| o

0

TEXT EDITOR

USER’'S MANUAL
PRELIMINARY

TECHNICAL
DESIGN
, LABS

CCCCCCCCCCCCCCCCCCCCCCC

Lise

_.‘.v
a0 A2
!al—;'

L -

| 4T

t 13 BRd l(’

ﬁaﬁ?“ E ..

(.

(

~Liiy
(

THE ZAPPLE TEXT EDITOR

User's Manual

December 1976

Copyright 1976 by Technical Design Labs,

Inc.

(Lg

[i‘: ~l/‘ E‘%’ g (/—\ L

|
S

_a

2

x
¥

Uir B2

i

L

\

~f
{
AN

Page 2

THE ZAPPLE TEXT EDITOR

A. INTRODUCTION

Welcome to the Zapple Text Editor. This program is
designed to be wused for writing assembly language source
code as well as any general text editing functions. This
manual has been prepared using the Zapple Text Editor in
conjunction with our word processing system which controls
formating.

The Text Editor occupies rouachly 3K of core, is
relocatable (may be loaded at any address), and is romable.

The text editor is sent in TDL's relocating format, and
should be loaded with either the ZAP or ZAPPLE using the "“R"
command.

The suggested load address is 100H (R,100) for RAM
operation, and OEOOOH for ROM (or protected RAM) operation
(R,EQ000). No matter where it 1s" loaded, however, it uses
locations 0080H through OOFFH ' (128 bytes) for tewporary
storage. .

The editor expects the monitor (ZAP or ZAPPLE) to be
located at OFO00O0H. The JMP wvectors at the start of the
editor will have to be modified if your monitor resides at a
non-standard address. Refer to the monitor manuals for
further details.

B. THE TEXT EDITING PROCESS

The <creation of Text 1is performed 1in a discrete
sequence: load & start the editor, type in the text, edit
the text, incorporating any additions and corrections, and
then output the text file. The Editor commands are designed
to give you complete control over the functions which are
involved in these four factors.

Generally speaking, the c¢ommands involved 1in the
creation of text are of the greatest significance to the
user - because they will be used most often.

An understanding of how text is manipulated by the editor,
and how the user controls this is the most basic point to be
covered.

Three primary factors are involved in the creation of
text: the text buffer, the buffer pointer and the
manipulation of text itself. :

The text buffer 1is maintained by the editor as a
storage area into which text 1is placed. The buffer is

Lo
N

Li

[Y

i

i

i~ [
(

[

.

(-

[isadd

(

Page 3

variable in size, expanding and contracting to accomodate
the text as it is created. Conceptually, understand that the
text buffer is never larger than the amount of text you have
generated. The LIMITS on text buffer size however |is
controlled by two variables: sizes specified as part of the
sign-on procedure, and the absolute size of the memory
available. When the buffer 1is empty, the beginning and end
are the same, and the size is ZERO.

The buffer pointer 1is simply a movable position

indicator. By utilizing the pointer control commands, it may

be moved to any position within the text buffer. Its limits
as to where it may be 1located are few. It may NOT reside
outside the buffer, and it may NOT be located "on top of"
any character. The pointer MAY reside either before or after
any character in the buffer. It is helpful to visulize the
pointer as always being between one character and another.
The only exceptions to this are when the pointer is at the
beginning of the buffer, it is 1IN FRONT OF the first
character. When at the end of the buffer, it is BEHIND the
last character.

When text is being created, it 1is placed in the buffer
IMMEDIATELY after the pointer. As each additional character
is entered, the pointer moves ahead by one character
position, thus causing no violation of the principle in the
first sentence of this paragraph.

The family of pointer control commands are of great
importance to the user because all additions and corrections
are made only in reference to the pointer (before it or
after it). Movement of the pointer may be either in terms of
characters or 1lines. In other words, move the pointer so
many characters forward or backward, or so many lines up or
down. These commands affect the position of the pointer, but
do not modify the text.

The family of commands which control the insertion or
modification of text comprise the second significant group.
It's best to consider these commands as those which in any
way modify the content of the buffer. These ALSO move the
pointer, but they ALWAYS change the text.

These commands allow direct insertion, moving the text
out of the way (pushing it down), forward and backward
deletion, full line deletion, and substitution.

When these commands are understood, and used together,
you will find that vyou have complete control over the text
and can very rapidly create, add to or modify that which you
have created.

SN

& i

Lk

-

i

bl

[

-~ 124

Page 4

C. COMMAND FORMATING

Every command used by the Zapple text editor consists
of a single letter of the alphabet. These are often used in
conjunction with numeric arguments describing the number of
times a function is to be performed, and other command
inter-relationship functions.

The execution of a given command 1is governed by the
ESCAPE (or ALTERNATE MODE) character. When a double escape
{two escapes in a row, echoed as two dollar signs 'S$$') 1is
received by the editor, the current operation beina
reaquested is performed, and the results are entered into the
buffer. Up to that point, regardless of the amount of work

you have done, it is not "official" as far as the editor is
concerned.
EXAMPLE: TS$

types the line from the location of the pointer. Simply
typing "T", without the two escapes following it, has no
effect.

If you wish to terminate a seguence which is already in
progress, such as “Type 100 1lines" - (100T), entering a
CONTROL-C from the keyboard, prior to the double escapes,
will terminate the function.

EXAMPLE: (Control-C; no echo)
BREAK

would terminate the operation, indicated by the "*BREAK*",
response from the editor.

A CONTROL-C can also be used to terminate any other command
in progress. For example, if you commanded the editor to
“delete 20 lines" and decided, BEFORE typing the two escape
characters, to NOT delete those 20 lines, typing a CONTROL-C
would end the seaquence, without affecting the <contents of
the buffer.

A numerical argument placed before a command signifies
the number of times that function is to be executed.

EXAMPLE: 20TSS

will print the next 20 lines in the buffer, without moving
the pointer.

EXAMPLE: -20Ts$S

will print the 20 1lines preceding the pointer down to the
pointer.

A very significant feature of the editor 1is its ability to
handle command strings. That 1is, commands may be strung

ks,

¥
-

R

i

-

{

Bikal

L 4

rﬁ;_g a “(\I " h—-—

Page 5

together, and a "macro" execution performed, providing only

that string functions be separated by single escape
characters.

EXAMPLE: ~20T20TS$

will print the 20 lines preceding the pointer and the 20
lines followina the ©pointer. These strings may be extended
at will, providing only that character string related
commands (such as SEARCH [S], FIND [F] and INSERT [I]) must

be separated from the other commands by a single escape
character.

EXAMPLE: Frods$2TS$S

Tells the editor to FIND the string "rod", (positioning the
buffer pointer after the "d"), and type the next two lines.
Failure to close the string with an escape would cause the
next command to become part of that string, rather than to
act as a separate command.

Command strings may be treated as separate units by
enclosing them within greater than and lesser than signs.

EXAMPLE: 20<LT>S$S

commands the editor to move the pointer down one line, then
print the line, then move the pointer down, etc. Entering
"20L20T" on the other hand would first move the pointer down
20 lines, then print the next 20 1lines; which 1is clearly
guite a different matter.

A common usage of this involves the command string “TPL",
which first prints the 1line, then pauses until a space bar
character is received, then moves down one line, prints that
line, pauses, etc.

EXAMPLE: 20<TPL>SS

This command string, enclosed in brackets and preceded by a
numerical argument allows the pointer to be moved down, and
each line successively printed, under control of the space
bar. When a desired location was found, a CONTROL-C would
end the sequence, leaving the pointer at the beginning of
the last line typed.

These basic command formats cover all the basics. As
you use the editor more, and your familiarity increases, the
permutations of these basic applications will provide you
with the full power of this editor.

ks

e | (”

L‘Q e

|

o L

Liz

Page 6

E. THE COMMAND SET

The following is an alphabetical list of the editor
commands, accompanied by a brief description of what each
does. It may be used as a function quide.

A - Append 50 lines of text from the monitor system reader
to the end of the buffer. '

- Move the pointer to the beginning of the buffer.

Move the pointer + or - "N" characters.

- Delete + or - "N" characters.

-~ End of editing. Dumps the entire buffer contents to the

system punch, and reinitializes the editor.

Find a character string and position the pointer after

the last character. Limited to 16 <characters 1in the

search string.

G - Same as the "T" command, except the output goes to the
assigned line printer device rather than the console.

I - INSERT input keyboard data into the buffer immediatly
after the pointer. (Begin editing)

J - Prints out the absolute location of the pointer in Hex.

K - DELETE "N" number of lines in front of or behind the
pointer. (+ or =- K)

L - MOVE the pointer + or - N lines, positioning the pointer
at the beginning of the line.

M - Prints the remaining unused workspace still available to
hold text.

N - Punch 60 nulls to the punch device.

O - Insert "N" number of rubouts after a carriage return.

P - PAUSE in the function until a “space bar" character is
received from the console.

Q - Ring the system bell. Useful to know when a lengthly job

monw
|

Les]
|

cycle is complete, and attracting the operators
attention.
R - Indicates the current pointer position in ‘“number of

lines from the beginning". I.E. "2$RS$$" will print the
total number of lines in the file.

S - SEARCB AND SUBSTIUTE. Search for a string and substitute
with another string. Effectively combines the “F" and
"I" commands. A

T - TYPE "N" number of lines + or - the pointer position.

U - Dumps the entire buffer contents to the punch, without
destroying the buffer contents. Includes even parity on
the saved text file.

V - Tells how many characters of text the buffer contains.

W — Writes "“N" number of lines from the buffer to the punch,
and deletes them from the buffer.

X - EXIT back to the monitor. Editing may resume by either
typing “G(cr)" from the monitor, or restarting the
editor at the CONTINUE vector. {(start +3).

Y - Identifies the end of the buffer (in hex).

Z - Moves the pointer to the bottom (end) of the buffer.

(YN
B

~ i b
{

ke

L

7
‘&\./

| W

—

N—

L

Bad

i

gt

"’

F. SPECIAL CONTROLS

TAB (Control-I) - Moves the print head to the next tab
column. Tab stops are fixed at every eight positions.

RUBOUT - Deletes the most previously typed character, and
echoes them as they are removed.

CONTROL-C - Aborts all printing operations, and can stop the

execution of a "w", "U" or "E" command. The buffer 1is
preserved in this instance.

"<" & ">" - Multiple command delimiters. The commands
enclosed in these characters (I.E. 2<25<20W>>$$S which
means "2 times 25 times write 20 1lines to the punch
device." or "write 1000 lines to the punch device") will
be performed as many times as the numeral preceeding
them regquests, or until a condition 1is not met, such as
the inability to “F1235$$" (find the string "1235%) 10
times. For example: “10<F1235$-1CSI4S0TTS>SS" means
"Find the string *1235", back up one character, insert a
4, print the corrected line, and then look for the next
occurence of that string, and repeat until you have done
it 10 times. In this example, if there had only been 7
occurences of the string "1235", it would have finished
repairing the 7th one, and then upon searching for the
8th occurence, it would fail to find it (reaching the
end of the text buffer) and print the message:

CAN'T FIND "1235"
*

Note: The number of 1left brackets must be matched with

the same number of right brackets. Maximum number of
enclosures is 8.

There are other diagnostic messages which may occur
from time to time, which are self-evident upon examination
of the situation.

~ i

(

b

fini

s

L

<
F

| BT

t

| ¥

o

t

Page 8

G. TEXT EDITING SAMPLES

In order to better demonstrate the effect of various
editing commands, let us suppose that the editor has just
been loaded, and execution has bequn at the starting
address. The editor will type:

BUFFER START-

This is a request by the editor as to where you wish
the text buffer to reside. Answering with a carriage return
will cause a default starting address, (the actual location
depending on where the text editor has been loaded) and
answering with an actual location (in HEX) will cause THAT
location to be used as a start of buffer. If there is any
conflict between an actual address and the 1location of the
editor, it will re-state the aquestion. In this example, we
have answered with a carriage return.

The editor then asks:

BUFFER END-

This request may also be answered with a carriaqge
return, allowing all of the available remaining memory to be
used by the editor. It may be kept within a fixed area by
answering with a specific limit address (in HEX).

The editor then calculates the workspace remaining, and
prints this on the console: :

-WORKSPACE = XX,XXX (total buffer size, in decimal)

*

You are now in the editor's command mode, as shown by
the asterisk. If we now wished to begin a file, we would
type “I", and then begin typing the text we wish to work on.
A carriage return is all that 1is reguired to cause BOTH a
carriage return AND a 1line feed to be entered into the
buffer. However, 1f/when deleting characters from the
buffer, remember that there are TWO characters between
lines, even though you only typed the sinagle CR. This occurs
only -during keyboard input, and NOT when loading a text file
from the assigned reader device. To <continue, let us now
type in some text:

*I(cr)
The quick fox jumps over the lazy dog's back. 1123456789.

(cr)$$S (two escapes, echoed as dollar signs)
*

At this point, the buffer contains the following:

CR,LF,The quicketc.... CR,LF

e

[Jpy

Ly E 2

Page 9

And if a "B" and a "2T" command were given, it would
re-type the line on the console:

*BS2TSS

The auick fox jumps over the lazy dog's back. 1123456789

*

Now, suppose we wished to change the mistake 1in the
line (1123). There are many ways this may be accomplished,
but the easiest way would be:

*S11518$

*

Notice that the editor simply prints the asterisk at
the completion of the task. To verify that it has been
corrected, we can either again type the command "B$2TS$S$" or
we could type "O0TT". The "“O0T" means to type from the START
OF LINE to the current location of the pointer, and a "T"
means to type from the current pointer position to the END
OF LINE. Combining them as "0TT" will print the whole line,
without moving the pointer. For example:

*QTTSS

The quick fox jumps over the lazy dog's back. 123456789
*0TSS

The cquick fox jumps over the lazy dog's back. 1*TSS$
23456789

*

Note that the asterisk was printed following the
numeral one, showing the pointer ©position to be between the
"1" and the "2", or just after the character entered as a
result of the vrevious "S" command. The execution of two
escapes in a row will always force a carriage return / line
feed, thus the balance of the text following the pointer is
printed on the next line.

If you now wished to enter additional text into the
buffer, typing a "Z" would assure the pointer going to the
end of the buffer, and then typing an "I" would again begin
the insertion of text from the keyboard.

If during the inputting of text, vyou wish to abort the
entire operation, typing a CONTROL-C will cause a *BREAK*
message, and NOTHING will have been entered into the main
buffer.

Please experiment with the various commands, but of
course practice on a file that has no importance, and make
sure you have a good feel for the various commands, and
their effects, before starting on any important editing

- jobs.

To continue, if you now wished to SAVE the text that

you have been working on, typing an "“E" command will cause
the entire buffer to be sent to the monitor assigned punch

1=z

KL

-]

f

Page 10

device. If the editor detects that both the console and the
punch are the teleprinter (model 33 for example) it will
first wait for the operator to start the punch, and then by
typing a space on the console, the punching will begin. The
file will be vpunched, and an end-of-file mark will be
appended to the end of the tape, followed by some blank
trailer. Typinag a svace again (after the punch has stopped)
will cause the editor to be re-started. Remember you can
return to the monitor with the "X" command.

Now suppose you wanted to re-load the file just punched
for further editing. Assuming the editor is loaded and
initialized, and the monitor's assigned reader has the file
just punched loaded, you would then type the command "ASS$*™,
and the first 50 lines of the file would be loaded into the
buffer. An asterisk will be printed at the conclusion of the
load. If there were more than 50 1lines of text in the file,
additional A's could be executed, or initially the command
“AAASS" could have been wused. When loading large files, or
from cassette, it is advised to use the multiple-command
technigue, and ask for more lines than are actually in the
file. Each time the CALL to the reader device returns with
the carry set (an OUT OF DATA condition), it cancels one
"A". Thus, the command "20<A>$$" would cause as many as 1000
lines to be read in.

The buffer pointer does not move during the Appending
process. In addition, if yvou are not able to hold all of the
text source in the editor workspace at one time, due to
memory limitations, etc., you can bring in some text, edit
it, write the edited part out ("W" command) and then append
("A") more into the end of the buffer, edit that, write some
more out, etc. The "A" always appends text starting at the
END of the buffer. The "W" always writes from the start of
the buffer, and the remaining text 1is PACKED down to make
room for additional appends.

Again, study of the 1list of commands will help you to
familiarize yourself with all of the power available in this
Z2-80 text editor. Any comments or questions, sent to T.D.L.
in writing, will be answered and greatly appreciated.

TECHNICAL DESIGN LABS, INC.

RESEARCH PARK, Bldg. H

PRINCETON, NEW JERSEY
08540

609-921-0321

