

® L)V ES Mee o] i

e
0 » il O S FH
BN Ry) (A5 e AEse
— . iy e 8 T L
3 A N v rou O3 7 g »,c“\"" # S R)
o -2 o] NITER® v ~ I\""
KT p2r 15 2 :¥ “’) D C v
. = AN B DY] PoP C & R t 0
o / = a \ {J E§ J | VJ () 23 5% v \
/\ ERR p - A v
§ /
/ > - = P ~C e 3 X o= e [A
/ ([AZRpsN ASSERABLET. cHors of RLLPILCEA er, in AL g n A0+ 1
l\ & 5T \3 [NOVE ! 'f\ () & %
= ANNF MOy L P 2 IT ’x~ ’)
— \\.
s’ S| LT YR G ' . -
~— \ s /
— /! TR s - PSR g oL o ‘;“"v)

4

‘)Yglp[bqbllt
| PUT NG A

Y g

{2 «13:7“{4":)=

~— e S

-~ éﬂl&(/’m"\p D(> & H‘J"CVMI&;ETM&-‘

‘

/fi?'csajz Sco5 N2 250 1 , el
' i vz Q] Y%h am:‘“w Urade \pr’r{ﬁ . £TZ|

W/’)/ N-JR D’V“ Py

s le’ & BFJU i 1 1N o ‘*i ST WA TN XA
Scroll Systems, Inc., 11108 NE 106th Place Klrkland WA 98033

— X3 A
SHECD b (U ~T Q \)(/\ § HEr~ A | Vi FLE
G< / / / RN SoE e NG
| ' FSY ~ AT (o
= ol il 8 o -
- 0 | R —
> 3 e RAN[¢E »t\f‘\i{*
:\ e == { 3 a7 lf\r : i .’\\'\’M,
-)NJ?"ZA‘ : \, Fo& ¢ N A < o 0 \
. FIENE VIE f r b \
NA i © W
” — { R Vapet A W& / V/é s F iz d :ﬁ "jf’ e - hu) 5\; (741 & nd &7 Qﬂl\/& ~U r 'r’“'['w”:{
4 VIS RCE Progan . il o P T - Tcor Ll URENE thBow s WETL) |
- e Al s ""nlr T 2 ptrace i »h € i n/)ﬂve‘ ERALRA icum K‘N ;:’ fE (',j_ﬁ“ _’"‘”'

| 5 . e o —_——

cm«m @@ Esue i Nsm\%g\\s KT m(\ bt s R

R 1 w‘ S&P C/\J\S/ = \\
‘ '=$?’°Nb ' f‘ = Q15~7C: ‘P \Red sait 1
A ek Lot
e e
s |
i TR e R S s, e o T /
)’!Cr ORI QU® Of l:f\“fm,\é » % DErmes TR 5\\“:.\
A = Thy Jirsls E/’U/WMG‘NT'W T3 {"Mm;ﬁ QE)‘ oo “éSj }E
[— LOK MK 4
| Acknowledgements TTRe Q“}% D:W’Erwcmmn
i
» SST was wntten pnmarlly by Murray Sargent coaqthor
QR by b Ty ¢ mﬁ"wg‘% (N
IS E THRS TMME T 25 0080™" TNWWG’ QNQ - <~~£;\‘~
The Personal Computer From the Inside Out, 3rd E7dmon _L, e b_f@‘}cm’-
Addison-Wesley Publishing ¢ o, Reading MA 01867 . . v = \Mm@ Bea

LU ete AT L e ST Gl ol
e Bové «wﬁooxo L ALY S A
L. Darwin Sandérs III, Matt Dersti ne, and Hoi-huu Vo ha ¢ con rib ted code and/"" ,m&rm

41-

ideas to SST. In addition, many peo g C ave gom 'ﬂ!’ﬂ n..mm AR] \ Crm Urt
£ o Ql\tstS“L /] ?nﬂv‘bﬁhy
han Myhrvold and David We) i (T %b

txrf sas . P),;
\ £ ST ‘A\(e Taic alP 36’ WW /
NG SEC e o =
S :’.r;' ,(((L & S < = e g LO
T TOcp WENT AvD Rel_% o F NG <

N

Ve e ¢732?o o \

e[¥ o5 \Mm‘”f 7;“ f “"‘\"l °“@5’J 15palen
e Ao ALC et S “\‘ﬁ’ep\
{ 5 If‘ P

i o Ol W™ VP‘«OW W1 O ST
oy o gt R 1
1% \y:‘q_l 'a\{{%"vﬁﬁgzﬁ% ,\ U4 Ag\ Wi UW)'\‘;«EBB

A \um A2
§ \M}“MRWJ,- 5D D¢ t;

== 7
dLp Breer N 'Monp

)) JA‘P /(
\
! 0 \N C/ﬁ 2(;(_, ‘6'(""\YJ P JU'\«f p\Q,\J
& — A P,
\™drr e é’(&g;\ oy
\ T I)NTA 0;\“?:1 \/

L(;\R(,e L/NLT \N‘q-fr 56"/«/@
OA &le.,
* N w 0 (N TAGrE))

{5 \)

€3 ey

7 g L 9.5 AT 1A ,4,}\’;3'4
. \NQL’/ D EA el (A J /
ko - Oyaeri RGNS A fub DOEs NOT ks Lm@T oF &)wf ST § §
£rasr i
767 g9 ;EMP Yo vernf o5 St 74%7‘5 79 k6 b{b ~3F}<)F
795 4CxR4g0S ggg fe2ea 1SNl Mot ers e c6s dlﬂ;b o (?

= b X ¢ ol
€S . L wov €S S se! th 7714 @'tfyél Yakc

4

5j1 t(,y/

) ;/ON IREES Y T
UB M = Table Of Contents (S0 esf JD\ i
e 83 S JF T b gl
1 Introduction to SST ,/
" 1-1. SST, The Integrated Debugger...".. 5.} .
1-2. Full Screen Display Mode...........,:..f.ﬂ. ::: \\ w
1-3. Trace Mode.............coooepeeeiiinnnnn. \.D. ! *'WL"“FF’\ ’M‘QWQ‘ !
1-4. Trace Mode Demonstration... 0. ‘ ALNNRIA e
R mE\ Back Tracmg................ff‘../.\ﬁf’.‘,;'.j.ps\ » '
s \W\u\\;) 1-5. x86/x87 SupporttLLXE 4. Jﬁt..@zﬁ.&&b&...?@.@m NS
e,\.q 16, Labels.............................ms.a...’.r.,i.u.m.:...Pu\;..L.. s T T ;
s > 875 WG T enmieion s o h.‘f...’.ﬁ.mh..’.f.&f@%{\ e B =gl
\ 138 Tey w18 N e LM.[.L.(L.‘.’.‘...’(\.;\\p SLd TH sy gt 41 "F‘: ?7?{ & ;
°* 1850, 419, SST Windows.............. 5 MG LR vt oo S |8 ;
78%sMenu Line.................. v XA Q ... ,; b TR 5 \ / T
\ b AR e e e rverpren sttt R k), S 5 wg&v,r:m :
G TN WA . s MR 61" ,(’004{66 e
1- IO Bditor oo 80007 SQNT sty e 7 | Ve X _/,{”/ ‘
L1 et o N L R L TR UL 7 | 1p ﬂ‘(‘* & Ay
B I R L S 73 Aéaﬁlff[\" R
1-13 ‘Conditional Breskpoints ... 22000 SRMRMO.) JUibs 8{hy VI s
1- 1 oW to Uae o mmunl - . e R oy B ML
b » Ug ‘
2 . SST Bely Pucility .t dledad o e Vo, |
2-1. Brief Command Definitionsoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneenns 10 |~Y6, ”‘f‘ A 8 ,
DI OETO ... [0 ... g i 13\, M i.
3 R B R R e s e os e 14 \ o ”‘ (Qz\fc/\/ \
P R E o . e It e ot B '\ .
R R A SR - O A 16 *le g
§ e
3 NI R e e =4y e
3 E RISc.oitimeasesronassessissssarosinssns ababims o rerszases 17 v;’ "f(hy/ ﬁ’[q(
U & DTS DRORIIINIION veiareesenssannt 18{2% 1 (,P‘A ! 2x Cj
a@ LA Dlsplay IDERIONStIalON 0l i e i e e e 18 j%;\f"(b ‘S . /‘('(
e wwyco?”? \ e O
MQV edx 5ot [erpr2 g] \ LEN AX L DR, - Gk ,
‘ "P @(Wa[et .L.V.\%X?d € on) RO ~ LA e % Ry %,
e kT Vi . —_— W SR |
T LEN A CS(RoR m\}
e ; i o
- - % Sl — g = s s R '!

v

5,

CONTENTS
OvertypeMie S+ 980 AT Xl i ndi i 18
3-2. Contmahd Tine Parameters.o.....cocibuerniennennenrennncis fs BBisaidensns 19
VT T e RS s STIONRS: fpyt e 19
SoreemIBVROPHON ... e s 19
IMultiple SCIBeRB- = e i s cens 20
3:3Y Configlring S8T:.. vi il e sesesss N T g st 20
SSTinitialization...................... L. GAARARLANN S ANS A, 21
Echoing OUPUL 10 8 Flle.cc.n.cvc o it esereesn e 21
T erminating User Programsicccooceee e BB G pet- manirbrserbas k)
Super-Trace Demonstration......................cocoevieeiieiiiciicieeieen 22
g BT S s e S e N e AL W 6 23
Converting between Hexadecimal and Decimal &3
/SOl REISTEr MAHCS. ..t v ai oo sh e oot sssas o ¥y s soae 24
350 I NUCTTUDIS G BE L % ol 8 foor S e 0 Ak 3 T8 fun s on ot o mg s inata s s 24
3-6. HArdware INEITUPLS...........oc. .o cveererieeereeeereeserees s eesonses s s osne s oa 25
TNMIEBUBRS: e g e e 25
Interrupt Mask Control...............o.cciotemioooe o ai 25
3-7. DOS and x87-Emulation Interrupt Definitions 26
Examining Interrupt Vectors.........................ocoooiiiiiiieie. 26
;SST Syniax. Labels. and SITRESo korith7 roeie: 27
BT ASHIEEN et cnecrsninse e res e agrrd R s s BT RS 27
Symtax TYPeROMS. . 5. ccticicrsiineeeenes oo it i 27
Specifying an Argument Using Cursor Arrow Keys 29
$2sMS-DOS Commamly.ccoceeenvivriireenninesse gy Poovmmine) 29
43gEditingCommand Linesc¢e b oo i oot 30
Modifying Edit Command Characters........ R W RN 31
Blocks - ectiaentie . 1 el o R e e 31
= 0 B L Ot e R RIS - A - L O 32
4-5. User Strings and Keyboard Macrosc..ccccoeeeieeiiecieeennnnn. 33
Commmd Descriptionscco. oo imsasensesqpeatsrass 35
ESHELL'CONBEANG.............. o st il e, o ol 35
O Address COMBIANG0.. i ecieceien oo s gins s pe e AN 36
DB CalculatorGOMMMand................. o0 i 36
COMIMMANG....... ... i e e R~ 36
PO ..o nvssnisiiasinises ous ovs os sishtves i e W 36

) R, v
{076 UREQ Y ok s o ’ .
(@])3~] } \ [/ {
- \\ Y (N A Ly
= (=) < D =
Y, @ {
o) D¢ MO ARG X :
N2 o SR T ;)
nop . ' ¥ (
‘)‘7» : A Je .\ o N } S} A = “./}
10t Ty o) b TRy for. | Pl /e ‘
0hey CONTENTS et kej h !
) SCrojll v v

\ /

L6y : S
KR Ny &\) @}7 S_(:): So usg! ;'A \M(le 1\ j\{Qé\{ o s e ke

A Command el TR e I M e e ey e t36.07

ASSCIIBIBEESFITAX (. covtitininicis xeissansscussavusamssmassoss ARG, (15 37
P87 N SUPEICEUOINS b0t s avertivnns vin exicnns Suioiiin s sontasmkiannieinsenssn shonar MM ITHL 38
XSO MNEMOTUCSovveeiereiiivnnnnnenseneeanenneennes. LRUBY. 0T, ghilsa 38

RB A IVHICIIOMICS <. iveticcnsssiscicssnasnsivmnssssessasasanes «RREEES L. 530107 39 -
Eabels.and Comments....................235slqms). snynaxd. 2001 lillsz 39
LEOREII ISR ... coinivicns v rmmmanissssmssssmbsinnsisessatinssneensbax SUUMTIRIC). 40
ANERCOMIMARM ..o ottt S sseimiitstitesmmianrensionsiinmnstostssa sosss IO} 40
B CHMMANd . c....coviinniiincinnniussenisssssessinesssenssasesssssassesesos JTBEANIN.) € 41
Breakpoint Commandscvuunminnirenenrvessvnen RRETIMAD. A 41
80386 hardware breakpoints.........ccvviveireseroressmesnsesesaee LS 42
BERVNCG COMERARG ... con it itononintosinmmiismaniisias samsenuswsstsins s A0 F: 43
(P BYECommand.........iiinimiinssses DS 43
- . BYTE Command.............commvennimenene AlGQGESR 1 sn01ibon 43
_ COotmmand ... 3001 IRAOUDGC.1 BOUL) 44
CDREBOMMANG.cosiiivvrmvesovesssvossimmevsmwssomss s e snssmnasses AV 45
CHERE OmMANG it woirmmmammioni oninsrsasnismmssssm TR 45
CLOEK. GOMMANG . viiismimmsssimmsmommimiosssibosmasmeinioiiss IR 45
CLOBE CoMINRAd b ioshsbaiinsoronmsssRonsisi s T IE 46
CLSTMOMMBRE. ... ooiioivnstidiinms s diioisiossdsasiiinns HIVRENO. 3 1 5 46
COMEIRNECOMMAN oo st st BINRL, 46
COBNMECOMMANG ... i boscovenisssonrivessossosssinssimianiommmisiives DB IRENED . 46
CPRBGOMMANG -....ooviviisvvmmssaosessssressstininssrsss domoisiibeny s ST 46
CSRBIZE EORUNA i i bonsrsvrnistsiibnp st st AR T I 48
D COMMANT - cosivssvoicosmeerosvrsisivonssvorisiosessie. XEIGLICL OMREE H08IE = 48
Binear Address Display..........cocvovisrceeecveenn... V.55 DIFE 005302 5113 20 49
B Or GO DASDIAY S caircisovoviivisssnicssssosarssssos Beessistvsesn o v wver BTN 49
Cursor Movement and Memory Display Formaths:aomoa. AAQ! 50
NIOMOEY POMYCES 5troccvvierovessvscrsositoimesssesssonisivesenesessvs RUBIIIICE 51
Overtyping Memory with SST.........cccccvvvcvvvcvviumnnurnnnercnce. OSIRE 69
BnarYBEIOF.o coinsresicisssssiassiesiavivissisioresssosssesesarestoi s BOIBS 52
DisplayingLabelscouvmuinnniiniiiiiiiioooniaio MR 53
DARNEE Comtmaid: - :......ccc0imiit s itivis s s casissseinrerivrssessie s ORHNNIL). 53
EEDC OMIAEIT: rreirsscronin: fotins srt s firnesssns s s e bbb vk v ci AT IETHE S, 53
© DERAY-Command ..o nagmig iz ... HIBTRRY. X 53
l.)' DELETE Bl R T e e i 54
= J? DIRGommand::...:::::oooczemniiminie,) 54
DISK-Command ;i :-:.:..cioniinnnsiminmininsnisssssssnnss SITTE). A6 54
DOSCOMBIMA ... il cceaiiamasienianneceeenes Ysl e OE 55
DOUBLE COMMERA ..o .ot sins s vssiisrensa oo siip e it 55

| 14N BIGE 330000 MoV ex AX < Hedd tn'ex m&t;“‘p(

RPLERR %0‘: QJY@MU
”\J(:‘ N W6 ng \

fonle (A (3

L

DRAEOMMAN.coosivnreerssesrsnreersssssssmrssseeessnnessssssssesssessss SOIBETES 55
DWORD Commandccccceervmrisssnrersssrnensssseeserses XBIS 101 de0n02 55
ECOMMANdooovimmireieririieeeeeeeeneneeeerenesanen 20020 TS 56

Floating Point Valuescccooeiiiiiiiic i 56

Structure Templates...........cccccociriiserrnsrrssssrossesos 22RO, T 57

Useful DOS Examine Templates....................cccccooiiiiiiiiin i 9
ECHO.Command................ccoorsorvommriimsssssenvseressssnnseneess SBOM 83002 59
EDIBCOMMANG..........ooooereeemeiiccinirrsssssrssmsnessesssseesersnnnss DARIRIION 59
EGA 7 Commandccooovvviiiiiiiiieeeeeeeee e 60
ERASE COMMAN........oooooeeemsiirissevmrreressossersensess ERBEMIMOD) d3i001E07 60
FOCOMMANG........ooooeoeeriscisvimrsesessres2tiioadgand saswhisd O 8 KL 60
FLAAT COMMANG...........oocoommronneiiiimnresesrseesssssssssspsssesses BITREHEG). o 61
GOIMMANG..........cooriememmriieerirsanssmsisososssosssosssosssnsssssssssonsses DOSIEIG, 61

Conditional Breakpointsc.cccoeveierimiiieiiiiiceiiceiciiei . 62

Writing Conditional Code..............ccoccremeenmesnersnssnssssessssesss GIBITI 63
HGOMMANG.........oooeooneiieemnesosimssesssepesssssmesosnnmsssnnmssssssnssnss IHIRITHELE 63
HEEP COMMANG.......ooooenmcsoomeommbioesoneomsmmmessesomnmnmesssss DITBISHERE . 64
TCBMMANGommemenmconsncsmsmmsssossnss sossmsssssmmnesss s BRSNS A 64
INTEGOMMAN ... eeneseessoememmsmessoanmmnee s ome s RTINS - 64
INSBRT COMMANGoooooeeoececsnnsomamsnssssmssnssnssnssssssssnns DOESITIITIG 65
INDEOMMANMoooocoinciieoseiemcnseosnonmonsesssmnnens DEERESEOOD) . BT 65
INERLCOMMatll... i s it RO 65
BRRIBREooo.....oooocoioccnnsmnsismmnsinsnsnoinosos OGO 65
KGBMMANG........oooiiiiiiiiieiiiiiinsessssaasennnossessssnmens DIEBEERO. A5 66

K - Stack Frame Display...............ccoooeiieiiioiiieieieeeeeeee e 66
Kietibing the screen and x87cocecnnnn.... vBlG2IC] 220t B A. a0 67
KEWNUOmEoismmnsininnsiiid oo HBIIRICE . 19535 67
KE¥YBOARD command st calanill woms 4 Boe. instmrald aaes 67
KIHE Comman...........ccn i ssmmigsns i s 3198809, :a0me) 68
LOOmmand ... Lo 8 dihe aomeld. anic o 68
LOBREADEIS.ccoocoiinciviiisanassossnsssssssssansdasnansasessssssseess WOREE 5. visisst 68
LISBCEMmMAN............ccooiiiivisinnsmmminnssessssnsassssennes sone- Bi0E T nsivisitio 69
ELIST COMMNG...............cooviimiiimsanssessssssnnsseisssnnsssssannss: O GRMERELY & 69
LEOBD Commian.................c000niiiisiisnsssnnsnnresnisssseinsnossssss Dosorpetinn 69
L O COMMBI . . oeeeeeeinneneens i st s B RIRNG) 70
B COIMNANGooociiiinivererssavaiiriisissisesisssssasinnssressvs e oo IDMEREAIY BT 70
T g e ST S R e 71

NN ey [T ew w0

CONTENTS
N @BIMBN.........ooooimmeiesion s ebommmeiscommsoremmemeenmammsiommrs BOIBOAINGS), SEN 71
Saving Display and Unassemble Output to File 72
Defining USer SUINESocccnmmeemnennngaponssssnsnonposnsssmssenBBOM L 12
NEWCommanll. <. cakid. Bie LA DA S Dl 73
NMICCOMMANGoiaeee b esiesapssssomnmsssomsassosmmmmssossmnssonsmseBA B 73
NOBRRComMMANG......cioemmrseemsaieiesiomsmienssesssmeneniens DOSEEIIO Y H 73
O UEMMANG ... s sneneBis s ssssm e sosmssssesmmmns sione DOABREINT . 73
OPCADE Commang . i 0 e eeeeeemmessesoomsmsmossnsines DIVBIGE 74
ORFTCOMMANG. .. 2 i oo eecesmsencssosmmmismansssmsemmanne s s LS TTTIO D) 74
P OOMMand £, 2 e i emes e DECRETUEY 74
PAWSE.Contmand............exoiqn0za(0 sldaT oiginze(l. IadalD. gninits 75
PROMPI CommMand ..o et DESBATAC 75
Q CMMANT ... & et e meioee s smm s emanmennnsins SIORHIED.L. 0h oM 08T 75
Screen Charactenstics:.........ccooooemeeeeeoeennnn....00i2q0. N sbobd 5047 76
et S AV i BRI RO abEX S H T 76
'Where#o Display SST ..t iceeneeenaennn 25U 200812 T 77
EORBEEROR I X oo ..o iiribessiones Sinsssnasaat i bin sknans samadwomn e sio b4 78
QUEBCommandX...............................3st9wnsinl . socunas. vidas 78
RGEMmMando.®............0..oocoiiiiiniiineirineiseesasinoneee e sndimiiiani 78
ChangingRegister Values......................coccooevviiiieiinnnnnisbecda 78
Beal Molle.............cooviiiiiin e a3 ahae® : hnib s st 79
Restoring Registers and NMI Interrupt...............c...ocovivieeeciinnnn. 80
RAMEEOMMARo00 it innoiinnsiinennsnn s s s RSN 80
REDIT-GOMMand olr et it v oot s 80
REN/Gommiandhcoooeeeeinnnne s iotiblinest «ibib o haillsial ottt 4 80
BUDRCOMMIBAT ... 0ot T s 81
SR ..ot iiinnnannen cuciansisiursraiisiiis v enedenmeoppaiiiibniiE o oo . 81
Searching for Assembly Languageco...co i sepissonssdioge nds 81
Searching for Jumps/Calls to Location....................cc...ooeeieen. 82
SAVECOMMANd 0 e e e e S 82
SNOWE-CBIEIANG. ... ittt ieesi s sssssssie s 83
SYSPENEGamand........0 . .o e i 83
TCommMatitl . s S s i s R T e 83
TRACENOBE HOtKEYS................ooooeiiievaiciit ey 84
Trace Mode Window Controlcocooviviniiivirmnnnnenniiniinss 88
Super-Trage ... e i e e 89
TIMECommmandc.........decie, - R . 89

vii

viii

X Command........cooooveviiiiiiiiei (........ d .g..«.{\..;\..(\,\ /r'_\r. 94
XOR COmMAnd...........ccooorvemriimmrierrns e f.\?. UQ--- Dosmie 595
Y QOB .o TS opim busri 95
Defining Global Descriptor Table Descnptors.........‘..{ P ./ZL*‘ ok)95
2Ot i g AR AL, /R, 96
Trace Mode 7 Option................c......q NG o e SO 96
Trace Mode Z Option....................... 6z 97
x87 Hexadecimal Display o SN 97,
"x87 Status Bits ... J.’:\.},\'f’...ff ‘ﬁxv.\...4,..f'z'a.[(..... 98

0, Ry
6 . Assembly Language Interpreter wsin .AG.‘,'. 99
6-19Lime Numbers........... v &Ly, sigy
6-20Rabls ... i TN 10lRIg faerded s (LY
Instrottions and-Pseudo Ops......o oo J00ML B 100
6-3°EM-C0NIN - - e TSN LIV S SaRnn . A0non 100
O8I O IR o o e s, MR, 101
7 . Disk Display/Moslify Facility...........ooov g NS 103
O D R 103
el Y PP e AN Sl 103
File Allocation Table (FAT)................. R TSI bt 104

RhpRON TR Mg UL Yy

1. Introduction to SST LS, PR g

If you work with or want to learn x86 assembly language, SST is for you.
Similarly if you need to debug programs written in assembly language, SST can be
invaluable. SST is a screen-oriented, upward-compatible replacement for the
ubiquitous DEBUG.COM distributed with MS-DOS. Use SST like DEBUG and
enjoy access to a relaxed syntax, numerous extensions, ready help information (just
type Function Key 1), and instantaneous full screen displays. In particular, the
trace and display functions are much more powerful than DEBUG’s. SST is to
DEBUG much as a word processor like a screen editor is to a line editor. SST
includes support for the Intel x86-family microprocessors up through the Pentium
and runs on all MS-DOS systems since version 2.0 (although we haven’t checked
out recent versions on MS-DOS 2.0!).

: AT
FONFS P \,/‘

1-1. SST, The Integrated Debugger o

i Q"v\

Font

SST is an integrated debugger that combines RAM, disk, screen- font,\ and "
code display facilities with syntax is used for all modes, making them easier to use
than a set of unrelated programs. SST also incorporates an assembly language in-
terpreter that allows you to write and debug com files much as you create BASIC
files using a BASIC interpreter. The com files so generated can run stand alone or
under SST’s supervision and run at full machine speed, unlike‘other interpreter
code. “}"\ype a or A to run the*Auto demo of the Function Key 7 to-see how the
interpreter and other features work and consult Chap. 6 for further information
about the interpreter.

SST runs in both resident and nonresident modes. If you can afford the extra
RAM, you can run a resident copy to give you instant access to the built-in calcu-
lator, system extensions, ready debugging, and trapping of errors such as divide
overflow. Enter SST at any time by typing| Ctrl- Enterlor pressing an NMI button.
Nonresident use is valuable for debugging programs and running the interpreter:

This manual is primarily a reference to SST and does not have much tutorial
material. We recommend you take a guided tour through many of SST features by
running the Auto demo offered when you type Function Key 7 in the SST
COMMAND MODE. You might also find one or more of the many books available

1

2 INTRODUCTION TO SST §1-3

on x86 assembly language helpful. In particular, the book The Personal Computer
from the Inside Out 3rd Ed (1994) by Sargent and Shoemaker (Addison Wesley)
contains several chapters on assembly language and uses SST to illustrate various
PC principles. The “Sample Program” section of Chap. 2 helps to explain how to
load and trace a program using labels.

This first chapter introduces many of SST’s features and explains how to use
this manual. Subsequent chapters explain the features in greater detail.

1-2. Full Screen Display Mode

The display command displays a delimited area of memory if both the start
and end addresses are given. However if neither or only one address is specified,
an instantaneous full screenful of memory is displayed. This screen can have the
usual hex/ASCII format or a pure ASCII format. The cursor arrows, PgUp,
PgDn, space bar, and backspace move the cursor around. It is possible to scroll
rapidly through all of memory scanning for text. A variety of hot keys allow you
to use the information at the cursor as pointers to move around memory and to

_define blocks on which to operate. For a demonstration, run SST, type Function
{ Key 7 followed by d or D) Type Function Key 1 for context-sensitive help on the
display mode. More complete discussion is given in Chapters 3 and 5.

1-3. Trace Mode

The trace command allows streamlined screen-oriented execution of pro-
grams in single step or under control of breakpoints. Single-stroke hot keys are
used to advance execution. The current instruction (at cs:ip) is highlighted by a
reverse video bar. Whenever execution goes outside the instructions displayed, the
screen is instantaneously redrawn with the appropriate new instructions. A condi-
tional jump or loop that will be successful is identified by an arrow pointing in the
direction of the jump and the target offset is displayed in boldface if it’s on the
7”A small display window can display a selected portion of memory (arrow
keys, PgUp, and PgDn can scroll this window, and Ctrl-U and Ctrl-D change its
ize), or it can track the memory locations referenced during the trace. A program
stack window displays RAM starting at the top of the stack (given by the register
pair ss:sp) and identifies the stack words by one of three readout offsets.

Function Key 5 zooms the stack and display windows into DISPLAY MODE,
‘where you can overtype their RAM. Similarly the Edit hot key lets you overtype

'T;the register values. Function Key 6 moves the cursor from one window to an-

other, allowing you to scroll the display, stack, program output, and trace win-
dows. When in the trace window, the cursor is used for setting breakpoints,
starting assemblies, and moving the instruction pointer. When the cursor is in the

§1-4 : TRACE MODE 3

program-output window, Ctrl-U moves the window height Up, while Ctrl-D
moves it down. When the cursor is in any other window, Ctrl-U and Ctrl-D move
the memory-examine window height Up and Down, respectively.

In continuous trace mode, the tracking-memory mode produces an impres-
sive dynamic screen display that often reveals how a program works. The multi-
ple-step Undo option is particularly valuable. This allows you in effect to execute
backwards, discovering why registers or memory locations got their values, or
how you got to the current instruction. With it you can single-step into a subrou-
tine, change your mind retracing backwards, execute the subroutine at full speed,
and continue single stepping afterwards. For an example of how to trace your own
programs, see the “Sample Program” section of Chap. 2. Chapter 5 describes the
TRACE MODE further.

1-4. Trace Mode Demonstration

. For a demonstration, run SST, type } l(nctlon Key 7 followed by t or T.. This
starts continuously tracing a built-in piece “of code. You can pause execution by
typing the space bar. Subsequent space bars single step execution; i.e., advance
execution one instruction at a time. Other single stroke commands include those
to single-step, break at the current instruction, break at the current instruction after
executing it a specified number of times, fast execution (e.g., call or loop) at full
machine speed, slow execution which allows single-stepping int calls (normally
executed in Fast mode), and no execution useful for skipping unwanted instruc-
tions. A program can be traced continuously as in the T demo with full screen up-
dates, or run three times faster in a Quiet mode that only updates the register val-
ues. These continuous trace modes are interrupted by typing.a char orbya
reference to a memory location protected by the p commamh”lﬁ:?oe:tinuous
mode is also interrupted by an illegal op code or by an op code belonging to a
higher-level microprocessor (e.g., an 80286 instruction executed on an 80186 or
8088). Type Function Key 1 to see a help screen defining the TRACE MODE hot
keys.

Back Tracing

SST also lets you backtrace program execution up to twenty steps by de-
fault. This can be very handy when you find the program somewhere and can’t
figure out how it got there. Just type u or U for Undo and watch your program
execute backwards in time. To change the number of backtrace steps use the /Un
switch when starting SST (see Command Line Parameters in Chap. 3). Note that
the backtrace (undo) feature cannot undo values output to an I/O device.

4 INTRODUCTION TO SST §1-8

1-5. x86/x87 Support

The assemble and unassemble commands recognize all x86-family mnemon-
ics up through the Pentium. The search command can search for assembly lan-
guage instructions as well as hex bytes and string literals.

SST fully supports the x87 numeric coprocessor with stack displays in
_TRACE MODE. Registers and memory can be changed by simple assignment

[statements using ordinary scientific notation, and all status information is dis-
\\p}ayed

1-6. Labels

SST supports the full link MAP for the DOS LINK.EXE linker. By reading in
the map (specify /MAP option on the LINK.EXE list file entry), you can refer to
program line numbers and external labels (declared extrn in .asm files and external
names in general declared in compiler source files). See the load label option in
Chap. 5. You can also read in variable names for one segment. Variable names
are not treated-as generally as desired, partly due to the need for telling SST what
segment should be assumed for variable references. Something like the masm.exe
assume directive is needed. SST also reads in Microsoft CodeView .exe exter-

TpE _‘ nals gencrated with the /co/l_iﬂnk switch. ; oy SE. IS SsC+2 009 B
firedp & p T 1 OOy @ 100 0x =0 Jgm BYS SO X210 e,
(PoR L7 H 100, —eapilebind I A 81,04

\ R g ,L / A Polish suffix hex calculator is included. String literals|and decimal values

\A\MQ WJ (indicated by a decimal point) are supported in the HEX CALCULATOR,
‘,’r’r ,: s) SEARCH, and ASSEMBLER MODEs. Register variables can be used in calculator

T e | expressions, and register and flags can be assigned values by direct assignment.
O l \/ Command editing supports the Function Key 3 DOS Edit function (repeat to
— | end of last command), although DOS is bypassed for all operations other than disk.
E This allows most DOS functions to be traced and leads to much faster response.
In addition, the left and right arrow keys, Home, End, Del, and several Ctrl keys

can be used for editing (see Chap. 4). _ PR 7 & [

1-8. Synergy

The program serves both to teach people new to assembly language how the
machine works, and to aid the advanced programrher in finding program bugs. It
typically requires 1/20th the time to find a bug with SST as compared to DEBUG
or SYMDEB, and sometimes a few minutes with SST can literally save you days
of debugging with DEBUG. The program runs in about 100K RAM and is written

fl7

§1-9 CALCULATOR 3

in optimized 8086 assembly language (some 80286/80386 code is used in special
sections off limits to smaller microprocessors). It has many features not found in
debuggers requiring two or more times as much memory. SST’s relatively small
size per feature is due partly to tight coding, and partly to a careful integration of
facilities that allows the various components to take advantage of one another

(synergy!).

1-9. SST Windows

SST displays a number of tiled windows that depend on the mode of opera-
tion. Initially SST operates in COMMAND MODE. Depending on the command
chosen, SST may switch into one of several other modes, namely ASSEMBLE
MODE, ASSEMBLE INSERT/EDIT MODE, UNASSEMBLE MODE, TRACE
MODE, XAMINE MODE, DISPLAY MODE, OVERTYPE MODE, DISK DISPLAY
MODE, DISK OVERTYPE MODE. The Enter key (J) returns to COMMAND
MODE (Jd return in ASSEMBLE MODE).

Menu Line

The current mode is displayed on the menu line at the top of the screen. For
example, in COMMAND MODE, the menu line reads

[COMMAND MODE: F10-9 Asm Cmp Dsp Exam Fill Go In Kir Ld Nam O-Z |

The menu line is also used to report some errors and special conditions. The menu
line can be toggled on and off with the r2 command.

Register Window

A register window is usually displayed at the top of the screen just below the
menu line. In COMMAND MODE, the command 10 toggles this window on and
off, and in TRACE MODE, the hot key O turns it on and off. Other windows ap-
pear for various commands, and pop-up help screens always appear immediately
below the register window. This special window has the 8086 form:

ax=0000 bx=0000 ds=4F97 es=4F97 cs=4F97 ss=4F97 bp=0000
dx=0000 cx=0000 si=0000 di=0000 ip=0100 sp=FFFE NS ZNC

The numbers in this figure represent 4-digit hexadecimal numbers. The third line
in general displays the menu for whatever mode is currently active. Here the
COMMAND MODE menu is showed in part. This particular menu is displayed

6 INTRODUCTION TO SST §1-9

when SST is started and whenever you type a J, which stands for the Enter key
(type 44 in ASSEMBLE MODE).

The register window groups the registers according to their typical usage in
8086 code. The ax, bx, cx, and dx registers are the general accumulators that can
also be split into pairs of 8-bit registers like ah and al. The segment registers ds,
es, cs, and ss are shown directly above the 16-bit registers with which they are
commonly paired. Specifically, the addresses ds:[si] and es:[di] are used with the
powerful 8086 string instructions. The cs:[ip] address gives the current instruc-
tion, and the ss:[sp] address gives the top of the program stack. In addition,
ds:[bx] and ss:[bp] are common addresses, so it is handy to have the corresponding
registers near one another.

On the top line the ds:[n;]=n,, which appears only when a memory reference
occurs and displays the value and address of such a reference. If the value is a byte
value, only two hexadecimal digits are displayed.

After the sp=n field on the second line, the flag values are displayed. For ex-
ample, if the Zero flag is set to 1, you see “Z”. If it is reset to 0, you see “NZ” as
shown in the figure. This notation corresponds to the instruction mnemonics used
by the unassemble and trace commands. Note that since the TRACE MODE re-
verse video bar for the current instruction indicates whether a conditional jump will
occur, it isn’t nearly as important to consult the flags as it is with other debuggers.
PE means that the last instruction that affects the parity flag found Even Parity,
while PO stands for Odd Parity. A + or - indicates the direction in memory that
repeated string operations go. The instruction cld (CLear Direction) gives a plus
sign (+), which is the usual direction for most programs. If Interrupts are Enabled,
you then see El, while if they are Disabled, you see DI. The two remaining flags,
OV (Overflow Flag) and AC (Alternate Carry) occur less often and are only dis-
played if they are on. This choice helps to reduce screen clutter and separates the
principle set of flags (Sign, Carry, and Zero) from the others.

Following the Interrupt flag value, four SST status values are displayed in
reverse video if their corresponding functions are enabled. Indicating reverse
video by an underline, the status values are E for active Echo output (see n> com-
mand), S for active Super-Trace conditions (see trace command), T for Tracking
memory display window (see trace command), and V for x86 protected Virtual
address mode (see vm command).

80386 Register Window

By default on 80386-based computers;'tﬁé register window displays the
complete 32-bit 80386 register values in the form

§1-11 SST WINDOWS 7

eax =0000 0000 ebx=0000 0000 ds=4F97 ss =4F97 ebp =0000 0000
edx=0000 0000 ecx=0000 0000 fs =4F97 gs=4F97 esp =0000 FFFE
esi =0000 0000 edi =0000 0000 es=4F97 cs =4F97 eip =00000100 NS ZNC

In COMMAND MODE, the r3 command and r1 switch to the 80386 and 8086 reg-
ister sets, respectively, while in TRACE MODE, the hot keys 1 and 3 perform
these switches. The dr command displays special 80386 registers.
1-10. Disk Editor

SST contains a disk editor invoked by the command disk in COMMAND

MODE. The idea is that in place of the segment specification for RAM, you typea -

sector number. The facility, described further in Chap. 7, has a variety of options
to facilitate moving around a disk.

1-11. Mouse Support \
The DISPLAY and TRACE MODEs can use the mouse to move the curso

around. To enable the mouse, you have to run the appropriate MOUSE program
at the DOS command level, and then tell SST that it should use the mouse by typ-
ing the mouse command in SST’s COMMAND MODE. The mouse allows you to

»_move around the display screens ra 1d1y and tosedit character fonts

Pmowns < <°~€:Z,‘,_\)A\J‘0 WS IrLY WA
- Super-Trace Tt e LN AR LR 1 ko A
SST has a pair of powerful conditional break facilities for advanced users.)L Wade, M
The first is the Super-Trace mode, which traces program execution at about one- 0 fuly

tenth full speed (MS-DOS running in real mode, not V86 mode) and after each
instruction it checks an arbitrary set of conditions specified by the user in assembly
language. If the result of these conditions sets the Zero flag, tracing is halted; oth-
erwise the trace continues. This allows a very rapid execution search for any de-
sired machine state. It implements in software features that can usually be per-
formed only by expensive hardware tracing boards, and has generality that the
hardware methods cannot match. The user conditions can even call user-supplied
subroutines, allowing specialized monitoring such as program execution profiling.
The use of ordinary assembly language for the user conditions combines the high-
est execution speed, the simplest implementation and documentation, and the
greatest power available in the computer. Because of the great flexibility of the
method, you have to be careful not to include a- command that will crash the com-
puter. Hence we consider the Super-Trace to be a facility for advanced users, al-
though simple Super-Traces can be run by beginners (see Chap. 3 demonstrations).

g\, : :
I\A 6 KE\(,,7\

i

)

8 INTRODUCTION TO SST §1-13

1-13. Conditional Breakpoints

Alternatively, breakpoints can be associated with the same arbitrary set of
conditions as the Super-Trace. For these, execution proceeds at full speed until
the computer attempts to execute the instruction at one of the user-defined break-
point locations. The user’s conditions are then checked. If they succeed in setting
the Zero flag, program execution is halted and control is returned to SST. Other-
wise execution proceeds again at full speed. If no breakpoint is encountered, you
can usually recover control by typing Ctrl-Enter.

1-14. How to Use this Manual

This manual tells you how to use SST. It should be used in combination
with a book or reference manual on assembly language for the Intel x86 micro-
processors. The book The Personal Computer from the Inside Out by Murray
Sargent ITI (SST author) and Richard L. Shoemaker (Addison-Wesley Publishing
Co., 3rd Edition, 1994) is one of several such books. If you are already familiar
with assembly language and debug.com, you may just want to glance at this intro-
ductory section, at Chap. 4 on Syntax, and then refer to the command descriptions
of Chap. 5 when the built-in help messages are too terse. If you are learning as-
sembly language, read the Help section (Chap. 2), the Demonstration section
(Chap. 3), run the Auto demo of Function Key 7, read the Syntax section (Chap.
4), and read your book on assembly language. Try out the built-in demonstrations
to get a feel for how memory looks and how a program runs. Assemble some
simple code of your own and trace its execution with the trace command. You’ll
learn assembly language in a fraction the time required by traditional methods.

References

Many excellent assembly-language and higher-level language books are
available in your favorite bookstore. For example, Dalton’s carries a large number
of relevant books or check the references in Sargent and Shoemaker (1994).
Browse around a bit and choose the books that seem to be the most helpful.

2. SST Help Facility

In all modes, typing Function Key 1 displays an appropriate help screen in a
pop-up window just below the register window. Typing any key (except for
Function Key 1 itself in ASSEMBLE MODE) replaces the screen text that was
covered up by the help window. In particular, typing Function Key 1 instead of a
command displays the menu

1&.<> 0-9 @scii Asm Baud Comp Display
Exam Fill Go Hex In Klear Load
Move Name Out Protect Quit Reg Search
Trace Unasm Vector Write Xam = YGDT Zam

For a command description, type command letter followed by F1

exp = {value | exp, exp, op}
address = [segment:] offset range = address, address;

This gives the names of the simple commands available under SST. To run a
command type the first letter of the command name followed by appropriate ar-
guments. If you type Function Key 1 in the middle of typing a command, a terse
help message for that command is displayed in a pop-up window below the regis-
ter window. Typing any character gets rid of the help window, replacing the text it
covered up. If you type the command character immediately followed by the
Function Key 1, then the command line is erased when the help window goes
away. If you type more characters on the line, the command line remains, ready
for further typing. This allows you to get help whenever you need it. For more
information on each command, please see the corresponding page in Chap. 5,
which is ordered alphabetically by command. -~

The built-in Function Key 1 help summaries are (for the complete a F1 dis-
plays, see assemble command below):

10
\’\é_rb* g

e

]
oG o & 7

SST HELP FACILITY §2-1

TN NN
)N\ P ¥ —

2-1. Brief Command Definitions

and range list

And (bitwise) memory in range with list

a [address] Assemble. Op codes (8086 in lower case, F1 — x87) are: B
(see a command in Chap. 5)
a [address) Assemble. x87 op codes (F1 — x86) are: (see Chap. 5)
ik YRR ~ ¢ b rate [,channel] Set the baud rate of serial channel -
bc {list*} ¢ breakpoints in list, where ¢ = ¢, d, e, for Clear\%ai_le)
Enable, respectively
bl List breakpoints
bs[n] address [m] Set breakpoint [n] at address [skip m passes] Note: b break-
points are sticky unlike g’s T
cd path Change Directory to path }&“ T i -
LLock C:S Clear Screen : y T "’%"w%.
close, .- J W es (MA="]0 000 - 2000) MO P T
ﬁ:i'" = Bl sl < °ﬁa“ﬁ£ek;d re.fs g ompare memory in r?zng‘e to memory at address H A"A A ngfztf(ﬁ
PR)y D Display info about computer (™77 f 1090 WRAP Ty 01, 3, gp:; \
\\C’ \Doo\éjaur\dc%&’“”\m : =Tp) VMS,:,H_W [FPFopi s Llar 77,0 ""\Rq
oo g nes matching files, e (e ff?ff’;w D e
' Ifu ™ “r:; » Display full screen of memoryo?o = 020 ‘37»73\ s e A
ol Mnn v ad {/;eSfl fzddressz Display memory from addressl to addressz - T F e 5L
(iiﬂ iﬂ/:;d/c _J_ﬁ;ﬁgha Camechotoﬁle see N> HMA ¢ 4 N u“/

d—égr 3 rrf/_N/

o= O e~ K \"‘f—,
j J ‘J([' ‘Jecho on' 9
oo erase filename
&]Ql‘o;c 5 e address
oF £ e address [/type]

address [/string]
/’/fe range list

(\

(/C/?L

g [—address] [address,]...

: 5%’/\ A J\;zw }\ dress,, address,, ... Same followed by @ allows conditions

‘ ‘Jlfﬁqu;jeg/ (XeXIVIVI\ RN [dy

lﬁvﬁﬁbcls (c=segment)—varlab e names (c=v),. 7\0\”‘: N
or user strings éﬁm_ig\) s TroRt (Wt KEY D W /
E(EE&tg DOS (uu—2lh) function ah—n SMore P
Toggle séreen ‘echo ¢
Erase file filename
Examine address in Byte mode
Examine address by type =b, d, i, |, 0, q, s, t, for packed
BCD, Double float, Integer, Long int, Quad int, O binary, i
Single float, Temp float, respectively (Needs x87)

Examine with structure template string
Fill memory in range with hst

Go execute at cs:ip or —address with breakpoints at ad-

\to be typed

%rﬂf"“ D IQRD&'L

@Uj\ l\O.?jt}L Jo oo BITE= = = ; 5
PP Ea Urie ﬁf /'-’7"‘3”“"Ew’zan o\

§2-1

SST HELP FACILITY 11

—— e

SEEIREN

h value Convcrt hex value to bmary)
hvalue, value, Calcul‘ar?vm”ueﬁvaTuez and value; - value,
ini : Run first sst.ini file in DOS path
i portaddress Input byte from portaddress
= 2t nla Display int-21 function definition(s)
j (No command)
k Program stack trace
kn Klear next n lines
knm Klear from line » to line m
kf Klear floating point (x87) registers
kilol'c Display keyboard input code ¢
; list [address] Unassemble screenful starting at address
(-~ llist [address] 1) Unassemble to@rmter starting at address.———
| [address] Load file named by n at €s:100 or address

| address drive sector count

n> filespec
n>
N=

n string = "...

new
not range
or range list

Load count sectors from absolute sector at address address
Load program labels (use n to name .map file)
Load program labels for a .com file
Load variable names (name .lst file)
r(gs ﬂ Move memory in range to address
Namc’{c:ad or write»ﬁlc by filespec
Name echo file by filespec
Toggle echo to file
Display current name file
Define user string (2 letter names)
Reset labels and paramtersto starting values
N (bitwise) memory in range’}—/—»//’j'
Or memory in range with list

"

o portaddress list ~ Output list to portaddress

nause n
prompt

P
p address .

p range

R
N (“’f/’

\f STUP\sy -

.F‘\g

Pause a time proportional to n
Toggle path prompt

Turn off memory protection
Protect memory address, i.e.,
Stop trace if memory address is referenced | ois)
Stop trace if memory range is referenced

Quit - return to DOS — J\L /> ¥

S L"LQL\Q\/QV\ w /V\

'S fRoc.
i REg s sY AR | bl /S Z e ;
s .Lf‘r\ \ ‘F\ W SV N*)Q A\ h,ov
¥ U He MY N aay
SOT),,j_ \ d

\L

D REQuig

Qk

b OVCW\ 3‘“357743’
0 “R“ KE’\/ J”WJ(\ R, m Qul (‘

2 IJ - e _(/"u)\

cr Ly

/

12 SST HELP FACILITY §2-1

qcn Set screen attributé for window c=a, h, n, r, s, x, z for As-
semble, Help, Normal, Register, Stack, Xam, Zam, respec-
tively

____qgn g N,;; st) Set SST video RAM segment = n
g N ain e gt Fo=wels [Set SST interrupt n mask = n

glins o Set lmes/page BT e o 3 - =
qo n Set SST display origin to line n esondliis P‘ / \?;“ :/M f: f ,ﬂ i1 -i')e:;'«:\;,;
qol Display in lower half of 66 line screen) }1 19 ;
qp n Set 6845 CRT I/O port =n
gs Swap IBM displays for SST alone
gs1 Swap displays for both SST and DOS
gs3 (2) Turn screen save on (off)
qun Set undercover debugger port = n
= - N Set # lines Xam window = n
o E e /z_/,»\‘ \r [register}-. Display [change] registers. Can change registers by =
oy . \ Restore registers to initial values
R eche T2 ALV Go to real address mode
&/S" e Return NMI interrupt to preceeding owner
e O renfile ;ile;_w Rename file, file,
’ip Y fi’g@—// / s'range list Search memory in range for list
‘s range @ Search range for assembly language
i/ %Q“QCJ Lable——— ‘ Scagr::t’;:tie%;;;a—ﬂ—imng‘ —F 'wﬂ '\‘-L.L)J MNPyt 1‘““
system T " Quitto DOS
time Display time
(/\ 3 t [address] . Trace program starting at cs:ip or address
- : *’t’@‘\—“ Specify Super-Trace conditions
;T‘;‘ e K\ type filename Type (browse) file filename
S C A u [address] Unassemble code at last address or at address
AL
2.C \UTange . psparss]Jonassggr}ble code in range. Use n> to echo to file————
o, Vniax o T [0 T 5
2% 0, Execute interrupt vector n giving optional register values
\\¥/ m Switch to protected virtual address mode (x86 x > 1 only)
> ‘}E,[I&{U’Q\UNL fw wN\?T\)JFf\i
" width n Set screen w1dth(162 80) sosT ot R4 1w ,\,U\
denﬂs] : Wom cs:100 or address =
/TR "ng \wddress drive sector count -
(14 i;kii%" T Write absolute sectors sector; thru sector; from address
| Cs 5 SHS T ol Write labels : _
Ly O;BF J ':1;

J
ol ,jfa?ﬁ\h” ‘(

§2 2 SST HELP FACILITY 13
X addre)/ Start trace examine window at address
xor range list Xor memory in range with list

\~ \‘ o “\my List GDT entries, one/space bar

Yo~ QO yn List GDT entry n
P f; ;) yn address [access [length]]
Tov ,~\ J Define GDT entry 68<n<D8 at address, access = access,
S NG length = length (only works when system is in real mode)

\Zj ~ ezamine x87 status | Uic '/ 0 T e ¥EL FCQY oF ke z;? y
For definitions of command syntax and words like address, see Chap. 4 on
Syntax. Typing \ followed by Function Key 1 displays the current disk
drive:directory. To obtain this information continuously in COMMAND MODE,
type the prompt command.
Typing a decimal digit followed by Function Key 1 displays help for the cal-
culator (see Chap. 5 for more information):

Hex number Convert to decimal
decimal number Convert to hex
exp; exp; op Calculate exp; op exp; (op = +-*/&!)

2-2. ASCII Chart

When debugging it is often very handy to have ready access to the ASCII
codes. These are usually instantly available in a pop up screen by typing @. In
some situations the @ would be used for other purposes, such as in an assembly
language comment, searching for assembly language, and supertracing. Hence @
doesn’t give the pop up menu as the second or later character of the command
line. It also works in most non COMMAND MODEs, and shows you a hexadecimal
display of all 256 extended ASCII codes. Type any key other than another @ and
you’re back to the screen displayed before you typed the @.

The @ option has four pop-up screens. To get to the next one, type @. The
pop-up screen following the initial hexadecimal ASCII screen is a decimal ASCII
display. The third screen is an EBCDIC (Extended Binary Coded Decimal Inter-
change Code, an old code that used to be used on IBM mainframes) display with

\ hexadecimal codes, and the fourth screen is an EBCDIC with decimal codes.
“Further @’s repeat this sequence of four screens. ,

A} \

Sag aayidmsessi vt 10, 3T
MW MBMNoAy b N : =
& 1 X . ‘,\(R n.s/ﬂlni'_\rnﬁj

N

14 SST HELP FACILITY §2-3

2-3. Sample Program

To illustrate the loading and tracing of a program, the SST distribution disk-
ette includes a simple program to get and display console input. The program is as
follows:

public ci,co,console_loop

;Simple console echo program that illustrates
;SST label facility

CR 03
o =10

cseg segment
assume cs:cseg

console_loop:

call ci ;Get next character
mov dl,al ; from console

call co ;Display character
cmp d,CR

jnz console_loop

mov dl,LF ;If CR, output

call co ; LF automatically

jmp console_loop

ci: mov ah,7 ;21h direct console
int 21h ; input without echo
ret

co: mov ah,2 ;21h display output
int 21h
ret

cseg ends
end console_loop

You can run the sample CONSOLE program either by typing it in in
ASSEMBLE MODE (see assemble command in Chap. 5), or by assembling and
linking it with an assembler. For the latter you need to have an assembler available
in your current directory or in some subdirectory specified by the path command in

§2-3 SAMPLE PROGRAM 15

your AUTOEXEC.BAT file. If you don’t know about the path command, go read
about it in the DOS manual, since it can simplify your life considerably.
Suppose for the sake of illustration that the DOS prompt is C:\> and SST’s

prompt is >. Then at the DOS prompt type

C:\>masm console;

C:\>link console,,console/map;
C:\>sst

>nconsole.map

>l

>nconsole.exe

>

>t

This.puts you into the SST TRACE MODE all ready to trace your simple console
program. SST allows you to see what you program displays on the screen in sev-
eral ways. For the present case, just type the TRACE MODE W option, to give
yourself a DOS window on screen. Then start single stepping your way through
the program by typing the space bar. When you reach the int 21h for the ci sub-
program, the console pauses to let you type in a character. Type something other
than the space bar, so that the co routine will display something you can see in the
DOS window. Notice that the ASCII code of the character you type for the ci
subroutine is returned in the al register (low byte of the ax register). The program
then moves this character into the dl register. You can watch this action by look-
ing at the register window at the top of the SST display screen.

After single stepping for awhile try some of the SST options like D for Don’t
single-step subroutine, B for Break when back at the current instruction, and G for
break (Go) at the address you type in. Working with this simple program can
teach you a great deal about the TRACE MODE. Return to COMMAND MODE at
any time by typing the Enter key or the Esc key.

For simple programs like this one, the DOS window is fine, but for more
typical programs, the whole screen is needed. If you have two screens on your
computer, you can put SST on the one your program isn’t using (see the Section
on “Multiple Screens” in Chap. 3). Alternatively you can use the screen save op-
tion discussed in Sec. “Screen Save Option” in Chap. 3. In single stepping most
instructions, you’ll notice no difference with the’ screen save option enabled, but
whenever you do something that SST cannot know whether the screen will be ac-
cessed (e.g., you use an explicit or implied breakpoint), you’ll notice a momentary

16 SST HELP FACILITY §2-3

flashing of the screen. This is because SST restores the entire screen for the user
program.

Any time you want to switch to the user screen, type v or V for View pro-
gram screen in TRACE MODE. To return to SST’s screen, type any key.

2-4. INT21 Command

SST automatically comments some unassembled instructions, such as DOS
calls (int 21h), x87 emulation interrupts (int 34h - int 3dh), and immediate byte
constant instructions like mov al,41H. In addition the int 21h definitions are dis-
played when you type the int21 [#] command in COMMAND MODE. If the op-
tional n is present, the definition for that entry point alone is displayed. If nis
missing the next hexadecade of int 21 entries is displayed. These features are very
handy for working with code that makes DOS calls.

2-5. Help Command
For more information, type help in COMMAND MODE. This displays the file

3. Running SST

The first thing to do with your SST is to see it in action! Run SST and you’ll
see the sign on help message in the main part of the screen and the COMMAND
MODE window at the top. The x86 registers are displayed in this window fol-
lowed by the COMMAND MODE menu. Type Function Key 7, type t or T for the
Trace demo, and stare at the continuous TRACE MODE in amazement! What
you’ll see is a dynamic screen trace of the execution of a program, revealing how
the registers, stack, and memory referenced by the program change. In this con-
tinuous trace mode, the program executes about 40,000 times more slowly than
normal, which gives you a chance to see what’s going on. For comparison with
the Super-Trace described below, notice how the di register increments slowly
(due to the stosb instruction) as the program runs.

3-1. Demonstrations

Function Key 7 gives you access to three demonstration. The first is the
trace demo we just fired up, and the other two are a display demo and an “auto
demo”, which is like an SST tutorial. Let’s continue with the trace demo. Typi-
cally the program runs much too fast to understand what’s going on, so to stop
execution, type the space bar. Successive depressions of the space bar single-step
the program, always showing you the latest state of the machine. You can see
what effect the instructions have on the register, flag, and memory contents. The
demo uses the “tracking display”” window in ASCII mode, so that you always see
an 80 hex byte memory window around the last memory location referenced by the
program. The size of this window is programmable - see the qy » command in
Chap. 5. At the right end of the second display line from the top, you’ll see a T.
This indicates that the memory window is in Tracking mode.

The TRACE MODE menu indicates many other options. Type Function Key
1 to see a help screen that gives brief definitions of most of these options. This
help screen is also shown in Chap. 5 under the trace command, along with more
detailed descriptions of the options. To get rid of the help screen, type any key.

17

18 RUNNING SST §3-1

Backtrace Demonstration

After you’ve traced program execution for awhile, type u or U for Undo.
This causes the program to undo its steps, literally executing backwards in time.
This feature is handy when you the program ends up somewhere and you don’t
remember how it got there. SST cannot trace backward forever, or it would un-
boot your machine! Actually SST doesn’t execute backwards, it just restores the
preceding machine state for up to 20 backstates by default. To change this num-
ber, use the SST/U n option described under Command Line Parameters in this
chapter.

Display Demonstration

After commands like assemble and load are executed, the Function Key 7
demo option is suppressed to prevent SST from overwriting a program you have
loaded in or typed in with the assemble command. If Function Key 7 doesn’t
work; type new. Type Function Key 7 followed by d or D to go into the DISPLAY
MODE. You can also do this at any time in COMMAND MODE by typing d or D
followed by a J. This gives you a full screen display of memory with the register
values and a menu at the top of the screen. Type Function Key 1 to see a help
screen that gives a brief definition of the menu options. Chapter 5 under the dis-
play command also shows this help screen along with more detailed discussion of
the options. Type any key to get rid of the help screen.

Overtype Mode

SST’s display facility has a number of other options, including Ctrl-O, which
toggles between OVERTYPE and DISPLAY MODE. This mode allows you to
overtype the memory location at the cursor position. If you do this by mistake,
type Ctrl-U to Undo the overtype. Hopefully you didn’t overtype something im-
portant, like a keyboard interrupt vector (crash!). SST allows you to do absolutely
anything with your computer, so be careful. SST isn’t PASCAL, which usually
prevents you from doing something you might later regret. This kind of freedom is
desirable since it allows you not only to identify a program bug, but also to try out
a possible fix without reassembling or recompiling and relinking. This can save
you considerable time, but it does require a bit of care. Also you must remember
to fix the bug in your source code, or you’ll experience bug déja vu!

Try out the various options, scroll through all of memory, and learn about
your machine as only hands-on interaction allows:"

§3-2 '\ COMMAND LINE PARAMETERS 19
‘ \

3-2. CommandNne Parameters

When invoking SST from DO u typically t)zpe»afemngaﬂf}gfﬁhe&m\
N IlA(}\»N A 5 23 1Y) A %
5N
C1suatie] flenamadiched aranicters)"

et
“{SST then loads the file fi lename, ahd@ other _parameters in the command M

lmln the program prefix, just as DOS’s COMMAND.COM does. v)
myou can specify several useful options as switches following the \/
SST. These options allow specifying the total amount of SST RAM work area,

the number of back states for the TRACE MODE Undo option, and making SST

resident. The Resident option is described in the next section.

C:\>sst/n

savés 1024*n bytes of RAM for SST. A minimum of 9K is required. No specifi-
cation results in 9 K bytes (/9). More RAM is automatically allocated as needed

when labels are read in. N7 %
g ! B T

C:\>sst/un F@» epdrivs Y €erec
saves room for n backsteps in TRACE MODE. The default for SSTlSZO 2y e
N [\)\w BUS /LF vvo\/'u,v T /\r‘/n'r \,« Jﬂr;j,\‘!\ Ve I‘;UA\“?{’“*
> ¥ e 2o, - HACWDY - Resident Operation £ ¢y nxrigni, o ok a YN prgne o
T e LRI e oo Re Wy Lo R gy b iy
~— Sometimes it’s handy to have SST in memory for ready access in the event of e
a problem, or just to see the ASCII chart or use the calculators. One way to do ,\t/ ; o 4
this is to follow SST on the DOS command line by the /R switch " T e
S RAr LG = JeTACIGeR 00 B BAR o7 Mné(Q"'?l\“”/ ASL/< s Tmé
C\>SSt/r M I : QBAI}C P‘I nt o I>(ta’r: 3)N‘; 7 \“TJ J;**"'/”\’% 7 f/‘ (OF 9 I & N

\ (
i 0 9oy e 1oy §p
This loads SST and returns to the DOS prquMth@S'l'resna t ”%:'h ye 31‘3’7’}‘gk 1,001,

take control, type Ctrl- or Wﬁ\ Q.MI Bu}\t)on This metho . e
have the chance to set up special SST features such as loading in program labels. (‘.’K'\“C/ AhTp
If these other features are needed, try the g/R option described in Chap. 5. T re-
turn to your interrupted program, type Alt-X or the go command.
y pted prog yp g <¢\L><X>q@%§ C

Screen Save Option ‘ "“”"F‘Eb K

“06“, f’@ wiRLC
When going between SST and a program, it’s handy to be able to see the | X- SGATIC NAd

screen display generated by the program. SST automatically does this. Then .~ “*®i0ce

whenever you return to a program using a go command, or use the View opu;aﬁ in < Wi, &
TRACE MODE, you can view the program screen rather than SST’s. Whe/n trac 7:,3,,
e i
Uy L3,
Lo < O&p
J[l\: 44’? : ‘/\/}(,)7d”J<’,l
oo
/ 4 4’(?@' X C : . o 75‘1
(/,' G 2\) ‘07” aj/C) /
Yy 4 f; 3 e ”

20 RUNNING SST §3-3

ing with this mode, the screen only flickers when you “fast” trace over an int or
call instruction. This is because during normal tracing, SST knows what RAM is
being referenced and only needs to restore that RAM for program purposes. To
turn off the automatic screen-save option, use the qsO command described in
Chap. 5.

Multiple Screens

For extensive debugging it’s very useful to have more than one screen. This
is particularly true when debugging graphics programs. SST can be put on what-
ever screen you desire using various q commands. In particular, the monochrome
and EGA/VGA adapters are so widespread that SST has been setup to switch very
easily between the two. Type the command (> stands for the SST COMMAND
MODE prompt)

>Qgs

to switch between them without telling DOS. Type gs1 instead to switch screens
telling DOS as well. Hence you can load SST from DOS on either screen and
switch back and forth as the need be and exit SST on either screen.

3-3. Configuring SST

With the abundance of different screen sizes, character attributes, and other
machine characteristics, it is time consuming to configure SST appropriately each
time you run it. On startup, SST automatically runs the SST.INI file in the current
directory. You can customize this file for the project at hand. Alternatively, SST
can be reconfigured using the g commands of Chap. 5 along with appropriate DOS
commands. We illustrate this procedure using the screen attribute specification
which allows setting the screen attribute (color, reverse video) for various SST
windows. This command is defined by

>qcn

which choses a screen attribute » for the window ¢ = a, h, n, r, s, x, z for Assem-
ble, Help, Normal, Register, Stack, Xam, Zam, respectively. In particular, experi-
menting with the qr n (set register window attribute) is a great way to learn about
screen attributes.

You can configure SST.EXE to your tastes by SSTing a copy of SST.EXE
and typing the q commands followed by /n. Wheri done, type w or W to Write out
the modified SST.EXE file. For example, on a VGA display, to set up

J?u‘(3coora BEE el @ B AT SGtoFF® ¢ N "&Dv JS

32 P«:D ? Q @/
ONFIGURING SST (T 21
Red background, yellow foreground register window;b ‘ :(\ S (&v p*
Blue background Xam window » t\g;u JTER
Green background stack window ‘ ;, s 7'/<y
Red foreground assembly language N ”r‘ 1
Yellow foreground normal window ey —

Magenta help screen
type the following DOS and SST commands:

C:\>copy sst.exe newsst.exe
C:\>sst newsst.exe

>qQrdoin

>gx10/n ol D.\) &5 i korm
>qs20/n) il VISR
an4/ n 4‘\\ //' \ '/l’ o \)) b \ ’\\IA}\ k\r” }

ST, (T e
BINON v ‘ A
>q

Here the commands following the SST prompt &> are typed in SST’s COMMAND
MODE. The q’s store the configuration information in your program
NEWSST.EXE, the w or W writes the modified NEWSST.EXE to disk, and the
final g command quits SST. Then type

C:\>newsst

Your file NEWSST.EXE now has these characteristics as you’ll see by typing
Function Key 7 followed by t or T to see the Trace demo
v (J6 f Q\E\
& EE f\
SST initialization ~
In addition to the customization facilities described above, the COMMAND\ o
MODE ini command executes the 1\just SST INI flle that it finds by doing a DOS) A 0

path search. ng M U(R ¥ R‘ (/;/

Echoing Output toa File o

You may want to save disassembled code or hex/ASCII formatted bm}uy \ MA L
isplays on disk files or print them. For this purpose, some SST commands can)

22 RUNNING SST §3-3

echo what they send to the screen to a disk file of your choice. For explicit discus-
sion, see the n command in Chap. 5.

Terminating User Programs

Program terminations of all kinds (int 20h, int 27h, and int 21h with ah=0,
31h, and 4Ch) are intercepted by SST, which then gives a menu offering to 1) Re-
store registers to their initial values, 2) go into TRACE MODE, or 3) return to
COMMAND MODE leaving the registers as they are. The restore option acts like
DEBUG.COM, allowing you to rerun programs easily. ‘The other two allow you to
investigate the circumstances that led to program termination. You can also re-
store the registers at any time by typing rr in COMMAND MODE.

On terminating execution of a program, SST closes file handles 5 through
20, and releases all memory owned by the program’s Program Segment Prefix.

Super-Trace Demonstration

With SST you can Super-Trace execution at one tenth full speed (in real
mode, not V86 mode) looking for a condition of your choice to occur. For exam-
ple, type to return to COMMAND MODE, type t@ ., which transfers control to
the assembler for specifying Super-Trace break conditions, and type the assembly
language instruction

T cmp di,600

followed by two J’s, which turns on the Super-Trace mode. At the right end of
the second display line, you’ll see a S, to indicate that Super-Trace conditions are
in effect (they apply to breakpoints as well). Now things are very different. Each
time you type the space bar, the trace stops only if the condition di=600 is satis-
fied! Hence the trace sometimes hesitates between single-stepping, since the com-
puter has to execute many instructions in between. You can run the Super-Trace
continously by typing ¢ or C. To turn Super-Trace off, type . to return to
COMMAND MODE, type t@ followed by two .J’s, which turns the conditions off,
and then type t or T to return to TRACE MODE. Notice that the S at the end of
the second screen line goes away. Type ¢ or C to start up the Continuous trace
mode again, and notice how slowly the di register changes. This should convince
you that the Super-Trace mode is really super! The Super-Trace executes about
10 times meore slowly than normal, compared to the continuous trace, which exe-
cutes 40,000 or more times more slowly than normal. DEBUG traces 270,000
times more slowly than normal and cannot be read when running continuously.
~~Another interesting supertrace is to have SST load your favorite word proc-

2 essor (see load command in Chap. 5) and supertrace for a condition that will never

§3-4 CONFIGURING SST 23

be met like or sp,sp. Since the stack pointer is never 0 for working programs,
SST will simply run your program in slow motion. To stop, type Ctrl-, or tell
your program to quit. Super-Trace is described further in Chap. 5 under the trace
command.

5 e
& Yy L=

3-4, Calculator — } » >% — ¥3izetlorioy

Bh3S, 8 WIN. = doig00lo
In addition to the alphabetic commands described in Chaps. 5 through 7, if a
decimal digit or x86 register name starts the command, the line is assumed to be
calculator input to a hexadecimal Polish suffix calculator. This calculator supports
32-bit arithmetic with the arithmetic operators “+-/*”, the binary logical operators
“1&”, the logical not “~”, and the store operator . See also the more limited
hex command, which is mcluded to be compatible with DEBUG.COM. As an ex-

ample, typing

“__

>9 9.
displays
>9 9*= 51

Remember that we’re working with hexadecimal here, so 51 is correct! Operands
must be separated by at least one blank, and the operators must follow their re-
spective operands without mtcrvemrgﬂanks (the operators are treate special
operand delimeters) @w operators are given; W ﬁiﬁ) Henc

!

to add up a list of numbers, just type the IlstToHOWCd /ed by a . i

Converting between Hexddecinial and ijeclmal\\ 14 55 P

Typing a single value followed by a ./ with no operators display -
sponding decimal value. Similarly, typing a decimal value (identified by trailing
period) followed by a . displays the corresponding hexadecimal value. Examples
are

>0ACE= 2766.
>127.= 007F

To convert from hexadecimal to binary, in COMMAND MODE typc/h or H rfol-
lowed by the hexadecimal value.

24 RUNNING SST §3-5
Use of Register Values
To display the value of the ds register multiplied by 4, type
>ds 4*.J

More complicated expressions like

>OFE4 g§>&
can be used. This one calculates the infix expression (4*ds)&0FEh. If ds=0BCh,
this gives 0fOh. Note that a leading 0 is required to indicate that OFEh is a number
and not a fill command.

To store the value of an expression into one of the x86 registers, use the =
operator at the end of the expression. For example, to set bx = 2*ax+cx, type

>ax 2* cx+ bx=

For simple ch nges to the registers, you cawst assign them values directly, as in
\J s QL)() 3 U N
Pax=3 1 - e M /

3-5. Interrupts

Hardware and software interrupts play important roles in x86-family com-
puters like the IBM PCs. Hardware interrupts are used to maintain the date and
time of day, keyboard buffering, some disk control operations, x87 numeric
coprocessor exceptions, and optional serial and parallel input/outut data transfers.
Software interrupts are used to connect programmer routines with operating sys-
tem routines, to handle arithmetic exceptions such as divide overflow, and to han-
dle single-step and breakpoint operations. To control these operations effectively,
SST takes over many of these interrupts and restores them to their previous values
upon returning to DOS. For example under IBM DOS an alleged DIVIDE
OVERFLOW interrupt is identified as such and the machine either halts or returns
to DOS, in either case preventing you from finding out where and whether an
overflow occurred or whether a software interrupt occurred instead. SST gives
the same message if a divide overflow really did occur and in any event leaves you
pointing to the instruction that caused the interrupt. You can then investigate the
conditions that caused the problem and return to DOS to correct your program
accordingly.

More specifically, unless you specify /L (for tread Lightly) when invoking
SST on the MS-DOS command line, SST takes over interrupts 0 (divide over-

§3-6 INTERRUPTS 25

flow), 1 (single-step), 2 (nonmaskable interrupt), 3 (breakpoint), and 4 (overflow).
On PCs with 80287 and later processors, SST also takes over 5 (for trapping the
bound instruction), 6 (illegal op code), and on 7 (x87 not available). On all ma-
chines it takes over int 9 (keyboard), 20h (return to DOS), 21h (main MSDOS
software interrupt), 22h (terminate address), 23h (Ctrl-Break), 24h (Critical Error
Handler), and 27h (return resident to DOS).

SST takes over the keyboard input interrupt 9 to see if a Ctrl-Enter has been
typed. If so, SST takes control, which allows you to stop a runaway program.
For any other key combination, SST transfers control to the keyboard routine ac-

" tive at the time SST was loaded. SST takes over the MS-DOS interrupt 21h to

intercept DOS exit réquests (ah=0, 31h, and 4Ch). If these are encountered, SST
takes control issuing the message “Program terminated normally.” If not, SST
transfers control to the MSDOS program active at the time SST was loaded.

3-6. Hardware Interrupts

For hardware interrupts, the corresponding interrupt programs can be in-
voked either by a real hardware interrupt or by software executing an int, far call,
far ret, iret, or far jmp instruction. SST identifies the software int n cases as
such, and otherwise gives the appropriate hardware interrupt message. For exam-
ple, if your program executes an int 0 instruction, you’ll see the message int 0,
rather than code leading to the interrupt using the unassemble command.

Another example on the IBM PC is the message “PARITY CHECK 2”, which
allegedly means that some memory location may have caused the error. You can
run a memory test program to check your memory, but the interrupt could have
been caused by a software bug, namely an int, call, ret, or jmp that uses interrupt
vector 2, the nonmaskable interrupt vector. Running under SST, you can check
the origin of the problem, and either go fix your program or your ‘memory accord-

ingly. e uniheIe
(F*"uug’)” F, U b @y \v.!,.J

NMI Button‘* \TeRR

Very useﬁﬁlly, the NMI interrupt can be caused by your shorting the I/O
Channel CHK line to ground with an NMI button (connect normally open push
button switch to top and bottom I/O Channel pins closest to rear of PC). This is a
VEry po ul way of g1v1ng SST control when ordmary maskable 1nterrupts have .
been disabled. D dky” pLITRS AW} 1P R Wopl

., feckuse 1 teql e
-, Wi 1 Q
Interrupt Mask Control A Chxtdo Dy NoT PO

Particularly in debugging multitasking systems that use the system clock to
switch tasks, it is important that SST can control the interrupt mask active when

26 RUNNING SST §3-7

SST is active. Otherwise, SST could regain control and immediately lose it to
some other task. For this purpose, the command

3 <56 J N"E >
>qi mask:~ /V«P\ SR

PRo (wav\m\jw HiE

TP AT W b HESRIGIS
) T8 1—-_~Q‘\Q¢ ""\e COCR TWorRivec),

sets the mterrupt controller mask used when SST is active to the value mask. For

example on the IBM PC, to allow only keyboard interrupts, use </ Jf AETRA, Lo 0

T oV e
a rM\f\"t\“a }]U 'f‘m-,

SgFD D N TUY N GC R
Se{\(porg LD / ot
\&‘ﬂr—l‘%ﬁ}my this option out with the)clock option. This shows the seconds o
ticking away in the upper right corner of the screen. When the OFDh interrupt
mask is used, SST stops the screen update' whenever SST is active; and then re-
starts it upon return/to the user program VA Hley(CArl-rel>) eigw ol Arrey
Ao Sar Ting aclgl g : (USER TP 15

KJN MR g
3-7. DOS and x87-Emulation Interrupt Definitions LZ o)

AL
? 3 Tony or

s o 5
et ¥

W€

INTIE

SST automatically comments some unassembled instructions, such as DOS| f\\ﬂ?"’“ ~

calls (int 21h) and the x87 emulation interrupts (int 34h - int 3dh). In addition
the int 21h definitions are displayed when you type the int21[n] command in
COMMAND MODE. If the optional » is present, the definition for that entry point
alone is displayed. If » is missing the next hexadecade of int21 entries is dis-
played These features are very handy for working with code that makes DOS
calls. 53 s ‘

Exammmg Interrupt Vectors

nan

To facilitate examining interrupt vectors, the suffix "i" on an address address
automatically implies the address 0:4*address. Hence the command

T pddi7i

displays the real-mode interrupt vector table with the cursor position at 0:5Ch,
which has the double-word vector to int 17h. You can then type Ctrl-F to begin
disassembling at this routine.

" "W RGN

4. SST Syntax, Labels, and Strings

The preceeding chapters show lots of SST examples, so you probably al-
ready have a pretty good idea of what the syntax of various SST commands is as
well as the syntax we use in this manual. The present chapter summarizes the na-
ture of this syntax more completely, describes executing DOS commands from
within SST, and explains how you can configure the keyboard editing commands
to correspond to your preferences.

4-1. Syntax

SST accepts commands in the same format as DEBUG.COM, so users of
DEBUG can continue with their usual methods. Most SYMDEB.EXE commands
are also supported with the same notation. In addition, many DOS or BASIC like
commands are supported and the two kinds of commands live together remarkably
peacefully. The DEBUG-style alphabetic commands are identified by a single
command letter that can be preceded or followed by optional blanks and tabs.
Most command take one or more arguments separated by a blank, comma, or tab.
The syntax has been relaxed in several ways to streamline command entry and exe-
cution. The semicolon (;) can be used in place of the colon (:) for specifying seg-
ment register values. As in DEBUG, the segment register names (cs, ds, es, and
ss) can be used to specify address segments. SST allows the program registers
(ax, bx, cx, dx, al, ah, bl, bh, cl, ch, dl, dh, si, di, bp, sp, ip, eax, ebx, ecx, edx,
esi, edi, esp, ebp, eip, fs, and gs.) to be used as well in place of hexadecimal val-
ues. Five-digit addresses refer to the entire one-megabyte address space, and 6-
digit address correspond to extended RAM available on the IBM PC compatible
computers with 80286 and later microprocessors. If no segment register is given,
ds is assumed for all commands except for assemble, go, load, trace, unassemble,
and write commands, which assume cs.

Syntax Type_:_F,_ohts

In this document we print register and instructions in boldface Times Ro-
man, unless they appear in examples, which are displayed in an Arial font. Each

27

28 SST SYNTAX, LABELS, STRINGS §4-1

command is defined and described with examples, and is compared to its DEBUG
version. The Enter key is indicated by .J, and is used to terminate a command line,
and to terminate the execution of certain commands like the DISPLAY and TRACE
MODEs. .The usual SST prompt character is shown as > (similar to the SST
prompt on the IBM PC screens.) Variables are given in italics.

Each command is defined by a SYNTAX specification. In these specifica-
tions, bold square brackets [] are used to surround optional fields. For example,

>a [address]

means that the letter a is typed following the SST prompt >, optionally followed
by the address address. The text following the syntax specification then defines
what a alone means and what a followed by an address means.

In the syntax specifications, the word range stands for two addresses sepa-
rated by a comma or blank. The first address can have an optional segment speci-
fication. The segment used for this first address is automatically used for the sec-

l»q@_@he second address for the protect command can have its own segment). The
range can be used in commands like display, fill, and compare. For example,

>d [range]

displays the range of memory range. This range can be given in one of three
forms:

1. address; address;
2. address, L count
3. Cul-B

The first form specifies the address explicitly either with hexadecimal values of the
form [segment:] offset, or with labels (see Label section in this Chapter). The sec-
ond form specifies the number of bytes including the first one pointed to by the
address address,. The third method uses a block defined by the Ctrl-T and Ctrl-E
DISPLAY MODE options (see Block section in this chapter).

If during execution you type Function Key 1 anywhere after the command
letter, the short syntax definition is displayed in a pop-up window under the regis-
ter window. Type any character to get rid of this help screen. If you type Func-
tion Key 1 immediately after the command letter, both are erased when the help
screen goes away. If you have typed more than-two characters when you type
Function Key 1, then those characters are left, letting you continue your command
after seeing the help screen. The assemble command works a bit differently in
having two help screens. The first time you type Function Key 1 a terse syntax

§4-2 SYNTAX 29

definition is displayed, followed by the full set of possible x86 instruction mne-
monics. Typing Function Key 1 again toggles the Assemble help screen to the x87
mnemonics. Typing any other character replaces the screen text and cursor to that
present before you asked for help. This lets you check the spelling of a mnemonic
in the middle of typing an instruction.

Specifying an Argument Using Cursor Arrow Keys

If the desired hexadecimal value for an argument (usually an address) ap-
pears on the screen due to displaying or unassembling, you can insert this value
into your command line. Use the cursor arrow keys to move the cursor to the start
of the value and then type a blank to continue the command or a ! to run it. Both
the address at the cursor as well as the character you type are inserted into the
command string. This is particularly useful for beginning a trace at a disassembled
instruction displayed on the screen, for setting a breakpoint at a disassembled in-
struction, or for starting a disassembly at an address found by searching for in-
struction mnemonics. For example, to start execution at the current instruction
(cs:ip) and break at an address displayed on screen, type

>g

with no .J, move the cursor to the desired address on screen, and type . If you
want a second breakpoint, press the space bar instead of the .1, move the cursor to
the second address, and then type the .. If you just want to copy in the segment
value from one part of the screen, move the cursor to the start of the segment
value and type a backspace. This inserts the segment, the colon and only three
digits of the address offset, three more backspaces delete the rest of the offset to
make room for the value you want. If you’re an accurate typist, inserting a seg-
ment value this way isn’t that useful, but it illustrates how whatever you insert this
way can be further edited, unless you type the terminating ..

You can use the arrow-key insertion method to assemble on top of code, or
to set a single temporary breakpoint. You can also do these things directly from
the UNASSEMBLE and TRACE MODE:s.

4-2. MS-DOS Commands

A subset of MS-DOS commands has been built into SST allowing you to
change the default drive and directory path, to display directory filenames, to type
files, and to erase files. The display runs about three times as fast as MS-DOS,
and the type command at least 20 times as fast. Hence the type command runs in
a special paged mode.

i

30 SST SYNTAX, LABELS, STRINGS §4-3

To change the current MS-DOS drive letter, type the desired drive letter
followed by the command colon (or semicolon). For example,

>a:

switches to drive A and displays a screen showing the current drive (A) and di-
rectory path on that drive. _

To change the default directory path on the current drive type cd\ followed
by the path name. Hence

>cd\sst

changes to the subdirectory \SST, and displays a screen to that effect. If no such
directory exists, the screen shows the active directory instead.

To display the current default drive and subdirectory, type \ Function Key 1
in COMMAND MODE or type the prompt command in COMMAND MODE to con-
tinually see this information.

To display directory information, type dir followed by the desired filename
template. The total number of bytes in the files matched is displayed in decimal for
all values if you have an x87, and up to 64K if you don’t (larger values are then
displayed in hex).

To display a file, type

>type filename

~——which allows you to browse up and down a file with search capability.

To erase a file, type
>erase filename
or
>del filename

You will be asked to confirm before SST erases the file.

To leave SST, you can type bye, quit, or system, in upper or lower case.
For a complete summary of these commands, see “Interpreter Commands” in
Chap. 6.

4-3. Editing Command Lines

SST has a line edit facility patterned after. th'e: PMATE editor that works both
in COMMAND and ASSEMBLE MODEs. While typing in a command or assembly
language statement, you can use the left and right arrow keys to move around the

§4-3 DOS COMMANDS 31

line. Typing ordinary characters simply inserts them at the cursor position. Other
edit keystrokes are identified as follows:

& Eh 2P
Home move cursor to beginning of line :
End move cursor to end of line Izl g o
Del deletes character under cursor 8 goawoga
/ Backspace deletes character before cursor 59,4 ~
7 Cul-O' move one word left (Ctrl-¢ is an alias) A 1700
: Do F;?‘\ ><€II1-P move one word right (Ctrl-— is an alias)
o XCul-Q | delete word to left
R "[(g) X Ctrl-W r] delete word to right TS e oD
| Nohd .) YCUI—KJ [, delete (Kill) from cursor to end of line
\ 7 e B s - "‘-figf‘/ﬁe‘j Modifying Edit Command Characters
e X *A A
/ T \ . If you prefer, you can load in a file to reconfigure the Ctrl character com-
AotOr 1 mands. For example, to change the commands to correspond to MicroPro’s
Nepo . WordStar editor, type
3 ’ il 3 3y
‘ key 1e01, 113, 2004, 2106, 0, 2308, 2207, 1414, 1519
M0
® s Each entry specifies the desired IBM PC character code for an edit function.
These functions appear according to the order:
WordLeft, CharLeft, CharRight, WordRight

DeleteWordLeft, DeleteCharLeft, Delete CursorChar
DeleteWordRight, DeleteToEndOfLine

Hence in the WordStar example above, the first entry 1e01 (Ctrl-A) corresponds
to moving left one word, while the second entry 1f13 (Ctrl-S) corresponds to
moving left one character. If you’re used to the WS commands, include this key
command in your SST.INI file.

Blocks

It’s often useful to scan through memory using the DISPLAY MODE and
then examine part of memory in a different way, or write it out to disk) For such
purposes, SST has a limited form of the word processor block facility. Specifically
any time you type Ctrl-T in DISPLAY MODE, the address pointed to by the cursor
is saved in a double-word Tag location.

PACATES T NPREE T |+

ERNS T\v ‘_fl“(})u‘p.?

32 SST SYNTAX, LABELS, STRINGS §4-4

You can examine the memory at the Tag location using the examine com-
. mand of Chap. 5 by typing Ctrl-B instead of an address. The Ctrl-B so used dis-
ays as a little box;
Similarly if you type Ctrl-E in DISPLAY MODE, the address pointed to by
the cursor is saved in a double-word End tag location. You can gdback and forth
between these two locations by typing Cirl-G. !~ %5 £ u'\\V\ ¢ ﬂ_w_//\
You can use the block of memory betwﬁnhc—'lfag”and End-tag locations in
a number of ways. You can write a block to disk by naming the desired file with
the name command and then typing i

f/\ peorer R

(7 r g\ (< N DRST R
?/ p in COMMAND MODE. The Ctrl-B can also be used in place of two addresses with
th€ compare) fill, move, and search commands. For example, ™ K
- 0 (S ,
w &Y Nﬁ\.vc : \ ‘_@f;i;w 'jéjm WD
5 >f Ctrl-B “abed” v4 N kﬂ’,\f\'} $1g 13
TREN R Ih B ol R
NN fills the memory defined by the previous Ctrl-T Ctrl-E DISPLAY MODE [oh <s x4
r (o € (2vow o with the string “abed”. The compare, fill, move, and search options are| hmlted to :
RTEEC 7 64K, but the write option is limited only by the RAM and disk sizes. — / p.,y @ay, day ponMock
B o WoRK £)
214 oy \-"Vo,w,
I oo ALabels:— v O T— [oahi3 s F e x\f S AR
gt R e The load map generated by the DOS LINK.EXE program with the /MAP list, CABG i
S U

C \% ? \\,\, -_;optlon can be loaded by SST to identify locations in memory by name. This works " / #& < [} fpyrdd
with large and small memory model programs and greatly facilitates debugging
T ‘\' 2 programs. Once defined, the labels can be used in place of hexadecimal addresses. /)
~ ' For example to start unassembling at the double-word address alpha, type A

>u alpha : L NS VAT

\ O QW

INgUE,) To load in program labels, name the .MAP file with the name command | "< o

-9 ' (Chap. 5), and type the Il command (see Chap. 5 load command). This automati- | 7v¢ o ¢

LD S W "cally reads the labels in starting at the point in the .MAP file identified by the words

“by Value” and relocates them relative to the origin of the .EXE module (prograr?;\, ,

< (~y prefix segment paragraph + 10). noy ea

3 To load .MAP labels relative to some other paragraph, type a command pf

i " ‘the form Il n, where n is the desired paragraph number. This option is useful for ,,”“ N

~—— debugging resident programs. To load .MAP files for use with .COM files, type Im, 1) e " WA
which relocates relative to the Program Segment Prefix (PSP) rather than to thc P NG s
.EXE module paragraph (10h paIagraphs lower) / r« %

VEE / sy A I ~ ,‘\‘i S FO f(,“i Ge

INA o It A
T
. 2 LA

&
>
~

§4-5 LABELS 33

SST has limited support for program variables with the Iv option. This op-
tion loads the variables defined by the part of a MASM.EXE listing for a single
segment. The program scans for the word “segment” and sets up program variable
names up to the corresponding ends pseudo op.

The I, Im, and Iv options use the user program area to load in the .MAP and
.LST files and hence overwrite whatever program might have been loaded in.
Hence to debug a program, load in the label files first, and then the program. Us-
ing a script file (see < command) streamlines this procedure. Labels can be dis-
played by segment paragraph number by the d/n command of Chap. 5. Variable
names are displayed by d/v and user strings by d/u.

The LL option can also read in label files generated by the wl option, which
writes the entire SST label linked list to disk, program labels, variable names, and
user strings. See the write command in Chap. 5.

For the more technically oriented, we note that internally SST stores all la-
bels in a two-level linked list format. The outer level linked list consists of one or
more entries having a segment paragraph value (one word), followed by a word
type code, a word segment label string length, and a string of that length. In turn,
an outer level string contains one or more inner level linked lists, each describing a
label. An inner level linked list has the same format for its entries, with a one word
offset value, a word type code, a word string length, and a label string of that
length. The special segments for v and Iw are identified by the outer level pseudo-
segment numbers OFFOOH+"V” and OFFOOH+"W”, respectively, which are not
likely to occur as program paragraphs. When you use the wl option, a double
linked list of this form preceded by the special word OFFFAh is written to the file
named by the name command. In writing the file, the paragraph values less than
OFFO0O0h are unrelocated by subtracting the Program Segment Prefix paragraph +
10h. This file can subsequently be reread by the Il option, which adds the Program
Segment Prefix + 10h paragraph back in. In this way, the labels can be used when
your program is loaded in a different place on subsequent occasions. Pseudo seg-
ments Off8Oh and up are used for virtual segments in debugging Microsoft Win-
dows.

4-5. User Strings and Keyboard Macros

User strings are definable with two character alphanumeric names. These
strings can be used for defining memory structures or templates for use with the
examine memory command (see Chap. 5), and fer user input (macros without ar-
guments). The facility makes it much easierto read the values of data structures
stored in memory. To define any user string, type

A

‘;) >nst= =

TN

34

o3t

SST SYNTAX, LABELS, STRINGS

This defines (names) the string st to have the value

§4-5

& \/ You can also define 40 function key values by assigning strings to f0 - f9, cO

functions, repectively. For example,

D s A Faonie
s

— - ¢9, sO - s9, and a0 - a9, which define the unshifted, Ctrl’d, Shifted, and Alt’ed

defines Funtlon Key 9 to switch back to COMMAND MODE if it’s not there al-
ready, and to display the real-mode interrupt vectors in double-word format.

To use a string in place of keyboard input (limited macro facility), type the
command $ followed by the string name. Hence the sequence

>nst="dd;"

¥ty EY P f

é\

"%AA(b

=z [\)

.r;f\"&

generates a full screen double-word dlsplay of the real-mode interrupt vectors, just
as if you had entered the command dd; directly.
Alternatively, you can put these commands in a file and run them using key-

board redirection. This method is really simpler. For example we mxght debug
SST.EXE by using the file S

nsst.map o S ARIREN i &
I SradteordT v ol f

{¢iy Co P QAN A / "
nsst.Ist { COred: Mk B : D¢
v g fRoN e
nsst.exe S
| \E,/
gs3

and then invoke this file by the keyboard redirection command

L Durlay LS (e

>N<s
or simply ' NSy A
><s "

/ : Y
: dﬁgj E>J,c< %,
& 5= o
S ¥
\ —) i C
{
A
(: ? z Lo oA ranS &
\ % NS LG Fff;:,’:"/{ﬂ(

{
A SN

5. Command Descriptions

This Chapter describes the basic SST commands summarized under Chap. 2
on Help as

1&.<> 0-9 @scii Asm Baud Comp Display
Exam Fill Go Hex In Klear Load
Move Name = Out Protect Quit Reg Search
Trace Unasm Vector Write = Xam YGDT Zam

It addition, this chapter summarizes many MS-DOS-like commands as given in the
Table of Contents. Commands specific to the interpreter and the disk editor are
described further in Chaps. 6 and 7, respectively. The commands are introduced
by a brief syntax specification (see Chap. 4) followed by an explanation of their
usage and some examples.

! SHELL Command

The command ! loads and executes copy of the DOS COMMAND.COM. The
syntax is

>! [filename [parameters]]

If the optional filename and parameters field are present, the file is executed with
the command-line parameters specified and control is returned to SST. If the !
appears alone, COMMAND.COM retains control giving the user the usual DOS
command line prompt. Type any commands desired and return to SST by typing
the DOS command exit.

Note that SST and whatever you’re debugging remain resident during this
process, substantially reducing the a_gneimt of RAM left to the new
COMMAND.COM process, relative to the one used to run SST in the first place.
Many DOS commands such as dir are built into SST, so in many cases you may
not have to use the shell command.

35

|

/

/

36 SST COMMANDS §5
& Address Command

The & label command returns the address of the variable or label label. 1f
label is not in the symbol tables read in (see LL command), an error message is is-

_ sued. Type the d/s command to see what segments have symbol tables.

0-9 Calculator Command

Commands beginning with 0-9 invoke the 32-bit hex calculator option as de-
scribed in Sec. 3-4.

< Command

The < filenamecommand redirects keyboard input to the file filename. This
is very useful for reading in script files to define symbol tables, function keys, and
initialization commands.

> Command

The > filenamecommand defines the file filenameto be used for echoed
output.

@ Command

The @scii command displays hexadecimal and decimal ASCII charts as de-
scribed in Sec. 2-2. :

A Command

The a command assembles x86 and x87 mnemonics. It has the syntax:

>a [address]

This starts assembling instructions typed in by the user at the address given fol-
lowing the a, or at the last address used (init_i_alLy’cs:lOO) if no address is given.
The menu line (third line from screen top) changes to

ASSEMBLE MODE: F1 Esc

§5 SST COMMANDS 37

The help screens displayed by Function Key 1 are discussed below. The first time
an a . is typed you see (suppose cs=1234)

>a
1234:100

After you terminate an assembly language instruction with a -, the screen
displays the corresponding machine language and goes on to the next line. The
assembly language mode is terminated by two .’s in a row. Thus to add the first
ten integers one types and sees

>a
1234:100 B90A0OO mov cx,a
1234:103 31C0 xor ax,ax

1234:105 01C8 add ax,cx
1234:107 E2FC loop 105
1234:109

>

You can screen trace the operation of your program by typing t or T followed by
and single stepping by typing the space bar. From the TRACE and UNASSEMBLE
MODES, you can invoke the assembler on the line given by the cursor by typing the
hot key “a”.

Assembler Syntax

In the ASSEMBLER MODEs, all numbers are assumed to be hexadecimal
unless identified as decimal by a trailing period, or identified as a string literal by

enclosing in single or double quotes. Extra spaces and tabs can bc)é/fre?lyﬁlfwm

serted to improve readability. Memory references are usually chosen to be byte or
word according to the register that appears in the instruction. Hence the instruc-
tion mov [100],ax moves a word to the location 100, while mov [100],al moves a
byte. If no register is mentioned, such as in immediate transfers like mov word ptr
[100],10, the usual modifiers word ptr and byte ptr can be used. These can be ab-
breviated by word and byte, respectively, or simply by w, and b,. For example,

shi word ptr [100],1

shi word [100],1

shi word [100],1

shi w,[100],1

‘\'\'\"7 Y ""‘

38 SST COMMANDS §5

all assemble the machine instruction that shifts the word at location ds:100 left one
bit position. Either a byte or a word specification must be given. In general syntax
accepted by DEBUG.COM is accepted by SST as well.
" In ASSEMBLE MODE, Function Key 3 displays code for instruction at cur-
) rent address for editing. You can also edit a sequence of instructions in a row by
“\ using the edit command described in Chap. 6.

x87 Instructions

For the x87 instructions, the specifications d,, q,, and t, are available to mean
double word, quad word, and ten byte (temporary real — fld and fstp instructions
only), respectively. The usual assembler notation dword, gword, and tbyte fol-
lowed optionally by ptr is also accepted. The stack registers can be referenced by
their full names st(i) with i=0 to 7. For simplicity they can also be referenced by
St0 to st7, with st alone meaning st(0). Most simply, they can be referenced by 0

/-/ \
7~ to 7, an unambiguous specification since no immediate instructions exist on the
x87. : 7

/7

The arithmetic instructions fadd, fmul, fsub, anr(i-‘Afai;"Ei{ﬁ—éﬁﬁmd/
arguments, in which case the operand field st(1),st(0) is implied and a pop occurs.
For example, fadd means

faddp st(1),st(0)

This abbreviation makes arithmetic instructions without operands work as in a
Polish suffix calculator.

x86 Mnemonics

To see all the mnemonics recognized by the assembler, type the command a
F1. This displays the help screen

a [address] Assemble. x86 op codes (8086 lower case, F1 — x87)

aaa aad aam aas adc add and Arpl Bound Bsf

Bsr Bswap Bt Btc Btr Bts call cbw Cdq cle

cld cli Clts cmce cmp cmpsb Cmpsd cmpsw Cmpxchg Cmpxchg8
Cpuid cwd Cwde daa das db dec div dw end
Enter esc hit idiv imul in Jnc . - Insbh Insd Insw

int into Invd Invipg iret Iretd ™ ja jae jb jbe

jc jexz je jecxz jg jge il jle jmp jmps
jna jnb jnc jne ing jnl jno inp jns jnz

jo ip jpe jpo is jz lahf Lar Ids lea

§5 , SST COMMANDS 39
Leave les Lfs Lgdt Lgs Lidt Lldt Lmsw Loadall lock

lodsb lodsd lodsw loop loope loopne loopnz loopz Lsl Lss
Ltr mov movsb Movsd movsw Movsx Movzx mul neg nop
not or out Outsb Outsd Outsw pop Popa Popad popf
Popfd push Pusha Pushad pushf Pushfd rcl rer Rdmsr Rdtsc
rep repe repne repnz repz ret rol ror Rsm sahf
sal sar sbb scasb scasd scasw seg Set Sgdt shl
Shid shr Shrd Sidt Sldt Smsw stc std sti stosb
Stosd stosw Str sub test Verr Verw wait Whbinvd Wrmsr

Xadd xchg xlat xor

Typing any character other than Function Key 1, restores what was on the screen
before you asked for help. If you type Function Key 1 again, you see the x87
mnemonics:

x87 Mnemonics

a [address] Assemble. x87 op codes (F1 ® x86) are:

f2xm1 fabs fadd faddp fbid fostp fchs fclex fcom fcomp
fcompp Fcos fdecstp fdisi fdiv fdivp fdivr fdivrp feni ffree
fiadd ficom ficomp fidiv fidivr fild fimul fincstp finit fist
fistp fisub fisubr fld fid1 fidew fldenv fidi2e fldi2t fldig2
fidin2 fldpi fldz fmul fmulp fnop fpatan fprem Fpremi fptan
frndint frstor fsave fscale Fsetpm Fsin Fsincos fsqrt fst fstew
fstenv fstp fstsw fsub fsubp fsubr fsubrp ftst Fucom Fucomp
Fucompp fwait fxam fxch fxtract fyl2x fyl2xp1 ;

For use of these commands, see one of the Intel x86 Programmer’s Refer-
ence Manuals, the Microsoft Macro Assembler manual, or the book The Personal
Computer from the Inside Out, 3rd Ed (1994) by Sargent and Shoemaker.

If an error is found, the assemble command indicates the offending letter or
field by an Up arrow followed by the word error as in

mov ax,q
T €rror

You can then use the command edit keys (see Chap. 4) to fix the error, or type Esc
to return to COMMAND MODE.
Labels and Commients

You can label instructions as you type them in with the assemble command.
Terminate the labels with a colon (:), and they are inserted into the label table for

7\7 o=

=

/

Do~ | SST COMMANDS §5

use in later assembles, unassembles, examines, displays, etc. A colon alone deletes
= the label at the current program counter. A new label replaces an old one. You
can save the labels you type and/or read in with the wl command. Use the Il com-
mand to read in labels written with the wl command.

You can also define labels by reading them in from the /MAP option (Il com-
mand) on the linker and IEST opt1on (Iv command) on the macroassembler. The
a ,sembl)glanguage interpreter (Chap. 6) can have variables of its own by using the
_db and dw pseudo-ops, or by storing a value into an as-yet undefined variable.

Program comments are supported by the assemble and unassemble ¢
mands and are defined by a starting semicolon. If you type a semicolon at the

of a line; the comment that follows will automatically be appended to the 1nstruc— £

tion for that line. If you type a semicolon alone, any existing comment for the line
is deleted. If you type a new comment, it replaces the old one.

Program Mode

The end pseudo op stops TRACE MODE unassembly beyond the end, giving
a more readable screen. This pseudo op can only be used in .COM file mode, i.e.,
with ¢s equal to the program prefix segment. When end is in effect, you can edit,
insert, and delete instructions in the middle of your program. See Chap. 6 on the
built-in assembly language interpreter.

The a option acts essentially the same way as for DEBUG.COM with the ad-
ditions of instant help messages (just type Function Key 1), of displaying the as-
sembled machine language, of recognizing the x86 mnemonics beyond the 8086,
use in search strings, with the change to lower case for increased readability, use of
labels and comments, and with the PROGRAM MODE allowing insertion and de-
letion of instructions.

SST also uses the assembler for the Super-Trace and conditional breakpoint
facilities.

AND Command

The logic operations and, or, xor, and not operate on memory ranges much
like the fill command. The and, or, and xor have the same syntax as the fill com-
mand, while the not command simply inverts all bits in the range. The syntax is

>and range list
>or range list
>xor range list
>not range

N

L“'J‘

§5 SST COMMANDS 41

The bytes in the list /ist are anded, etc., with the bytes in the range range. The
and operation can be used to kill the high bit on bytes in WordStar files or the
parity bit included by some communications programs. For example, to kill the
high bit in the file WORDSTAR.DOC, type

>nwordstar.doc
>l

>and 100 | cx 7F
>W

B Command

This command manages breakpoints and setting the baud rate. To set the
baud rate, type a command of the form

>b rate [,channel]

where rate = one of 110, 150, 300, 600, 1200, 2400, 4800, 9600. The optional
channel value of 1 specifies COM1 and 2 gives COM2.
If no number is given, the message

Reboot System (Y/N)?

is displayed. Typing y or Y reboots the system without erasing memory (works
only on older IBM PC’s).

Breakpoint Commands

In addition to the 10 normal g breakpoints (see go command) that go away
upon reentry to SST, you can define up to 10 sticky breakpoints with the break-
point command. To set sticky breakpoints type a command of the form

>bs[n] address [m]

which sets’breakpoint [#] at the address address and skips m passes by this ad-
dress. No blanks can occur between n and the s'if is given.
To clear breakpoints in list or all (*), type a command of the form

Bl

42 SST COMMANDS §5
>bc list

or type

>bc *

The list /ist here refers to one or more digits 0 to 9, and the * refers to all ten pos-
sible breakpoints.
Similarly to disable breakpoints in /isz or all (*), type a command of the form

>bd list

or type

>bd *

and to enable breakpoints in /ist or all (¥), type a command of the form
>be list

or type

>be *

To list your breakpoints and their characteristics, type

E}i}é) 11=0

For example,
>bs0 1234:5678
defines and enables sticky breakpoint O at the address 1234:5678.
>bd0

disables sticky breakpoint 0. Hence if you go to the program, this breakpoint will
not be set. The be0 command can reenable the breakpoint.

After defining one or more sticky breakpoints, type the bl command to see a
pop up window telling you about the status and location of the breakpoints. This
facility is compatible with SYMDEB.EXE’s except that the latter uses bp instead of
bs to set BreakPoints. SST uses bp to refer the bp register.

80386 hardware b__r_ealépoints

The 80386 and later microprocessors have four hardware breakpoints capa-
ble of breaking when a location (byte, word, or dword) is read, written, or exe-

§5 SST COMMANDS 43

cuted. These breakpoints occur while the 80386 runs full speed. In particular, you
can break execution as soon as a variable is written to or from, and you can set
breakpoints in ROM. For a full discussion of this powerful feature of the 80386,
please consult the chapter on debugging in the Intel 80386 Programmer’s Refer-
ence Manual or one of its more recent siblings.

SST uses sticky breakpoints 30 to 33 are for the 80386 debug registers. The
syntax is a slight extension of the standard sticky breakpoint syntax, namely

—_ rfﬁ ((A;LL&;N

>bs n address [m] [/stl] \

which sets 80386 hardware breakpoint n = 30 to 33 at the address address and
skips m passes by this address. The special 80386 optional switch field /st/ can be
used to specify the scope, type, and length of hardware breakpoint desired. The
scope letter s can be omitted or be g for Global, or | for Local. Global is the de-
fault. If you specify Local, the breakpoints are automatically disabled when a task
switch occurs. [= 1, 2, or 4 (bytes).

The breakpoint type letter ¢ can.be r for break on data reads or writes, but
not on instruction fetches; w for break on data writes only (default); or x for break
on instruction execution only. These 80386 hardware sticky breakpoints can be
enabled, disabled, cleared, and listed just as regular sticky breakpoints can.

BLINK Command
The command
>blink [n]

controls the Hercules Graphics Card Plus blink/reverse-video attribute. If n =0 or
is missing, then bit 7 = 1 of the screen attribute byte specifies a high-intensity
background. If n= 1, then bit 7 = 1 of the screen attribute byte specifies blinking.
Use blink 0!

BYE Command
The command
>bye
quits to DOS. system, quit, and Alt-X do the same thing.

44 SST COMMANDS §5
BYTE Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the byte type is:

>byte {[far] * \(\ariableknamé address

213
//,/’_——.H /
o For example, .

>byte alpha 305

adds the symbol alpha of type byte (8-bit unsigned integer) to the segment speci- —

fied by the ds segment register at the offset 305h. You can specify any other seg-
| ment. /The optional *ene ates a a variable of the type byte. The op-
tional far generates :’ 0 a variable of the type byte. W O\~

f"\@ (» e_ 51 \ 1 ae e . ‘LET/\f:N“g;\:iB_E
CCommand\D)gr NOT- £ CH i

Rue KNTEC T L= L 16 PRl pe RN Csm«\w) Fu,fﬂw keW Tuuf

[
This command compares the contents of one memory block to that of ant ©s- "¢ g0 &)

other memory block (like DEBUG). It'is useful for checking that two copies of a 1), 260, ¢ ,}@\
program are identical and have not been changed, for example, by a crash of the °"'¥ ¢ ~Patey —

system. The command expects the first block start and end addresses and the sec- /7~ ~ /i €ov

ond block start address as arguments. Syntax: G* a [I3X P g
>C range address (‘fﬁ I/ s ffg &
For example, T <P - , :, - ’ ®
5 P o < | B CAE o
>c500,585,2000 1, (00700 0t g | "Vl p T ug
(=2 10 t00g0o 107001y 2V 0000 = A&

compares the contents of memory from address 500h through 595h against the
contents of memory from address 2000h through 2095h. Any differences will be
shown on the display. Thus if location 527h was 00 while 2027h was FFh in the
above example, the display would show -

>¢500,595,2000
2347:527 00 FF =

assuming all other locations in the blocks are identical.
If ip=235, ¢s=0200, es=3000 and di=495, then =
>ccs:ip E000 es:di

compares 0200:235 up to 0200:E000 against the memory block starting at
3000:495.

§5 SST COMMANDS 45

This command works the same way in DEBUG, and allows general register
names to be used in the address fields.

CD Command

The cd command changes the directory as for DOS. Such changes cause the
new path name to appear in a pop-up window. Alternatively, type the prompt
command (described later in this chapter) to display the current path on all
COMMAND MODE command lines (as for the DOS prompt command). The in-

stead of the > prompt, you see something like
C:\PS>

To change the current drive, type a command of the form a: or a;, where a is
the desired drive letter.

CHAAR Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the char type is:

>char [[far] *] variable name address
For example,
>char alpha 305

adds the symbol alpha of type char (8-bit signed integer) to the segment specified
by the ds segment register at the offset 305h. You can specify any other segment.
The optional * generates a near ptr to a variable of the type char. The optional far
generates a far pointer to a variable of the type char.

CLOCK éommand

SST can display a time-of-day clock at right side of menu once a second.
The command :
e &r k5 WG
>clock tatu_sj’

turns this clock on or off if szatus = on or off, respectively. If status equals an ad-
dress instead of on or off, the word value at that address is displayed once a sec-
ond. In addition to reporting the time of day, this feature lets you know if your
machine has totally crashed.

ona typlcal PC you mi ght&ce

\CPU: 80486/ 804
TRAM:0123/4 56783/AEJCDEF

46 SST COMMANDS 85
CLOSE Command

The close command closes all opened files except those with handles 0
through 4.

CLS Command

The cls command acts as for DOS to clear the screen, here leaving the reg-
ister window on top.

CONFIRM Command

The confirm command is typically used in demonstration script files to bypass

. 6‘ ”»

the need for the user typing “y” or “n” to confirm an action. The syntax is
>confirm status

where status = off turns off the need to confirm, while the value on turns it back
on (default is on). . {
S on B
o
' 1R TES N s
CONT Command | <" ° el (N

The cont command continues operation where left offj It is the same as the
g command without arguments, except that cont requlres no conflrmatlon if no

QLUK pE

(et

breakpoa,nts are implemented. oY1t U AT ER Ly v LW Yo

)
N

CPU Command
The cpu command glves you information about your computer. For example

whenyoutype < By Y oA duw

X’zk/u
B>cpu \“- MK

\

Serial Ports: 3F82F8 vy iuso 2 ?* \P"

/Parallel Ports: 3BC 378278

Model: fc-1 -

U

b g

§5 SST COMMANDS rbf\ =y 47

» L) te . ‘:('] 6wl € /o
DOS: 6.22 / i g ’ ”f it
Speed Relative to PC |: 51.7 ‘71@ ’ rprentl Vime | Sy

OSROMZO@\Q\Q/SE/Q,; o - X‘\/S- o 937) ’.73*@ K'<1;K ’\,Iﬁ-‘i.ﬁ. ~»§

DPMI:0.90 e ORI P s ™ ’”2“‘%.
Windows: 3.11 P D ,b% 7 20

i + 0 % 9 O
s MuDlp 7
Here the underlined values in the RAM entry are shown in reverse video on screen

I -

and signify that RAM exists in those" %’ memory banks. (5 %+ 19~ 1660 ¢ 17N,
The program used to measure the speed relative | toTlTei‘BngGlg_.__ gl

;SPEED - display null-terminated string ds:[si] followed by ratio of loop speed on
;machine to that of IBM PC I. ax, bx, cx, dx, si changed

speed: cli ;No interrupts
call mark ;Get ax = timer start count _ Ve
mov ¢cx,800h ;
speed2: push ax :Delay .
pop bx ;bx = original timer count
loop speed2
call mark
sti ;Interrupts back on
sub bx,ax ;bx = binary interval count
call tom ;Display speed message

mov ax,0c100h ;IBM PC | loop time (0c100)
xor dx,dx

div bx ;ax = integer ratio

push dx ;Save remainder in 0f000’s
call dibyte ;Display integer part

mov " ;Display decimal point

call co -

pop ax ;ax = remainder

mov c¢x,10d ;Convert to tenths

mul CX

div bx

jmp dibyte ;Display tenths’ part and ret

;MARK - return ax = timer 0 count. ax changed

timer0 = 40h ;8253 timer 0
timetl = 43h ;8253 timer control port
mark: mov al,0 ;Latch count

out timctl,al

fim o

48 SST COMMANDS §5

in al,timer0
mov ah,al
in al,timer0
xchg al,ah
ret

CSRSIZE Command

The command
>Csrsize xxyy

begins the cursor on character raster row xx (starting with row O on the top) and
ends the cursor on row yy. Hence the command

>csrsize bOc

gives a two-line cursor starting on line 11 (decimal) and ending on line 12.

TBMILIRAIRNOA X&(4 O
D Command Sct tosy DD D DS . NDF/

This command displays the contents of memory in hex/ASCII (like
DEBUG), pure ASCII, word, or double-word formats. In the hex/ASCII mode,
sixteen bytes of memory are displayed per line with the starting address of the line
given as the first entry on the line. In the pure ASCII mode, 64 (40 hex) bytes are
displayed per line, allowing one to see four times as much memory on screen as
with the hex/ASCII mode.

The command

>d [range] :
displays the memory in the range range. For example,
>d100,200

displays memory from address 100h to address 200h inclusive. Usually this syntax
is compatible with DEBUG.COM. However if one of the characters “abdpw” fol-
lows the d with no intervening blanks, that character is interpreted to choose the
DISPLAY MODE ASCII, BYTE (hex/ASCII), Double word, triple-nibble (for 12-
bit FAT displays), and Word, respectively. The mode so chosen is used by subse-
quent display commands until overruled. A particularly handy special case is the
command e

>dd;

§5 SST COMMANDS 49

which displays the interrupt vectors down at 0000:0000 in double word format.
You can then use the cursor keys, blanks and backspaces to move to the desired
interrupt vector and type Ctrl-F to start unassembling at the interrupt handler entry
point. Note that dd ni displays the interrupt vector table with the cursor at inter-
Tupt vector n.

The output of this start/end display option can be written to a file of your
choice (see n> filenamecommand). Under MS-DOS 2.0 and later versions, this
file can be the printer instead of a disk file. The display command for a range quits

with Ctrl-C and pauses with Ctrl-S. The maximum range length is 8000h.
,__’//'—— e

<_Linear Address Display

A linear address display is available for Real Mode and protected 386 mode
operation. In COMMAND MODE, type

UV SPRELNLASEL Y g 5 DY L 0B W XIS VL s (g, . D)

>dKjoffset

Klka v/ Torseslqzib

where on an 80386 the offset can be 32-bit. Using this command in protected
mode on ISA-bus PCs, you can see that this machine wraps its address space at 16

megabytes. If an address greater than 1 megabyte (@D@@H) is used, thé “x™is”

implied. This display mode is very handy for looking be;{grlxcﬂ\@f_:gabytc.

oo o >

Screen Display (v, d Vo000 dumes AT 000\ 6o

If no address or only the start address is specified, an instantaneous screenful
of memory is displayed with a register/menu window on top. The offset at the
cursor is displayed in the register window and the registers are displayed as dis-
cussed under the register command below. SST has the menu

DISPLAY MODE: «Td— F1 Tab ASCII Tag Word Dbl Near Far Cont Ovr Undo

The Tab entry means the Tab key. The A stands for Ctrl-A. To type this, type a
or A while holding the Ctrl key down. This toggles the DISPLAY MODE between
hex/ASCII and pure ASCII formats (see below). Typing Function Key 1 displays
the help screen (Ctrl characters are shown in reverse video on screen)

2

e

A

A

8

h

50 _ SST COMMANDS §5

«Tl— | move cursor (csr) PgUp/Dn | scroll screen

Tab csr: HEX «» ASCII ASCII toggle ASCII/HEX

Byte Byte format Shift invert case at csr

Tag , | Tag csr position End End block at csr

Go tag <> end Restore Restore csr

Z display last charread | @scii ASCII screen

Ovr toggle OVERTYPE Undo Undo last overtype

Word csr = Word ptr Double csr = Dword ptr

Near csr = Near unasm ptr | Far csr = Far unasm ptr

Cont tgl Continuous update | Enter go to COMMAND MODE
LV unassemble at csr

& o é - - g 1
KeteDY <Diynwy 63CNE (g, 1§13

Cursor Movement and Memory Display Format

The cursor arrows, PgUp, PgDn, space bar, and backspace move the cursor
arourid memory, scrolling the screen to keep the cursor on the middle line of the
display (except near 0000:0000). Memory can be displayed in two formats,
hex/ASCII and pure ASCII. The hex/ASCII format displays 16 (10h) bytes of
memory per line, in hexadecimal form on the left and middle of the screen, and in
ASCII on the right, as shown on the following page. The ASCII column replaces
control characters (those with codes less than 20h) by periods. The pure ASCII
format displays 40h bytes per line, with all control characters except code 0 by pe-
riods. Code 0 shows up so often that SST represents it by a o character.

Vertical motions can extend arbitrarily far up or down. In the pure ASCII
mode, the autorepeated PgUp command displays each 64K RAM of memory in
about 4 seconds, making it easy to scan all of memory for text. If you scroll to-
wards lower addresses in memory than those displayed at the start of the display
command, the address segments decrease by 10h. This allows you for example, to
examine the bytes in the program prefix of an .EXE file with the program prefix
segment displayed. If you scroll up in memory beyond the segment you started
with, the segment displayed is increment by 1000h. If you display memory near or
at the start of physical memory (0000:0000), the 0000 segment is automatically
used. This area of memory contains the x86 interrupt vectors, which consist of 4-
byte pointers to the programs that handle the interrupts.

Stack segment displays automatically display stack frames pointers in reverse
video, and referenced locations in boldface (as in T)RACE MODE).

In hex/ASCII mode, the Tab key switches back and forth between the hex
and ASCII display columns.

§5 SST COMMANDS 51

Ctrl-A switches back and forth between the hex/ASCII and pure ASCII formats
(used also for X window in TRACE MODE).

Ctrl-B switches to the Byte (hex/ASCII) format

Ctrl-E Ends the block at the location pointed to by the cursor. The other end of
the block is defined by Ctrl-T.

Ctrl-G Goes back and forth between the Tag and End tag locations.
Ctrl-S inverts (Shifts) the case of the character at the cursor.

Ctrl-T Tags the cursor location for use by the Ctrl-G command and for defining
one end of a block that can be used in compare, display, examine, fill, move,
search, and write commands (see Block section of Chap. 3).

CTQ\L‘ = VMBI s N SO Ser
Ctrl Z displays last char read in by the last load command executed

’\\)(“ ; As for all commands, .J (or Esc) returns to COMMAND MODE (ASSEMBLE
L MODE typically takes two 1’s)

Memory Pointers

SST uses certain control characters to specify that the bytes starting at the
cursor are to be used as pointers into memory for subsequent display and disas-
sembly. This helps one to move around in memory without typing addresses.

Ctrl-C Continuously updates the display. This is optional, since some screens
glitch with this process, and the keyboard response may be slowed down. This
feature is handy to watch areas of memory being changed by interrupt-driven rou-
tines, such as the time-of-day clock, and the keyboard input buffer. Try using it
while displaying 40:0.

Ctrl-D displays memory at the Double-word address indicated by the cursor.

Ctrl-F starts disassembling memory at the Far address indicated by the cursor.
This is very handy for looking at the code of an interrupt handler. Display memory
at 0000:0000 (just type the display command dd;, which acts like dd0000:0000),
move the cursor to the desired interrupt vector and typed Ctrl-F. This displays the

52 SST COMMANDS §5

first instruction of the interrupt handler. Typing the space bar or PgUp displays
subsequent instructions.

Ctrl-N starts disassembling memory at the Near address indicated by the cursor.

Ctrl-O toggles between DISPLAY MODE and OVERTYPE MODE as described
below.

Ctrl-U Undoes the last overtype in case you type something by mistake.

Ctrl-W displays memory in the current segment starting at the offset given by the
Word-address indicated by the cursor.

Overtyping Memory with SST

By typing Ctrl-O, you toggle between DISPLAY MODE and OVERTYPE
MODE. In the latter when the cursor is located in the hex columns, typing hex
digits overtypes those in memory. When the cursor is on ASCII columns, typing
characters with blank or larger ASCII codes overtypes memory. Control charac-
ters must be entered as hex values. Since you may overtype memory by mistake
and not know what value you overtyped, the Ctrl-U option allows you to replace
the value of the last location overtyped. Use the overtype facility with caution.
You may overtype something you don’t mean to.

SST display syntax is upward compatible with Microsoft’s SYMDEB, except
that the x87 modes remain with the examine command, and SYMDEB lacks the
full screen mode. The command syntax sometimes gives different results from
DEBUG.COM, but the result is always clear and the extra power is worth the

change. 5P RO §, - NN G
N0 o o i g
Binary Editor Sﬁ %;{\(A l}f?{f“ e
—~fa qon—cc;n?, non-exe file smaller than bytes is read in, an elementary bi-

nary mode edit capability exists in addition to the usual overtype capability. The
Del key deletes the byte at the cursor from the RAM image of the file, decrement-
ing the user cx value accordingly. The Ins key inserts a binary null at the cursor,
incrementing the user.¢x)value accordingly. Such a file can be overtyped and bytes
can be inserted and m\regardless of the file content, i.e., the file can have ar-
bitrary binary values. The w command then rewrites the file with the new length
back to the same place on disk (imlg:ss you use the n command to change the file-
name). D

(RARY SOMAL o (& b\ A L %‘;" C K AN
- Cxe N ¢
¢ /

§5 SST COMMANDS 53
Displaying Labels
Labels can be displayed by a command of the form
>d/n

where 7 is the number of a segment paragraph. Often the desired labels are in the
current code segment, in which case type

Coaft]y=Lir? Mbecr

To display program variable names, type

>d/v = ﬁ GIKT T

To dlsplay user strmgs typc o
ND Luy oY (- wpap A/PTOTE

1>d/u = LT /\K e
M LA B4

To find out the address\(segment:offset) of a given label,/typer&label _name. 0 R
4//

DATE Command e
[S
The date command in COMMAND MODE displays the currcnt system date, /L0- §7/ i >Dhg
’ CALC ULLNOID PAUM 3
D= D\)’\'\PI Wity D NG Le \J\\)ﬁ:"f;x‘(\\r\,}\‘x‘ DA‘VI(JT”{C{ l?‘p a/
DEL Command ' BT ot y:?ﬂ,,m e
A command of the form boef NdT NP DATE o ORI

W)
N,fy DfY \jJ/\T j\/\'r(,l‘ﬁf‘“ LMt
vdp,\\ﬂ \d\)u

w7

>del filename

'hx'»h;e,‘;al\;/“” 4 F TIES oven oty
Cro A (3
deletes the file filename. This form could also have the unlikey mterpretatmas a_\)7 g2
Display command, starting at the offset 0Eh with the number of bytes specified MovES |
after the “L”. This possibility is superseded by the del command. /—j’:‘fc U\Q{\” Cyyn T
0@ <
2owpap \

DELAY Command AP Y
A command of the form 20 o,
- Ik
&z A e A / < V?\ i
R O s
’,>de§yn, V d) Ry
“-eauses the code

mov cXx,n

i

TrFPo)

54 SST COMMANDS §5

loop $ ‘iMV‘ v

to be executed each time most characters are dxsplaycd on the screepr’Tﬁls slows
down SST displays, mostly to help in the debugging of SST itself. '

DELETE Command
A command of the form
>delete n

deletes the instruction at the offset n. This works only in Program mode (see
Chap. 6).

DIR. Command

Typing dir or Is in COMMAND MODE acts very much like typing dir/W at
the DOS command prompt, but also displays labels, and system, hidden, and di-
rectory files. You can follow the dir command with an arbitrary filename specifi-
cation including path and asterisks. For example, the command

\

|>dfr;asm

“(orjust

>digasm

displays all files in the default directory on the default drive with the extension
.ASM. The filenames displayed are alphabetized. At the end of the display the to-
tal byte count for all file whose filenames are displayed is given in decimal if that
number is less than 65536 or if the computer has an x87. Otherwise the count is
given in hex.

DISK Command

The command disk changes the display source for the d command from
RAM to disk. See Chap. 7 for details. The command ram switches the display
source back to RAM.

§5 SST COMMANDS 55

DOS Command

The dos n command is the equivalent to typing v21 n00 at the COMMAND
MODE prompt. The only advantage is that if you type it incorrectly you won’t
execute some undefined interrupt vector by a mistake.

o ;
/i

DOUBLE Command &—or~\! € ySendei A 01/ fgpg hvie (1 o
To facilitate both source-level ahd/assembly language debugging, SST in- e
cludes commands to define typical data types. The syntax for the double type is:

B

>double [[far] *] variable name address \N\P Ma, e

For example,
>double alpha 305

adds the symbol alpha of type double (x87 64-bit floating-point) to the segment
specified by the ds segment register at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a variable of the type double. The
optional far generates a far pomter to a variable of the type double.] Py

i

DR Command E;QMH S‘/I{"M:/m @, UCe=v v: Yfﬂ/ 3((rh'e

On computers based on 386 and later processors, the dr command displays by
the 80386 debug registers 0, 1, 2, 3, 6, and 7, the translate-lookaside registers 6
and 7, the control registers 0, 1, and 3, and the extended flags register. This com-
mand does not work when SST is run as a V86 task. It does work if SST is run in
real or protected mode.
DWW T DIMEP T WeRD RpRNN D
DWORD Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the dword type is:

7

>dword [[far] *] variable name address
For example,
>dword alpha 305 :

adds the symbol alpha of type dword (32-b‘it"unsigned integer) to the segment
specified by the ds segment register at the offset 305h. You can specify any other

7 PO
N

IQV/\

56 SST COMMANDS §5

segment. The optional * generates a near ptr to a variable of the type dword. The
optional far generates a far pointer to a variable of the type dword.

E Command

This command examines or modifies memory on a byte by byte basis (like
DEBUQG), in various floating point formats, and according to user defined tem-
plates. The display command can also be used change memory, but the examine
command is occasionally preferable, since the screen remains largely unmodified
and x87 data types are supported. To execute the command, type e or E plus an
address and then hit the space bar. The system will respond by displaying the
contents of memory at that address. Syntax:

3 i 3 il r i
L4 N i85~ Mt IR e

>e address “
For example, typing €2000. results in
>e2000 00-

if the contents of location 2000h are 00. Typing in a value nn at this point will
change the contents of location 2000h to nrh, while hitting the space bar will leave
the contents of that location alone and display the contents of the next higher loca-
tion. One can continue entering new values or hitting the space bar as long as de-
sired. The command is terminated by hitting .J. For example,

>e2000 00- 11-10 22- 33- 44-1210 55- 66-

would change locations 2001h and 2004h to 10 and leave the other locations un-
changed. Note that the keyboard input routine uses only the last two characters
typed before the space bar is hit. Thus in the above example, 12 was entered by
mistake in location 2004h and then corrected by immediately typing 10 before the
space bar was hit. One can also correct a mistake in the previous byte by pressing
the backspace key to re-display the preceeding byte.

Floating Point Values

When an x87 is installed, the SST examine command can also be used to ex-
amine and change long integer, packed BCD, and floating-point values in memory.
If e [address] is followed by 4§/ ‘and one of letters b, d, I, o, p; g, S, t, or w, mem-
ory is examined in the following formats respeq_t_ivcly:

l \';! /8 r‘\r\«;(_ """ \ NI > M ’;‘”ﬂ/\ [= (YL
| LJ,/\ . ™ { 5 ~/ - . V At : | f
W poase . e ¥ S rol s NG
| e ———l_ s M O b X / ~ 5
e can Non\(Dofrer) e e ~
S8t Repsneny)JJ,) 4 [/ » %
TV [
s \tﬂm, \ L_SST COMMANDS Seie 4977 57
[T peTN L9 Ko e e «‘ﬁéy Mf@{‘?’u& 9Lf &
S S ~:f~v~\4,p;.{’(’~,f format| _“onous B # bytes 420 ;
|)' A 1 |(dw173'\bncuuﬂi"%,10‘wg VL > A
FJL*I\ (0AT «F USunigy ’Qwﬁ‘\-"{ Tt =11 3 o
?N . i Ci o D\)\h; & - \1v] '| 8 IG_G)@ | ! G 4
Bt S ~ Sl V N er\»‘g Ng‘l) X Diey T‘ IR PG
55 WSRO CAM YN G | Y b L 14 740\“ “‘
|28 /,;LYLQ\)?» *R 04 1 ‘
R AR 3 &
948 !
B e 8 it)i fg %
EFS FLonT Pol ™ IFLOAT x2w "S ngle precisi 4 2s.dalbh > 5§y
; Tf;mp precision 2702 10 15, Ao S/ |
A —7= 1 B AFEQd v ey
A ey A N ’6&‘3«‘3 i % 290 Wprd integer 2 14z M ﬁ,or

g/»/v\w L" {

For example, typing the command €100/d followed by a I, you mlght see .
/ il e
>e100/d -0 WAN 1T C\ €/£ (o0 SPNLECSU o e 14 &ég\

At this point if you type a number in like 1.2345, the 8 bytes at location 100h -
would be changed to the floating point number 1.2345. Subsequent typing of the '
space bar examines subsequent 8-byte double precision floating point quantities.

W)\"‘*\:‘J‘@‘}“ Pr<$'7‘1‘hj\““rb\ \ W’L; e NJ/\‘ k"(ﬁ‘ TR £ =
1T0 T. N e LA Y Pe 7 R inggyay
Structure Templates ¢ D¢ &yl oo - o e b do)
Structure templates are used to display memory in customized formats that 54 ' L N e
reveal the data in its natural form, rather than in one of the usual uniform formats_ 5‘u, Bl T
* o~ &
like hex/ASCII. Such layouts include linked lists and data structures with mixed ' (o SER
data types. The templates used to describe these data structures are mixtures of 1) : YR
alphanumeric names that begin with a letter, 2) single decimal dlglts 3) $n, where "} v« KDy
nis a value < 100, 4) $b or $w, 5) >n, and 6) string literals *...". The string names, [y & %

[

contents of the string literals, and all other bytes are dlsplayed asis. Thedigitsand © P - \
$ fields have special meanings as follows: p BE T

1,5-9 display the next 1, 5-9 bytes in hex (v« e fpac ¢,
2 display the next 2 bytes as a 16-bit word

3 display the next 3 bytes as a 24-bit word
4

display the n ;xtﬁnytes as a double word (segment:offset)

$n display the ex SCII characters from memory
$b display the character string following the next byte in memory with length

given by that byte 2
$w display the character string following’ the next word in memory with length
given by that word
$z display null-terminated character string
I s R e B kg iy Lty BT
~ /4 778 7/‘« o7\
d/c_]‘f }n‘il ~ = gv\/// ;”;aj

58
$$

>n
>b
>SW
>Z

>$

SST COMMANDS §5

display $-terminated character string

go forward the next n bytes

go forward the number of bytes specified by the next byte in memory
go forward the number of bytes specified by the next word in memory
skip null-terminated character string

skip $-terminated character string

go backward then\exl\nfbty—:es

go backward the number of bytes specified by the next byte in memory
go backward the number of bytes specified by the next word in memory
go backward to preceeding null-terminated character string

go backward to preceeding $-terminated character string

go to offset n in current segment
go to offset specified by the next word in memory
go to address specified by the next double word in memory

go to offset 0 i in segment specified by the next word in memory
PPyt < Rire AY :'
Dy putys f6BITr AL 0K Y

x87 BCD format (10 bytes)

x87 Double precision (8 bytes)

x87 Long integer (4 bytes) ¥

x87 Quad integer (8 bytes) ,

x87 Single precision (4 bytes)

x87 Temporary real (10 bytes)
VoD InteBalA (l

The / options require the x87.

For example, to read out a descriptor data structure with the macroassembler

form
dscptr struc ;Descriptor
sglen dw ? ;Segment max length
sgbase dw ” ;Segment base low word
db ? ;Segment base high byte
access db i ;Segment access byte
reswrd dw ? ;Reserved word
dscptr ends P : o syl
hue P/ SIELpTS7
define the stringds by > CPMLob i o T

y y/*“_;b“); ,‘\)&;)h

§5 SST COMMANDS /. "%

> hzz= 5‘?)23/1/1/1“ i
>nds="sglen 2 "7~ ‘e 1¥¢ /2 g ipewen)
sgbpse 3{%}5/ Sate Qs 4 buke § _7gg 2 ‘u’
access™ ™ B2 L PR AR B
reswrd 2" iiwergyligog g

Then use the examine command as follows
>e address/ds

After the first .J, subsequent space bars display the next structure entry in
memory. User strings along with program labels, comments, and variables are all
saved together by the wl and can be reread by the Il command.

Useful DOS Examme Templates

—

e w.\

examine tempfates is g1ven on the SST distribution dlskétte in
These templates include those for the EXE header, the Program ke,

Prefix (PSP), the File Control Block (FCB), the Extended FCB, the Drive
Parameter Table (DPT), the Device Header, and the Bios Parameter Block. We
are indebted to Guy Gordon of White Crane Systems for donating these templates
for SST users.

The examine command is upward compatible with DEBUG.COM, except for
the use of the backspace and extra digits in arguments. The command adds the
ability to examine and change floating-point values in IEEE format and by user-
defined structure templates.

27

ECHO Command /¢, /o / £

The echo of display and unassemble outpht to the printer or echo file set up
by the n>fllenamecommand can be controlled by the echo @nd Type

e T S Bk e
echoon = oot PR “‘z Ry 20 aviaby i
% v m@g;(/c \I\jll)\} V\> }”Ct \J&) V\\Q/J
to turn it on and ' el -
i/' yZ2 &‘C{ $000 ¥ i) H
\postolgha e W So NI UL T e T

to turn it off.

EDIT Command

A command of the form

60 SST COMMANDS §5

>edit address

enters the ASSEMBLE EDIT MODE for the instruction at the address address.

See the assemble command and Chap. 8 for further discussion.

T

V EGA n Command E
‘\

A command of the form

o & {TTR)

V\(U
| O

K
Weinf—DEGARN e ,\%n;wi’s“ AR s SRLIGG Y R g

detemunes thﬁ?mhanced Graphics Adapter’s line/page mode. ;43 chooses the

, 43-line mode and n %25 chooses the 25-line mode. \ ¥ ‘
v\ \CJ‘/ - \?\/ !Jﬁ“‘il‘ o
~~“ERASE Command Gl & ‘&/‘0 X3 0 5
S L AT Fl oy og
.5 SST includes a subset of the MS-DOS file commands for speed and conven- -1’ Z\M (T

ience (see Chap. 4). One of these is the erase command, which is typed in ro.l o
COMMAND MODE in the form oy dii)

>erase filename S borvg

After getting this command, SST asks you to confirm that you really want to erase
the file filename. If you type y or Y, SST erases the file; otherwise it does not.
You can interrogate the directory with the dir command in COMMAND MODE.

The alternate DOS form for erase, del, can be used in SST. This form could
also have the unlikey interpretation as a Display command, starting at the offset
OEh with the number of bytes specxfled after the “L”. This possibility is super-
seded by the del command. b Mel “hct o d e 1l

F Command

This command fills a block of memory with a constant of one or more bytes
(like DEBUG). Syntax:
>f range list
For example,
>f100,1CO,FF
fills memory locations ds:100h through ds:lCdﬁ with the hex value FF.

s Dy gy
L e | 4' d 7 i

J

A

A TBU 4T L g vk I
&% 41 : 165 4o ot o
e L

7o

i

S CNSE

§5 SST COMMANDS 61

The command can also fill a block of memory with a list of assembly lan-
guage instructions, handy for checking speed of execution. For this option, the list
is replaced by @ I, which transfers control to the assembler. Type in the instruc-
tions you want followed by two I’s in a row. This fills the memory range you give
repeatedly with the instructions you give. For example,

>f 100 1FE @
1234:0100 loop 100
1234:0102

fills 100h through 1FEh with a loop to here instruction. This sort of fill command
is useful for finding out how fast pieces of code run (be sure to turn off inter-
rupts—see the gi » command).

The command is upward compatible with DEBUG.COM, and adds the ability
to fill memory with a set of instructions.

\
— \ \
~— O

FLOAT Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the float type is:

>float [[far] *] variable name address
For example,
float alpha 305

adds the symbol alpha of type float (x87 32-bit floating point) to the segment
specified by the ds segment register at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a variable of the type float. The
optional far generates a far pointer to a variable of the type float.

G Command

The g command allows a user to go execute a program with breakpoints
(like DEBUG). These breakpoints go away when SST regains control. Sticky
breakpoints are also available as described under the breakpoint command in this
chapter. In addition, the SST go and sticky breakpoints can be made conditional,
that is, whether execution is stopped when the instruction at a breakpoint is
reached can be made to depend on a set of conditions specified by the user. When

62 SST COMMANDS §5

the go command is executed, SST loads the values in the register storage area into
the proper registers, and then jumps to the requested program address.
The go breakpoint syntax is:

>g [=address] [address]...
For example,

>g1000

starts execution at nd breaks if ¢s:1000 is reached.

>g=1000,1020,es:1230

starts executing at ¢s:1000h, and breaks at ¢s:1020h or es:1230h, the program will

return to the monitor, printing the register values. All register contents at the time

of the breakpoint are saved. All previously set go breakpoints are cancelled when

any breakpoint is reached. Breakpoints must be set only at locations correspond- -
ing to the first byte of an instruction. Additional breakpoint facilities are built into
the screen trace mode, and greatly reduce the frequency that you need to use the
unconditional go command. The breakpoint facilities use the int 3 instruction, and
only work in RAM.

Conditional Breakpoints

To make the breakpoints depend on a set of conditions, follow the go com-
mand specification (i.e., just before the J) by “@”. This transfers control to the =
assembler to allow the set of conditions to be entered. The conditions are ex-
pressed by an arbitrary set of assembly language instructions. These instructions
could in principle invoke software interrupts, call user subroutines, and do any-
thing else that the machine can do. The conditions are specified the same way for
the Super-Trace and for conditional breakpoints. Hence after a conditional break-
point succeeds, a subsequent trace will automatically be a Super-Trace (note the S
at the end of the second line from the top of the screen), unless the conditions are
turned off with either a g@ J - or a t@ ! J command.

There are three basic guidelines to writing conditional breakpoint code:

1. The ax and bp registers are saved before the user code is executed. It is your .
responsibility to save and restore any other registers you wish to use. The bp
register is initialized to point to the program‘stack, with bp-2 giving the user
ax value, bp+0 giving the bp value when the breakpoint was encountered, —
bp+2 giving the ip, bp+4 giving the ¢s, and bp+6 giving the flags. The ax

§5 SST COMMANDS 63

register is initialized to the first word of the current user instruction. For ex-
ample, if the current instruction is a ret, then al = 0C3h, something you can
break on.

2. The area reserved for user code is 40h bytes long. This is more than enough if
you plan to type conditions in hand, but could be easily exceeded if you load a
.COM file into the condition memory (to find the address of this memory, type
g@ J Jor t@ J J, which in addition to displaying the condition memory ad-
dress turn off any active conditions). If you want to access a large amount of
condition code such as a program profiler, make it a resident routine and ac-
cess it through an int instruction.

3. Program execution is interrupted if the instructions set the Zero flag to 1, that
is, if a jz instruction would jump. Otherwise program execution continues.

Writing Conditional Code
Chapter 3’s section on “Super-trace Demonstration” illustrates the simple
condition

cmp di,600

which succeeds if and only if di=600. Sometimes it is easy to express a condition
that yields NZ rather than Z. For example, suppose you want the condition that
di=600. For this use the code

cmp di,600
lahf
test ah,40

Here the lahf, test ah,40 complements the Zero flag. Since SST saves ax for you,
you don’t have to worry about clobbering the ah register. More complicated con-
ditions often require some conditional jump instructions as well.

If you want to stop supertracing on the next ret instruction, use the condition

cmp al,0C3

64 | SST COMMANDS §5

H Command

This command is included for primarily for compatibility with DEBUG.COM.
The SST calculator provides a much more powerful facility. The hex command
adds and Subtracts two hexadecimal numbers. Syntax:

>h value; value;

If the value, is missing, the binary equivalent of value, is displayed. To get
hex/decimal conversions, see Sec..3-4 on the “Calculator”.

Examples:

>h345,abc EO1 F889

>h1 Q= 00010000

This command is upward compatible with DEBUG.COM's, adding the hex to
binary conversion facility (used mostly for tutorial purposes).

HELP Command

The help command subjects the file SST.HLP to the SST type command.
This allows you to browse/search through the SST.HLP file looking for online
help.

I Command
This command displays the binary value read from any input port (like
DEBUG). Type i or | followed by the port number. Syntax:
>i portaddress
Thus
>i20
inputs a byte from input port 20h. The input valug is disBplayed in binary, i.e., if

the value obtained from the input port was 45h, the display would show

520 45=01000101

§5 SSTCOMMANDS 05
j'*"""'*wm7"//“6751*}/ G AN M P CULAR

e _,,<V w2 { ’
INI Command ; e ’“fé 5. CQWN\'\\PD fﬁva 28 £i

The ini command reads and executes the file called SST. IN\ThTmb& — */
used to initialize SST for your standard set of parameters (see also the g com-
mand).
! NOTE: If an sst.ini file exists in the default directory, it is automatlcally exe- N\
cuted before SST dlsplays its signon message. e
s TETTRERE 1 RO RV e T Friom ‘
NSERT Commam}/ 7 SR SECC DA 4 "ot RghoenBaen 1S\ T L \

(l\/("‘g)(’l- A'(" 4 "’ﬁ tML fl)_* ?
—— J, A f " %!
The command insert n enters the ASSEMBLE INSE\T MODE atroffset ™ h‘,ié ,,‘ ;/, {‘” I

~This works only in Program mode. See thssemhle command and Chap. 6 for ey TE Nompen ;:.5

Sisisz AT 2R A ReSED R LR i

1 %’ & PANEAR e WTER A ,W 89 ! r‘m(‘wggb; S
2 4

INT Command Sz~ Vi 28 on

To facilitate both source-level and assembly language debugging, SST i in-) @ oz s
cludes commands to define typical data types. The syntax for the int type is:) /\ D ,q ; 3 //
| URD A~ :
: . 1 %/
>int [[far] *] variable name address <"3§¢{¢“ 78 L
_'0 ¢ / |
[(N Sl i '
For example, o AN
kg P~
skt PR

>int alpha 305 .
adds the symbol alpha of type int (16-bit signed integer) to the segment specified . (1,/ /
by the ds segment register at the offs . You can specify any other segment. “"f&.j; \f
The optional * generates a near ptr to a variable of the type int. The optional far
generates a far pointer to a variable of the type int.

/ /‘LW 76\ = 'Q,:'-'<
INT21 Command © — -9
DOS int 21h entry definitions are displayed when you type the int21 [r]
command in COMMAND MODE. If the optional n is present, the definition for
that entry point alone is displayed. If n is missing the next hexadecade of int 21
entries is displayed. In addition unassembled int 21h instructions are commented

66 SST COMMANDS §5

with the corresponding entry déscriptions. These features are very handy for
working with code that makes DOS calls.

J Command

No commands currently begin with J.

K Command

The k command is used to clear (klear) the screen, to give a program stack
trace, to reset the x87 registers and status, and to get keyboard input codes.

K - Stack Frame Display

A special stack readout may enable you to trace subroutine calls. Most
higher level languages support a recursive subroutine linkage convention that cre-
ates a stack frame for each call. Unless the compiler is optimizing code, each sub-
routine call saves the current value of bp on the stack and points bp at the saved
~ value. Use of bp then allows access to the subroutine arguments which have been
pushed onto the stack before the call and to local variable storage on the stack
which is allocated upon entry to the subroutine. Immediately above the save bp
value is the Near or Far return address.

To display such a stack trace, type

>k

in COMMAND MODE. Note that the k command can take arguments, which cause
it to do other things as described below. For SST to display the trace, the numbers
it encounters on the stack must make sense as stack frames. The bp register must
contain a value at least as large as the sp register. The saved bp values must be
greater than the current bp value and must increase monotonically. As soon as
one of these requirements is violated, the trace terminates.

SST stack traces use the Microsoft Windows convention to determine if a
return address is Near (16-bits) or Far (32-bits). Specifically, if the saved bp value
is even (as it is whenever loaded as a frame pointer into bp), the return address on
the stack is assumed to be a Near address, that is, 16-bits long. In contrast for a
Far (32-bit) return address, the Microsoft Windows subroutine initialization code
saves the bp value + 1, i.e., an odd value. SST’s stack trace therefore assumes
that an odd saved bp value signals the presence of a Far return address. The in-
struction preceeding that at the return address given in this fashion is examined to

§5 SST COMMANDS 67

see if it is an appropriate call instruction. If so, a call trace display is given and the
next frame is examined. SST also displays up to eight stack values in between the
frames.

For a more general call trace, special coordination between SST and the
.EXE symbol tables is needed.

Klearing the screen and x87

The k command clears the screen (except for the register window at the top).
This is useful when starting to assemble code following displays or traces that are
irrelevant to your assembly. The cls command is an alias. This command does not
exist in DEBUG.COM.

To Kklear screen lines n through m (n=0 is screen top), type a command of the
form

>k n,m

To Kklear the floating point (x87) registers, type

>kf

To display the keyboard input code ¢, type a command of the form
>ki J ¢

where . stands for the Enter key.

KEY Command

The key command modifies the control characters used to edit command
lines. See Sec. 4-3 on Modifying Edit Command Characters.

KEYBOARD command

To deal with hostile keyboard environments, SST has a built-in int 9 keyboard
encoder. When debugging programs under Microsoft Windows or in Protected
Virtual Address Mode, this keyboard facility is ordinarily on. Otherwise is is left
off, and SST gets its keyboard input from int 16, unless keyboard redirection of
some sort is enabled. A command of the form

68 SST COMMANDS §5

>keyboard status

enables or disables the built-in keyboard support if status = on or off, respecuvely
The facility doesn’t handle the enhanced keyboard new keys.

KILL Command

The kill command works like the erase command to erase disk files, but al-
o, l\ws the filename to be quoted (as in BASIC). -
o rgpy) THER

Nyry
LCo' mand—" oy LR (233 b menp Aisn HaDT
o is command loads a file or abso ute sectors (likg_D/EﬁUG}~;-~ —

=
/

-
©
3
)
“§
1
=1
il

i the f the ﬁle has an EXE extension, it is
loaded as an .EXE file wit appropnate ad ess relocation and segment register J
initialization. ;’

For example to name and load a program called TEST.COM, type I

>ntest.com [W Coote 3 0 [/
>l \ WIRKRED =/ e :
Pl caninx o g gaine- /
You can then type t or T to trace program execution, u or U to unassemble some
code, or d or D to display the program in hex/ASCIIL. ; /
If you make changes in the program, you can write the revised version back
to disk using the write command. Be sure the bx and cx registers have the values /
they had when you loaded the file, since they determine how many bytes will be /
written. With SST you can not only read .EXE files as can DEBUG, but also write
them back to disk. This is very handy for patching your favorite system programs. /
The followmg €ITOr messages can occur:

File_not found ,/
Error in .EXE file 4 (WAL TR LR &

,AEJM WA}
0 Chogle wing

ah
i)

0 , 278
£l 49

ol &

STEFEF O,/ St C e §Libh |
[driv sectoﬁ?o‘irft]/] = -:?; WBND e o vV AT Nk b e ’

-

ReL f
Jﬁoloﬁ(N%& :\LE

QSR | e — rg': ,& (ORN 5
o CIENN VBN s ~ Ve e ot 5

4 \WEAS o= 38T) «Car\ F.J:LE‘(NCs et DATA A= (s E
[SRSTE) a U»\a’@\ L}y\rs NQ &7 for> SHIsSveu1y r\ VR M) s [R
= 0:'ds ¢ oM S % T DI L BAG
; Lvrv Be® Sreg o ”mo N wog i i
§5 SST COMMANDS ook S - e ,
o (/L—\ Fr ~ @OP‘{Q '\\Nﬁxg?r
Load Labels <M\;v < NS, &
N
The load command is used also to load in program labels, variable names, 3 C £

and user macro and examine template strings. These facilities are described in <1
greater detail in Secs. 4-4 and 4-5 on “Labels” and “User Strings and Keyboard Mg, VO v
Macros”. MRS
To load in program labels, name the .MAP file with the n command, and type :
the Il command (see load command). This automatically reads the labels in starting Pa,

at the point in the .MAP file identified by the words “by Value” and relocates them = 7 f‘%;:@’, »
relative to the origin of the .EXE module (program prefix segment paragraph + Jj/_\" : /y %
10). Mg

To load .MAP labels relative to some other paragraph, type LL n, where n is N S

the desired paragraph number. This option is useful for debugging resident pro-
grams. To load .MAP files for use with .COM files, type Im, which automatically
adds 100h to the label offsets.

- SST has limited support for program variables with the Iv option. This op-
tion loads the variables defined by the part of a MASM.EXE listing for a single
segment. The program scans for the word “segment” and sets up program variable
names up to the corresponding ends pseudo op.

The II, Im, and Iv options use the user program area to load in the .MAP and
.LST files and hence overwrite whatever program might have been loaded in.
Hence to debug a program, load in the label files first, and then the program.

LIST Command DQ/CI 5 blfr EANer
The command ud/uf ~ SNONT €. CppR 7 Mo

>list [address]

unassembles the code starting at the address address if specified, at 100h if a
.COM file, or at the initial es:ip if an .EXE file. The command goes into the unas-
semble full screen mode automatically. :

LLIST Command

The command

>llist [address]

acts as the list command and echos the output to the lister.

70 SST COMMANDS §5

| & r’;y/i_\LOAD Command "7 \WRIY Wi sir MANG B LdNs Preplc,
ORND ; o S S
LAY »E C The load command is used to load in an SST Program saved by the save
\ command. See Chap. 6 for details.

LONG Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the long type is:

>long [[far] *] variable name address
For example,
>long alpha 305

adds the symbol alpha of type long (32-bit signed integer) to the segment specified
by the ds segment register at the offset 305h. You can specify any other segment.
The optional * generates a near ptr to a variable of the type long. The optional far
generates a far pointer to a variable of the type long.

M Command

This command moves a block of memory from one location to another (like
DEBUG). The command expects original start address, original end address, and
destination start address as arguments. Syntax:

>m range address
For example,
>m2200,2280,1000

moves the contents of memory contained in the block ds:2200h through ds:2280h
(inclusive) to ds:1000h through ds:1080h. If the original and destination memory
blocks do not overlap, the original memory block is left undisturbed. However the
two memory blocks can overlap with no ill effects. For example,

2

>m2200,2275,2203

§5 SST COMMANDS 71

moves the contents of ds:2200h through ds:2275h up by three bytes in memory to
ds:2203h through ds:2278h. This command moves a maximum of 64K in any one
move. As elsewhere, segment values can be used to override the default value in
ds:

>mcs:2200,2275,es:2203

moves ¢s:2200 through ¢s:2275 to the block starting at es:2203.

MAP Command | ek 7

MS-DOS hés a linked list distributed throughout the low 640K bytes of\\‘ /\ A{G,\ 0z

/" RAM that defines how the RAM is allocated. This list consists of 5-byte para- / / Yot
graph-aligned entries. These entries immediately preceed the memory block (also 6 ¥
paragraph aligned) that they describe. The first byte is an “M” for all control
blocks except for the last, which has a “Z” for the first byte. MZ are the initials for
one of the principal architects (Mark Zbikowsky) of MS-DOS, and also appear as
the first two initials in an .EXE file. The second and third bytes give the 16-bit

paragrah hat owns the black, and the fourth and fifth bytes give the-length h of the.
S IR g\ ﬁ ’(;: F P AT’J{\? // F%'\\ﬁ'f’ QYP
' HXP& IMENT Sy /ﬂ‘ﬂ{\@%()l

ally, the command “HEY T“f/ouh

% w ¢033-00v,0,2 . UO (\(o \,’\‘\3\) T WA chpw MT
; TV SED R
E M?‘m@&l\v\w\ﬂvo,v er) LA e 1 i s lfx\(\,l\f
M

C 0 AKTyE k*h!\x RS MV ED wWHRW LTl &R gD /) B

T it $00 o AP |
,dlsplays the five bytes of al?DOS‘ memory- -control-blocks each followed By a tWO=— winnce | vy

line display of the start of the memory block they describe. s oo

MOUSE Command\.,/, :
The command >" D G NoTI \ | E‘) (/"\)

>mouse status _/

turns mouse control on if status = on and off if status = off. The mouse is used to
control cursor motion for the DISPLAY and TRACE MODEs.

N Command

This command names a file for reading or writing using MS-DOS int 21
routines (like DEBUG). Syntax:

LSO Po

\
\

\
\
|

N

“)

Cpne = 2 g(l\ 0 0n " 7

2 SST COMMANDS §5

>n filespec
names the file given by the file specification filespec For example,
t>nmyfi|e.éxe

sets up the load command to be able to read in the file MYFILE.EXE.

The name command stores the name at 81h in the program prefix as does
DEBUG.COM and sets up the first and second filenames at the 5Ch and 6Ch File
Control Block areas in the program prefix. Note: when you load a program and
then go to it, it may use its own name unless you issue a second name command to
rewrite the one used to load the program. For example, if you load PS’s editor
module, PS.COM (a version of PMATE.COM with menu macros), and then go to
it, it will open a file called PS.COM, which looks bizarre to say the least, since it’s
a binary file. To avoid this, type n .J, which gives no parameters, or type n fol-
lowed by the desired parameters. n= displays the current command line.

Saving Display and Unassemble Output to File

To define a file for output from the display and unassemble commands, type

7N

A i \4
~ >n> filespec "/QCL\Q on

This sets up the file given by filespecto receive display and unassemble output
when those commands are typed with a range, e.g., d20,30 or u100 | 30. If the
filename already exists, you are asked the question, “Overwrite existing file
(Y/N)?” In this case, the file is opened for display and unassemble output if and
only if you type y or Y. The n> output can be toggled on and off by typing

P
o

s
— R o o > =
—— —_—

i;e., without a filename. If n> echo output is enabled, a E shows up at the end of

the second line from the top of the screen. If you attempt to toggle the file echo
on without having defined a file for output, you’ll see the message

Echo file undefined tk

§5 SST COMMANDS y i
Defining User Strings
To define a user string, type a command of the form
>nst="string"

This defines (names) the string st (two letters long) to have the value string. User
strings are used for examine memory templates (see e command) and keyboard
macros as described in Chap. 4.

This command is upward compatible with DEBUG.COM’s and adds file echo
capabilities.

NEW Command

The new command restores the registers to the values used upon running
SST, deletes all labels, and enables demostration and program facilities. Essen-
tially new returns SST to its initial state.

NMI Command
The command
>NMi status

enables (status = on) or disables (status = off) NonMaskable Interrupts on return
from SST to the user program.

NOT Command

The command
>not range

not’s all bits in the bytes in the range range.

(§) Comrhand

This command allows you to output any yalue to an output port. Type o or
O followed by the port number and the desired value to output in hex. Syntax:

74 SST COMMANDS §5
>0 portaddress list

For example,

>020,7F

outputs the value 7Fh to output port 20h. The list can have many bytes given by
combinations of hex and quoted values. Hex values larger than OFF are treated as
word values. ~
Output to ports 3F8 and 2F8 wait for the TRHE bit (bit 5 of port 3FD and
2FD, respectively) to go high, indicating that the serial port is ready to transmit.
This command is upward compatible with DEBUG.COM’s, and includes the
ability to output words at a time and to handshake on the IBM PC serial ports.

OPCODE Command
The command
>opcode n

displays the (or a) mnemonic for the byte opcode given by n.

OR Command

The command
>or range list

or’s the bytes in the range range with the bytes in the list lisz. The list is repeated
as often as necessary to cover the complete range. This command is similar to the
fill command, but or’s the list into memory rather than overwriting the bytes in
memory.

P Command

The p command allows you to protect memory from being referenced in
continous and quiet tracing. It has the syntax

2

>p address; address;

PREM)

§5 SST COMMANDS 75

where both addresses can have segment specifications. This allows up to the full
megabyte of memory to be protected. If address, is missing, only address; is pro-
tected. In the continuous and quiet trace modes, if protected memory will be ref-
erenced by executing the next instruction, the trace halts and the message
“Protected Memory Referenced, Continue Trace (Y/N)?” appears. If you typey
or Y, the trace continues; else COMMAND MODE takes over. To turn memory
protection off, type the p command with no addresses.

If you can type appropriate commands for Super-Trace, you can catch an
undesired memory reference much faster than with this mode. If you can get near
the bad reference with breakpoints, the continuous traces may give you just what
you want.

PAUSE Command

. The pause n command pauses a time proportional to n whenever a Ctrl-\is
encounted in the keyboard input. This is used to pace demonstrations such as that
invoked by the A option on Function Key 7.

PROMPT Command

The prompt command changes the usual COMMAND MODE prompt to a
MS-DOS-like pathname prompt. For example, if you’re in subdirectory \BIN on
drive C, the COMMAND MODE prompt becomes

C:\BIN>

This can be a bit confusing if that’s the same prompt you use for DOS itself, but in
any event you see the register window at the top of the screen, indicating that SST
is active.

Q Command

This command is used to return to DOS and also to define a number of SST
system parameters controlling screen attributes and other machine characteristics.
To return to DOS, type

2

>q

76 SST COMMANDS §5

THEN which asks if your want to leave SST. If you type y or Y, you get back to the
PO NV DOS system command prompt, just like DEBUG.COM. You can also return to

i DOS by typing any of the commands quit, bye, or system. These commands do
sl not require confirmation.

W,

T To return resident, i.e., wit

: ST available by typing Ctrl-J/or by f pressm g an
NMI button, type &

1p

g - [RAsul \ ECYADT g (aq 2 ; bt
l>q/R N\v (?RQ'SL' 2 d\l\(‘[f & red 2l J 8 yr=k W/ 7\(:
Ll 3 R VAT AR

If you want the user screen to be saved in this mode, be sure to use the qs3 com-
mand below before typing the g/R.

Screen Characteristics

-Various screen characteristics are defined by the following g commands:

>qcn Setscreen attribute for wmeW\c—\aLh rz r, S, X, z,for Assemble,
..... Help, Normal, Register, Stack, Xam, Zam
>ql mms/page N /
Set # lines Xam window = n i
, IR T mp{)
W$vy 0 see an example of configuring the colors attrxbutes for various SST windows,
Ric ;70" see the section “Configuring SST” in Chap. 3
oA gl The gn n command is used to set the normal screen attribute and also to
control screen “snow” for the ancient IBM color/graphics type displays. SST
automatically recognizes the IBM color/graphics display and eliminates most of the
! \/ snow. gn80 xx sets the normal screen attribute to xx and suppresses deglitching
(good, e.g., for COMPAQ, which doesn’t have snow). This speeds up screen dis-
plays by about a factor of three. qn40 xx forces deglitching.
\ The gs n command with » missing or less than 4 is used for various screen
save and switching options described below. To set the stack window attribute to
a number less than four, set the high bit of the word to 1. For example to set the
stack attribute to/z;cen on a black background, type

/
> 002/ [

——————————— L-- [y \/ﬁhg/ ¥
5 — : :
A S T95 3 Ivr.,\- WA

7.7,77 X)/C/L/f wify

/H’ SA (,2' 7 U

Y. |
7 INK

IN1BA - /Z/”* PHout M kvt KoY Ll7Er

§5 SST COMMANDS 77

Screen Save

SST’s screen saving facility is described in Sec. “Screen Save Option” in
Chap. 3. The command

>Qqs3

turns on the screen save option if enough room is allocated (see sst/n option in the
“Command Line Parameters” section of Chap. 3 to increase this allocation). The
command

>Qqs2

turns off the screen save feature. The COMMAND MODE or TRACE MODE V
option switches to the saved user screen. Typing any character thereafter returns
to the mode before the V option was chosen.

Where to Display SST

SST display output can be sent to many different places to allow maximum
flexibility in debugging programs that themselves use the screen. The options al-
low you to display SST output in various parts of a given screen (particularly use-
ful on screens larger than 25 lines), on different screens, and in arbitrary parts of
memory for use with nonstandard video RAM and multitasking window programs.

To set the origin of the SST display output for a given screen to line n, type
>qo n
To display SST output in the lower half of 66 line screen, type

>qol

To swap IBM monchrome and EGA/V GA displays for SST alone, type
as C A SN

To M monchrome and EGA/EGA displays for both SST and DOS, type

>qs1

2

SST choses the screen RAM segment by éénsulting int 10h on the IBM PC
machines. To overrule this choice, you can set the segment to the paragraph n by
a command of the form

78 SST COMMANDS §5

>qg n

Similarly the 6845 CRT controller port is chosen according to int 10h in-
formation, but can be overruled by a command of the form

>qp n

which sets 6845 CRT I/O port = n. The IBM PC monochrome display has the
value 3B4h and the color/graphics display has the value 3D4h, both of which are
recognized automatically by SST. To configure on some other machine, you may
need this command.

Interrupt Mask

“The command
>qi mask

sets the interrupt controller mask to the value mask. This is useful in debugging
multitasking systems in which the system clock might be used to switch tasks after
SST gains control. For example, to allow only keyboard mterrufgts use quD
J R ey
' 5\.21? L’H“L wiy D
T Command V” "oy Yu ity el
F Pasiile,

Thecommando}\ . ; ‘ U\B(/C/WF \/\ X RULy ~—)
Ny Y L

C& 5 o A 2 —~

{/ % /\ g J \ﬁ ER)

returns to MS-DOS. bye, system, and Alt—X dqthe same thing. 3 (/JF Q/\ \

Qowr@ll/\—«rxmw-/ Ai’\\ A!é
\ e ‘

R Command

The r command allows you to examine and change the contents of the x86
registers and flags as for DEBUG.COM. Under SST the r command is basically
useless, since the register and flag value are always displayed in the register win-
dow at the top of the screen, and the values can be changed by more easily by sim-
ple assignments like -

ax=100

§5 SST COMMANDS ndg9
The usual DEBUG command

>r

displays fhe current register values in the COMMAND window. This is useful for
echoing the results of a debug session to a file or printer.

MRegster Values ~
; VQ(\ DI
N\ o (\\ \

uyk t’ Sk o

displays the contents of t w Enterlng a new value nn from the
keyboard enters a@__@%\for the rcglsgg{ For example, entering rdx when

dx=0000 results in the displa ‘,m G IJ\ xi; . ba
>rdx 0000- B, S L

If nnnn is now typed, dx will have the new value nnnnh. If you do not want to
modify the value, hit the space bar to display the next reglster or hit return to ter-
minate the command.

Alternatively, the command

>register = value

sets the register register equal to the value value. Valid register names are ax, bx,
cx, dx, al, bl, cl, dl, ah, bh, ch, dh, si, di, bp, sp, eax, ebx, ecx, edx, esi, edi,
ebp, esp, ds, es, cs, ss{f], and ip.

With SST the x87|floating point stack values can be changed by typing

— { ;
2 g~ (=e £ { = I)
>s n = value 774N Mo oy pir g, 2t

where s n can be sO through s7. 7
The flags Auxiliary Carry, Carry, Parity, Sign, Zero, Direction, Interrupt En-
able, Overflow, and Trap can be set to 1 or reset to 0 by typing their leading letter

followed by f as in
| oot

_which sets the carry flag to 1.

80 SST COMMANDS §5

The register command is upward compatible with DEBUG.COM’s. Its dis-
play differs in that the most recent values alone are always displayed at the top of
the screen. This approach is much easier on the eyes than DEBUG.COM’s, which
constantly scrolls the screen. Note that in TRACE MODE, SST can retrace up to
20 steps (or more—see Sec. 3-2 on “Command Line Parameters”), allowing you
to see earlier values of the registers. '

Real Mode

SST can run in the 8086 Real Address Mode or on x86 machines with x > 1
in Protected Virtual Address Mode (see Y286 command in this chapter). To re-
turn to real mode after running in Virtual Mode, type the command
s - BT | 3 oy NoT ST gv
>rm & (lL’\ET S NS SEERRWVT T, £EQUAL 3:1 bu) 3 ;%T/ O (W MR

™A NNLV’\/\ - s
This restores SST segments to those appropriate for a .COM fil

Restoring Registers and NMI Interrupt

/ SOT"U\T“ /'1_J(_J’ -6?f-\.€
T e{?\loorw m“,,

TEST Japo, (
To restore registers to their values when the last .COM or .E TSR
loaded, type the command T
>IT 4 };A{r“)““f -
;tf’w’ifE ;
This is handy for rerunning a program after examining how it terminated. : U

To return the NMI interrupt vector back to the program used before SST
was loaded, type the command

¢ ‘(167,%
>rn—Jy f,«Gle)Qr}{\z)

We find this handy for debugging SST itself, and it is also useful for tricky situa-
tions when a special hardware debugger has advantages over a software debugger.

The command r 7 lets you toggle SST’s windows on and off. See the subsection

W Keys” for hot keys 0-8 under the T command below.
"r\ -} VQ/\C‘? . :

(‘Q (&5 {l\{tJ)
M‘Ef(s /" i

RAM Command

The RAM command returns the display'soﬁrce to RAM from disk as estab-
lished by the disk command. See Chap. 9 for details.

ARV

\

\\>§5 SST COMMANDS 81
REDIT Command

, The redit command puts the cursor into the register window, where you can
overtype register values. The facility is also available in TRACE MODE by typing
the “e” hot key. '

‘et &
REN Command 3 A,
{ B4
The command To
j v oo o AND
>ren file file; V4G U i o
\ renames the file file, to file, like the corresponding DOS command. / Aw XA i
rn b ' /e or
/ WG
RUN Command RIS) \,\ 5

The run command restores the registers to their initial values and transfer a
control to the program entry point. £

/:\i N i \ =)
DAL _j7 ~—+—= S Command /
Forersoe | This command searches for a string of characters or bytes (like
: for a string of assembly language instructions. Syntax:

AT (7o) DOET wive: M OB
>s/range)list Fev

-

9)

where list can be composed of one or more strings of the form “...7 and bytes con-

sisting of on wo hexadecimal digits. For example with-ds=1234,
SN T —— ¥

FETr

" ’ jasi V) 7 N 2 I, |
>s100 4000 1A 3E "a H@?Aﬁ/@& e AR KT ¢
would display o : ?C;~~—~«71 N Y
1234:856 AOC FFE 3254 LSy L e K [T

197
if the string of five bytes 1A 3E 61 62 63 starts at the locations 1234:856,
1234:A0C, etc. If the string of bytes is not found, SSt displays the message

2

String not found 1

For convenience, two abbreviated forms of the search command are in-
cluded. Typing s or S with a range only searches that range for the last string en-

82 SST COMMANDS §5

B “tered. This allows you to change the range of your search. Typing s or S alone
repeats the last search. This is handy after the original search hits are scrolled off
_the screen. The search command quits with Ctrl-C and pauses with Ctrl-S.

Searching for Assembly Language

20

’Y‘l ; » To search for assembly language instructions, type @ - for the list field.
This leads to the same kind of display and entry as given by the assemble com-
mand. The list of instructions is terminated by a hitting . twice as for the assem-

ble command, and is followed by a display of all addresses (if any) where the in-

ctions given are found. For example,
N -
/ 1000@ : 1T CH 0 B0, BT G TR LR VS0P

1111:0088 mov ax1 ¢ < > A
[1111: e
o St 1 .008B ¢ thz\sh ra; i
searches the memory from ¢s:0 to ¢s:1000 for the instructions that push a 1 onto
the stack (with the SST running on an 80186 or later processor, you can type push
1 for this, but that might not correspond to the code you’re searching). Here the
1111:0088 is a sample starting location of SST’s search string memory. SST’s
data segment value 1111: will almost certainly be something different when you
run SST. :

Being able to search for assembly language mnemonics is very useful for de-
bugging programs consisting of many separately assembled modules, since you
typically only know the addresses of code relative to the module origins.

Searching for Jumps/Calls to Location ' s
SST also allows you to find all jump and call references to a particular pro-
gram offset within a range of memory. Type

: e) (’gl
s®HGnge jalnt S poyf bt D S e

‘\ This lists the offsets (relative to the segment register given by range) of instruc-
\ tions that jump to the offset n. The instructions checked for are: near/far direct
l call, short/near/far direct jmp, the 17 conditional jur@i‘kg Jz, and the three
: loops. Indirect jumps and calls are not checked. ~ el ¥ @ v |

' This option differs from the corresponding DEBUG option in that twelve
\ addresses are displayed per line instead of one and in its ability to search for as-
| sembly language instructions.

"\r_N\M r(.r

= " BN ¥ WU
Loy \J E\\/E J\I\ RIS &S
ws ___//

—AX Y Q< 7 \ oo R
e W L€ 5 1 ?\LEI &{:‘f\i\f ch ol NM 55 "'(\w
f: Y \ 2. « & v
= S :Xw“ e LR SO Ave ol 7/
. / \,\JH (“ U1;~ S 37";‘ 4 S rY o T/.(]\»‘:‘y > v/ AN
> - CcURS
e a0]RRH Dy . SST Hr‘* Sl \\ LS H"\:D Rmﬂm X li\;ﬁ‘\f NAMY, r,r,‘ ,/
— [Ife® ?»f\‘\\ [SVERWUE Bwdl /s VITA Y Ay THE okaoil oo o s B il SO W
v O RS o 2 = !/ — ¥ S \\
Qﬁﬁg; F‘ N q’\/§ S/\l"v VP g B ER D‘{I‘\. ST \) ‘\“4‘ & \RE SKX\ Y MIss 3 W
r&we N %SSl it i .
;:? ¥ f\ = / % TR OUF X \g.*’ip \iuvhwux\';j _mjr \; AT “\ S
e 5 / b3 cﬂt’cx@ e mode Wt hU Ty TEY |
- 7 "flr : %LQ)) B SN e R oy £y g 1ILEN éMde (e NN P J,,D;(\ oy |
MR RS T V| ‘G*'rw,,; e M \
c NAND, ‘/:' V‘ WY A AR BN S\I\VL)/ -
L TS T v Do Es st gve urtfrs Yend Ve PR R Ui iy \A(
LN WORK save command is used to save an SS)T Program as a C file'with a 1\ & X
¢ E L o8 g
\ r HEP -y ader allowing labels and comments to be saved as well. Subsequently, o 1%
N 8K es can be loaded in by the load command. See Chap. 6 for details.
gy cLEFRbEY o YL T DANOT USE g i ong2 |
?L'a ui\-: Z_u}Nh‘\' . ‘ h :i*- o ot 3 L
o LS %\\ v PO \ 1 =73 STt
?{’M ¥ /Graphlcs Adaptcr snow can be controlled by the command
! 5‘ \"“, f
— | TUKSCRRS LS b
USE PR v, g
VA = on) or off (status = off). ; S g0
e L S A // ‘\‘) N A 1\4 o
W i e RN % AR O
,) i TP A g \
U0 SYSTEM Command 1Vidpak i< 3
FELC TS ‘ oot)
~ DN KWV ET The command Y walbef+
36 VLD | Ak
bort~ g | >System
et o ST THERE 15 pO.
£ 5% returns to DOS. bye, quit, and Alt-X do the same thin o TO &

&”r'?« Ve 6]

VT DR | o
WOR e ARE L sy
This command traces program execution wit

u screen"dispiays (uphk’é"

e

DEFTNOT
(P1c &
qEr
Lo bogig
“7 turns on the TRACE MODE. If n is missing, the trace starts at cs:ip; if n is pres-
“\ent, the trace starts at n. TRACE MODE displays the registers as for the r com-
£y 1and followed by the menu
S FR&D "
Gl Rl
i NIl s

RACE MODE F1 Break # Go Cont D!Fast Slow Jmp Nop Re Win T!Xam x87

L d a screenful of machine language and dlsassembled instructions starting at the
tarting trace address. The current instruction line is highlighted by a reverse video

84

SST COMMANDS

§5

bar. Each depression of the space bar single steps the program. Typing Function
Key 1 displays the help screen

Break Break at IP #n break at IP after n passes
Go adr break at adr Line break at next source Line
Here break at cursor Point toggle breakPoint at cursor
Fast break following IP Slow trace IP
Space Single step Don't call single step
Undo last instruction Nop skip IP
Jmp Jump unconditionally Kick IP to cursor
Quiet trace Cont Continuous trace
@scii display ASCII screen +& source/asm/mix
Ice stack Offset change stack readout offset
Overtyp | stack/xam window Asm at cursor
Edit registers p4 x87 status
ASCII toggle ASCIl vs HEX Txam toggle Tracking
F5 zoom window F6 change window
_Tix scroll window PgUp/Dn | scroll window
} WO toggle Program/Xam View program window
2/7/8 toggle menu/x87/stack | 0/1/3 no/8086/80386
Redraw | screen Enter — COMMAND MODE
TRACE MODE Hotkeys

In alphabetical (ASCII) order, the hot keys are defined as follows:

Ctrl-A toggles ASCII vs hex/ASCII display modes in the memory eXamine win-

dow.

Ctrl-B forces hex/ASCII (Byte) display mode in the memory eXamine window.

Ctrl-D moves the top bar of the program-output down if the cursor is in the pro-
gram-output window. If the cursor is any other window, the memory eXamine
window’s top bar is moved down.

Enter returns to COMMAND MODE

Ctrl-O zooms the cursor’s window directly into OVERTYPE MODE. Typing the

Esc key, the Enter (J) key, or Function Key 5 agaih returns to TRACE MODE.

§5 SST COMMANDS 85

Ctrl-U moves the top bar of the program-output up if the cursor is in the program-
output window. If the cursor is any other window, the memory eXamine win-
dow’s top bar is moved up.

Space single steps the program, and ! returns to COMMAND MODE.

Note: on all x86 microprocessors manufactured after 1981, single step doesn’t
stop until two instructions after a segment modification instruction like mov ds,ax.
On the 80386, single-step may step two iterations of a rep string instruction.

displays
iterations =

to which you type the number of times, n, the current instruction should be al-
lowed to-execute before breaking (equivalent to typing n B’s for break).

&-+ switch between assemble/source modes. - switches to pure assembly mne-
monics, + switches to pure source code, and & displays mixed source and assem-

bly mnemonics.

0-8, w, x toggle the display of SST windows as follows:

Key | Effect

toggle register window

set 16-bit register display
toggle menu window

32-bit register display

toggle x87 window

toggle program stack window
toggle program output window
toggle Xamine window

X € 00 WN—=O

If option 7 is used with no x87, the error message “No x87 installed” is displayed.
The x87 condition codes and register stack are displayed below the program stack.
See the zamine command for a complete description. Since ordinary decimal and
scientific notation is used, this display makes debugging x87 code fairly easy (with
DEBUG.COM it’s essentially impossible). .

@SCII displays the ASCII help screens (see Chap. 2 for full description).

86 SST COMMANDS §5

Assemble (a or A) switches to ASSEMBLE EDIT MODE at address at the cursor.
The Enter key enters the current instruction and goes onto the next. The Esc key
returns to, TRACE MODE without entering the current line.

Break executes the instruction at cs:ip and then sets a breakpoint the execution on
the next encounter (RAM only).

Continuous runs continuously until a key is depressed. The continous trace stops
if protected memory (see protect command) is referenced, or if an illegal op code
is encountered, or if an instruction for a higher-level machine is attempted, e.g.,
running a pusha (push all) on an 8088.

Don’t single-step calls executes call instructions at full speed by setting a break-
point following the call instruction. On other instructions it simply single steps like
the space bar. This differs from the Fast hot key, which executes any current in-
struction at full speed by putting a breakpoint after that instruction. The don’t hot
key allows you to see the general flow of a routine without getting sidetracked
down subroutines. The Don’t option marks the first 10 subroutines it encounters
as Don’t-trace subroutines. These subroutines can be returned to trace mode by
using the Slow option.

Edit (e or E) switches into the register window and allows you to overtype regis-
ter values, and the Zero, Carry, and Sign flags. Use the arrow and tab keys to
move around the window. Type the Enter key to enter the new values and con-
tinue tracing. Type the Esc or Ctrl-C keys to suppress the new values and con-
tinue tracing. e

Fast executes the current instruction at full machine speed, breaking when en-
countering the instruction after the current instruction (RAM only). This is useful
for calling a subroutine or finishing a loop instruction without single-stepping
through it. Note that if the__urrgnt instruction is a]ump, the fast hot key may

amount ONWS e T 3 S e ”JNTO
(e

Go address sets a breakpoint at the address address while remaining in TRACE
MODE. This saves the effort of returning to COMMAND MODE and then to
TRACE MODE when you know the breakpoint address you need. In addition,
G*s, G*b, G*c set temporary breakpoints at [sp], [bp], and offset at stack-window
cursor, respectively and go. The stack values used are near addresses. To specify

§5 SST COMMANDS 87

far addresses, use G*fs, G*fb, and G*cb, respectively. G*s is useful for break-
pointing upon returning from a subroutine. Be sure that the return address is in
fact at [sp]. Another way to return from a subroutine if you haven’t executed too
far into it is to Undo back out of the subroutine and Don’t call around it.

Here sets a temporary breakpoint at trace-window cursor position and goes, This

hot key is available in UNASSEMBLE MODE/as well, <pe &L ,’{y»’f i =2V Qé’ (R 0 0wt
Ice ices the stack readout offsets at their current values. - This iced mode is 1nd1-
cated by reverse video offsets.

Jmp causes an unconditional jump (useful for overruling a conditional jump) to
cs:ip+(ip+1).

Kick kicks the Instruction Pointer to the address at the cursor. Only the instruc-
tion pointer is changed by this hot key. This hot key is available in UNASSEMBLE
MODE as well.

Line single-steps with no screen updated until the next source-code line is en-
countered.

Nop skips the next instruction altogether (but doesn’t change the code).

Offset cycles between stack offset value modes. These offsets can be made rela-
tive to ss:0, to sp, or to bp. Stack segment displays show all stack frames in range
in reverse video and a referenced location in bold. This feature also works in
DISPLAY MODE when the segment displayed-is the same as that given by the
stack segment register ss. SST also bolds the target offset of a conditional jump
that will jump.

Point toggles the sticky breakpoint at the cursor position. This hot key is available
in UNASSEMBLE MODE as well.

Quiet toggles quiet continuous trace. This mode only updates the registers and
runs about three times as fast as the Continuous trace. The quiet trace stops if
protected memory (see protect command) is refergnced.

i

A

88 SST COMMANDS §5

Re Redraws the screen with the currrent instruction at the top. This is handy if the
current instruction is displayed at or near the bottom of the display and you want

_tosee the following instructions.

/ 1 ’_-__\
LSL;(;W smgle steps the next instruction, which lets yom Of\th L In-

ction (normally executed in Fast mode)
Txam toggles the Trackmg feature of the eXamine window. When tracking is on a
T appears at the end of the second line from the screen top. The eXamine window
always displays the memory around the last location referenced by the program,

" and the cursor identifies this location. This is a useful feature and leads to fasci-
| nating demos when ru contmuouély

((

Undo Undoes the last single step. This can be repeated up to 20 times (or more -
see Chap. 3), literally allowing you to see your program execute backwards. This
is very useful for recalhng the steps that lead to an anomalous condm

n.
LDC)&?(f\/\) -\H’”\ DJ\\) rL(\)\UF pb\N \{ /,\”(’. %’\{\W

View sw1tches to the user screen if the screen save option is enabled (see the gs3
command)

Win toggles a Window 15 lines down from the screen top for MS-DOS CRT out-
put. This is handy for debugging routines that write a moderate amount of text to
the screen using standard system calls.

~Xam toggles a two-line memory eXamine window at the bottom of the screen.

This window displays 20h bytes in hex/ASCII format and 80h bytes in pure ASCII

'/ format. If the window is not in tracking mode (see next option), you can scroll

through memory using the arrow keys and the PgUp PgDn keys. The cursor is
displayed at the last location referenced in the window.

Z gives you a pop-up full screen of information about the x87 status. Typing x or
X when this Z screen is present shows you the heX values of the x87 floating-point
registers, regardless of whether they are tagged “empty”, or invalid.

Trace Mode Window Control

Function Key 5 zooms the stack/xamine windows into DISPLAY MODE.
This gives a full screen with full DISPLAY MODE features including overtype ca-
pability. The Ctrl-O hot key zooms these windows directly into OVERTYPE

§5 SST COMMANDS 89

MODE. Typing the Esc key, the Enter key, or Function Key 5 again returns to
TRACE MODE.

Funtion Key 6 switches between windows in TRACE MODE. The window
with the cursor can be scrolled up and down with arrow, PgUp, and PgDn keys.
When in the trace window, the up and down-arrow keys are useful in combination
with the Assemble, Here, Point, and Kick hot keys. To toggle windows on and
off, see the 0-8 hot keys.

Super-Trace

Section “Super-Trace Demonstration” of Chap. 3 describes a special SST fa-
cility called Super-Trace. This facility single steps a program in a very tight loop,
executing a set of user-specified conditions after each single step. These condi-
tions are written in ordinary assembly language and are assembled by the assemble
command module. The requirements for the code are given under the Conditional
Breakpoint section of the go command. Basically ax and bp are saved before en-
tering the user code, and bp points at the program stack and ax has the first word
of the current instruction. No return instruction is necessary, since SST automati-
cally supplies the return. If the code sets the Zero flag, SST takes over, allowing
the user to examine the machine. If the Zero flag is reset to 0, the Super-Trace
continues. Typically Super-Trace runs at about one tenth full machine speed (in
real mode, not v86 mode), although this depends markedly on how much code the
user specifies for conditions. If a whole execution profile routine is called, execu-
tion could easily be slowed down another factor of ten.

TIME Command

The time command displays the current time of day as calculated by the
computer. Fop JOS Y 71U UMD

SR R ik STRES TUNCE b AT LRBLE
s BT‘\“ C& L= ? S P U SIS ol r .
~TRACE Command QG et 9;, — bR VT eATN

r The trace command restores the registers to their initial values and goes into
\ _TRACE MODE at the program start address.
Y tut 3 AURRESCE BT THEAC TNRGe enk FATR T B \

e ey :
Cb m ki e FIRE. . et
> \ . . .
~~ The S typk; command displays a file in a full-screen 'mode that
“ser0lls forward a ackward/Awith the PgUp; PgDn, and aip an ow keys,
ma\ f/' \ g//p/-P\g \ . ?
\\ /” " .

T~ ~
L

AN ING' TR

\]
\\5 U\\(SNE Y Vé l\
Bﬁ&&x,hf > /f/ N (Q o

SST COMMANDS S §5

Typing|the command

>type

with nolargument displays the
left it

U Command
“This command unassembles machine-language instructions. Syntax:
>Uu address

unassembles the instruction at the address address and goes into UNASSEMBLE
MODE. If address is missing, the instruction following the last one unassembled is
unassembled, or if no previous unassemble command has been executed the in- <
struction at cs:ip is used. Typing the space bar unassembles the next instruction.
Typing a PgDn unassembles a whole screenful (except for the register window at
the top of the screen). PgUp does a rudimentary Page Up procedure that subtracts =
a number of bytes from the current unassemble address and unassembles a screeful
from that lower address. To be sure you’re properly synchronized, type a few
space bars. . and Esc go back to COMMAND-MODE. The unassemble display e
format is the same as that for the assemble instruction illustrated above. i
Alternatively

>Uu range

unassembles the instructions within the range specified. This version of the unas- %
semble command works as for DEBUG.COM, while the other two options are dif-
ferent. The output of this start/end unassemble option can be written to a file of
your choice (see n> filename command). —

2

§5 SST COMMANDS 91

USE16/32 Commands
The commands use16 and use32 control the 80386 segment D bit of the as- / o coff 201
sembler. The default is use16, which generates code according to the standard' TO 2% 0 +l9dd

8086 segment addressing. The use32 command switches to the 80386 32-bitad- v,

dressing mode, which allows access to 4-gigabyte segments, greatly increased i ind) Ao

dexing facilities, etc. See the Intel Programmer’s Reference Mgnual for a detailed i \

discussion of these modes. A" f MDICKTVA. AfF. EAPSA“T’CK’UU’C 31” A w\’, \’()‘.Q‘
o l'\“ AV ”s‘ Ny
: WA L] e e S WA Gl g
V Command ™ V/# Vet m Ol 0o boddl wighs ni kgl IR o R
WG 1 orig s M‘r'""’ 4

The v command alone (followed by a .1) swaps to the user screen ifen&biéd 5
by the gs3 option. Alternatively the V option in TRACE MODE ﬂlpS between SST By

19

and user screens (on the same monitor). & ;
When followed by a hexadecimal number, the v command calls an mterrupt\
vector. Syntax: R k t -
\ b F
>v n [ax [bx [ex [dx]1]] ' \\

where n is the desired interrupt vector number, and the indicated registers are as-
signed values optionally. Current register values are used for values not given on
the command line.

For example, Foad > DY
2 P N T\ e \ pTRAUW De&S Fot
Q’p Ve 6 L jImAy \ wWiRGQ BedWry
7 2 l>V21 600,,,7 / W o 0 Lokl
! T\’ ‘i\epr P B S |
\ R 'w}' g\\‘ n,ngfs the bell, since an ah=6 int 21 instruction outputs the € ere 7) /,/‘&7 x o
Q‘\‘ “to the system console. After returning from the vector command, the user ax, bx, | /i :
\\»M,: - cx, dx, and flags are updated to show what called interrupt vector did. i
, @ The vector command saves and restores the user screen if the save screen
(L TR option is enabled by Wg& in COMMAND MODE.
[WYL\ ,
Sl T TARCESjy NERE' MG it
r&.:w» ﬁ s gf[k\(\%c‘f ’.fhr} W r »\\AN‘P
bgr\l\ \ W7 T 99 4 // i\) 72 ‘(),n‘\(:u Ul &
1 Mode ! ~
TO PR ET ”Mé) J>”1mecr m\
Pl TPertis On the PCs with 80286 and later microprocessors,
% Ceiey o,/ tected Virtual Address Mode by the command
e 5 //,/,#>;—A ? ‘
1y 25 WX
I>Vm YgL . o ORI by L@dt (Bh) o J}V!%wrh/_
<\ _‘AL
and return to Real Address Mode by the coxpmand Tiadear Winks v N
|t VAT 20 pespar) J BRo [e
{ v 4 "/ R / ”
‘: Win KL ’V« Zie g u} y Y‘ } ‘r':'w';é; - & 2 K /
\\\ t'\/ ,’4 ‘\!:r‘/‘b\ g" . (/\? ”\‘\f‘/ ? CI/O(:”W/A?\ iy
e &40 / N " ag, *, 5 A N <
» AN G Y Yy by S0
N \ ©“ B g 5
\\\ _A % (/JC e d
& [

D2 SST COMMANDS §5

>rm

The Protected Virtual Address Mode gives you direct access to the ISA-
bus’s entire 16 megabyte address space as well as to various protected mode fea-
tures. On EISA bus systems, you can access the full 4-GB address space. In
paged mode operation (the usual case under Microsoft Windows), you view a lin< g uou,- |63CTang,
ear address space, rather than the physical address space, so even with ISA-bus T
systems, it appears as if you can see a full 4-GB address space (see Chap. 5 ofy 3= o
Sargent-and Shoemaker (1994) for a detailed explanation). You can use SST to/
debug .COM files in this mode, run programs in extended memory up above thej‘ \
Real Address Mode’s megabyte, examine memory in extended memory, and so on.|/ = 1~7.° /
There are limitations as to what you can do with protected mode, especially if youkr) e ;3/_ (ABE
run under a protected-mode operating system. In general, the only protected-

»’ﬂ‘"('_
/g :I,}"‘(574 eerie mode system that you can run SST in protected mode is Microsoft Windows 3.x-in;
|69+ 5533600 \an enhanced-mode DOS box. Cogonee 28FE8 21 »p Raypt
*{\» Th If you run SST in “real” real mode, that is, not in V86, fnode as happens if =€

e

emm386.sys is installed or if you executed in a Windows DOS box, then your
m what SST sets up,
« is real real-mode
operation, the SSI_\/,u}an%man/d sets up user §ta ele = %selecto;s N £ j il /
= 68h %gg_%el‘%ctms at Oh; This works for COM and EXE files. sl <8

t

TheCtrl-Enter key interrupts vm operation as in Real Mode and Ctrl-Alt-Del

program can change the Interrupt Descriptor Table origin fro

works. In addition stlcky breakpoints work. In protected modes, the DOS dir,
chdir, prompt, and type commands work, although not in a completely general
way. After typing vm in COMMAND MODE, which switches to Protected Virtual
Address Mode, typing any one of these DOS-like commands invisibly switches
back to Real Mode, calls needed DOS commands, displays the desired informa-
tion, and then switches back to protected mode. The screen pretends that pro-
tected mode is always enabled (V at lower right of the register window).

In some kinds of protected mode operation, SST’s built-in keyboard (int 9)
program is used. The time-of-day clock is also turned on to convince you that the
machine is still running.

The SST protected mode tracks Real/V irtual Mode on trace/breakpoint op-
tions. Hence if you leave SST in Real Mode, and SST traps an interrupt occurs in
protected mode, SST automatically switches itself to protected mode. Similarly if
you leave SST in protected and reenter in Real Mode, SST switches itself to Real
Mode operation. Note that protected mode operation requires careful coordina-
tion between SST and the underlying operating system. The only ways SST cur-
rently works in protected mode is when it starts in real mode (not V86 mode) or
when it is run in a Windows DOS box.

§5

RERNVE Bl
ﬁf V07U SSTCOMMANDS % | M{a g
T NS (o N (72 e Whs Py

This command writes a file or absolute disk sectors (like DEBUG).

‘ | J)""/g—(:;SN "‘\/! Nr; V‘ / \ C
] ‘ [<) M)
>w [address [drive sector; count]] { T:,Q fri M ” 0 | e
Nal) - badedybaf / ~]\>
If the drive and sector specifications are missing, it writes the file named by the 4 }f@(‘p £ oy |

name command (see above) at the address specified on the | command/ line. If the NUNY S q‘
address is missing, the file is written starting from cs:100. \ g’ i e

.EXE files can also be written provided they are read in first. This allows ydg —=lesdy 4 P
to patch an .EXE file. Be sure not to change the segment specificatiqn values in-_ %

advertently. The following error messages can occur:

A
A

<SS

No room in disk directory
Insufficient disk space
Insufficient memory
Error in .EXE file ,
Read .EXE file before writing \

I
o
Write is very useful for modifying a disk file. Name the file with the name
command, load it with the load command, make the changes you want being sure et
not to change the values of the bx and cx registers, and then type w or W to Write LT [E:'\
the modified version back to disk. Zanghe)™
™ .
*, 4
P
Write Labels Ans N iaran
The labels, variable names, and user strings currently defined can be written - P
to the file named by the last n command by typing Bim Y
>wi . T
See Sec. 4-4 on “Labels” for further information. ' 4 LV. X
{ /r’" Cup 5
WIDTH Command ; \:Z' i
The command s CRN T .
WA B 44
>width n Cigha (%
o’ Ay

~

S A0S €

_ For example,

94 SST COMMANDS §5

sets the screen width to n = 40 or 80. The value 40 is nice for big room demon-
strations, but is not able to display all features of SST.

WORD Command

To facilitate both source-level and assembly language debugging, SST in-
cludes commands to define typical data types. The syntax for the word type is:

>word [[far] *] variable name address

-

Ty B 2t ey e PETES X FiNt s A
>word alpha 305 -~ NIB s ¢ R N BD= N A TR 4

] & \ O

adds the symbol alpha of type word (16-bit unsigned integer) to the segment
specified by the ds segment register at the offset 305h. You can specify any other
segment. The optional * generates a near ptr to a variable of the type word. The
optional far generates a far pointer to a variable of the type word.

X Command

The x (eXamine) command sets up the display of 20 hex locations used pri-
marily in TRACE MODE. Syntax:

>X address

causes bytes starting at hexadecade that includes the address address to be dis-
played and updated automatically in TRACE MODE. When this command is exe-
cuted, the two-line window immediately shows up at the bottom of the screen and
the menu line changes to

XAMINE MODE: «Tl— PgUp PgDn

In this mode, the Xamine window is continously updated many times a second,
allowing you to monitor input from interrupt driven devices like the system clock
and keyboard. For example, type

2

>x40:6C

~

§5 SST COMMANDS 95

and watch the clock tick away. Scroll up in memory to see the keyboard input
queue change as you type the right arrow. In either XAMINE MODE or TRACE
MODE, the up and down arrows scroll the memory display up (towards smaller
memory addresses) and down respectively. The PgUp and PgDn keys scroll up
and down by 100 hex at a time.

XOR Command

The command
>xor range list

xor’s the bytes in the range range with the bytes in the list /isz. The list is repeated
as often as necessary to cover the complete range. This command is similar to the
fill command, but or’s the list into memory rather than overwriting the bytes in
memory.

—_Y Command

Development of protected-mode applications requires a careful understand-
of how the Global and Local Descriptor Tables work. In SST Protected
the segment values for ds, cs, es, and ss, along with many internal values
e changed to correspond to values in SST’s vm Global Descriptor Table
(GDT). Notice after executing thg: virtual mode command that the segment regis-
ter values are relatively small numbersy These correspond to entries in the GDT.
To read the GDT table, use the'y command as follows:

>y n)yb LU‘TJ I')S byu if/(L:D\
If nis present, list the GDT (or LDT) entry n; 1f not, list GDT entries one per
space bar, ~RAM and Global Descriptor Table displays beyond the segment limit :
v >
have the bffset ﬁelaa ﬁlﬁycd in reverse video. e\“\)q Mt RE v N/N L\J\“s Sy, Clw’ _Jg)
('\) degm VM }d 700 = C/70"‘

‘ . @uT 10go o' "‘Tlik\zwd
i e{i Deﬁmng Global Descriptor Table Descriptors ‘<5

(70 K(w

({f‘uw@_ ﬂf:rwf\‘f
To define new descriptors to refer to areas of memory of your choice use the

command (in general this is only available when SST starts execution in “real” real
mode)

ALY NEVINGLE L2

Iw AR, - DVM re
A Lo SN ‘ PPV T B
R INCRTSY €l BY too 20019y | L" =
\\\ T Unin we MEr-roo : A 874 .
NOTE IS e Qe %034 t $ia l
B e 0% H >
4 f(\\ FT(NRE A f DS'T “

Ao ugv" v«?m BRM s ol s g
S 5 > 4% f% e X

A g ‘U-7uj

96 % fie wate oo SSTCOMMANDS B ey 150 Vi A/
address [access [length]] FOONAD
2/ ress access [leng i »
2V H -&/\(BUG 10060 ¢ oadMg! 100 g Kg\ b_\{'NJ
i This define§a GDT entryw at address, access=access, with = f’\"“’ oo)
i length=length. If the access and length fields are missing, 93h is assumed for the <. ; k 00X —
i access (writable data segment) and a segment length of OFFFFh is used for length. \ ?‘(:)u 5
e \ ‘ For example, to be able to examine, compare, move, etc. memory starting at 4 BRaN /"
coun |\ the second megabyte in physxcal memory, type the command k\"ﬁ\ PR —
B} \ \ , 96)% Srrj o / \A‘ N6
R ‘ 1>y70 000 YT 22 214 ooy NIVER
» @{go e \ X / Bit
Y Then m\Rrotectedeode the command 1 | ik T \ - N
T \ 3} {
VM i Ble 4 : : : 1
: ;: . >d7 \“’ by th;lfth 'r[‘ﬂr.?o RSN iy it R T A ’Nz,\ = .
fU“‘f g w111 display a full screen dlspfﬁymg this RAM. If you have a VDISK installed, v é AN
you’ll see the VDISK copyright notice. - T s
' 6 e
% !:1 A

Z Command

! O v

»This SST command displays the complete x87 state m\ greater deta11 ;than in
tHef@QE MODE. If you attempt to use the x87 facility without an x87, you see

e |

the pop-up message R

No x87 installed
Better go get one!

Trace Mode 7 Option

Typing 7 in TRACE MODE toggles the x87 window unBderneath the pro-
gram stack window. The x87 window has the x87 condition codes on top fol-
lowed by the values of the eight x87 80-bit registers. They are displayed with st(0) —
on top and with nine decimal places for integers and for typical floating point val-
ues, and about five for those requiring exponent notation. For example, you might
see a window like —

1001
12 —
123456789
1.25000000
-123.456000 ' ' .
-1.23456e-4
empty

§5 SST COMMANDS 97

empty
empty

The 1001 tell you the x87 condition code bits €3, ¢2, cl, and c0, respectively,
which reflect the results of x87 compare, test, examine and remainder instructions.
Other status bits can follow as discussed under “x87 Status Bits” below. The
word empty means that the corresponding stack registers have not been loaded.
Some other special values such as infinity and unnormal are labeled accordingly.

Trace Mode Z Option __ gen

For more accuracy in either TRACE \or COMMAND MODE?s, type z or Z,
which gives the full 80-bit values in scientificmn‘ﬂm‘lgrv’vﬂl/some help infor-
mation. For the example above, you’d see the screen

The x87 is set with projective infinity, full precision, and round to even
= 4 0}

stackindex=0 c¢c=1001

st(0) = Status codes:

st(1) = 123456789 P-Precision exception

st(2) = 1.2500000000000000 U-Underflow

st(3) =-1.2345600000000000 O-Overflow

st(4) =-1.2340000000000e-4 Z-Zero divide
st(5) = empty D-Denormalized operand
st(6) = empty I-Invalid x87 opcode
st(7) = empty

Letters above the bar indicate normal interrupts, below indicate masked
interrupts. Type x or X for heX display of registers.

Type any key to continue

x87 Hexadecimal Display

Typing x or X replaces the help on the right,by the hexadecimal values of the
registers. The screen above changes to ;

98

SST COMMANDS

The x87 is set with projective infinity, full precision, and round to even

[
ﬁstack,index =0 cc=1001

st(0) = 12
st(1) = 123456789
st(2) = 1.2500000000000000

04002 C000000000000000
0 401D 932C05A400000000
0 3FFF A000000000000001

§5

\ st(7) = empty

st(3) =-1.2345600000000000 14005 F6E978D4FDF3B647
st(4) =-1.2340000000000e-4 1 3FF2 8164EF6DE184EABS
st(5) = empty 1 795F DD768A987E5689F2
st(6) = empty 1 795F DD768A987E5689F2

1 795F DD768A987E5689F2

Letters above the bar indicate normal interrupts, below indicate masked
interrupts. Type x or X for heX display of registers.

Type any key to continue

Note that the empty registers do have values, although they don’t mean anything.
The values may be left over from earlier computations. Registers with invalid
contents are flagged by “??” which have special hex values identifying the nature
of the problem. These special values are easily examined with the zamine X op-
tion.

x87 Status Bits

The condition code bits, interrupt request bit, and exception flag bits from
the x87 status word are reported immediately above the register stack. The binary
values of the four condition code bits are always displayed at the upper left of the
x87 window. These bits reflect the results of x87 compare, test, examine, and re-
mainder instructions. The other bits are displayed by letter if they equal 1, and are
representcd by blanks if they equal 0. A pending interrupt request is displayed as

“i” following the condition codes. The six exception flags are identified by the
correspondlng capital letters in the following list: Precision, Underflow, Overflow,
Zerodivide, Denormalized operand, Invalid operation. For example, you may see a
P fairly often, since precision exceptions are not unusual. For a detailed discussion
of these bits, please consult one of the Intel manuals on the x87 numeric coproces-
SOTS.

2

A ™
y \ ";‘ : W T) OB
Q ‘; ~O » D
TR L ENEDDK T 5~
_‘\/ },:\ i,g 9 "’ G \\\\1
NV / .
rsn o8 05 \wl\c\\\\‘“é)>) \/E \” <‘ VARYOIRY e M«y \Ride |
op- CALL o) B\ |
Nt \\)‘“ J I q) . \R 0 \L V8 Aot N” |
ENpard RY \ , \ R f\\\- U/\{“ REVIRE REL L nd ¢) ;
‘r_,y /e R reuil ? . S ,//
K Ront —

me s | 6. Assembly Language Interpreter < p
Dr\\m U AN
/ SST has a simple, built-in assembly-language interpreter. Typically this in-

CO BY _5;“ terpreter mimics the BASIC interpreter, except that it expects assembly language
f\{‘; EAN statements instead of BASIC statements. It also differs from previous interpreters
, in a number of ways, such as having the full power of a screen debugger and using
POy » native machine code as the intermediate interpreter language, which can lead to
r\’) % Y" £ faster programs than those from compilers let alone usual interpreters.
S \ _The BASIC-like word commands coexist with the DEBUG-style single letter

‘ ,f"_’ PE commands remarkably peacefully. Words like load, save, list, llist, run, and delete
cong, |5 are syntactically illegal from DEBUG’s point of view, and hence can be used un-

@EQV © - ambiguously directly in SST’s COMMAND MODE. The BASIC command new is
™ |ambiguous, since to debug it means name the file called ew, but if you really want

NRUT~ R
;u§$(3 /to name such a file you could type n ew, which is not recognized as new. A com-
Cag v 'plete list of such command appears under the heading “Interpreter Commands” in
| (W@ "3 4'<ny|this chapter.
RZINERE f To see a demonstration of the interpreter among other things, use the SST
| RE N e/ Auto demo option given by typing Function Key 7.
CIANS T
| y(,?‘;;ﬂ{%\,{;_ g 6-1 Line Numbers
\ D?: ’\(7 ff 4 A2/ BASIC uses statement line numbers for branching and editing purposes.
N /\ Similarly the assembly language interpreter instructions are automatically located
:’;\/ y in memory and can be referred to by their hexadecimal memory offset values. You
J% f“"»_r e these offset values like line numbers to insert, delete, edit, trace, and execute

VT SN T dnstructions. Since many instructions are longer than one byte, there are many ille-
"~ | gal “line numbers” referring to the middles of instructions. The assembly language
| interpretertets=yeu<if you try to refer to one of these illegal numbers.

To make sure that it knows what’s an instruction without undue overhead,

/' the interpreter insists that its code area (code segment) contains only instructions.

[If you use a db or dw pseudo op to define variable storage, that storage will auto-

,“ matically be allocated to the program data segment, rather than to the code seg-
i ment. The interpreter has a very fast algorithm for scanning through a program up
(to the end statement that allows it to check for legal line numbers. This same al-

14 T U s ZTA& Y q\' - 99
Are CAUED N\
rwakiny wr SSFF

A 7),&"-’"fvc 2 Ny 2
\ Mg g0 BE EVTAR)
\ I~ I S WD Co) &£

pga _ e
< RS AQ/\J

\

ol N &lv _§

§ WY

<
\ / N R

W 9 ' o s e I 4 < ;
E s = 2 N VSV Tl NS LN s RE
C N6 1o L“}\D@l RITE ffvwf\(-gaﬂﬁf* AD i PRAIPAN
= 1= AN ANopRg[r 0 INRCE
100 ASSEMBLY-LANGUAGE INTERPRETER §6-2

gorithm is used to insert, delete and overtype instructions, all of which can involve
shifting the code up or down in memory. When you make a change in a program,
the interpreter reassembles the code at about 11,000 instructions a second on an
ordinary PC. Actually it doesn’t have to completely reassemble the code; it only
has to shift the code as needed and update all relative offsets in jmp and call in-
structions approprlately) -

|F N ﬂf\\f \/\)\‘Q)&.é \S (“\ MVAVE:)
E° Rk g (y \lT/\ur*wjl \ S«“;\.‘\ hCCer

J“J\

The assembly language interpreter allows the use of labels for referring to - 1,
variables and jump addresses. As you type in or list a]arogram, references to un- 7 ;
defined labels are stamped with a “U” to the left of the corresponding machine |
code. When you resolve these references by typing in a statement with a missing ¢\
label, the references are filled in. For example, you can type\l:ali alpha, where al-
pha hasn’t been defined previously, and then later type in the subroutine called al-
pha. If you subsequently delete with instruction with the label hl_pha, all corre- -

spondmg references are stamped as Undefined, until you ré
3t RS T f'('J /x)'k

K5/ g 7 i 74)“"’ \(;

\

ine their target

3 \\S)L <

(/7 {
[

3 ' Instructlons and Pseudo Ops

end, db, and dw. The pseudo op end is used to specify the end of the code. Typ1-
cally you don’t have to use the end pseudo op, since the interpreter knows where
your code ends.
the end of what you’ve tVDed in
should use the word Ninstead, since that

‘you’ve typed in.

owever if you want to dclctc the codc from me point thrﬁ;x'gj RE
! ou

The db and dw p udo ops are used to define program variables and ass1gn 2

them initial values For examgle M A DB & 1S 4
TN NERERTE L P gl
"Thns ns a message" 02Dy FEETT L)
) P & \
& f\\ AN F

defines memory for the user vanable message. Th@ command reinitializes all\

varxables to the values given by the db and dw pseudo ops.

PR C
™~

fL N \Y
Uaa i ¥ L A
K¥ = ‘\1" WAP 2
e A \ AAAA *\ &y
m G T iee, \ = S
& 7 | 4 (3 \’\T:
ER L | 10 A95or] M’< NDAV ! 14
> LD \ 2 3 =
:'-'«' A /O/@ \’N/R‘\T\!\ ’L;‘A")f Li’ \V\ ‘/‘ 17714 -
y L LR M\ M@c/\\hﬁﬁt‘ Fan

R

l/ 1
¢ WOBS Wakta A §g

I & ' .
UP DATE

AJ%‘r\f/\r 0

~

§6-4 EDIT COMMANDS 101

6-3. Edit Command

The SST edit facility can be used to edit assembly language instructions. To
edit a line, type

>edit line_number

in COMMAND MODE. This switches to ASSEMBLE MODE and automatically
calls up the line with the line_number (instruction offset) specified. Make the
changes you want and type . to go onto the next line. To quit editing, type Esc,
which returns to COMMAND MODE.

While in UNASSEMBLE and TRACE MODEs, you can also move the cursor
in the trace window to any instruction and switch to ASSEMBLE EDIT MODE by

€,

typing the hot key “a”.

6-4. Interpreter Commands

SST recognizes the following DOS/BASIC-like commands while in
COMMAND MODE (see also Chap. 5).

bye return to DOS

close close all disk files

cls clear screen

cont continue execution at full speed (not tracing)
delete n delete instruction at offset n

edit n edit statement at offset n :

files template list directory with template template — ©
insert n insert instruction(s) starting at offset n

list [n] list (display) program from start [from offset n]
llist [n] print program from start [from offset 7]

load file load file with filename file. COM

new delete all labels, restore initial registers values
run run program from start at full speed (not trace)
save file save file with filename file. COM

system return to DOS ,

trace [n] trace program from start [from off)set n)

102 ASSEMBLY-LANGUAGE INTERPRETER §6-4

These commands exist in similar forms in DOS or BASIC. SST accepts re-
laxed syntax. For example, on the files command, you can enclose the filename
template in double quotes or not as you choose. The insert command is added
since legal line numbers always correspond to addresses of current instructions.
On the other hand, renumbering is automatic, so BASIC’s renumber command is
superfluous. In addition to these commands, you have, of course, the standard
SST commands, which can also be useful, particularly the a (assemble) and t
(trace) commands.

!

SST has a disk display/modify facility that works essentially like the memory
\display/modify facility except that you specify)sectors instead of segments. The
I facility Wuffcr directly following the user program segment pre-
fix, thereby overwriting anything you may have read in there. You can display the
sectors in any of the standard SST display formats using the d command and scroll

through the entire disk if you have enough time. FLERE | (R 1 N
To switch into DISK DISPLAY MODE, type 5 '
disk \K“r?ﬁf‘“e“ bRk 2 ?R\ES{KL atf
>ais Moﬁse \ FP T A) 50)\ 4, 4 % 21 ! ! Dike ?\“:\’\ ’j

H
F |

* where the sector :offset spec1ﬁcat16n is opﬁonzﬁ '\Lcavmg it out starts displaying at i
sector 0 offset 0. To return tomemor;f‘gl:sg*ag mode, type RAM in COMMAND E |
MODE: Ro¥e L I ‘

N /«»\ LJ,f7)Q 70 Londss \005 ‘)Pﬁ! Mo df(’ f\t\u»\(; ”Mrg’l“ 1/95/ §G0 ml

~ bl @ 5
b - Overtypmg Dlsk Silrs1 e W~
You can sw1tch into DISK OVERTYPE MODE by typmg Ctrl O and overwrite the‘ . XoGE
@ﬂm To update the corresponding sector on disk, type Ctrl-X,
which asks if you want'to overwrite the sector in question. Type y or Y to confirm

the overwrite request and the disk sector will be overwritten.

Pointer Facilities

Some pointer facilities are available to help you move rapidly from one part
of the disk to another by using the hierarchical directory structure. These are de-
fined as follows:

; S 4 (M B8 vy
Curl-P - Display root directory in current display format. diie o
Cul-D Display-cluster corresponding to Directory Entry (DE) at cursor or if in
FAT to cluster identified by cursg;&i@sc%ﬁ(location so that
Ctrl-G returns to this location. : :
Cul-C Display cluster chain for file described by DE at cursor. /7“7 ? Cubpiine Ay

103

oy

LY 2
\ V4 7 —
,Y‘:"A
&>
b ‘/

104 DISK DISPLAY/MODIFY FACILITY §7-1

Cul-L | List DE in human-oriented form in pop-up window. While this window

_is active, typing down (up) arrow moves to the next (previous) DE.

4 N = When pointing at FAT, Link cluster into cluster cham for file chosen by

~€trl-C option. N Rolino)r el WG/ A [Ry
\¥~ VWA = \ ¥ ‘ :

We recommend displaying the root dlrectory and the subduectc;nes in pure ASCII

format and use the Ctrl-L option to obtain more specific information. When you .
want to examine a file or subdirectory, position the cursor somewhere on the cor-

responding Directory Entry and type Ctrl-D.

o e 10
{\ Yy

File Allocation Table (FAT) '

The disk space is assigned to files by use of linked chains of clusters stored in

the FAT (File Allocation Table). A cluster consists of one or more sectors, 2 ona

360K floppy, 4 on the 20M AT hard disk. The FAT itself starts at sector 1. If you
display the FAT in word format on hard disks with more than 10 megabytes or in
triple-nibble (dp) format for floppies and smaller hard disks, the disk cluster chain
pointed to by the cursor is highlighted. This is both instructive and useful, since
you can see how the disk space is allocated. The appropriate display formats are
automatically used when the Ctrl-F FAT display command is typed in the DISK
DISPLAY MODEs. The offset field is also treated specially to give the cluster
value in reverse video, rather than the FAT sector offset.

You can change the cluster allocation if you want to unerase a file or to con-
struct a file from data on the disk. Move the cursor to the directory entry for the
desired file, switch into DISK OVERTYPE MODE by typing the Ctrl-O toggle,
__type Ctrl-C to display its cluster chain, position the cursor at the desired cluster
position and type. Ctrl:D To update the disk FAT, type Ctrl-X as described in the
Overtying Disk section. You can also modify the chains by overtyping in
hex/ASCII mode, but this is hard to decipher, expecially for 12-bit FAT formats
(diskettes and smaller hard disks).

The disk display/modify facilility doesn’t qualify as a full disk utility package
since unerasing a file is not yet menu driven. Nevertheless the display capabilities
typically exceed other disk utility packages both in sheer speed and in the variety
of display formats which include, for example, unassemble and assemble facilities.
For more discussion, see Sections 12-2 and 12-3 of The Personal Computer from
the Inside Out, 3rd Ed. (1994) by Sargent and Shoemaker.

A i1

~

A
Rt 1 R 1 A Y A T TS Al o YR/ RLUDY ‘

I <0/ Ly ! TP P
oss X§ 0¢
)?3\@5%@ J\,I\u

#80$-££086 VA “PUBIIIY
‘14 U901 80111
[11 “Jud3res AeLmiA TN

eozun| smaysh
o2

|

T

: R o \ { ‘S
/:Y‘{ﬂ/ //\—L bt { . '(Le/v‘ces";'/

dde
4 VAL v o LV

/&t)(ftg¢%pai ﬁif‘w/ éﬁf;;zig‘ j77i£44é§ f%Y\C%

Jable o B
<l /wag/a YA rres>
YV~
Page 1 of 1 | yn(CﬁfgC§+:aA
Date written: From: Erik Bergren i
03/07(sat)/1998 P.0. Box 540
Date mailed: Pound Ridge, NY 10576
Qe 03/07 (sat)/1998
SWeh 1B ',,‘_X"'Z»r‘,,
O HUE S
To: Scroll Systems, Inc,

11108 NE 106th Place
Kirkland, WA 98033~ 5%
I have bought your book called "The Personal Computer from the
— Inside Out". The software that came with it says that you have.a book - SN
o :
called "SST Manual®", and that it is available from the address above,
for a price of $25.00.
Since that software file was written on 10/09/94, I want to
check to make sure the book is still available, and what is the
price you currently want for it. Also: if the program "sst" is

available in a newer version, with less buggs, please tell me the

price.

Thankyou,
Sincerely,

Erik Bergren

z; i «A.l' LR 7 i . e ¥y
St }m{.g. : s - ; I |
Yeswaly o T N BN sl \ VR
¥ ket 8 magadio g . W S
%f"; 2y 2hieg 10 ;::"? | & “”E“‘ S -‘j‘-.
Y ¥ Ny ' ‘ IRBU B0 Wk o
J’f‘v’_“) e, ' '
RS I 30 I apsd
ad1p1sd i3 imoxd aeidiiw a3sd
0d8 xo0d 0.3 ageiN{2ea)TO\L0
37201 ¥M ,spbii bavci :boltam sisd
seu\(sss}m\eo
!] 00T ,2medayd izbzaa': " som
- 5 ~ 9253 AA0L AW BOLLL
< - EEOBE AW .Buslsditi
v ed3 BoId zo:mm Innosxsd odT" Baliss xaod oy 3dpuod eved I . - 1l
. 3

‘M mexbbs add mzrx sldsitsvs ai 3t dadd Bas " IsunsM TER*™ -f;gifss
.00.282 3o 9olxg s 103

03 dpsw I (FR\ED\OL 0o gediliw aaw oiil o1swidos 2847 sontd
s:ﬁ 8l isdw bas pldslisvs Liidz ai Jdood ed3 siue sdsm o dvedo
a2t “d22" meipolqg s4¥ 2L toalA .fl 103 Jmsw Yiioe1twn voy ooilyg
od% om Iis3 ssmelg .appud aa‘sl% d3tw Jiokzisv zewes s alb 9£dgnavs

«22ig

soydasd?
,‘{is msm,ta &

24, !5 4255” o

sészaa ALxE ; i

