e Oscilloscope

e Signal Generator (for Driving RESET)
STATIC ANALYSIS OF SYSTEM DETAILS

Depress the HALT button and then the manual RESET switch: then push
the single-cycle switch six times, This will step the processor through the
first part of the BRK sequence and into the RESET vector fetch. At this
time the processor should be generating FFFC on the address bus and the ROM
should have put the low-order byte of the RESET vector onto the data bus in
response to this address, This is an excellent time to check the following
very basic items:

1. Address Lines

Using the oscilloscope, verify that the logic levels on the
address lines are proper and that they are reflected properly
through any bus expanders onto the memory and peripheral chips.
This is a very common circuit fault.

2. ROM/PROM Chip Select

Using the osc{lloscope, verify that the address FFFC does select

the ROM which contains the low-order byte of the RESET vector.

3. Data Bus
Using the oscilloscope, verify that the voltages on the data
bus pins of the processor are proper. It is important for
these signals to be analyzed at the processor to ensure proper
operation of any bidirectional bus expanders in the system. In
this test, the most common indication of improper operation of
the data bus expanders is "floating'" processor data bus pins,
i.e., the processor data bus pins are being driven neither high
nor low because the bus expanders are in the open-circuit condi-
tion or are reversed.

4. Miscellaneous Processor Pins

Using the oscilloscope, briefly examine the other processor pins
(R/W, fia} iﬁi: etc.) to assure that there are no voltage level
problems detectable at this point. Both of the interrupt inputs
and the R/W output should be high. Examine the R/W signal on
the input to the memory and peripheral devices.

After these initial tests have been performed, it should be possible
to press the single-step switch once more to fetch the high-order byte of the
interrupt vector from address FFFD. On the next actuation of the single-cycle
switch, the processor address bus should contain the RESET vector which was
fetched from memory.

At this point, the processor is ready to execute the system initiali-
zation routine. During initialization, it can be expected that program mem-
ory will be accessed, peripheral registers will be loaded, and internal pro-
cessor registers will be cleared or set to a starting value. It 1s extremely
useful to execute this routine one instruction at a time to determine that
each time program memory is accessed, the proper instruction is returned.
However, unless a data trap 1; provided, it will be more meaningful to utilize
dynamic analysis techniques to analyze the operation of peripheral devices,
since most peripheral accesses will be for the purpose of writing either the
1/0 control or thé control registers in the peripheral devices.

DYNAMIC ANALYSIS OF SYSTEM DETAILS

The general technique of dynamic analysis is discussed in Section

4.1.2. The discussion which follows will apply this technique to analyze many

of the details of the system operation.

Set up the system as described in Section 4.1.2. After the test
equipment is operating properly, most of the system operation can be verified

using only the oscilloscope.

ADDRESS BUS VERIFICATION

The first item which must be checked is the specific timing of the
address lines. These lines will change during the first part of 01 but after
the specified period, they should stabilize and remain stable through the
rest of the cycle. Figure 4-6a shows the waveform which one should expect
to see while examining Dl, 02 and two address lines. In this illustration,
one address line is going high and the other is going low. These lines
are being generated within the processor and are guaranteed to operate prop-
erly provided the total loading on the pins is within specifications.

The most common cause of both voltage-level and rise-~time problems is over-
loading. Voltage-level problems are commonly evidenced by the "zero" level
being too high, i.e., the address buffer is being asked to sink too much
current. Excess capacitance is usually evidenced by the rise and fall times
being too long (Figure 4-6b).

In examining the address lines, it is important that the data be
examined on the processor and directly on the variocus support chips. This
will assure that any bus expanders in the system are operating properly and

that the addresses are valid where they are actually being used.

DATA BUS VERIFICATION

After the addresses have been verified, the next step is to ex-
amine the data bus to verify the validity of data being transferred both
from the processor to the support chips and from the support chips back
into the processor.

Figure 4-7 illustrates the waveform which one can expect to see
on the data bus lines. 1t is very important to note that during @, there
is no way to predict the voltage on the data bus, since neither the proces-
sor nor the support chips are driving these lines, However, during @, the
data bus pins should go either high or low. It is only during @, (high)

that the validity of the data can be verified.

i
§
'
'
{
{

.
$1
¢2
ADDRESS BUS LINE
ADDRESS BUS LINE

FIGURE 4-6a — Proper Address Lines

¢l

¢2

ADDRESS BUS LINE
L

FIGURE 4-6b — Excess Address Line Loading

Address Lines In R650X Systems
FIGURE 4-6

The Data Bus in R650X Systems
FIGURE 4-7

$1

62

DATA BUS LINE

DATA BUS LINE

62

R/W

DATA BUS LINE

DATA BUS LINE

Three very important parameters must be considered when examining
the data bus. These are the voltage levels, the time at which the data is
valid and the delay from the trailing edge of 02 to data becoming invalid.

1. Voltage Levels
The logic levels on the processor data bus must always be
greater than 2.4 volts for a logic 1 and less than 0.4 volts
for a logic 0. This is a very basic concept, but a quick
check on these levels very early in the checkout procedure
can help the designer avoid hours of attempting to make a
system operate with signals which are actually marginal but
which on the surface appear to be satisfactory.

Another very important item to check is whether or not

the logic "0" voltage is actually going negative (below GND).
It is very important that the logic signals going into all
the chip inputs not be allowed to go below -0.3 volt as
indicated in the specifications.

2. Data Valid Time
The time at which data becomes valid indicates the total
time which the processor or memory has available to stabil-
ize the gates and latches used to trap the data within the
chip. For this reason the data must not take too long to
reach either a valid high "1" or a valid low "0." The pri-
mary cause of slow signals on the data bus is excessive
loading, either resistive or capacitive. Carefully check
the devices which are attached to the bus to make sure that
the total loading is within specifications.

3. Hold Time

' is defined as

The last important consideration,”hold time,'
the time between the trailing edge of the #, pulse and the

point at which data is no longer valid. A minimum of 10 ns
hold time is required for the processor to trap the

data into its internal input latches. The processor inter-
nal @, pulse is used to gate the contents of the data bus

into these latches. Hold time is also required by the vari-

ous support chips within the system. Carefully check the

signals as they appear on the RAMs, ROMs, etc. to verify that

each is being operated in accordance with its specification.

4.3.4 Detailed Component Check

After the dynamic check of the reset routine, the next step is to
attempt to run the system program. The success of this operation will deter~
mine whether or not a further detailed component check is necessary. It is
important to note that the checkout of the system program should proceed one
step at a time in much the same manner as we have approached the hardware
checkout. If a careful examination has been made of all of the devices,
data paths, etc. in the system, the software checkout can proceed under the
assumption that the hardware is fully operational. However, it is inevitable
that doubts will arise. There are times in the software checkout process
that the program will appear to be incorrect ... data will not be going
into memory as it should ... or, in general, some hardware failure will be
indicated. As soon as this happens, the suspected components should be
examined in detail. 1In keeping with the policy of "one gtep or one problem
at a time," it is important that potential hardware problems not be allowed
to invalidate the effort being put into the software checkout.

Component problems can be one of two types: component failure,
i.e., a part not operating per specifications; or system failure, i.e., a
part being used wrong in the system. The latter problem can be a result
of incorrect system design or incorrect wiring. The problem of functional
components not operating properly in the system is the one which will be
addressed here. In fact, if there is any doubt about a component being
functional, it should be replaced immediately upon verification of proper
signals to all inputs. If it still does not operate properly, the problem
is most likely system-related.

The detailed component check is performed most effectively by load-
ing a small looping program into the system RAM. For this reason, the TIM
or KIM debug software (see TIM and KIM Manuals) can be of significant
value in this process. The procedure involves static and dynamic operation
of a small test program which exercises each of the components in the sys-—
tem. The goal of this step should be a complete verification that all chip
selects are operating properly, that all data address lines are operating

properly, and that the support chips are driving the processor properly.

4-23

The suggested procedures for checkout of each type of component are discussed

below.

1.

ROMs (PROMs)

The most straightforward component in any microprocessor system
is the ROM. This device simply puts out an 8-bit word onto the
the data bus in response to an address. Difficulty with ROMs is
usually caused by improper chip selects or by misapplication

of devices which are not part of the R6500 family., For this
reason, static testing of ROMs 1is usually a very effective first
step. This requires entering a test program into RAM and exe-
cuting this program using the single-cycle switch. The program
itself should simply perform a READ (for example, an LDA or LDX
instruction) of a selected word for each ROM chip to be tested.
The chip selects can then be examined and, at the same time, the
address lines presented to the chips can be examined along with
the data put on the data bus.

After the chip select, address bus and data bus have been
verified statically, it may be necessary to execute the same
test program dynamically to assure that all chips in the system
are operating at system speed. At this point, it may be neces-
sary to include a WRITE operation (STA, STX, STY, etc.) in the
loop to provide a sync signal.

Analysis of the dynamic operation of the ROMs should involve
first 1oo¥ing at each address and data bus lines directly on the
processor chip. It is here that the address is being generated,
and it is here that the data must meet a speed specification.

If data are not valid at the proper time, the next step is to
determine where excessive delay has been introduced into the
data path from address output, through the ROM and back to the
processor data bus. It should be kept in mind that it is this
entire path which must operate at speed to assure proper pro-
cessor operation. In fact, if the delays are excessive, it may
be necessary to slow down the system clock rate to allow the
program data to reach the processor in time., An alternative
solution to this problem is the implementation of the RDY signal
to hold the processor for one cycle each time it fetches data

or program from the ROMs.

Although the problems discussed above may be encountered at
this point, it is much more likely that a wiring error will
cause a single address or data line to be excessively loaded so
that it operates slowly or not at all. This problem can usually
be detected and fixed quite easily by looking at each component
in the data path.

RAMs

Operation of the RAMs in a microprocessor system can be checked
in much the same manner as the ROMs. Execution of a test loop
program both statically and dynamically for each chip in the
system should be sufficient to verify proper operation of the
RAMs in the system. For each RAM, both a WRITE and a READ oper-
ation should be included in the test loop. This will allow
checkout of data transfers in both directions.

During single-cycle execution of the test loop, the proces-
sor will stop only in the RAM read operations. However, this
will allow a static check of the chip select logic and the
address and data lines. Running the program dynamically will
allow verification that the data and address signals presented
to the RAMs during the WRITE operation are within specifica-
tion for the RAM being used in the system,and that the total
delays through the address, RAM, and data bus path are within
specifications for the processor during the READ operations.

As with the ROMs, the most likely problem to be encountered at this
point 1s concerned with wirinpg errors which cause a specific device
to operate improperly. A careful check of each pin will enable
detection of this type of problem.

PlAs

The peripheral interface devices (6520, 6530, etc.) can all be
checked out in the manner described above. However, since these
chips do many different operations, the test program must be

much more complex than that required for the ROM and RAM.

However, it can usually be limited to testing only those func-
tions which are used in the system.

A large part of the operation of the peripheral interface
devices can be verified by performing a WRITE followed by a RFAD
for each register on the chip. This will permit a complete check-
out to be made of the data paths between the processor and the
chips, as well as of all the chip select functions. However, a
more complete analysis may be required to verify that data are
appearing properly on the output pins of the peripheral chip, and
that data on the inputs are being reflected properly back into the
processor. This will involve disconnecting the peripheral sub-
system which the processor is attempting to drive, and manually
putting data into the inputs. A separate test can verify the

validity of output data.

After the system hardware has been examined to the detailed degree dis-
cussed above, the designer will have developed confidence that his system
can operate properly once the system program is completely debugged. Veri-
fication of the system program should proceed with a section-by-section
checkout as discussed above. Each subroutine, interrupt routine, etc.
should be examined separately. Subroutines, routines, etc. can then be com-
bined to form the major peripheral operating routines, arithmetic routines,
etc. which make up the system program. The final result should be a function- !
ing program that has been examined in all of its details, running on a sys-

tem which is fully operational. 13

SECTION §

R6520 PERIPHERAL INTERFACE ADAPTER (PIA)

The R6520 is a direct pin-for-pin replacement for the Motorola
M6820 Peripheral Interface Adapter, the "PIA." As such, it meets all of
the "PIA" electrical specifications and is totally hardware-compatible
with the M6820.

The R6520 is an I/0 device which acts as an interface between the
microprocessor and peripherals such as printers, displays, keyboards, etc.
The prime function of the R6520 is to respond to stimuli from each of the
two worlds it is serving. On the one side, the R6520 is interfacing with
peripherals via two 8~bit bidirectional peripheral data ports. On the
other side, the device interfaces with the microprocessor through an
8-bit data bus (this 1s the same data bus discussed at length in
Section 1.2.2). It is, therefore, simplest to view the basic function of
the R6520 as illustrated in the block diagram of Figure 5-1.

4 : 3

K> CONTROL

pata sus <) K> oatab0

DATA .
MICROPROCESSORS J PORT PERIPHERAL
ICES -
R6520 ™ PRINTERS,
- DISPLAYS, ETC.
CONTROL < D DATA PORT

<> CONTRO[)

- i

Basic R6520 Interface Diagram
FIGURE 5-1

5-1

In addition to the lines described above, the R6520 provides four interrupt
input/peripheral control lines and the logic necessary for simple, effec—
tive control of peripheral interrupts. No external logic is required for
interfacing the R650X microprocessor to most peripheral devices. Figure
5-2 shows the R6520 pinout designations for the Peripheral Interface
Adaptor.

The functional configuration of the R6520 is programmed by the

microprocessor during systems initialization. Each of the peripheral data

lines is programmed to act as an input or output, and each of the four
control/interrupt lines may be programmed for one of four possible control
modes. This allows a high degree of flexibility in the overall operation
of the interface.
Some of the more important features of the R6520 are the following:
e Compatibility with the R6500 microprocessors (CPUs).

e Eight-bit bidirectional data bus for communication with
the microprocessor.

e Two 8-bit bidirectional ports for interface to
peripherals.

® Two programmable control registers.
® Two programmable Data Direction Registers.

® Four individually controlled interrupt input lines --
two usable as peripheral control outputs.

Handshake control logic for input and output peripheral
operation.

e High-impedance three-state and direct transistor drive
peripheral lines.

e Program-controlled interrupt and interrupt mask capability.

5.1 R6520 ORGANIZATION

Figure 5-3 contains a block diagram of the R6520 showing the
internal registers and data paths and the various inputs and outputs on
the device. This section contains a general description of the internal
organization of the device, along with a discussion of how the various

registers affect one another. The following sections discuss the details

Vss

AAQ
PAl

PA2
PA3
PA4
PAS
PA6
PA7
PBg

PB1

PB2
PB3
PB4
PBS
PB6
PB7
CB1
CB2

ycc

R6520

w &
s =3

[
®

UODUDUDUUUUDUOUU

37

36

35

34

33

32

3t

30

29

28

27

26

25

24

23

22

2

~———— CAl
~4——— CA2
——— IRQA
————— IRQB

~4————— RS§

R6520 Pinout Designations, Peripheral Interface Adaptor

FIGURE 5-2

CAl
IRQA 4— INTERRUPT STATUS
CONTROL A a2
CONTROL
REGISTER A DATA DIRECTION
(CRA] REGISTER A
Do J‘> (DDRA)
DI -] J lL
D2~ l
DATABUS |*
D3 BUFFERS |~ OUTPUT BUS Lt PAQ
D4 DBB) = PAL
- ! PERIPHERAL a2
oo - OUTPUT PERIPHERAL [oas
o REGISTER A INTERFACE .
> Lt PA4
. (ORA) BUFFER
A Lt PAS
PAG
PA7
DATA INPUT
REGISTER [-
Bl et
ity Lt PBI
PB2
e PERIPHERAL [+ 7%
OUTPUT > rBa
REGISTER B INTERFACE - Pt
(ORB} BUFFER et
N la— PBS
lag—g»- PBO
PB?
csi
2 CcHIP
e) INPUT BUS
Reo AND DATA DIRECTION
— I
RS‘:, . R/W CONTROL REGISLE‘R B
::«ABLE—> CONTROL REGISTER B > {DDRB)
RESET (CRB)
RESET —»]
{___. INTERRUPT STATUS [(B!
CONTROL B Lt 12
IRQB s

R6520 Internal Architecture

FIGURE 5-3

of the inputs and outputs on the chip, along with a detailed discussion of

the operation of each register. The final section discusses the R§520

from an operational viewpoint, describing the interaction of the register
bits, input/output lines, etc.
The R6520 is organized into two independent sections referred to

as the "A Side" and the "B Side." Each section consists of a Control Regis-

ter (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA,
ORB), Interrupt Status Control and the buffer necessary to drive the Periph-

eral Interface busses.

5.1.1 Data Input Register

When the microprocessor writes data into the R6520, the data
which appear on the data bus during the Phase 2 clock pulse is latched
into the Data fnput Register. It {is then transferred into omne of six in-
ternal registers of the R6520 after the trailing edge of Phase 2. This
assures that the data on the peripheral output lines will not "glitch" -
i.e., the output lines will make smooth transitions from high to low or
from low to high, and the voltage will remain stable except when it is

going to the opposite polarity.

5.1.2 Control Registers (CRA and CRB)

The Control Registers allow the microprocessor to control the oper-
ation of the interrupt lines (CAl, CA2, CB1, CB2), and peripheral control
lines (CA2, CB2). A single bit in each register controls the addressing
of the Data Direction Registers (DDRA, DDRB) and the Output Registers (ORA,

ORB) discussed below., In addition, two bits (bit 6 and 7) are provided in

each control register to indicate the status of the interrupt input lines
(CAl, CA2, CBl, CB2). These interrupt status bits (IRQA, IRQB) are normally
interrogated by the microprocessor during the interrupt service program to

determine the source of an active interrupt. These are the interrupt lines
which drive the interrupt input (fia, ﬁﬁf) of the microprocessor. The
other bits in CRA and CRB are described in the discussion of the interface
to the peripheral device (Section 1.5.4).

The various bits in the control registers will be accessed many

times during a program to allow the processor to enable or disable inter-

rupts, change operating modes, etc. as required by the peripheral device
being controlled.

5.1.3 Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each
line in the 8-bit Peripheral I/0 port to act as either an input or an out-
put. Each bit in DDRA controls the corresponding line in the Peripheral A
port, and each bit in DDRB controls the corresponding line in the Peripheral
B port. Placing a "0" in the Data Direction Register causes the correspond-
ing Peripheral 1/0 line to act as an input, while a "1" causes it to act as
an output.

The Data Direction Registers are normally programmed only during
the system initialization routine which is performed in response to a Reset
signal; however, the contents of these registers can be altered during
system operation. This allows very convenient control of some peripheral

devices such as keyboards.

5.1.4 Peripherai OQutput Registers (ORA, ORB)

The Peripheral Output Registers store the output data which ap-
pear on the Peripheral I/0 port. Writing an "0" into a bit in ORA causes
the corresponding line on the Peripheral A port to go low (< 0.4V) if that
line is programmed to act as an output. A "1" causes the corresponding
output to go high. The lines of the Peripheral B port are controlled by
ORB in the same manner.

Addressing of these registers is discussed in Section 5.2.4.

5.1.5 Interrupt Status Control

The four interrupt/peripheral control lines (CAl, CA2, CBl, CB2)
are controlled by the Interrupt Status Control (A, B). This logic inter-
prets the contents of the corresponding Control Register, detects active
transitions on the interrupt inputs and performs those operations necessary
to assure proper operation of these four peripheral interface lines. The

operation of these lines is described in detail in Section 5.3.2

5.1.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers {DBB)
The Buffers which drive the peripheral 1/0 ports and the data bus

provide the current and voltage drive necessary to ensure proper system

operation and to meet the device specifications.

5.2 PROCESSOR INTERFACE
The R6520 interfaces to the microprocessor with an 8-bit bidirec-
tional data bus, 3 chip-select lines, 2 register-select lines, 2 interrupt

request lines, read/write line, enable line, and reset line.

5.2.1 Data Bus (DO-D7)

The 8-bit, bidirectional data bus allows the transfer of data be-
tween the microprocessor and the R6520. The data bus output drivers are
3-state devices that remain in the high impedance state except when the
microprocessor reads data from the peripheral adapter. This data bus is

the same as discussed in Section 1.2.2, "Bus Structure."

5.2.2 Enable (E)

The Enable input is the only microprocessor interface timing input
on the peripheral interface device. All data transfers into and out of the
R6520 are controlled by this signal. In normal operation, this input
should be connected to the phase two clock signal. In the case of the
R6512 through R6515, this is the Phase 2 clock generated externally to the
microprocessor chip. For on-chip oscillator products the enable pulse

becomes #2(0UT).

5.2.3 Read/Write (R/W)

This signal is generated by the microprocessor to control the di-
rection of data transfers on the data bus. A "low" (« 0.4V) on this line
enables the input buffers (microprocessor Write), and data are transferred
from the microprocessor to the R6520 under control of Enable input 1if the
device has been chip-selected. A "high" on the R/W line allows the R6520
to transfer data to the data bus buffers. The data bus buffers are enabled
when the proper chip-select and Enable signals are present. Figure 1.23

illustrates the Read/Write timing.

5.2.4 Chip Select Lines (CSO, CSl, CS2)

These three inputs allow the microprocessor to select the proper
peripheral interface device. (€SO and CSl must be high and €S2 must be low
for selection of the device, Data transfers are then performed under con-
trol of the Enable and R/W signals. These lines are normally connected to

the address lines on the microprocessor, either directly or through address

decoders.

1
t

e £ R S

ENABLE /
- 300 fet—
ADDRESS
— 20
DATA BUS
PERIPHERAL
DATA (A OR B)_
pof————— 700 —
Microprocessor Interface Timing - Read
FIGURE 54a
o — 470 V—Iﬂ
24V
_
ENABLE / 0.4V
~mel 180 jet— -l 100 e
24V
ADDRESS X
04V
130 et —
2.4V
READ/WRITE / 04V
— - 20
24V
DATA BUS
04y
— 100 ret—
24V
PERIPHERAL
DATA (A OR B) 04V

*NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Microprocessor Interface Timing - Write

FIGURE 5-4b

Microprocessor Interface Timing

FIGURE 54

5-8

24V

0.4V

24V

0.4V

As described in Section 5.4.2, a single bit in each Control Reg-
ister (CRA and CRB) controls access to the Data Direction Register or the
Peripheral interface. If bit 2 in the Control Register is a "1," a Periph-
eral Output register (ORA, ORB) is selected, and if bit 2 is a "0," the
Data Direction Register is selected. Internal registers are selected by

the Register Select lines (RS@, RS1) and the Data Direction Register Access

Control bit as follows:

Data Direction
Register Access
Control Bit

RS1 Rs# CRA-2 CRB-2 Repister Selected

] "] 1 - Peripheral Interface A (See

Section 5.2.5)
[} - Data Direction Register A

@ 1 - - Control Register A

1 @ - 1 Peripheral Interface B (See
Section 5.2.5)

1 "] -] Data Direction Register B

1 - -

Control Register B

If the programmer wishes to write the data into DDRA, ORA, DDRB,
or ORB, he must first set bit 2 in the proper Control Register. The de-
sired register can then be accessed with the address determined by the

address interconnect technique used.

5.2.5 Register Select Lines (RS0), (RS1)

These two register select lines are used to select the various reg-

isters inside the R6520. These input lines are used in conjunction with

internal control registers to select a particular register that is to be

accessed by the microprocessor. These lines are normally connected to

microprocessor address output lines. These lines operate in conjunction

with the chip-select inputs to allow the microprocessor to address a single

8-bit register within the microprocessor address space. This register may

be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/0 port.
The processor can write directly into the Control Registers (CRA,

CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output

Registers (ORA, ORB). 1In addition, the processor can directly read the

b e

contents of the Control Reglsters and the Data Direction Registers. Access-
ing the Peripheral Output Register for the purpose of reading data back into
the processor operates differently on the ORA and the ORB registers, and the

two procedures are discussed separately below.

READING THE PERIPHERAL A I/0 PORT

The Péripheral A 1/0 port consists of 8 lines which can be pro-
grammed to act as inputs or outputs. When programmed to act as outputs,
each line reflects the contents of the corresponding bit in the Peripheral
Output Register. When programmed to act as an input, these lines will go
high or low depending on the input data. The Peripheral Output Register
(ORA) has no effect on those lines programmed to act as inputs. The eight
lines of the Peripheral A I/0 port therefore contain either input or output
data depending on whether the line is programmed to act as an input or an
output. Figure 5-5 illustrates the interface timing.

Performing a Read operation with RS1 = 0, RSO = O and the Data
Direction Register Access Control bit (CRA-2) = 1, directly transfers the
data on the Peripheral A 1/0 lines into the processor (via the data bus).
This will contain both the input and output data. The processor must be
programmed to recognize and interpret only those bits which are important
to the particular peripheral operation being performed.

Since the processor always reads the Peripheral A 1/0 port pins
instead of the actual Peripheral Output Register (ORA), it is possible for
the data read into the processor to differ from the contents of the Periph-
eral Output Register for an output line. This is true when the I/0 pin is
not allowed to go to a full +2.4V DC when the Peripheral Output register
contains a logic 1. In this case, the processor will read a zero from the
Peripheral A pin, even though the corresponding bit in the Peripheral Out-

put register is a 1.

READING THE PERIPHERAL B 1/0 PORT

Reading the Peripheral B I/0 port yields a combination of input
and output data in a manner similar to the Peripheral A port. However,
data are read directly from the Peripheral B Output Register (ORB) for those
lines programmed to act as outputs. It is, therefore, possible to load down
the Peripheral B Output lines without causing incorrect data to be trans-
Figure 5-6 illustrates

ferred back into the processor on a Read operation.

the timing.

.. §

ot

AN Y/ A

—120

180

ENABLE

{ L

27

{
{L
{

ADDRESS
READ/WRITE
DATA BUS

PERIPHERAL

DATA

1.0us

ACI=1,AC4=0)

PULSE OUTPUT MODE

(ACS

CA

200 F—

I 1.0us

CAl

CA2

AC4=0)

(AC5 =1, AC3

HANDSHAKE MODE

NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR IMHZ OPERATION.

Peripheral A Interface Timing

FIGURE 5-5

The details of the Peripheral A and Peripheral B ports will be
discussed in the next section under the discussion of the interface between

the R6520 and the Peripheral Devices.

5.2.6 Reset (RES)

The active low Reset line resets the contents of all R6520 reg-

isters to a logic zero. This line can be used as a power-on reset or as a

— | Ous el —
—Pw 2.04s

master reset during system operation.

5.2.7 Interrupt Request Line (IRQD, Iﬁaﬁ)

The active low Interrupt Request lines (IRQA and IRQB) act to

interrupt the microprocessor either directly or through external interrupt

priority circuitry. These lines are "open source' (no load device on the

—'-LO%r‘—

chip) and are capable of sinking 1.6 milliamps from an external source.

This permits all interrupt request lines to be tied together in a "wired-OR"
configuration. The "A" and "B" in the titles of these lines correspond to
the "A" peripheral port and the "B" peripheral port. Hence each interrupt

request line services one peripheral data port.

Each Interrupt Request line has two interrupt flag bits which can

cause the Interrupt Request line to go low. These flags are bits 6 and 7

in the two Control Registers. These flags act as the link between the

FIGURE 5-6

— 1.0us pl—

NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR IMHZ OPERATION.

et

peripheral interrupt signals and the microprocessor interrupt inputs. Each

flag has a corresponding interrupt disable bit which allows the processor

Peripheral B [nierface Timing

to enable or disable the interrupt from each of the four interrupt
(CAl, CAZ2, CB1, CB2).

inputs

>

! —.-ZOLG—
1.0us

The four interrupt flags are set by active transitions of the sig-

nal on the interrupt input (CAL, CA2, CBl, CB2). Controlling this active

mile

transition is discussed in the next section under the discussion of the
* * g = interface between the R6520 and the peripheral device.
=} s
2 - a= " :
- a o =0
1 <2 %.é‘g' 25
hid . L=}
22| |52 58 TR
39 -5 8= CONTROL OF 1RQA
- Oa =
@ ;z fS " <¥< Control Register A bit 7 is always set by an active transition
@ 2 w X) wnT
4 @ E% Q"-’ 28 of the CAl interrupt input signal. Interrupting from this flag can be dis-
& - ez 2 =
Q t E3 > gl r'g @ o abled by setting bit 0 in the Control Register A (CRA) to a logic 0. Simi-
a < <« o m @2 3 @ 3
« -4 Q (%) v o=

larly, Control Register A bit 6 can be set by an active transition of the
CAZ interrupt input signal. Interrupting from this flag can be disabled by

setting bit 3 in the Control Register to a logic O.

5-13

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Out-
put Register A" operation. This is defined as an operation in which the
proper chip-select and register-select signals are provided to allow the

processor to read the Peripheral A 1/0 port.

CONTROL OF TRQB

Control of Eﬁaﬁ is performed in exactly the same manner as that
described above for TEQX. Bit 7 in CRB is set by an active tramsition on
CBl; interrupting from this {lag is controlled by CRBH bit 0. Likewise, bit
6 in CRB is set by an active transition on CB2; interrupting from this flag
is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B

OQutput Register'” operation.

IRQA goes low when CRA-7 = 1 and CRA-0 = 1 or when CRA-6 = 1 and
CRA-3 = 1.

1RQB goes low when CRB-7 = 1 and CRB-0 = 1 or when CRB-6 = 1 and
CRB-3 = 1.

The use of these interrupt flags and interrupt disable bits is
discussed in more detail in Section 5.3.

1t should be stressed at this point that the flags act as the
link between the peripheral interrupt signals and the processor interrupt
inputs. The interrupt disable bits allow the processor to control the

interrupt function.

5.3 PERIPHERAL INTERFACE

The R6520 provides two 8-bit bidirectional ports and four interrupt/
control lines for interfacing to peripheral devices. These ports and the
associated interrupt/control lines are referred to as the "A" side and the
"B" side. FEach side has its own unique characteristics and will be dis-

cussed separately below.

5.3.1 Peripheral 1/0 Ports

The Peripheral A and Peripheral B [/0 ports allow the microproces-
sor to interface to the input lines on the peripheral device by loading
data into the Peripheral Output Register, They also allow the processor to

interface with the peripheral device output lines by reading the data on

1

(‘;‘i};hn

g

i)
A

the Peripheral Port input lines directly onto the data bus and into the

internal registers of the processor.

PERIPHERAL A 1/0 PORT (PA@-PA7)
As discussed in Section 5.1.3 each of the Peripheral 1/0 lines

can be programmed to act as an input or an output. This is accomplished by
setting a '"1" in the corresponding bit in the Data Direction Register for
those lines which are to act as outputs. A "0" in a bit of the Data Direc—~
tion Register causes the corresponding Peripheral 1/0 lines to act as an
input.

The buffers which drive the Peripheral A (/0 lines contain
"passive" pull-ups as shown in Figure 5-7a. These pull-up devices are
resistive in nature and therefore allow the output voltage to go to Vdd for
a logic 1. The switches can sink a full 1.6 ma, making these buffers cap~
able of driving one standard TTL load.

In the input mode, the pull-up devices shown in Figure 5-7a are
still connected to the 1/0 pin and still supply current to this pin. For

this reason, these lines represent one standard TTL load in the input mode.

PERIPHERAL B 1/0 PORT (PB@-PB7)

The Peripheral B I/0 port duplicates many of the functions of
the Peripheral A port. The process of programming these lines to act as an
input or an output has been discussed previously. Also, the effect of
reading or writing this port has been discussed. However, there are sev-
aral characteristics of the buffers driving these lines which affect their
use in peripheral interfacing. These will be discussed below.

The Peripheral B 1/0 port buffers are push-pull devices as shown
in Figure 5-7b. The pull-up devices are switched "OFF'" in the "0" state
and "ON" for a logic 1. Since these pull-ups are active devices, the logic
"1" voltage is not guaranteed to go higler than +2.4V. They are ITL com-
patible but are not CMOS compatible.

However, the active pull-up devices can sink up to 1 ma at 1.5V,
This current drive capability is provided to allow direct connection to
Darlington transistor switches. This permits very simple control of relays,
lamps, etc.

Because these outputs are designed to drive transistors directly,
the output data is read directly trom the Peripheral Output Register for

those lines programmed to act as inputs.

5-15

The final characteristic which is a function of the Peripheral B
push-pull buffers is the high-impedance input state. When the Peripheral B
1/0 lines are programmed to act as inputs, the output buffer enters the high-
impedance state., These inputs will then have an impedance of greater than

1 megolm.

5.3.2 Interrupt lnput/Peripheral Control lines (CAl, CAZ, CB1, CB2)

The four interrupt input/peripheral control lines provide a number
of special per&pheral control functions. These lines greatly enhance the

power of the two general purpose interface ports (PAR-PA7, PB@-PB7).

PERIPHERAL A INTERRUPT INPUT/PERIPHERAL CONTROL LINES (CAl, CA2)

CAl is an interrupt input only. An active transition of the
signal on this input will set bit 7 of Control Register A to a logic I.
The active transition can be programmed by the microprocessor by setting a
"@" in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set
on a negative transition of the CAl signal or a "1" if it is to be set on a
positive transition. Note: A negative transition is defined as a trans-
ition from a high (> 2.4V) to a low (< 0.4V), and a positive transition is
defined as a transition from a low to a high voltage.

Setting the interrupt flag will interrupt the processor through
IRQA if bit @ of CRA is a 1 as described previously.

CA2 can act as a totally independent interrupt input or as a
peripheral control output. As an input (CRA, bit 5 = @) it acts to set the
interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selec-
ted by bit 4 of CRA.

These control register bits and interrupt inputs serve the same
basic function as that described above for CAl. The input signal sets the
interrupt flag which serves as the link between the peripheral device and
the processor interrupt structure. The interrupt disable bit allows the
processor to exercise control over the system interrupts.

in the Output mode (CRA, bit 5 = 1), CA2 can operate indepen-—
dently to generate a simple pulse each time the microprocessor reads the
data on the Peripheral A 1/0 port. This mode is selected by setting CRA,
bit 4 to a "0" and CRA, bit 3 to a "1." This pulse output can be used to
control the counters, shift registers, etc. which make sequential data

available on the Peripheral input lines.

_— = - e
45V ll | +5 +5
i |
PASSIVE | '
PULL-UP | !
RESISTOR |
| ouTPUT
| TO
CHIP
| t
FROM
. =1 ' !
! I weur |
| |
R6520 | ! R6520
] L
OUTPUT MODE INPUT MODE
~ RESISTOR PULL-UP
REMAINS IN CIRCUIT
Peripheral 1/0 Port A Buffer
FIGURE 5-7a
—— === - - ===
|
+5V | ey
|
,_1 |
—>—|| |
I outeur _
FROM 70
CHIP cHie

T

R6520

INPUT MODE

— NO PULL-UP
IN CHIP

OUTPUT MODE

Peripheral I/O Port B Buffer
FIGURE 5-7b

Peripheral 110 Port Buffers
FIGURE 5-7

517

A second output mode permits CA2 to be used in conjunction with
CAl to "handshake" between the processor and the peripheral device. On the
A side, this technique allows positive control of data transfers from the
peripheral device into the microprocessor. The CAl input signals the pro-
cessor that data is available by interrupting the processor. The processor
reads the data and sets CA2 low. This signals the peripheral device that
it can make new data available. This technique is discussed in detail in
Section 3.

The final output mode can be selected by setting bit 4 of CRA to
a l. In this mode, CA2 is a simple peripheral control output which can be
set high or low by setting bit 3 of CRA to a 1 or a 0, respectively.

The operation of CAl and CA2 is summarized in the next section.

PERIPHERAL B INTERRUPT INPUT/PERIPHERAL CONTROL LINES (CB1, CB2)

CBl operates as an interrupt input only in the same manner as
CAl. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB.
Likewise, the CB2 input mode operates exactly the same as the CA2 input
modes. The CB2 output modes, CRB, bit S = 1, differ somewhat from those of
CA2. The pulse output occurs when the processor writes data into the Periph-
eral B Output Register. Also, the "handshaking" operates on data transfers
from the processor into the peripheral device.

The operation of CBl and CB2 is summarized in the next section.
A more detailed discussion of handshaking on the Peripheral B 1/0 port is

contained in Section 3 of this manual.

5.4 R6520 OPERATION

5.4.1 Control Register Operation

7 6 5 4 3 2 1 [

CRA IRQAL TRQA2 CA2 Control DDRA CAl Control
i, | ACCESS | ey,

7 6 5 4 3 2 1 []
CRB| IRQBL | IRQB2

CB2 Control DDRB CB2 Control
—— Access P ——

Control Register Bit Designations
FIGURE 5-8

TABLE 5-1

Control of Interrupt Inputs CA L CB1

CRA (CRB)

Active Transition

IROA (TROB)

Bit 1 Bit O of Input Signal#* Interrupt Outputs

0 0 Negative Disable--remain high

Enabled--goes low when bit 7
. in CRA (CRB) is set by active

0 1 Negative transition of signal on CAl
(CBI1Y

1 4] Positive Disable--remain high

1 1 Positive Enable--as explained above

*Note 1: Bit 7 of CRA (CRB) will] he set to a logic | by an active

transition of the CAl

(CBLl) signal. This is independent

of the state of Bit 0 in CRA (CRB).

TABLE 5-2
Control of CA2(CB2) as Interript Inputs (Bit 5= °0")
CRA (CRB)
Active Transition IRQA (TRQB)
Bit 5 Bit 4 Bit 3 of Input Signal#* Interrupt CGutput
0 0 Q0 Negative Disable-~remains high
Enabled--goes low when hit 6
. in CRA (CRB) is set by active
0 0 ! Negative transition of signal on CA2
(CB2)
Q 1 4] Positive Disable--remains high
0 1 1 Positive Lnable~~as explained above
*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active

transition of the CA2 (CB2) signal. This is independent
of the state of Bit 3 in CRA (CRB).

5.4.2 R6520 Operation in R6500 Sys tems

A brief review of the overall operation of the R6520 should
serve to tie together many of the details discussed previously.

During the system initialization routine which is executed in
response to the processor RESET signal, the microprocessor will write
a pattern of 1's and 0's into the Data Direction Registers. This will
determine those lines which are to act as inputs and those which are to
act as cutputs.

This pattern will usually be fixed for the system operation.
Therefore, the next step would be to set the various operating modes,
active transitions, etc. which are controlled by the Control Registers.

At the same time, the Data Direction Register Access Control Bit can be
set to a 1 to allow the processor to control the Peripheral Ports during
system cperation.

The interrupts will normally remain disabled until the entire
system is initialized. At this time, the interrupts are enabled and full
system operation begins.

During system operation, the microprocessor will interrogate the
switches, sensors, etc. in the peripheral device by reading the data on the
Peripheral Input lines. Binary or decimal data may be transferred into the
microprocessor in the same way. At the same time the various lights, motors,
solenoids, etc. on the peripheral device are controlled by writing data into
the appropriate bits of the Peripheral Output Registers. The entire sequence
of operations is determined by the programmer to control a particular periph-
eral device in a defined manner. The various registers, gates, etc. in the
Interface Device act primarily as a link between the internal processor oper-—
ations and the various inputs and outputs on the peripheral devices being

controlled.

TABLE 5-3

Control of CA2 Outpud Modes

Mode

bescription

"Handshake"

on Read

Pulse Output

Manual Output

Manual Output

CA2 is set high on an active
transition of the CAl interrupt
input signal and set low by a
microprocessor '""Read A Data"
operation. This allows posi-
tive control of data transfers
from the peripheral device to
the microprocessor.

CA2 goes low for one cycle
after a "Read A Data" opera-
tion. This pulse can be used
to signal the peripheral de-
vice that data was taken.

CA2 set low

CA2 set high

TABLE 5-4

Control of CB2 Output Modes

Mode

Description

"Handshake"
on Write

Pulse Qutput

Manual Output

Manual Output

CR2 is set low on microproces-—
sor "Write B Data' operation

and is set high by an active
transition of the CBLl interrupt
input signal. This allows posi-
tive control of data transfers
from the microprocessor to the
peripheral device.

CB2 poes low for one cycle after
a microprocessor “Wnte BB Data”
operation. This can be used to
signal the peripheral device
that data is available.

CB2 set low

CB2 set high

5-21

5-22

R N

- -

Y

SECTION 6

R6522 VERSATILE INTERFACE ADAPTER (VIA)

6.1 R6522 ORGANIZATION

The R6522 Versatile Interface Adapter (VIA) provides all of the capa-
bility of the R6520. In addition, this device contains a pair of very powerful
interval timers, a serial-to-parallel/parallel-to-serial shift register and
input data latching on the peripheral ports. Expanded handshaking capability
allows control of bidirectional data transfers between VIAs in multiple
processor systems.

Control of peripheral devices is handled primarily through two 8-bit
bidirectional ports. Fach of these lines can be programmed to act as either
an input or an output. Also. several peripheral I/0 lines can be controlled
directly from the interval timers for generating programmable-frequency square
waves and for counting externally generated pulses. To facilitate control of
the many powerful features of this chip. the internal registers have been
organized into an interrupt flag register, an interrupt enable register, and
a pair of function control registers.

Figures 6-1 through 6-3 show the R6522 interfacing, pinout designa-
tions, and block diagram, respectively.

6.2 PROCESSOR INTERFACE

This section contains a description of the buses and control lines

which are used to interface the R6522 to the system processor.
6.2.1 Phase Two Clock (42)

Data transfers between the R6522 and the system processor take place
only while the Phase Two Clock is high. In addition, ¢2 acts as the time base
for the various timers, shift registers, etc. on the chip.

6.2.2 Chip Select Lines (CS1, CS2)

The two chip select inputs are normally connected to processor
address lines either directly or through decoding. The selected R6522 regis-
ter will be accessed when CS1 is high and CS2 is low.

<. o

o

*
1
1
R6522 ’
vssqs '
rao]2 1
PAILC]D T e -
pa2C]4 4 2« % &8 Em
_ PA3C]YS £ v o v o g
8 BIT h A
L PA4LY6 + 4
DATA BUS le—> CONTROL pasc]7
PA6 L8 i
TO W —p] <:>snn pPATC]9 i
R6S00) 2 — PORT TO PBOC] 10] 9
SYSTEM ; PERIPHERAL pp1c]n) | Bz g8
REGISTER &g
[
BUS AND CHIP ——) o, 8BIT DEVICES p2d 12 } ES £E
PORT))
SELECTS PB3C}13 :
PB4 14 =
L TRQ +— «—5 CONTROL PB:: 15 !
P16 ‘ I YY] >
PBT 17 i T T T o =] T T
% . =2 =
s ‘ : iy 2 <l =|<d | glot I
. cB2d19 ' o N 1 g1 &z = al <155158
R6522 Interface Diagram vee o 21RO 1 2 2l 2 Sla xie E S8 2z £ % E1ls I; = | =
FIGURE 6-1 ; £313C1Z8R% L JE° |E = 5189 k8
R6522 Pinout Designations + | 19) @ gl z 1 |a 3
| . 1 g 11 g
FIGURE 6-2 | iT E“ E
Q
6.2.3 Register Select Lines (RSO, RSl, RS2, RS3) 3, r T e %"
) 1 £
The four Register select lines are normally connected to the proces-— ‘ = ,\lfj = |E\ = L:
i) SB3 N
sor address bus lines to allow the processor to select the internal R6522 1 E—Il;g Edli;u a “
I «g o= PEINER] o
register which is to be accessed. The sixteen possible combinations access J T T = "|8t - ; - E‘-'ls € &
&
the registers as follows: o 1 2 = iz, - -4 — g g -4
I Sele_td. s1%5zlE8 |g|F F 2
RS3{RS2[RS1[RSO [Register| Remarks rS3[Rs2 [RS1|RSO|Register| Remarks | g g 2 E:i z £ =<[6e z E_|i;5 £z
o -= 7T s&le<)z LR 7.
L]lr{cL|L|ors wi{v|o]o| 2L |write Lateh £ 8|= e g 12|23 3E|3E 3E
= & <
L L L H ORA Controls T2C-L Read Counter 4 J 1
Handshake alvlv|n| 12c8 [rriggers T2L-L/ | ||
L L H L DDRB T2C-L Transfer
L L H H DDRA H L H L SR JL
T v =
L|H|L]L|TIL-L |Write Latch H|L| H| H]| ACR . & a9
w —-
TIC-L |Read Counter || H | B | L] L | PcR E EEE 59k
=] <0
L|luwj|vr|n | Tic-u |Trigger TIL-L/| B | v | L | H | IFR = © .
-L T .
T1C-L Transf u H - L LER
L L L L H|H| H| H]| orA No Effect
L H H H T1L-H on Handshake
2]
<= 2o o= | - 8 m
Note: L = 0.4V DC, H = 2.4 V DC. a® 2‘865222
6-2 6-3
—;rf—

6.2.4 Read/Write Line (R/W)

The direction of data transfers between the R6522 and the system

processor is controlled by the R/W line. If R/W is low, data will be tramns-

ferred out of the processor into the selected R6522 register (write operation).

If R/W is high and the chip is selected, data will be transferred out of the
R6522 (read operation).
6.2.5 Data Bus (DBO ~ DB7)

The eight bidirectional data bus lines are used to transfer data
between the k6522 and the system processor. The internal drivers will remain
in the high-impedance state except when the chip is selected (CSl = 1,
€SZ = 0), Read/Write is high, and the Phase Two Clock is high., At this time,
the contents of the selected register are placed on the data bus., When the
chip is selected, with Read/Write low and 42 = 1, the data on the data bus
will be transferred into the selected R6522 register.

6.2.6 Reset (RES)

The Reset input clears all internal registers to logic O (except TIl,
172 and SR). This places all peripheral interface lines in the input state,
disables the timers, shift register, etc. and disables interrupting from the
chip.

6.2.7 Interrupt Request (IRQ)

The Interrupt Request output goes low whenever an internal interrupt
flag is set and the corresponding interrupt enable bit is a logic 1. This
output is "open-drain” to allow the interrupt request signal to be "wire-
OR'ed" with other equivalent signals in the system.

6.3 PERIPHERAL INTERFACE

This section contains a description of the buses and control lines

which are used to drive peripheral devices under control of the internal R6522

registers. The operation of these peripheral interface lines is described in
detail in subsequent sections.

6.3.1 Peripheral A Port (PAQ - PAT7)

The Peripheral A port consists of eight lines which can be individ-
ually programmed to act as an input or an output under control of a Data
Direction Register. The level of output pins is controlled by an Output
Register and input data can be latched into an internal register under con-
trol of the CAl line.

6=4

a A - m —

i
|
{
|
!
!
|
!
i
{
i
*.
f

i

P

All of these modes of operation are controlled by the syslem proces-—
sor through the internal control registers.

6.3.2 Peripheral A Control Lines (CAl, CA2)

The two peripheral A control lines act as interrupt inputs or as a
handshake pair, one input and one output. Fach line controls an internal
interrupt flag with a corresponding interrupt enable bit. In addition, CAl
controls the latching of data on Peripheral A Port input lines. The various
modes of operation are controlled by the system processor through the inter-

nal Control Regpisters.

6.3.3 Peripheral B Port (PB Q0 - PR7)

The Peripheral B port consists of eight bidirectional lines which are
controlled by an output register and a data direction register in the same
manner as the PA port. These lines represent one standard TTL load in the
input mode and will drive one standard TTL load in the output mode. In ad-
dition, they are capable of sourcing 1.0 ma at 1.5 VDC in the output mode to
allow the outputs to directly drive Darlington transistor switches. In ad-
dition, the polarity of the PB7 output signal can be controlled by one of
the interval timers while the second timer can be programmed to count pulses

on the PB6 pin.

6.3.4 Peripheral B Control Lines (CBLl, €B2)

The Peripheral B control lines act as interrupt inputs or as a hand-
shake pair, one input, and one output. As with CAl and CA2, cach line
controls an interrupt flag with a corresponding interrupt enable bit. These
lines represent one standard TTL load in the input mode and will drive one
standard TTL load in the output mode. In addition, they are capable of

sourcing 1.0 ma at 1.5 VDC in the output mode to allow the outputs to dir-

ectly drive Darlington transistor switches. In addition, these lines act as
a serial port under control of the Shift Register.
6.4 R6522 OPERATION
This section contains a discussion of the various blocks of logic

shown in Figure 6-3. In addition, the internal operation of the R6522 is

described in detail.

6.4.1 Data Bus Buffers (DB), Peripheral A Buffers (PA), Peripheral B
Buffers (PB

The characteristics of the buffers which provide the required voltage

and current drive capability were discussed in the previous section.

6-5

+5V +5V
INPUT/OUTPUT
CONTROL
PAD-PA7, PBO-PB7,
O CONTROL CA2 CB1, CB2

| OUTPUT DATA
OUTPUT DATA

—_—

INPUT DATA
Peripheral Output Buffers

FIGURE 64

6.4.2 Chip Access Control

The Chip Access Control contains the necessary logic to detect the
chip select condition and to decode the Register Select inputs to allow access-
ing the desired internal register. In addition, the R/W and ¢2 signals are
utilized to control the direction and timing of data transfers. When writing
into the R6522, data are first latched into a data input register during ¢2.
Data are then transferred into the desired internal register during Phase 2
Chip Select. This allows the peripheral 1/0 line to change without "glitch-
ing." When the processor reads the R6522, data are transferred from the
desired internal register directly onto the Data Bus during Phase 2 high

6.4.3 Port A Registers, Port B Registers

Three registers are used in accessing each of the 8~bit peripheral
ports. Each port has a Data Direction Register (DDRA, DDRB) for specifying
whether the peripheral pins are to act as inputs or outputs. A "0" in a bit
of the Data Direction Register causes the corresponding peripheral pin to act
as an input. A "1" causes the pin to act as an output.

When the pin is programmed to act as an output, the voltage on the
pin is controlled by the corresponding bit of the Output Register (ORA,

ORB). A "1" in the Output Register causes the pin to go high, and a "0"
causes the pin to go low. Data written into Output Register bits corres-

ponding to pins programmed to act as inputs will be unaffected,

RN

>

-

Reading a peripheral port causes the contents of the Input Register
(IRA, 1RB) to be transferred onto the Data Bus. With input latching disabled,
IRA will always reflect the data on the PA pins. With input latching enabled
(ACR, bit 0), setting the CAl Interrupt Flag (IFRL) by an active transition on
CAl, will cause IRA to latch the contents of the Port A pins until the In-
terrupt Flag is cleared.

The IRB register operates in a similar manner. However, for output
pins, the corresponding IRB bit will reflect the contents of the Output Reg-
ister bit instead of the actual pin. This allows proper data to be read into
the processor if the output pin is not allowed to go to full high voltage,
e.g., driving transistors. If input latching is enabled on Port B, setting
the CBl Interrupt Flag will cause IRB to latch this combination of input data
and ORB data until the Interrupt Flag is cleared.

6.4.4 Handshake Control

The R6522 allows positive control of data transfers between the
system processor and peripheral devices through the operation of "handshake"
lines. Port A lines (CAl, CA2) handshake data on both a read and a write
operation while the Port B lines (CBl, CB2) handshake on a write operation
only.

READ HANDSHAKE

Positive control of data transfers from peripheral devices into the
system processor can be accomplished effectively using 'Read" hand-
shaking. In this case, the peripheral device must generate 'Data Ready" to
signal the processor that valid data is present on the peripheral port. This
signal normally interrupts the processor, which then reads the data, causing
generation of a "Data Taken" signal. The peripheral device responds by making
new data available. This process continues until the data transfer is
complete.

In the R6522, automatic "Read" handshaking is possible on the
Peripheral A port only. The CAl interrupt input pin accepts the ''Data Ready"
signal and CA2 generates the ''Data Taken' signal. The Data Ready signal will
set an internal flag which may interrupt the processor or which can be polled
under software control. The Data Taken signal can be either a pulse or a DC
level which .s set low by the system processor and is cleared by the Data
Ready signal. These options are shown in Figure 6-5 which illustrates the

normal Read Handshaking sequence.

6-7

pasetwocLock = L LML L L L L L Lo
DATA AVAILABLE
| S VI I IIIIIP. | S

{CAD
IRQ OUTPUT!
QouTrUT! ———— 2 I
READ ORA J ; 1
OPERATION?
DATA TAKEN- |

HANDSHAKE MODE

«Ay DATA TAKEN

PULSE MODE
(CA2)

NOTES:
1. SIGNALS “DATA AVAILABLE” TO THE SYSTEM PROCESSOR.

2. YW =1,CS2=0,CS1 = 1, R$3 = 0, RS2 = 0, RS1 = 0, RS0 =1.

Read Handshake Timing Sequence
FIGURE 6-5

WRITE HANDSHAKE

The sequence of operations which allows handshaking data from the
system processor to a peripheral device is very similar to that described in
Section A for Read Handshaking. However, for "Write" handshaking, the proc-
essor must generate the "Data Ready' signal (through the R6522) and the
peripheral device must respond with the "Data Taken' signal. This can be
accomplished on both the PA port and the PB port on the R6522. CA2 or CB2
acts as a Data Ready output in either the DC level or pulse mode and CAl or
CBl accepts the "Data Taken' signal from the peripheral device, setting the
interrupt flag and clearing the "Data Ready' output. This sequence is
shown in Figure 6-6.
6.4.5 Timer 1

Interval Timer Tl consists of two 8-bit latches and a 16-bit counter
The latches are used to store data which are to be loaded into the counter,
After loading, the counter decrements at system clock rate, i.e., under con-
trol of the clock applied to the Phase Two input pin. Upon reaching zero, an
interrupt flag will be set, and IRQ will go low if enabled. The timer will
then disable any further interrupts, or will automatically transfer the con-

tents of the latches into the counter and will continue to decrement. In

PHASE TWO CLOCK:

WRITE ORA [1
OPERATION'

DATA AVAILABLE-

HANDSHAKE MODE L
(CA2, CB2)

DATA AVAILABLE
PULSE MODE -
(CA2,CB2)
DATA TAKEN
(CAL, CBI) Y. |

IRQ OUTPUT?
L J

NOTES:
1. R'W = 0,CS2 = 0, CS1 = I, RS3 = 0, RS2 = 0, RSt = 0, RS0 = 1.

2. SIGNALS “DATA TAKEN" TO THE SYSTEM PROCESSOR.
Write Handshake Timing Sequence
FIGURE 6-6
addition, the timer cap be instructed to invert the output signal on
peripheral pin PB7 each time it "times-out." Each of these modes is dis—
cussed separately below.
WRITING THE TIMER 1 REGISTERS
The operations which take place when writing to ecach of the four

Timer 1 addresses are as follows:

RS3 | RS2 | RS1 | RSO Operation (R/W = L)

L H L L Write into low-order latch.

Write into high-order latch

L H L H Write into high-order counter.

Transfer low-order latch into low order counter.
Reset Tl interrupt flag.(IFR6)

Write low-order latch.

Write high~order latch.
Reset T1 interrupt flag. (1FR6)

Note that the processor does not write directly irto the low-order
counter (T1C-L). Instead, this half of the counter is loaded automatically

from the low-order latch when the processor writes into the high-order counter,

6-9

In fact, it may not be necessary to write to the low-order counter in some
applications since the timing operation is triggered by writing to the high-
order counter.

The second set of addresses allows the processor to write into the
latch register without affecting the count-down in progress. This is dis-
cussed in detail below.

READING THE TIMER 1 REGISTERS
For reading the Timer 1 registers, the four addresses relate directly

to the four registers as follows:

RS3 RS2 RS1 RSO Operation (R/W = H)
L H L L Read Tl low-order counter
Reset Tl interrupt flag (IFR6)
H L H Read Tl high-order counter.
H L Read Tl low-order latch.
L H H Read Tl high-order latch.

TIMER 1 OPERATING MODES
Two bits are provided in the Auxiliary Control Register to allow
selection of the Tl operating modes. These bits and the four possible modes

are as follows:

ACR7 ACR6
Output "Free-Run"
Enable Enable Mode
0 0 Generate a single time-out interrupt each time Tl
is loaded. PB7 1s disabled.
0 1 Generate continuous interrupts. PB7 is disabled.
1 0 Generate a single interrupt and an output pulse on
PB7 for each Tl load operation.
1 1 Generate continuous interrupts and a square-wave
output on PB7.

TIMER 1 ONE-SHOT MODE

The interval timer one-shot mode allows generation of a single
interrupt for each timer load operation. As with any interval time, the
delay between the "write TIC-H" operation and generation of the processor
interrupt is a direct function of the data loaded into the timing counter.
In addition to generating a single interrupt, Timer 1 can be programmed to
produce a single negative pulse on the PB7 peripheral pin. With the output
enabled (ACR7=1) a "write T1C-H" operation will cause PB7 to go low. PB7 will

return high when Timer 1 times out. The result {s a single programmable

width pulse.

NOTE
The PB7 output enable function will over-ride bit 7 of

the Data Direction Register B. PB7 will act as an output
1f DDRB7=1 or if ACR7=1,

In the one-shot mode, writing into the high-order latch has no effect
on the operation of Timer 1. However, it will be necessary to assure that
the low-order latch contains the proper data before initiating the countdown
with a "write T1C-H" operation. When the processor writes into the high-order
counter, T1L-H will also copy the data, the Tl interrupt flag will be cleared,
the contents of the low-order latch will be transferred into the low-order
counter, and the timer will begin to decrement at system clock rate. If the
PB7 output is enabled, this signal will go low on the phase two following the
write operation. When the counter reaches zero, the Tl interrupt flag will
be set, the IRQ pin will go low (interrupt enabled), and the signal on PB7
will go high. At this time the counter will continue to decrement at system
clock rate. This allows the system processor to read the contents of the
counter to determine the time since interrupt. However, the Tl interrupt flag
cannot be set again unless a "write TIC-H" operation has taken place.

Timing for the R6522 interval timer one-shot mode is shown in
Figure 6-7.
TIMER 1 FREE-RUNNING MODE

The most important advantage associated with the latches in Tl is

the ability to produce a continuous series of evenly spaced interrupts and

6-11

