Cat. No. 26-5403
| o $19.95

PROGRAMMER'S =
e REFERENCE

|

:

|

i

|

¥

&

5 i
’ |

S — ; e B PR e e o s .=t o Te el e Pt g v L e e e e

TEAMS AND CONOITIONS OF SALE ANO LICENSE OF RADIQ SHACK ANO TANDY COMPUTER
EQUIPMENT ANO SOFTWARE PURCHASED FAQM A RADIO SHACK COMPANY-QWNEO COMPUTER

CUSTOM
A

)
RAQI0 §i
A

CENTER. RETAIL STORE OR FROM A RAQI0 SHACK FRANCHISEE OR DEALER AT ITS
AUTHORIZED LOCATION

LIMITED WARRANTY
ER OBLIGATIONS -

CUSTOMER assumes fult responsibiity that this computer hardware purchased (the Equipment } and any
capies of software inciuded with the Equipment or licensed separately {the Software) meets the specifica-
tions. capacity. capabiities, versatlity. and other requirements of CUSTOMER

CUSTOMER assumes tull responsibiity for the candition and effectiveness of the operating environment in
which the Equipmeni and Software are 1o function and for its instatlation

HACK LIMITED WARRANTIES AND CONDITIONS OF SALE

For a penod of minety (30) calendar days from the date of the Radio Shack sales document recewved upon
purchase of the Equipment. RADIO SHACK warrants to the onginal CUSTOMER that the Equipment and the
medwwm upon which the Software 1s stored is free from manufacturing defects THIS WARRANTY IS ONLY
APPLICABLE TO PURCHASES OF RADIO SHACK ANO TANOY EQUIPMENT BY THE ORIGINAL CUSTOMER
FROM AAQIQ SHACK COMPANY-QWNED COMPUTER CENTERS RETAIL STORES ANO FROM RADIO
SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED LOCATION The warranty 1s void i the
Equipment s case or cabinel has been opened. or if the Equipment or Software has been subjected (o
imprepes or abnormal use I a manufacturing detect 1s discavered during the stated warranty perod. the
defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retait store.
partictpating Radio Shack franchesee or Radvo Shack dealer for repair along with a copy of the sales
document or lease agreement The originat CUSTOMER S soie and exclusive remedy in the event of a defect
is imited to the correction of the defect by reparr. replacement or refund of the purchase price. at RAOIQ
SHACK S election and sole expense RAOIO SHACK has no obligation to replace or repair expendable items
RAOIO SHACK makes no warranty as to the design capabiity. capacity or suitability for use of Ihe
Software except as provided in this paragraph Software 1s licensed on an AS IS basis. without
warranty The onginal CUSTOMER S exclusive remedy. in the event of a Software manufactuning delect 15
its repair or replacement within thirty (30 catendar days of the date of the Radio Shack saies document
teceved upon license of the Software The defective Software shail be returned to a Radio Shack Computer
Center a Radio Shack retail store participating Radio Shack franchisee or Radio Shack dealer along with
the sales document

Except as provded herein no employee. agent franchisee dealer or other person is authorzed ta ave any
warranties of any nature on benalf of RADIQ SHACK

EXCEPT AS PROVIQED HEREIN. RAOIQ SHACK MAKES NO EXPRESS WARRANTIES ANQ ANY IMPLIEO
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPQSE (S LIMITED IN ITS
OURATION TO THE DURATION QOF THE WRITTEN LIMITEQ WARRANTIES SET FCRTH HEREIN

Some states do nol allow hmitations on how fong an imphed warranty fasts so the above limitation(s) may [

not apply to CUSTOMER

LIMITATION OF LIABILITY
A EX

RADIO S
RAQIO Sl
to the fol

G All cop!
:PPLICABlLITY [1]

CEPT AS PAQVIOEQ HEREIN RAQIQ SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY LOSS OR OAMAGE
CAUSEQ OR ALLEGED TO BE CAUSEO OIRECTLY OR INOIRECTLY BY EQUIPMENT OR SOFTWARE
SOLO LEASEQ. LICENSED OR FURNISHED BY RADIO SHACK INCLUDING. BUT NOT LIMITEQ TO. ANY
INTERRUPTION QF SERVICE LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE USE OR QPERATION OF THE EQUIPMENT OR SOFTWARE N NO
EVENT SHALL RAQIO SHACK BE LIABLE FOR LOSS OF PRQOFITS OR ANY INDIRECT SPECIAL. OR
CDNSEQUENTIAL OAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTEQ WITH THE SALE LEASE LICENSE. USE OR ANTICIPATEQ USE OF THE

EQUIPMENT OR SOFTWARE
NOTWITHSTANOING THE ABOVE LIMITATIONS ANO WARRANTIES RADIO SHACK S LIABILITY

HEREUNDER FOR DAMAGES INCURREQ BY CUSTOMER OR OTHERS SHALL NOT EXCEEQ THE AMOUNT

PAID BY CUSTOMER FOR THE PARTICULAR EOUIPMENT OR SOFTWARE INVOLVED

RAOIQ SHACK shall not be habie for any damages caused by delay i delivering or furmishing Equipment
and or Software

No action ansing out of any claimed breach of this Warranty or transactions under this Warranty may be
brought more than twe (2) years after the cause of action has accrued or mare than four (4} years after the
date of the Radio Shack sales for the or Software first occurs

Some states do not aflow the limitation or excluston of incidentat or consequential damages so the above
limitation(s) or exclusion{s) may not apply to CUSTOMER

HACK SDFTWARE LICENSE

HACK grants to CUSTOMER a non-exclusive paid-up hcense to use the Softwace on one computer subject
llowing provisians

Excepl as otherwise provided In this Software License. applicable copyright laws shall apply tn the H

Software

Title to the medium on which the Scftware is recorded (cassette and or diskefte} or stored (ROM) is
translerred to CUSTOMER. but not title to the Software

CUSTOMER may use Software on one host computer and access thai Software through one or mare
terminals if the Software permits this function

CUSTOMER shall nol use. make, manufacture or reproduce copies of Software except for use or ane
computer and as 1s specifically provided in this Sofiware License. Customer 1s expressly prohibited from
disassembling the Software

CUSTOMER is permitted to make additronal copies of the Soltware only for backup or archival purpases o

It addittronal copies are required in the operation of pme computer with the Software. but only to the extent

the Software allows a backup capy to be made However. for TRSDOS Sottware CUSTOMER is permitied

to make a lumited number of additional copres for CUSTOMER $ own use
CUSTOMER may resell or distribute unmodified copies of the Sottware provided CUSTOMER has purchased
one copy of the Sottware for each one sold or distributed The provisions of this Software License shall aiso
be applicable ta third parties receiving copies of the Software from CUSTOMER
Coj yrigm notices shall be retained on all copies of the Software
WARRAN

The terms and conditions ol this Warranty are applicable as between RAQIO SHACK and CUSTOMER to

either a sale of the Equipment and or Software License to CUSTOMER or to a transaction whereby RAOIO |

SHACK selis or conveys such Equipment to a third party for lease to CUSTOMER

The limitations of liabifity and Warranty provisions herein shal! inure to the benefit of RAQIO SHACK. the |
author. owner and or licensor of the Software and any manufacturer of the Equipment sol¢ by RAOIO {

STATE LAW RIGHTS .
The warranties granted herein give the original CUSTOMER specific legal nights and the original CUSTOMER may

have oth

er rights which vary from state fo stale

MS-DOS Programmer’s

Reference Manual

Contents

1/System Calls.........coooiiiiiiiiiiiniiiiiiiiineenrenieieeeeeeeneen 1
General Information......cccievevueeiiiiiiiiieieiiiiiiiieiennee. 1
Calling and RetUrNing.....ceeveerereeirercsrestoensronsosesrenccans 1
Console, Printer, and Disk Input/Output Calls......ccvuerunces 2
XENIX Compatible CallS..cceeeeeeeeeiacnensscrcccsssionscannnsesses 2
System Call DesSCriptions..cccoeiiecierinrsariorenrencinsiessssranaas 5
| §01730 0 11 03 2 3OO URTO 6
Function Calls............. resactererastaserentresastttntatensananne 19
Categories Of CallS...c.ciciiiereencrieriinininsieensonsicncesneenns 19
ErrOr COeS.ciiuaeseriiiiniasanssnsscsssssnsoncncsnsscsncasansassane 19
File HaNALESueuueenneennerenreaeenessessssessenseoncessssoncannsaonnse 20
ASCIIZ SUIiNES.eceeereracnracerssascecnserasnrasssesesssnnsasnsnennes 20
Calling MS-DOS FUNCHONS. rerereeerenenrerarencararassarasarans 20
CP/M® -Compatible Calling Sequence.....oereeurercrirrcrannens 21
Treatment Of RegiSIErS...veeeeeeriireiasiessioresncinancesronnnns 21
MS-DOS Function Calls in Numeric Order....cccevieririinans 22
MS-DOS Function Calls in Alphabetic Order...cooeareenennaes 24
Function Call LiSting....ccceeeremriacrercareecnecensenrinrnecnecees 26
Macro Definitions for MS-DOS System
Call EXamples.....ccciuiiireiniiiiinieiinciiiecieeinencene, 143
INLELTUPLS ¢vurrarrreracnsnncansnssasssosssssonnas reetecnrarernennae 143
FUNCHIONS v evrrtrenrcarencaaarcsnenssescsssssrsscassssnessesnenscsons 143
GENETAl.eieiriuiieiaennrenrncscnsorsssssrssassesersseressncnsarerses 149
Extended Example of MS-DOS System CallS...c.ereruennens 159
2/MS-DOS Control Blocks and Work Areas......157
File Control BIOCK (FCB)....cccoiiiiiininrcnceroniarcanernans 157
Extended File Control BlOCK...ccciveiiiririiiienennennnnnnnnnn. 159
MEMOLY MaAP..cciuiiiiieirereieiieracnerareracrareeiiacenranens 160
Program Se€ZMENt....cecrereiereiniarerirasnsesssinsrisacenens 161
Program Segment PrefiX.....cccoiiiiiiiiiianiniiiniinannns 165

Contents

3/MS-DOS Initialization and

Command ProcCesSOr........ccceevucveurenveennnen. 167
MS-DOS InitialiZation.....cceveieeveeereerureneseesseseeeanan 167
The CommMAand ProOCESSOr . .uuutirieirerarenseasaansanconres 167

4/MS-DOS Disk AHOCAtION.....ccoovviiveeeneeeinrennanann. 169
MS-DOS Disk DireCtOry...ccceuriueenrinianrarecuacacracaans 176
File Allocation Table (FAT)......cccocieiiariacnieneciannases 173
How to Use the File Allocation Table................... 174

S5/DEVICE DIiVEIS..ciuuiieiiiiieniieieeeeieeeraetneraesenesanes 175

- Types Of DevViCeS.iiciuiiiiiiuiuiuriniiiiiciirrurarietecasaense 175
DeviCe HeaderS. uiiieiiereeieereeeeesssacssesorensessacsansasaess 177
Pointer to Next Device Header Field.....cvvereeeneiienennnnns 177
ATLIDULE Field..eeuueerenseeraeenencesecosscacnonsssocsssssosssasses 178
Strategy and Interrupt ROULINES...oevieciuiruriatiacincoarancas 179
NAME Field.eueeeerieienrreeriserenseccssasnraseasasnasaensnsanenans 179
Creating a Device Driver...c...cocoiiiiiiiaiiiiieniiiciaiene. 180
Installation of Device DIivers....ccccviieeeereineeeecececes 181
Request Header.......coveviiiiieneiiineiiiiiiieiireinnnnnenes 182
Unit Code Field.uuueeeereeeenreiercaeeerescocsaranscsossasasasacnes 182
Command Code Field...eeeuiiieeenieiereeeoarosecorsseonsccacasas 183
MEDIA CHECK and BUILD BPB....ccccerererarnerernonencnne 183
StAtUS FA€llueeerrieeieeinenarneraonamesorsnrensenssssassesssansass 184
Function Call ParameterS......ccceeeeeeetnrececieancncesocsons 187
INTIT o rereceesenccecseessecsassesasanssscasessseasasasasaasassssasasase 187
MEDIA CHECK uveeereurseeestesesasaossoseasssnssassssasasssensans 188
BUILD BPB (BIOS Parameter Block).eoeeereriiiiaiiesascnnanns 188
Media Descriptor Byte.....ciceaieieneaennns reseteensestsanrenen 199
READ Of WRITE..vueveiuireeeseeeenecassesssasasenssenscansonnncns 199
NON-DESTRUCTIVE READ NO WAIT....vceeereeerraraarancones 191
ST AT US evenrecencsecasascassescsarsasssasescaseassassssscnssasasssanns 191

) 3 A 01 & PP 192
The CLOCK DeVICE.v.reeeenercasscscsccccccsscerscsisasacscsssoces 192

ii

Contents

G/BIOS SEIVICES....cciiiiieiuiireenreneeeeeeeeeeaeeeeeenieaeenennns 193

Device I/O Services......cccceveiiiiiiiiniiiaiiiinniieiinnanens 193

INtrOAUCHION ceeenieneeeceeeeeceeneeeaassnsssocsssscsassssesancasans 193

KeybDOoard...ciiiiirieiiiniiiecetssasecianscssenseseesseanssasenseans 195

Video DisPlay.ccciiieecceiieneecceciacienssstsccnenssoccccnnnnnns 198

Serial COMMUNICAIONS. . ceeveeretesurascacscercrsescasaascassnes 208

J RV U o ¢ 1111 R 212

SYSteM ClOCK..ciuiariraeiararacacaraearsnsasesareseseesassssssoanes 214

Floppy and Hard DisK.....cvvueierncercccsssesssciieiiaiecnanacns 216

Disk I/0 Support for the Floppy Only Configuration..... 217

Disk I/0 Support for the Floppy & Hard Disk

System Configuration......ccioceveieereecesecnsnneceancneanscenns 221

Special Function ServicesS.....cceeeveieieieinininrienenennnes 229

| 118 g eT¢ 1Te14 Lo) s PPN 229

BOOt StIAP . iiueiaiieiareenceenscncancescssesessesarserassesascnnes 230

Print SCIEEM.eeeeeeeeeeieeeeieseeenesescccscscsscacssassessscssasans 231

System Status ServiCesS.....ccciciiieiiiriniiniiieieeiecinnenne. 232

INtrOAUCHION . teetietneieiiiiasecaessoesoncscesssensssscscsensssseses 232

EQUEPMIENL oeeiiiiiiiereteriienstretieensesecsasasecccciasassssanses 233

MEMOTY SiZ€ueeerereerernaearessonaonssorsnssassorssscnsssssasansen 234

AppendiX A i e 235

Extended Screen and Keyboard Control.............. 235

Cursor Control.....ccoieieiiiiieieinieiiiiiiiieiiieieiinieaee. 236

| 35 v 13 1t {3 N 239

Modes of OpPeration.....cccveieeenreieiuieiuieieiiiiarananenens 240

Keyboard Key Reassignment.....c.ccoievevniiiiiennnnnee. 242

AppendiX B.......coiiiiiiiiiiircirc e, 243
Keyboard ASCII and Scan Codes........ccovuierninnnnn. 243 '
INAEX ...t ceteeeeereteetetsneeareneesenns 247
y

774

iv

To our customers:

The MS™-DOS Programmer’s Reference Manual is a
technical reference manual for system programraers. Chapter
1 contains descriptions and examples of the MS-DOS system
calls and interrupts. Chapters 2, 3, and 4 contain technical
information about MS-DOS. Chapter 5 contains information
on how to install your own device drivers on MS-DOS.
Chapter 6 describes the BIOS services available to the
programmer.

Chapter 1

System Calls

General Information

The MS-DOS system calls provide you with a convenient way
to perform certain primitive functions, making it easier to
write machine-independent programs. The two types of MS-
DOS system calls are interrupts and function calls. This
chapter describes the environments from which these
routines can be called, how to call them, and the processing
performed by each.

Calling and Returning

You can invoke the system calls from Macro Assembler
simply by moving any required data into registers and issuing
an interrupt. Some of the calls destroy registers, so you may
have to save registers before using a system call.

The system calls can also be invoked from any high-level
language whose modules can be linked with assembly-
language modules.

Control can be returned to MS-DOS in any of four ways:
1. Issue Function Call 4CH:

MOV AHA4CH
INT 21H

This is the preferred method.
2. Issue Interrupt 20H:
INT 20H
This method simulates system call 00H.

3. Jump to location @ (the beginning of the Program
Segment Prefix):

JMP 0

Location @ of the Program Segment Prefix contains
an INT 20H instruction, so this technique is simply
one step removed from technique 2.

Chapter 1/ System Calls

4. Issue Function Call Q0H:

MOV AHeeH
INT 21H

This transfers control to location @ in the Program
Segment Prefix.

Console, Printer, and Disk Input/Output Calls

The console and printer system calls let you read from and
write to the console device and print on the printer without
using any machine-specific codes. You can still take
advantage of specific capabilities (display attributes such as
positioning the cursor or erasing the screen, printer attributes
such as double-strike or underline, and so on) by using
constants for these codes and reassembling once with the
correct constant values for the attributes.

Many of the system calls that perform disk input and output
require the placing of values into or the reading of values
from two system control blocks: the File Control Block (FCB)
and directory entry. For a description of the FCB, see the
section “File Control Block” in Chapter 2. For details on the
directory entry, see “Disk Directory” in Chapter 4.

XENIX Compatible Calls

MS-DOS supports hierarchical (tree-structured) directories,
similar to those found in the XENIX operating system. (For
information on tree-structured directories, refer to the MS-
DOS User’s Guide.)

The following system calls are compatible with the XENIX

system:
Function 39H Create Sub-Directory
Function 3AH Remove a Directory Entry
Function 3BH Change the Current Directory
Function 3CH Create a File
Function 3DH Open a File
Function 3FH Read From a File or Device

; Function 40H Write to a File or Device

" Function 41H Delete a Directory Entry
Function 42H Move a File Pointer

Chapter 1 /)System Calls

Function 43H Change Attributes

Function 44H 1/0O Control for Devices

Function 45H Duplicate a File Handle

Function 46H Force a Duplicate of a File Handle
Function 4BH Load and Execute a Program
Function 4CH Terminate a Process

Function 4DH Retrieve the Return Code of a Child

There is no restriction in MS-DOS on the depth of a tree (the
length of the longest path from root to leaf) except in the
number of allocation units available. The root directory will
have a fixed number of entries. For non-root directories, the
number of files per directory is limited only by the number
of allocation units available.

Implementation of the tree structure is simple. Subdirectories
of the root have a special attribute set indicating that they
are directories. The subdirectories themselves are files, linked
through the File Allocation Table (FAT) as usual. Their
contents are identical in character to the contents of the root
directory.

Chapter 1/ System Calls _

Attributes apply to the tree-structured directories in the
following manner:

Attribute | Meaning/Function [Meaning/Function
for files for directories
volume id | Present at the root. Meaningless.
Only one file may
have this set.
directory Meaningless. Indicates that the
directory entry is a
directory. Cannot be
changed with
Function Call 43H.
read only | Old create, new Meaningless.
create, new open (for
write or read/write)
will fail.
archive Set when file is Meaningless.
written. Set/reset via
Function 43H.
hidden/ Prevents file from Prevents directory
system being found in search| entry from being
first/search next. found. Function
Old open will fail. 3BH will still work.

Chapter 1/ System Calls

System Call Descriptions

Many system calls require that parameters be loaded into one
or more registers before the call is issued; this information
is given under Entry Conditions in the individual system call
descriptions. Most calls return information in the registers,
as given under Exit Conditions and Error Returns.

For some of the system calls, a macro is defined and used in
the example for that call. All macro definitions are listed at
the end of the chapter, together with an extended example
that illustrates the system calls.

The examples are not intended to represent good
programming practice. In particular, error checking and user
friendliness have been sacrificed to conserve space. Many of
the examples are not usable as stand-alone programs, but
merely show you how to get started with this command. You
may, however, find the macros a convenient way to include
system calls in your assembly language programs.

Chapter 1/ System Calls

Interrupts

MS-DOS reserves Interrupts 20H through 3FH for its own use.
Memory locations 80H to FCH are reserved for the table of
interrupt routine addresses (vectors).

To set an interrupt vector, use Function Call 25H. To retrieve
the contents of a vector, use Function Call 35H. Do not write
or read vectors directly to or from the vector table.

List of MS-DOS Interrupts

Interrupt
Hex Dec
20H 32
21H 33
22H 34
23H 35
24H 36
25H 37
26H 38
27H 39

Description

Program Terminate
Function Request

Terminate Address
CONTROL-C Exit Address
Fatal Error Abort Address
Absolute Disk Read
Absolute Disk Write
Terminate But Stay Resident

Program Terminate

Interrupt 20H

Entry Conditions:

Macro Definition: i

Example:

Causes the current process to terminate and returns control
to its parent process. All open file handles are closed and the
disk buffer is written to disk. All files that have changed in
length should be closed before issuing this interrupt. (See
Function Calls 10H and 3EH for descriptions of the Close File
function calls.)

The following exit addresses are restored from the Program
Segment Prefix:

Exit Address Offset
Program Terminate GAH
CONTROL-C QEH
Critical Error 12H

Interrupt 2QH is provided for compatibility with earlier
versions of MS-DOS. New programs should use Function Call
4CH, Terminate a Process.

CS = segment address of Program Segment Prefix

terminate macro
int 20H
endm

;CS must be equal to PSP values given at program start
;(ES and DS values)

INT 20H
There is no return from this interrupt

Interrupt 21H

See “Function Calls” later in this chapter for a description of
the MS-DOS system functions.

Entry Conditions:

AH = function call number
Other registers as specified in individual function.

Exit Conditions:
As specified in individual function.

Example:
To call the Get Time function:
mov ah,2CH :Get Time is Function 2CH
int 21H THIS INTERRUPT

Terminate Address

Interrupt 22H

When a program terminates, control transfers to the address
at offset @AH of the Program Segment Prefix. This address is
copied into the Program Segment Prefix from the Interrupt
22H vector when the segment is created. You can set this
address using Function Call 25H.

CONTROL-C Exit Address

Interrupt 23H

10

If the user types CONTROL-C during keyboard input or
display output, control transfers to the Interrupt 23H vector
in the interrupt table. This address is copied into the Program
Segment Prefix from the Interrupt 23H vector when the
segment is created. You can set this address using Function
Call 25H.

If the CONTROL-C routine saves all registers, it can end with
an IRET instruction (return from interrupt) to continue
program execution. When the interrupt occurs, all registers
are set to the value they had when the original call to MS-DOS
was made. There are no restrictions on what a CONTROL-C
handler can do (including MS-DOS function calls) as long as
the registers are unchanged if IRET is used.

If Function 09H or 0AH (Display String or Buffered Keyboard
Input) is interrupted by CONTROL-C, the three-byte sequence
03H-0DH-0AH (ETX-CR-LF) is sent to the display and the
function resumes at the beginning of the next line.

If the program creates a new segment and loads a second
program that changes the CONTROL-C address, termination
of the second program restores the CONTROL-C address to
the value it had before execution of the second program.

Fatal Error Abort Address

Interrupt 24H

If a fatal disk error occurs during execution of one of the disk
1/O function calls, control transfers to the Interrupt 24H vector
in the vector table. This address is copied into the Program
Segment Prefix from the Interrupt 24H vector when the
segment is created. You can set this address using Function
Call 25H.

BP:SI contains the address of a Device Header Control Block
from which additional information can be retrieved.

Interrupt 24H is not issued if the failure occurs during
execution of Interrupt 25H (Absolute Disk Read) or Interrupt
26H (Absolute Disk Write). These errors are usually handled
by the MS-DOS error routine in COMMAND.COM that retries
the disk operation and then gives the user the choice of
aborting, retrying the operation, or ignoring the error.

Entry Conditions:
BP:SI = Device Header Control Block address

Error Returns:

When an error-handling program gains control from Interrupt
24H, the AX and DI registers can contain codes that describe
the error. If Bit 7 of AH is I, either the error is a bad image
of the File Allocation Table or an error occurred on a character
device. The device header passed in BP:SI can be examined
to determine which case exists. If the attribute byte high-order
bit indicates a block device, then the error was a bad FAT.
Otherwise, the error is on a character device.

The following are error codes for Interrupt 24H:
Error Code Description

Attempt to write on write-protected disk
Unknown unit

Drive not ready

Unknown command

Data error

Bad request structure length

AV BN U (SR

11

Chapter 1/ System Calis

Notes:

Seek error

Unknown media type
Sector not found
Printer out of paper
Write fauit

Read fault

General failure

O > o W~

The user stack will be in effect (the first item described below
is at the top of the stack), and will contain the following from
top to bottom:

P
CS

MS-DOS registers from
issuing INT 24H

FLAGS

AX
BX
X
DX
SI
DI
BP
DS
ES

ip
CS

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

FLAGS

The registers are set such that if an IRET is executed, MS-DOS
will respond according to the contents of AL as follows:

AL = 0 ignore the error
=1 retry the operation
=2 terminate the program via INT 23H

For disk errors, this exit is taken only for errors occurring
during an Interrupt 21H. It is not used for errors during
Interrupts 25H or 26H.

This routine is entered in a disabled state.

The §S, SP, DS, ES, BX, CX, and DX registers must be
preserved.

Chapter 1/ System Calls

This interrupt handler should refrain from using MS-DQOS
funtion calls. If necessary, it may use calls @1H through
OCH. Use of any other call will destroy the MS-DOS stack
and will leave MS-DOS in an unpredictable state.

The interrupt handler must not change the contents of
the device header.

If the interrupt handler will handle errors itself rather
than returning to MS-DOS, it should restore the
application program’s registers from the stack, remove
all but the last three words on the stack, and then issue
an IRET. This will cause a return to the program
immediately after the INT 21H that experienced the
error. Note that if this is done, MS-DOS will be in an
unstable state until a function call higher than @CH is
issued.

13

Absfolute Disk Read

Interrupt 25H

Transfers control to MS-DOS. The number of sectors specified
in CX is read from the disk to the Disk Transfer Address.

This call destroys all registers except the segment registers. Be
sure to save any registers your program uses before issuing the
interrupt.

The system pushes the flags at the time of the call; they are
still on the stack upon return. This is necessary because data
is passed back in the current flags. Be sure to pop the stack
upon return to prevent uncontrolled growth.

Entry Conditions:
AL = drive number (0 = A, 1 = B, etc.)
DS:BX = Disk Transfer Address

CX = number of sectors to read
DX = beginning relative sector

I

Exit Conditions:

Carry set:
AL = error code
Carry not set:
Operation was successful.

Error Returns:

Error codes are the same as for Interrupt 24H.

Macro Definition:

abs__disk__read macro disk,buffer,num__sectors first__sector

mov al disk

mov bx,offset buffer
mov cx,num__sectors
mov dx,first__sector
in 25H

popf

endm

14

Chapter 1/ System Calls

Example:

The following program copies the contents of a single-sided
disk in Drive A to the disk in Drive B. It uses a buffer of 32K

bytes.

prompt

start
buffer

int__25H:
read__kbd

copy:

db “Source in A, target in B",13,18
db “Any key to start. §”

dw 0

db 64 dup (512 dup (?)) ;64 sectors

display prompt ;see Function ¢9H

;see Function 08H
mov x5 ;copy 5 groups of

;64 sectors
push cx ;save the loop counter

abs__disk__read 0 bufferp4,stat THIS INTERRUPT
abs__disk__write 1,bufferb4,start ;see INT 26H

add start,64 ;do the next 64 sectors
pop ¢x ;restore the loop counter
loop copy

15

Absolute Disk Write

Interrupt 26H

Transfers control to the MS-DOS BIOS. The number of sectors
specified in CX is written from the Disk Transfer Address to
the disk.

This call destroys all registers except the segment registers.
Be sure to save any registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are
still on the stack upon return. This is necessary because data
is passed back in the current flags. Be sure to pop the stack
upon return to prevent uncontrolled growth.

Entry Conditions:

AL = drive number (0 = A, 1 = B, etc)
DS:BX = Disk Transfer Address

CX = number of sectors to write

DX = beginning relative sector

Exit Conditions:

Carry set:
AL = error code
Carry not set:
Operation was successful.

Error Returns:

Error codes are the same as for Interrupt 24H.

Macro Definition:

abs__disk__write macro disk,buffer,num__sectors first__sector

mov al,disk

mov bx,offset buffer
mov cx,num__sectors
mov dx,first__sector
int 26H

popf

endm

Chapter 1/ System Calls

Example:

The following program copies the contents of a single-sided
disk in Drive A to the disk in Drive B, verifying each write.
It uses a buffer of 32K bytes.

off
on
prompt

start
buffer

int__26H:

copy:

equ 0
equ 1

db “Source in A, target in B"13,10
db “Any key fo start. $”

dw @

db 64 dup (512 dup (?)) ;64 sectors

display prompt ;see Function @9H
read__kbd ;see Function @8H

verify on ;5ee Function 2EH

mov ¢x,5 ;copy 5 groups of 64 sectors
push c¢x ;5ave the loop counter

abs__disk__read @,buffer64,start ;see INT 25H
abs__disk__write 1,buffer84,start THIS INTERRUPT

add start,64 ;do the next 64 sectors
pop cx ;restore the loop counter
loop copy

verify off ;see Function 2EH

17

Terminate But Stay Resident

Interrupt 27H

Used to make a piece of code remain resident in the system
after its termination. This call is typically used in .COM files
to allow some device-specific interrupt handler to remain
resident to process asynchronous interrupts.

When Interrupt 27H is executed, the program terminates but
is treated as an extension of MS-DOS. It remains resident and
is not overlaid by other programs when it terminates.

This interrupt is provided for compatibility with earlier
versions of MS-DOS. New programs should use Function
31H, Keep Process.

Entry Conditions:

CS:DX = first byte following last byte of code in the
program

Macro Definition:
stay__resident macro last__instruc

mov dx,offset last__instruc
inc dx

int 27H

endm

Example:

:CS must be equal to PSP values given at program start
:(ES and DS values)

mov DX, LastAddress

int 27H

There is no return from this interrupt

18

Function Calls

Categories of Calls

The MS-DOS function calls are divided into two groups: old
and new. The old calls, Functions @0H through 2EH, are
included in this version of MS-DOS to provide compatibility
with earlier versions. The new calls, Functions 2FH through
57H, should be used in new programs instead of the old calls
wherever possible. However, programs that use the new calls
cannot be run on earlier versions of MS-DOS.

The function calls can be divided into the following

categories:

00H-12H Old character device 1/0O
13H-24H Old file management
25H-26H 0Old non-device functions

27H-29H Old file management
2AH-2EH Old non-device functions
2FH-38H New function group
39H-3BH Directory group

3CH-46H New file management group

47H Directory group

48H-4BH New memory management group
4CH-4FH New function group

54H-57H New function group

Error Codes

Many of the function calls in the new group (2FH-57H) return
with the carry flag reset if the operation was successful. If
the carry flag is set, then an error occurred and register AX
contains the binary error return code. These codes are as
follows:

Code Error

Invalid function number

File not found

Path not found

Too many open files (no handles left)
Access denied

Invalid handle

Memory control blocks destroyed
Insufficient memory

Invalid memory block address
Invalid environment

11 Invalid format

12 Invalid access code

—_
[SIAN-RCREN I AV BN U S

19

Chapter

1/ System Calls

13 Invalid data

15 Invalid drive was specified

16 Attempted to remove the current directory
17 Not same device

18 No more files

File Handles

Some of the new calls use a “file handle” to identify a file
or device. A handle is a 16-bit binary value that is returned
in register AX when you create or open a file or device using
the new calls. This handle should be used in subsequent
references to the file.

ASCIIZ Strings

Some calls require an ASCIIZ string in one of the registers
as an entry condition. An ASCIZ string is simply an ASCII
string followed by a byte of binary zeroes. The string consists
of an optional drive specifier followed by a directory path
and (in some cases) a filename. The following string, if
followed by a byte of zeroes, is an example:

B:\LEVEL1\LEVEL2\FILE

Calling MS-DOS Functions

20

Most of the MS-DOS function calls require input to be passed
to them in registers. After setting the proper register values,
the function may be invoked in one of the following ways:

1. Place the function number in AH and execute a long call
to offset SQH in your Program Segment Prefix. Note that
programs using this method will not operate correctly
on earlier versions of MS-DOS.

2. Place the function number in AH and issue Interrupt
21H. All of the examples in this chapter use this method.

3. An additional method exists for programs that were
written with different calling conventions. This method
should be avoided for all new programs. The function
number is placed in the CL register and other registers
are set according to the function specification. Then an
intrasegment call is made to location 5 in the current
code segment. That location contains a long call to the
MS-DOS function dispatcher. Register AX is always

Chapter 1/ System Calls

destroyed if this method is used; otherwise, it is the same
as normal function calls. Note that this method is valid
only for Function Requests @@H through 024H.

CP/M® -Compatible Calling Sequence

A different sequence can be used for programs that must
conform to CP/M calling conventions:

1. Move any required data into the appropriate registers (just
as in the standard sequence).

2. Move the function number into the CL register.

3. Execute an intrasegment call to location 5 in the current
code segment.

This method can be used only with the functions @@0H
through 24H that do not pass a parameter in AL. Register
AX is always destroyed when a function is called in this
manner.

Treatment Of Registers

When MS-DOS takes control, it switches to an internal stack.
All registers are saved except AX and those registers used to
return information. The calling program’s stack must be large
enough to accommodate the interrupt system. It should be
at least 8QH bytes, in addition to the program’s needs.

21

Chapter 1/ System Calls

MS-DOS Function Calls in Numeric Order

Function
Number

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
OBH
0CH
ODH
OEH
OFH
16H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
21H
22H
23H
24H
25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H

22

Function Name

Terminate Program

Read Keyboard and Echo
Display Character
Auxiliary Input
Auxiliary Output

Print Character

Direct Console 1/0
Direct Console Input
Read Keyboard

Display String

Buffered Keyboard Input
Check Keyboard Status
Flush Buffer, Read Keyboard
Reset Disk

Select Disk

Open File

Close File

Search for First Entry
Search for Next Entry
Delete File

Sequential Read
Sequential Write

Create File

Rename File

Current Disk

Set Disk Transfer Address
Random Read

Random Write

File Size

Set Relative Record

Set Interrupt Vector
Random Block Read
Random Block Write
Parse File Name

Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag

Get Disk Transfer Address
Get Version Number
Keep Process
CONTROI-C Check

Chapter 1/ System Calls

35H
36H

38H"

39H
3AH
3BH
3CH
3DH
3EH
3FH
4QH
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
54H
56H
57H

Get Interrupt Vector

Get Disk Free Space

Return Country-Dependent Information
Create Sub-Directory

Remove a Directory Entry

Change the Current Directory
Create a File

Open a File

Close a File Handle

Read From a File or Device

Write to a File or Device

Delete a Directory Entry

Move a File Pointer

Change Attributes

1/0 Control for Devices

Duplicate a File Handle

Force a Duplicate of a File Handle
Return Text of Current Directory
Allocate Memory

Free Allocated Memory

Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process

Retrieve the Return Code of a Child
Find Matching File

Find Next Matching File

Return Current Setting of Verify
Move a Directory Entry

Get or Set a File’s Date and Time

23

Chapter 1/ System Calls

MS-DOS Function Calls in Alphabetic Order

Function Name Number
Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input 0AH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status 0BH
Close a File Handle 3EH
Close File 10H
CONTROL-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H
Direct Console Input 07H
Direct Console 1/0 OGH
: Display Character 02H
i Display String 09H
i Duplicate a File Handle 45H
File Size 23H
Find Matching File 4EH
Flush Buffer, Read Keyboard 0CH
Force a Duplicate of a File Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get Version Number 30H
Get Interrupt Vector 35H
Get Time 2CH
Get or Set a File’s Date or Time 57H
1/0 Control for Devices 44H
Keep Process 31H
Load and Execute a Program 4BH
Modify Allocated Memory Blocks 4AH
Move a Directory Entry 56H
Move a File Pointer 42H
Open a File 3DH
Open File OFH
; Parse File Name 29H
(Print Character 05H

Random Block Read 27H

Random Block Write
Random Read
Random Write
Read From a File or Device
Read Keyboard
Read Keyboard and Echo
Remove a Directory Entry
Rename File
Reset Disk
Retrieve the Return Code of a Child
Return Current Setting of Verify
Return Country-Dependent Information
Return Text of Current Directory
Search for First Entry
Search for Next Entry
Select Disk
Sequential Read
Sequential Write
" Set Date
Set Disk Transfer Address
Set Relative Record
Set Time
Set Interrupt Vector
Set/Reset Verify Flag
Find Next Matching File
Terminate a Process
Terminate Program
Write to a File or Device

Chapter 1/ System Calls

28H
21H
22H
3FH
08H
01H
3AH
17H
6DH
4DH
54H
38H
47H
11H
12H
OEH
14H
1sH
2BH
1AH
24H
2DH
25H
2EH
4FH
4CH
00H
40H

25

Abort

Terminate Program Function Call 00H

Terminates a program. This function is called by Interrupt
20H, and performs the same processing.

The following exit addresses are restored from the specified
offsets in the Program Segment Prefix:

Program terminate 0AH
CONTROL-C OEH
Critical error 12H

All file buffers are written to disk. Be sure to close all files
which have been changed in length before calling this
function. If a changed file is not closed, its length will not
be recorded correctly in the disk directory. See Function Call
10H for a description of the Close File call.

Entry Conditions:

AH = 00H
CS = segment address of the Program Segment Prefix

Macro Definition:

: terminate__program macro

xor ah,ah
o int 21H
endm

Example:

:CS must be equal to PSP values given at program start
;(ES and DS values)
mov ah0
I int 21H
| There are no returns from this interrupt

26

StdConlnput

Keyboard Input Function Call §1H

Waits for a character to be typed at the keyboard, then echoes
the character to the display and returns it in AL. If the
character is CONTROL-C, Interrupt 23H is executed.

Entry Conditions:
AH = 01H

Exit Conditions:
AL = character typed

Macro Definition:
read__kbd_and_echo macro
mov ah, @1H
int 21H
endm

Example:

The following program both displays and prints characters
as they are typed. If CENTERD) is pressed, the program sends
a Line Feed-Carriage Return to both the display and the

printer.

func__@1H: read__kbd__and__echo THIS FUNCTION
print__char al ;see Function @5H
cmp al @DH ;is it a CR?
jne func_@1H ;no, print it
print__char 10 :see Function @5H
display__char 10 ;see Function @2H
jmp func_Q1H ;get another character

27

StdConOutput

Display Character Function Call 02H

Displays a character on the video screen. If a CONTROL-C
is typed, Interrupt 23H is executed.

Entry Conditions:

AH = @2H
DL = character to display

Macro Definition:

i display__char macro character
§ mov dicharacter
| mov ah,02H

int 21H

endm

Example:

The following program converts lower-case characters to
upper case before displaying them.

func__02H:; read__kbd ;see Function @8H
cmp al,"a”
‘ i uppercase ;don't convert
. cmp al,'z”
i ig uppercase -don't convert
sub al,20H ;convert to ASCli code
;for upper case
uppercase: display__char al TTHIS FUNCTION
| jmp func__@2H ;get another character

28

AuxInput

Auxiliary Input Function Call §3H

Waits for a character from the auxiliary input device, and
then returns the character in AL. No status or error code is
returned.

If CONTROL:-C is typed at console input, Interrupt 23H is
executed.

Entry Conditions:
AH = 03H

Exit Conditions:

AL = character returned

Macro Definition:
aux__input macro
mov ah03H
int 214
endm

Example:

The following program prints characters as they are received
from the auxiliary device. It stops printing when an end of
file character (ASCII 26, or CONTROL-Z) is received.

func__@3H: aux__input THIS FUNCTION
cmp al1AH ;end of file?
je continue ;yes, all done
print__char al ;see Function @5H
jmp func_@3H ;get another character
continue: ret

29

AuxOutput

Auxiliary Output Function Call 04H

Outputs a character to the auxiliary device. No status or error
code is returned.

If CONTROIL:-C is typed at console input, Interrupt 23H is
executed.

j Entry Conditions:
! AH = 04H
? DL = character to output

Macro Definition:

aux__output macro character
mov dl,character
mov ah,04H
int 21H
endm

Example:

The following program gets a series of strings of up to 80
bytes from the keyboard, sending each to the auxiliary

device. It stops when a null string (CR only) is typed.
string db 81 dup(?) ;see Function 0AH

| func__04H: get__string 80,string :see Function 0AH

i cmp string[1],0 ;null string?

! je continue ;yes, all done

j mov ¢x, word pir string[1] ;get string length

' mov bx,8 ;s6t index to @

‘ send__it: aux__output stringlbx +2] ;THIS FUNCTION

inc bx :bump index

0 loop send__it ;send another character

jmp func_04H ;get another string

continue:

PrinterOutput

Print Character Function Call 05H

Outputs a character to the printer. If CONTROL-C is typed
at console input, Interrupt 23H is executed.

Entry Conditions:

AH = 05H
DL = character for printer

Macro Definition:
print__char macro character

mov di,character
mov ah,05H

int 21H

endm

Example:

The following program prints a walking test pattern on the
printer. It stops if CONTROLC is pressed.

line_num db (1]

func_@5H: mov cx,60 ;print 6@ lines
start__fine: mov bl33 first printable ASCII
;character (1)
add blline_num ;to offset one character

push cx ;save number-of-lines counter

mov cx,80 ;loop counter for line
print__it: print__char bl THIS FUNCTION

inc bl ;move to next ASCIl character

cmp bl126 ;last printable ASCII

;character (%)
il no__reset ;not there yet
mov bl33 ;start over with (1)

31

Chapter 1/ System Calls

no__reset: loop print_it
print__char 13
print__char 10
inc line_num
pop cx
loop start__line

;print another character
;carriage return

Jline feed

;to offset 1st char. of line
;restore #-of-lines counter
;print another line

Conio

Direct Console 1/O Function Call 06H

Returns a keyboard input character if one is ready, or outputs
a character to the video display. No check for CONTROL-C

is made on the character.

Entry Conditions:

AH = 0GH
DL = function code
Q0H = return character typed at the keyboard, if
available
FFH = display character in DL

Exit Conditions:

If DL = FFH on entry, then:
Zero flag set and AL = keyboard input character, if
available

or
Zero flag not set and AL = @QH, if no character available

Macro Definition:
dir_console__io macro switch
mov dI,switch

mov ah@6H
int 21H
endm

33

Chapter 1/ System Calls

Example:

The following program sets the system clock to @ and
continuously displays the time. When any character is typed,
the display stops changing; when any character is typed
again, the clock is reset to @ and the display starts again.

time db “00:00:00.00",13,10,$” ;see Function 09H
;for explanation of $
ten db 10
| func_06H: set_time 0,00,0 :see Function 2DH
: read_clock: get_time :see Function 2CH
| convert ch.ten,time :see end of chapter
; { convert c¢ltentime[3] ;see end of chapter
[convert dh,ten time[6] ;see end of chapter
. convert dlten,time[9] :see end of chapter
| display ~ time ;see Function @9H
(ol dir__console__io @FFH THIS FUNCTION
. jne stop ;yes, stop timer
. jmp read__clock ;no, keep timer
b :running
: stop: read__kbd ;see Function 08H
jmp func_06H ;start over

34

ConlInput

Direct Console Input Function Call 07H

Waits for a character to be typed at the keyboard, and then
returns the character. This call does not echo the character
or check for CONTROL-C. (For a keyboard input function
that echoes or checks for CONTROI-C, see Function Call 31H
or 08H.)

Entry Conditions:
AH = O7H

Exit Conditions:
AL = character from keyboard

Macro Definition:
Dir__console__input macro

mov ah07H
int 21H
endm

Example:

The following program prompts for a password (8 characters
maximumy) and places the characters into a string without
echoing them.

password db 8 dup(?)
prompt db “‘Password: $” ;see Function @9H for
;explanation of §

func_07H: display prompt ;see Function @9H
mov ¢x,8 ;maximum length of
;password
Xor bx,bx ;50 BL can be used as
sindex

35

Chapter 1/ System Calls

get_pass: dir_console__input
cmp al,0DH
je continue
mov password[bx],al

inc bx

loop get__pass
continue:

36

THIS FUNCTION
;was it a CR?

;yes, all done

;no, put character in
;string

;bump index

;get another character
;BX has iength of
;password + 1

ConInputNoEcho

Read Keyboard Function Call 08H

Waits for a character to be typed at the keyboard, and then
returns it in AL. If CONTROL:C is pressed, Interrupt 23H is
executed. This call does not echo the character. (For a
keyboard input function that echoes the character and
checks for CONTROL-C, see Function Call @1H.)

Entry Conditions:

AH = 08H

Exit Conditions:

AL = character from keyboard

Macro Definition:

Example:

read_kbd macro

mov ah,08H
int 21H
endm

The following program prompts for a password (8 characters
maximum) and places the characters into a string without
echoing them.

password db 8 dup(?)
prompt db ‘“Password: $"” ;see Function 09H
;for explanation of $

func_08H: display prompt ;see Function 09H
mov ¢x,8 ;maximum length of
;password
xor bx,bx :BL can be an index

37

Chapter 1/ System Calls

38

get__pass:

continue:

read__

cmp
e
mov
inc
loop

kbd

al,0DH
continue
password[bx],al
bx

get__pass

;THIS FUNCTION
;was it a CR?

;yes, all done

ino, put char. in string
;bump index

;get another character
;BX has length of
;password + 1

ConStringOutput

Display String Function Call 09H

Displays a string of characters. Each character is checked for
CONTROL-C. If a CONTROL-C is detected, an interrupt 23H
is executed.

Entry Conditions:
AH = 09H

DS:DX = pointer to a string to be displayed
terminated by a ¥ (24H)

Macro Definition:
display macro string
mov dxoffset string

mov ah,09H
int 21H
endm

Example:

The following program displays the hexadecimal code of the
key that is typed.

table db “0123456789ABCDEF”

sixteen d 16

result db ‘. 00H” ;see text for

crif db 1310, “$” ;explanation of $

func__09H:read__kbd__and__echo ;see Function @1H
convert al,sixteen,result[3] ;see end of chapter
display result THIS FUNCTION
jmp func__09H ;do it again

39

ConStringInput

Buffered Keyboard Input Function Call 0AH

Waits for characters to be typed, reads characters from the
keyboard, and places them in an input buffer until
is pressed. Characters are placed in the buffer beginning at
the third byte. If the buffer fills to one less than the maximum
specified, then additional keyboard input is ignored and
ASCII 7 (BEL) is sent to the display until is pressed.

The string can be edited as it is being entered. If CONTROL-C
is typed, Interrupt 23H is executed.

The input buffer pointed to by DS:DX must be in this form:

byte 1 - Maximum number of characters in buffer,
including the carriage return (1-255; you set
this value).

byte 2 - Actual number of characters typed, not
including the carriage return (the function sets
this value).

bytes 3-n - Buffer; must be at least as long as the number
in byte 1.

Entry Conditions:

AH = 0AH
DS:DX = pointer to an input buffer (see above)

Exit Conditions:

40

DS:[DX + 1} = number of characters received, excluding
the carriage return

Macro Definition:

get_string macro limit,string
mov dxoffset string
mov string,limit

mov ah,0AH
int 21H
endm

Chapter 1/ System Calls

Example:

The following program gets a 16-byte (maximum) string from
the keyboard and fills a 24-line by 80-character screen with it.

buffer
max__length
chars__entered
string
strings__per__line
crlf

func__QAH:

display__screen:

display__line:

label
db
db
db
dw

db

byte
?
p

17 dup (?)
0

13110 .“$”

get__string 16,buffer

xor bx,bx

mov bl,chars__entered
mov buffer{bx +2],“$"
mov al,50H

cbw

div chars_entered

xor ah,ah

mov strings__per__lineax
mov cx,24

push cx

mov cx,strings__per__line
display string

loop display__fine

display crlf

pop cx

loop display__screen

;maximum length
;number of chars
;16 chars + CR
;how many strings
Jfit on line

THIS FUNCTION
;50 byte can be
;used as index
;get string length
:see Function @9H
;columns per line

;times string fits
;on line

;clear remainder
;save col. counter
TOW counter

;save it

;get col. counter
;see Function @9H

;see Function @9H
;get line counter
;display 1 more line

41

ConlnputStatus

Check Keyboard Status Function Call 0BH

Checks to see if a character is available in the type-ahead
buffer. If CONTROL-C is in the buffer, Interrupt 23H is
executed.

Entry Conditions:
AH = 0BH

Exit Conditions:

If AL = FFH, there are characters in the type-ahead buffer.
If AL = @@H, there are no characters in the type-ahead buffer.

Macro Definition:
check__kbd__status macro

mov ah0BH
int 21H
endm

Example:

The following program continuously displays the time until
any key is pressed.

time db “00:00:00.00",13,10,"3"

ten db 10

func_OBH: get__time ;see Function 2CH
convert ch,tentime ;see end of chapter
convert cltentime[3] ;see end of chapter
convert dh,ten time[6] ;see end of chapter
convert dlten time[9] ;see end of chapter
display time ;see Function 09H
check__kbd__status THIS FUNCTION
cmp al@FFH ;has a key heen typed?
ie all__done ;yes, go home
jmp func_@BH ;no, keep displaying

all_done: ret ;time

42

ConlnputFlush

Flush Buffer, Read Keyboard Function Call 6CH

Empties the keyboard type-ahead buffer. Further processing
depends on the value in AL when the function is called:

1,6, 7, 8, or 8AH - The corresponding input system call
is executed.
Any other value - No further processing is done.

Entry Conditions:

AH = OCH
AL = function code
1, 6, 7, 8, or QAH = call corresponding
function
Any other value = perform no further
processing

Exit Conditions:

If AL = 0QH, type-ahead buffer was flushed; no other
processing was performed.

Macro Definition:
flush_and__read_kbd macro switch
mov al,switch

mov ah@CH
int 21H
endm

Example:

The following program both displays and prints characters
as they are typed. If is pressed, the program sends
a Carriage Return-Line Feed to both the display and the
printer. (The example assumes that a CONTROL-C processing
routine has been set up before the loop is entered.)

func_OCH: flush_and__read_ kbd 1 THIS FUNCTION

print__char al ;see Function 05H
cmp al0DH is it a CR?

ine func_QCH ;no, print it
print__char 10 ;see Function @5H
display_char 10 ;see Function 02H
jmp func_OCH ;get another character

43

s ~_.._..!

; ResetDisk

Reset Disk Function Call 6DH

Ensures that the internal buffer cache matches the disks in
the drives. This call flushes all file buffers. All buffers that
have been modified are written to disk and all buffers in the
internal cache are marked as free. Directory entries are not
updated; you must close files that have changed in order to
update their directory entries (see Function Call 10H, Close
File).

This function need not be called before a disk change if all
files which were written to have been closed. It is generally
used to force a known state of the system; CONTROL-C
interrupt handlers should call this function.

Entry Conditions:
AH = ODH

Macro Definition:
reset__disk macro disk

mov ah,0DH
int 21H
endm
Example:
mov ah,0DH
int 21H

There are no errors returned by this call.

44

SelectDisk

Select Disk Function Call OEH

Selects the specified drive as the default drive.

Entry Conditions:

AH = QEH
DL = new default drive number (¢ = A, 1 = B, elc)

Exit Conditions:

AL = number of logical drives

Macro Definition:
select__disk macro disk
mov dl disk[-64]

mov ah,0EH
int 21H
endm

Example:
The following program selects the drive not currently
selected in a 2-drive system.

func__@EH: current__disk ;see Function 19H
cmp aloeH ;drive A selected?
je select_b ;yes, select B
select__disk “A” THIS FUNCTION
jmp continue

select_b: select__disk “B” THIS FUNCTION

continue:

45

| ‘ OpenFile

Open File Function Call 0FH

Opens a File Control Block (FCB) for the named file, if the
file is found in the disk directory. The FCB is filled in as
follows:

If the drive code in the file specification is @ (default
drive), it is changed to the number of the actual disk used
(1 = A, 2 = B, etc.). This lets you change the default drive
without interfering with subsequent operations on this
file.

The current block field (offset @CH) is set to zero.

The record size (offset @EH) is set to the system default
of 128.

The file size (offset 10H), date of last write (offset 14H),
and time of last write (offset 16H) are set from the
directory entry.

i Before performing a sequential disk operation on the file,
you must set the current record field (offset 20H). Before
. performing a random disk operation on the file, you must
| set the relative record field (offset 21H). If the default record
‘ size (128 bytes) is not correct, set it to the correct length.

Entry Conditions:

AH = OFH
DS:DX = pointer to an unopened FCB for the file

Exit Conditions:

If AL
If AL

00H, the directory entry was found
FFH, the directory entry was not found.

Macro Definition:
open macro fcb
mov dx,offset fch

mov ah@FH
int 21H
endm

46

Chapter 1/ System Calls

Example:

The following program prints the file named TEXTFILE.ASC
that is on the disk in Drive B. If a partial record is in the
buffer at end of file, the routine that prints the partial record
prints characters until it encounters an end of file mark
(ASCII 26, or CONTROI-Z).

fcb db 2*TEXTFILEASC”
db 25dup (?)
buffer db 128 dup (?)
func__QFH: set_dta buffer :see Function 1AH
open fcb THIS FUNCTION
read__line: read__seq fcb :see Function 14H
cmp al02H :end of file?
je all__done ;yes, go home
cmp al00H ;more to come?
ig check__more ;no, check for partial
;record
mov ¢x,128 ;yes, print the buffer
xor si,si ;set index to @
print__it: print__char buffer]si] ;see Function @5H
inc s ;bump index
loop print__it ;print next character
jmp read_line ;read another record
check_more: cmp al@3H ;part. record to print?
jne all_done ;no
mov cx,128 ;yes, print it
xor sisi ;set index to @
find__eof: cmp buffer|si],26 ;end of file mark?
all__done: close fcb ;see Function 10H

47

CloseFile

Close File Function Call 10H

Closes an open file and updates the directory information
on that file. This function must be called after a file is
changed to update the directory entry.

If a directory entry for the file is found, the location of the
file is compared with the corresponding entries in the File
Control Block (FCB). The directory is updated, if necessary,
to match the FCB.

Entry Conditions:

: AH = 10H
| DS:DX = pointer to the open FCB of the file to close

Exit Conditions:

If AL O0H, the directory entry was found.
If AL = FFH, no directory entry was found.

Macro Definition:
close macro fcb
mov dx,offset fcb

mov ah,10H
int 21H
endm

Example:

The following program checks the first byte of the file named
MOD1.BAS in Drive B to see if it is FFH, and prints a message

if it is.
message db “Not saved in ASCI! format”,13,10,"$"
fcb db 2,'MOD1 BAS”

db 25 dup (?)

buffer db 128 dup (7)

48

B

Chapter 1/ System Calls

func__1@H:

all__done:

set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
read_seq fcb ;see Function 14H
cmp buffer@FFH ;is first byte FFH?
jne all__done ;no

display message ;see Function @9H
close fcb THIS FUNCTION

49

DirSearchFirst

Search for First Entry

Function Call 11H

Searches the disk directory for the first name that matches
the filename in the FCB. The name can have the ? wild card
character to match any character. To search for hidden or
system files, DS:DX must point to the first byte of the
extended FCB prefix.

If a directory entry for the filename in the FCB is found, an
unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.

If an extended FCB is pointed to by DS:DX, the following
search pattern is used:

L.

Entry Conditions:

AH =

If the attribute byte (offset FCB-1) is zero, only normal
file entries are found. Entries for the volume label,
sub-directories, hidden files, and system files will not
be returned.

If the attribute field is set for hidden or system files,
or directory entries, it is considered an inclusive
search. All normal file entries plus all entries matching
the specified attributes are returned. To look at all
directory entries except the volume label, the attribute

byte may be set to hidden + system + directory (all 3
bits set).

If the attribute field is set for the volume label, it is
considered an exclusive search, and only the volume
label entry is returned.

11H

DS:DX = pointer to the unopened FCB of the file to

Exit Conditions:

50

If AL
If AL

search for

00H, a directory entry was found.
FFH, no directory entry was found.

Chapter 1/ System Calls

Macro Definition:
search__first

Example:

macro fcb

mov dx,offset fcb
mov ah,11H

int 21H

endm

The following program verifies the existence of a file named
REPORT.ASM on the disk in Drive B.

yes
no
fcb

buffer
crif

func_11H:

not_there:
continue;

db “FILE EXISTS.$"

db “FILE DOES NOT EXISTS$"”
db 2/'REPORT ASM”

db 25 dup (?)

db 128 dup (?)

db 13,10, “$”

;see Function 1AH
THIS FUNCTION

set__dta buffer
search__first fcb

cmp al@FFH ;directory entry found?

ie not__there :no

display yes ;see Function @9H

jmp continue

display no ;see Function @9H
;see Function 09H

display crlf

51

SearchNext

Search for Next Entry

Function Call 12H

Used after Function Call 11H (Search for First Entry) to find
additional directory entries that match a filename that
contains wild card characters. The ? wild card character in
the filename matches any character. This call searches the
disk directory for the next matching name. To search for
hidden or system files, DS:DX must point to the first byte
of the extended FCB prefix.

If a directory entry for the filename in the FCB is found, an
unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.

Entry Conditions:

AH = 12H
DS:DX = pointer to the unopened FCB of the file to search
Jfor

Exit Conditions:

If AL
If AL

O0H, a directory entry was found.
FFH, no directory entry was found.

Macro Definition:

52

search__next macro fcb
mov dx,offset fcb

mov ah,12H
int 21H
endm

Chapter 1/ System Calls

Example:

The following program displays the number of files on the
disk in Drive B.

message
files

ten

ten

fcb

buffer

func__12H:

search__dir:

done:
all_done:

db “No files”,10,13"'$”
db 0

db 10

db 10

db 2/ 77277777

db 25dup (?)
db 128 dup (2)

set__dta buffer
search__first fcb

cmp al@FFH
je all__done
inc files

search__next fcb

cmp al@FFH
ie done
inc files

jmp search__dir
convert files,ten,message
display message

;see Function 1AH
;see Function 11H
;directory entry found?
:no, no files on disk
;yes, increment file
;counter

THIS FUNCTION
;directory entry found?
:no

;yes, increment file
icounter

;check again

;see end of chapter
;see Function 09H

53

DeleteFile

Delete File Function Call 13H

Deletes all directory entries that match the filename given
in the specified unopened FCB. The filename can contain
the ? wild card character to match any character.

Entry Conditions:

AH = 13H
DS:DX = pointer to an unopened FCB

Exit Conditions:

If AL
If AL

00H, a directory entry was found.
FFH, no directory entry was found.

It

Macro Definition:
delete macro fcb
mov dx.offset fcb

mov ah,13H
int 21H
endm

Example:

The following program deletes each file on the disk in Drive
B that was last written before December 31, 1982.

year dw 1982

month db 12

day db 31

files db [}

ten db 10

message db “NO FILES DELETED.’13,10,$”
;see Function @SH for
;explanation of $

fcb db 2717777777777

db 25 dup (7)

buffer db 128 dup (?)

54

Chapter 1/ System Calls

func_13H:

compare:

next:

all_done:

set__dta buffer
search__first fcb
cmp al,FFH

je all__done
convert__date buffer
cmp cx,year

iq next
cmp dl,month
i9 next
cmp dhday
ige next
delete buffer
inc files

search__next fcb

cmp al,0eH
je compare
cmp files,0
je all_done

convert files,ten,message
display message

;5ee Function 1AH
;5ee Function 11H
;directory entry found?
;no, no files on disk
;see end of chapter
;next several lines
;check date in directory
,entry against date
;above & check next file
;if date in directory
;entry isn't earlier.
THIS FUNCTION
;bump deleted-files
;counter

;see Function 12H
;directory entry found?
;yes, check date

;any files deleted?

;no, display NO FILES
;message.

;see end of chapter
;see Function 09H

55

SeqRead

Sequential Read Function Call 14H

Reads a record sequentially. The record pointed to by the
current block (offset @CH) and the current record (offset 20H)
fields of the FCB is loaded at the Disk Transfer Address. The
current block and current record fields are then incremented.

The record size is set to the value at offset @EH in the FCB.

Entry Conditions:

AH = 14H
DS:DX = pointer to the opened FCB of the file to read

Exit Conditions:

If AL = 0QOQH, the read was completed successfully.

If AL = 01H, end of file was encountered; there was no
data in the record.

If AL = 02H, there was not enough room at the Disk
Transfer Address to read one record; the read
was canceled.

If AL = 03H, end of file was encountered; a partial
record was read and padded to the record
length with zeroes.

Macro Definition:
read_seq macro fcb
mov dxoffset fcb

mov ah,14H
int 21H
endm

56

Chapter 1/ System Calls

Example:

The following program displays the file named
TEXTFILE.ASC that is on the disk in Drive B; its function
is similar to the MS-DOS TYPE command. If a partial record
is in the buffer at end of file, the routine that displays the
partial record displays characters until it encounters an end
of file mark (ASCII 26, or CONTROL:Z).

fcb

buffer

func__14H:

read__line:

check_more:

find__eof:

all__done:

db 2,"TEXTFILEASC”

db 25 dup (?)
db 128 dup (?), “$"

set_dta buffer

open fcb
read_seq fcb

cmp al,02H

ie all__done
cmp ald2H

ig check__more

display buffer
jmp read__line

cmp al03H

jne all__done
xor si,si

cmp buffer[si],26
je all_done

display__char buffer[si)
inc si

jmp find__eof
close fcb

;see Function 1AH

;see Function @FH
THIS FUNCTION

;end of file?

;yes

;end of file with partial
;record?

,yes

:see Function @9H

;get another record
;partial record in buffer?
;no, go home

;set index to @

;is character EOF?

;yes, no more to display
;see Function 02H
;bump index to next
;character

:check next character
;see Function 10H

SeqWrite

Sequential Write Function Call 15H

Writes a record sequentially. The record pointed to by the
current block (offset CH) and the current record (offset 20H)
fields of the FCB is written from the Disk Transfer Address.
The current block and current record fields are then
incremented.

The record size is set to the value at offset OEH in the FCB.
If the record size is less than a sector, the data at the Disk
Transfer Address is written to a buffer. The buffer is written
to disk when it contains a full sector of data, when the file
is closed, or when Function Call @DH (Reset Disk) is issued.

Entry Conditions:

AH = 15H
DS:DX = pointer to the opened FCB of the file to write

Exit Conditions:

If AL 00H, the write was completed successfully.

If AL = Q1H, the disk was full; the write was canceled.

If AL = 02H, there was not enough room in the disk
transfer segment to write one record; the write
was canceled.

i

Macro Definition:
write__seq macro fcb
mov dx,offset fcb

mov ah,15H
int 21H
endm

58

Chapter 1/ System Calls

Example:

The following program creates a file named DIR TMP on the
disk in Drive B that contains the disk number (@ = A, 1 =
B, etc.) and filename from each directory entry on the disk.

record__size equ

fcbl db

db
fcb2 db
db
buffer db

func_15H: set_ dta
search__first
cmp
je
create
mov

write__it: write__seq
search__next
cmp
ie
jmp
all_done: close

14 ;offset of Record Size
field in FCB

2/DIR TMP”

25 dup (?)

2,77777722777"

25 dup (7)

128 dup (?)
buffer ;see Function 1AH
fcb2 ;see Function 11H
aloFFH ;directory entry found?
all__done :no, no files on disk
fcb1 ;see Function 16H

fcbi[record_size],12
:set record size to 12

fcb1 THIS FUNCTION

fcb2 :see Function 12H
al,0FFH ;directory entry found?
all__done ;no, go home

write__it ;yes, write the record
fcbt :see Function 10H

59

Create

Create File Function Call 16H

Searches the directory for an empty entry or an existing entry
for the filename in the specified FCB.

If an empty directory entry is found, it is initialized to a zero-
length file and the Open File function call (@FH) is called.
You can create a hidden file by using an extended FCB with
the attribute byte (offset FCB-1) set to 2.

If an entry is found for the specified filename, all data in
the file is released, making a zero-length file, and the Open
File function call (8FH) is issued for the filename. In other
words, if you try to create a file that already exists, the
existing file is erased and a new, empty file is created.

Entry Conditions:

AH = 16H
DS:DX = pointer to an unopened FCB for the file

Exit Conditions:

If AL = QO0H, an empty directory entry was found.
If AL = FFH, no empty directory entry was available.

Macro Definition:
create macro fcb
mov dx,offset fcb
mov ah,16H
| int 21H
endm

60

Chapter 1/ System Calls

Example:

The following program creates a file named DIR.TMP on the
disk in Drive B that contains the disk number (@ = A, 1 =
B, etc.) and filename from each directory entry on the disk.

record__size equ

fcb1 ém

db
fch2 db
db
buffer db

func__16H: set_dta
search__first
cmp
je
create
mov

write__it: write__seq
search__next
cmp
ie
jmp
all_done: close

14 ;offset of Record Size
;field of FCB

2/DIR TMP”

25 dup (?)

2/77777722777”

25 dup (?)

128 dup (?)
buffer :see Function 1AH
fcb2 ;see Function 11H
al,0FFH ;directory entry found?
all__done :no, no files on disk
feb1 THIS FUNCTION

febi[record__size},12
;set record size to 12

feb1 ;see Function 15H
fcb2 ;see Function 12H

al @FFH ;directory entry found?
all_done ;no, go home

write__it ;yes, write the record
fcb1 ;see Function 10H

61

Rename

Rename File Function Call 17H

Changes the name of a file. The current drive code and
filename occupy the usual position in the file’s FCB, and are
followed by a second filename at offset 11H. (The two
filenames cannot be the same name.) The disk directory is
searched for an entry that matches the first filename, which
can contain the ? wild card character.

If a matching directory entry is found, the filename in the
directory entry is changed to match the second filename in
the modified FCB. If the ? wild card character is used in the
second filename, the corresponding characters in the
filename of the directory entry are not changed.

Entry Conditions:

AH = 17H
DS:DX = pointer to the FCB containing the current and
new filenames

Exit Conditions:

If AL = 00H, a directory entry was found.
If AL = FFH, no directory entry was found or no match
exists.
Macro Definition:

rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

Chapter 1/ System Calls

Example:

The following program prompts for the name of a file and

a2 new name, then renames the file.

fcb
prompt1
prompt2
reply
crif

func__17H:

db 37 dup (7)

db “Filename: $”
db “New name: $"
db 17 dup(?)

db 13,10,$”

display prompt1
get__string 15,reply
display crif

parse reply[2],fcb
display prompt2
get__string 15,reply
display crlf

parse reply[2],fcb[16]
rename fcb

;see Function @9H
;see Function 0AH
:see Function @9H
'see Function 29H
:see Function @9H
;see Function QAH
:see Function @9H
:see Function 29H
TTHIS FUNCTION

63

gurdsk

Current Disk Function Call 19H

Returns the code of the currently selected drive.

Entry Conditions:
AH = 19H

Exit Conditions: .
AL = currently selected drive (¢ = A, 1 = B, elc)

Macro Definition:
current__disk macro
mov ah,19H
int 21H
endm

Example:

The following program displays the currently selected
(default) drive in a 2-drive system.

message db “Current disk is $” ;see Function 09H
;for explanation of $

crif db 13,10.$”

func_19H: display message ;see Function 09H
current__disk THIS FONCTION
cmp algoH ;is it disk A?
jne disk__b ;no, it's disk B
display__char “A” ;see Function 02H
imp all__done

disk__b: display__char “B” ;see Function 02H

all__done: display crif ;see Function 09H

64

SetDTA

Set Disk Transfer Address Function Call 1AH

Sets the Disk Transfer Address to the specified address. Disk
transfers cannot wrap around from the end of the segment
to the beginning, nor can they overflow into the next
segment.

If you do not set the Disk Transfer Address, it defaults to
offset 80H in the Program Segment Prefix.

Entry Conditions:

AH = 1AH
DS:DX = address to set as Disk Transfer Address

Macro Definition:
set__dta macro buffer
mov dx,offset buffer

mov ah,1AH
int 21H
endm

Example:

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), and
then reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in Drive B. The file
contains 26 records; each record is 28 bytes long.

record__size equ 14 ;offset of Record Size
field of FCB

relative__record equ 33 ;offset of Relative Record
field of FCB

fcb db 2"ALPHABETDAT"

db 25 dup ()
buffer db 34 dup(?),"$”
prompt db “Enter letter: §”

65

Chapter 1/ System Calls

crif db 13,10,'$”
func__1AH: set_dta buffer THIS FUNCTION
open fcb ;see Function @FH
mov fcbjrecord__size),28 ;set record size
get__char: display prompt ;see Function @SH
read__kbd__and__echo ;see Function 01H
cmp al,0DH ;just a CR?
je all__done ;yes, go home
sub al,41H ;convert ASCI
;code to record #
mov fcbfrelative__record],al ;set relative record
display crlf ;see Function 0SH
read__ran fcb ;see Function 21H
display buffer ;see Function 0SH
display crlf ;see Function @9H
jmp get__char ;get another character
ali__done: close fcb ;see Function 10H

66

RandomRead

Random Read Function Call 21H

Performs a random read of a record. The current block (offset
OCH) and current record (offset 20H) fields in the FCB are
set to agree with the relative record field (offset 21H). The
record addressed by these fields is then loaded at the Disk
Transfer Address.

Entry Conditions:

AH = 21H
DS:DX = pointer to the opened FCB of the file to read

Exit Conditions:

If AL = 00H, the read was completed successfully.

If AL = 01H, end of file was encountered; no data is in the
record.

If AL = @2H, there was not enough room at the Disk Transfer
Address to read one record; the read was canceled.

If AL = 03H, end of file was encountered; a partial record
was read and padded to the record length with zeroes.

Macro Definition:
read_ran macro fcb
mov dxoffset fcb

mov ah,21H
int 21H
endm

67

Chapter 1/ System Calls

Example:

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), and
then reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in Drive B. The file
contains 26 records; each record is 28 bytes long.

record__size equ 14 ;offset of Record Size
field of FCB
relative__record equ 33 ;offset of Relative Record
field of FCB
fcb db 2 ALPHABETDAT”
db 25 dup (?)
buffer db 34 dup(?),'$”
prompt db “Enter letter: $”
crlf db 13,10,'$"
func_21H: set__dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record__size],28 ;set record size
get_char: display prompt ;see Function 09H
read__kbd__and__echo ;see Function 01H
cmp al,0DH ;just a CR?
ie all__done ;yes, go home
sub al41H ;convert ASCIl code
;to record #
: mov fcbfrelative__record],al ;set relative
’ ‘ ;record
display crlf ;see Function @9H
| read_ran fcb THIS FUNCTION
| display buffer :see Function 09H
i display crif ;see Function 0SH
\ jmp get__char ;get another char.
‘ al_done: close fcb :see Function 10H

68

RandomWrite

Random Write Function Call 22H

Performs a random write of a record. The current block
(offset @CH) and current record (offset 20H) fields in the FCB
are set to agree with the relative record field (offset 21H).
The record addressed by these fields is then written from
the Disk Transfer Address. If the record size is smaller than
a sector (512 bytes), the records are buffered until a full sector
is ready to write.

Entry Conditions:

AH = 22H
DS:DX = pointer to the opened FCB of the file to write

Exit Conditions:

If AL = 0@H, the write was completed successfully.

If AL = 01H, the disk is full.

If AL = Q2H, there was not enough room at the Disk Transfer
Address to write one record; the write was canceled.

Macro Definition:

Example:

write_ran macro fcb
mov dxoffset fcb

mov ah,22H
int 21H
endm

The following program prompts for a letter, converts the
letter to its alphabetic sequence (A = 1, B = 2, etc.), and
then reads and displays the corresponding record from a file
named ALPHABET.DAT on the disk in Drive B. After
displaying the record, it prompts the user to enter a changed
record. If the user types a new record, it is written to the
file; if the user simply presses (ENTER) . the record is not
replaced. The file contains 26 records; each record is 28 bytes
long.

69

Chapter 1/ System Calls

record__size equ 14 ;offset of Record Size
Jfield of FCB
relative__record equ 33 ;offset of Relative Record
Sfield of FCB
fcb db 2/ALPHABETDAT”
db 25 dup (?)
buffer db 26 dup(?),1310$"
prompti db “Enter letter: $”
prompt2 db “New record (RETURN for no change): $"
crif db 1310/¢”
reply db 28 dup (32)
blanks db 26 dup (32)
func__22H: set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcblrecord__size],32 ;set record size
get_char: display prompt1 ;see Function Q9H
read__kbd__and__echo ;see Function @1H
cmp al,0DH ;just a CR?
je all_done ;yes, go home
sub al, 41+ ;convert ASCI|
;code to record #
mov fcb[relative__record],al
;set relative record
display crif ;see Function @9H
read__ran fcb ;THIS FUNCTION
display buffer ,see Function @9H
display crif ;see Function 09H
display prompt2 ;see Function @9H
get__string 27reply ;see Function 0AH
display crlf ;see Function Q9H
cmp reply[1],0 ;was anything typed
;besides CR?
je get__char ;no
;get another char.
xor bx,bx ;to load a byte
mov bl,reply[1] ;use reply length as
;counter
move__string blanks,buffer,26 ;see chapter end
move_string reply[2],buffer,bx ;see chapter end
write__ran fcb ;see Function 21H
jmp get__char :get another character

all_done: close fcb ;see Function 10H

FileSize

File Size Function Call 23H

Searches the disk directory for the first matching entry for
a specified FCB. If a matching directory entry is found, the
relative record field (offset 21H) is set to the number of
records in the file, calculated from the total file size in the
directory entry (offset 1CH) and the record size field (offset
@EH) of the FCB.

If the value of the record size field of the FCB does not match
the actual number of characters in a record, this function
does not return the correct file size. If the default record size
(128) is not correct, you must set the record size field to the
correct value before using this function.

Entry Conditions:

AH = 23H
DS:DX = pointer to the file’s unopened FCB

Exit Conditions:

If AL
If AL

I

Q0H, a directory entry was found.
FFH, no directory entry was found.

Macro Definition:
file__size macro fcb
mov dxoffset fcb

mov ah,23H
int 21H
endm

71

Chapter 1/ System Calls

Example:

The following program prompts for the name of a file, opens
the file to fill in the Record Size field of the FCB, issues a
File Size function call, and displays the file size and number
of records in hexadecimal format.

fcb db 37 dup (?)

prompt db “File name: $”

msg1 db “Record length: "1310,"$”

msg2 db “Records: ”13,10,"$"

crlf db 13,10,$”

reply db 17 dup(?)

sixteen db 16

func__23H: display prompt ;see Function 09H
get__string 17,reply ;see Function 0AH
cmp reply[1].0 ;just a CR?
ine get__length ;no, keep going
jmp all__done ;yes, go home

get__length: display crif ;see Function 09H
parse reply[2],fcb ;see Function 29H
open fcb ;see Function @FH
file__size fcb THIS FUNCTION
mov si,33 ;offset to Relative

;Record field

mov di9 ;reply in msg__2

convert__it: cmp feb(si].0 ,digit to convert?
je show__it ;no, prepare message
convert fcb[si],sixteen,msg__2[di]
inc si :bump n-o-r index
inc di ;bump message index
jmp convert__it :check for a digit

show__it: convert fcb(14],sixteen,msg__1(15]
display msg__1 ;see Function 09H
display msg__2 ;see Function 09H
jmp func_23H ;get a filename

all_done: close fcb ;see Function 10H

72

»»SetRelRec

Set Relative Record

Function Call 24H

Sets the relative record field (offset 21H) in a specified FCB
to the same file address that is indicated by the current block
(offset @CH) and current record (offset 20H) fields.

Entry Conditions:

AH = 24H
DS:DX = pointer to an opened FCB

Macro Definition:

set_relative__record macro fcb

Example:

dx,offset icb
ah,24H
21H

The following program copies a file using the Random Block
Read and Random Block Write function calls. It speeds the
copy by setting the record length equal to the file size and
the record count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the current record field
(offset 2@H) to 1 and using the Set Relative Record function
call to make the relative record field (offset 21H) point to
the same record as the combination of the current block
(offset OCH) and current record (offset 20H) fields.

current__record

file__size

fcb
filename
prompt1
prompt2
crif

db
db
db
db
db

32 ;offset of Current Record
field of FCB
16 ;offset of File Size
Jfield of FCB
37 dup (7)
17 dup(?)

“File to copy: $” ;see Function 9SH for

“Name of copy: $" ;explanation of $
13,10,'$”

73

Chapter 1/ System Calls

file__length dw ?
buffer db 32767 dup(?)
func__24H: set_dta buffer ;see Function 1AH
display prompt1 ;see Function @9H
get__string 15 filename ;see Function 8AH
display crlf ;see Function 09H
parse filenamef2],fcb ;see Function 29H
open fcb ;see Function OFH
mov feblcurrent__record]@ ;set Current Record
;field
set__relative__record fcb THIS FUNCTION
mov ax,word ptr fcbifile__size] ;get file size
mov file__length,ax ;save it for
ran__block__read fcb,1,ax ;ran__block__write
;see Function 27H
display prompt2 ;see Function 09H
get__string 15,filename ;see Function 0AH
display crif ;see Function 0SH
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H
mov feblcurrent__record]@ ;set Current Record
field
set__relative__record fcb THIS FUNCTION
mov ax.file__length ;get ariginal file
;length
ran__block__write fcb,1,ax :see Function 28H
close fcb ;see Function 10H

74

Setvector

Set Interrupt Vector Function Call 25H

Sets a particular interrupt vector. The operating system can
then manage the interrupts on a per-process basis. This call
sets the address in the vector table for the specified interrupt
to the address of the interrupt-handling routine in AL.

Note that programs should never set interrupt vectors by
writing them directly in the low memory vector table.

Entry Conditions:

AH = 25H
AL = number of the interrupt to set
DS:DX = address of the interrupt-bandling routine

Macro Definition:

set_.vector macro interrupt,seg__addroff__addr

push ds
mov ax,seg__addr
mov ds,ax
mov dx,off__addr
mov al,interrupt
mov ah,25H
int 21H
pop ds
endm
Example:

Ids dx,intvector

mov ah,25H

mov al,intnumber

int 21H

There are no errors returned

75

Random Block Read Function Call 27H

Reads the specified number of records (calculated from the
record size field at offset OEH of the FCB), starting at the
record specified by the relative record field (offset 21H). The
records are placed at the Disk Transfer Address. The current
block (offset @CH), current record (offset 20H), and relative
record (offset 21H) fields are set to address the next record.

If the number of records to read is specified as zero, the call
returns without reading any records (no operation).

Entry Conditions:

AH = 27H
CX = number of records to read
DS:DX = pointer to the opened FCB of the file to read

Exit Conditions:

CX = actual number of records read

If AL = 00H, all records were read successfully.

If AL = 01H, end of file was encountered before all records
were read; the last record is complete.

If AL = 02H, wrap-around above address FFFFH in the disk
transfer segment would occur if all records were read,
therefore, only as many records were read as was possible
without wrap-around.

If AL = 03H, end of file was encountered before all records
were read; the last record is partial.

Macro Definition:
ran__block__read macro fcb,count,rec__size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec__size

mov ah,27H
int 21H
endm

76

Chapter 1/ System Calls

Example

The following program copies a file using the Random Block
Read function call. It speeds the copy by specifying a record
count of 1 and a record length equal to the file size, and using
a buffer of 32K bytes; the file is read as a single record.
(Compare this example with the sample program for
Function 28H, which specifies a record length of 1 and a

record count equal to the file size.)

current__record equ 32

file__size

fcb
filename
prompt1

prompt2
crif
file__length
buffer

func__27H:

equ 16 ;offset of File Size field
db 37 dup (?)
db 17 dup(?)
db “File to copy: $" ;see Function @89H
;for explanation
db “Name of copy: $" ;of $
db 13,10,°$"
dw ?
db 32767 dup(?)
set__dta buffer ;see Function 1AH
display prompti ;see Function 09H
get__string 15 filename ;see Function GAH
display crif ;see Function @9H
parse filename{2],fcb ;see Function 29H
open fcb ;see Function 0FH
mov fcblcurrent__record]@ ;set Current
;Record field
set__relative__record ;see Function 24H
mov ax, word ptr feb[file_size]
;get file size
mov file__length,ax ;save it for
fcb,1.ax ;ran__block__write

ran__block__read

;offset of Current Record field

THIS FUNCTION

display prompt2 ;see Function @9H
get__string 15 filename ;see Function 9AH
display crif ;see Function 99H
parse filename|2],fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current__record],@

;set Current Record

;field

77

Chapter 1/ System Calls

set_relative__record fcb ;see Function 24H

maov ax, file__length :get original file
;size

ran__block _write fcb,1,ax ;see Function 28H

close fcb ;see Function 10H

78

RBWrite

Random Block Write Function Call 28H

Writes the specified number of records (calculated from the
record size field at offset OEH of the FCB) from the Disk
Transfer Address. The records are written to the file starting
at the record specified in the relative record field (offset 21H).
The current block (offset 9CH), current record (offset 20H),
and relative record (offset 21H) are then set to address the
next record.

If the number of records is specified as zero, no records are
written, but the file size field of the directory entry (offset
1CH) is set to the number of records specified by the relative
record field of the FCB (offset 21H). Allocation units are
allocated or released, as required.

Entry Conditions:

AH = 28H
DS:DX = pointer to the opened FCB of the file to write
CX = number of records to write (non-zero)
or
CX = 0 (sets the file size field; see above)

Exit Conditions:

CX = actual number of records written

If AL = (0QH, all records were written successfully.

If AL = O1H, no records were written because there is
insufficient space on the disk.

Macro Definition:

ran__block__write macro fcb.count,rec__size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec__size

mov ah,28H
int 21H
endm

79

Chapter 1/ System Calls

Example:

The following program copies a file using the Random Block
Read and Random Block Write function calls. It speeds the
copy by specifying a record count equal to the file size and
a record length of 1, and using a buffer of 32K bytes; the
file is copied quickly with one disk access each to read and
write. (Compare this example with the sample program for
Function 27H, which specifies a record count of 1 and 2
record length equal to file size.)

current_record equ 32 ;offset of Current Record field

file__size equ 16 ;offset of File Size field
feb db 37 dup (?)
filename db 17 dup(?)
prompti db “File to copy: $" ;see Function @9H for
prompt2 db “Name of copy: $" ;explanation of $
crif db 13,10,$"
num_recs dw ?
buffer db 32767 dup(?)
func_28H: set_dta buffer ;see Function 1AH
display prompt1 ;5ee Function @9H
get__string 15 filename ;see Function AH
display crlf ;see Function @9H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov feb[current__record],0
;set Current Record
;field
set__relative__record fcb ;see Function 24H
mov ax, word ptr fcb [file__size]
:get file size
mov num__recs,ax ;save it for

;ran__block__write
ran__block__read feb,num__recs,1 THIS FUNCTION

display prompt2 ;see Function 09H
get__string 15 filename ;see Function 0AH
display crif :see Function ¢9H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H
mov feblcurrent__record],@ ;set Current
;Record field
set__relative__record fcb ;see Function 24H

80

Chapter 1/ System Calls

mov ax,
ran__block__write
close fcb

file__length ;get size of original
fcb,num__recs,1 :see Function 28H
:see Function 10H

81

Fname

Parse Filename Function Call 29H

Parses a string for a filename of the form d:filename.ext. If
one is found, a corresponding unopened FCB is created at
a specified location.

Bits 0-3 of AL control the parsing and processing (bits 4-7
are ignored):

Bit Value Meaning

0 0 All parsing stops if a file separator is
encountered.
1 Leading separators are ignored.

1 0 The drive number in the FCB is set to @
(default drive) if the string does not
contain a drive number.

1 The drive number in the FCB is not changed
if the string does not contain a drive
number.

2 0 The filename in the FCB is set to 8 blanks
if the string does not contain a filename.

1 The filename in the FCB is not changed if
the string does not contain a filename.

3 (1] The extension in the FCB is set to 3 blanks
if the string does not contain an
extension.

1 The extension in the FCB is not changed if
the string does not contain an extension.

If the filename or extension includes an asterisk (*), all
remaining characters in the name or extension are set to
question mark (?).

The filename separators are:

= + [] \< > | space b

3)

Filename terminators include all the filename separators plus
all control characters. A filename cannot contain a filename
terminator; if one is encountered, parsing stops.

82

Chapter 1/ System Calls

Entry Conditions:

AH = 29H

DS:SI = pointer to string to parse

ES:DI = pointer to a portion of memory to fill in with an
unopened FCB

AL = controls parsing (see above)

Exit Conditions:

If AL = @@H, then no wild card characters appeared in the
filename or extension.
If AL = O1H, then wild card characters appeared in the
filename or extension.
DS:SI = pointer to the first byte after the string that was
parsed
ES:DI = unopened FCB

Macro Definition:
parse macro string,fcb
mov sioffset string
mov dioffset fcb

push es

push ds

pop es

mov al@FH ;bits @, 1, 2, 3 on
mov ah,29H

int 21H

pop es

endm

83

Chapter 1/ System Calls

Example:

The following program verifies the existence of the file
named in reply to the prompt.

fcb db 37 dup (%)

prompt db “Filename; $"

reply db 17 dup(?)

yes db “FILE EXISTS"13,10,$"

no db “FILE DOES NOT EXIST"13,10,"$"

func__29H: display prompt ;see Function 09H
get__string 15,reply ;see Function 0AH
parse reply[2],fcb THIS FUNCTION
search__first fcb ;see Function 11H
cmp al @FFH ;dir. entry found?
je not__there ;no
display yes ;see Function 09H
jmp continue

not__there: display no

continue:

84

GetDate

Get Date Function Call 2AH

Returns the current date set in the operating system. The date
is returned as binary numbers.

Entry Conditions:
AH = 2AH

Exit Conditions:
CX = year (1980-2099)
DH = month (1 = January, 2 = Febuary, etc.)
DL = day of the montb (1-31)
AL = day of the week (¢ = Sunday, 1 = Monday, elc.)

Macro Definition:
get_date macro

mov ah,2AH
int 21H
endm

Example:

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new
date.

month db 31,28,31,30,31,30,31,31,30,31,30,31

func_2AH: get__date ;see above

inc di ;increment day

xor bx,bx ;50 BL can be used as
;index

mov bl,dh :move month to index
;register

dec bx ;month table starts with @

cmp dl,month|bx] ;past end of month?

jie month__ok :no, set the new date

mov diji ;yes, set day to 1

inc dh ;and increment month

cmp dh,12 ;past end of year?

85

Chapter 1/ System Calls

86

jle

mov

inc
month__ok: set__date

month__ok
dh,1

cX

cx,dh,dl

:no, set the new date
;yes, set the month to 1
;increment year

;see Function 2BH

SetDate

Set Date

Function Call 2BH

Sets the date to a valid date in binary given in CX and DX.

Entry Conditions:

AH = 2BH
X

year (1988-2099)

DH = month (1 = January, 2 = February, eic.)
DL = day of the montb (1-31)

Exit Conditions:

If AL = @0H, the date was valid.
If AL = FFH, the date was not valid and the function was

canceled.

Macro Definition:

set__date macro year,monthday

mov
mov
mov
mov
int

endm

Example:

cxyear
dh,month
dl day
ah,2BH
21H

The following program gets the date, increments the day,
increments the month or year, if necessary, and sets the new

date.
month db 31,28,31,30,31,30,31,31,30,31,30,31
func_2BH: get__date ;see Function 2AH
inc dl ;increment day
xor bx,bx ;50 BL can be used as
;index
mov bl,dh ;move month to index
;register

Chapter 1/ System Calls

88

dec
cmp
jle
mov
inc
cmp
jle
mov
inc
month__ok: set__date

bx
dl,month{bx]
month__ok
dli1

dh

dh,12
month__ok
dh,1

cX

cx,dhdl

;month table starts with @
;past end of month?

;no, set the new date
;yes, set day to 1

;:and increment month
;past end of year?

;no, set the new date
;yes, set the month to 1
;increment year

THIS FUNCTION

GetTime

Get Time

Function Call 2CH

Returns the current time set in the operating system as binary
numbers.

Entry Conditions:

AH = 2CH

Exit Conditions:

CH = bour (9-23)

CL = minutes (¢-59)

DH = seconds (0-59)

DL = bundredths of a second (0-99)

Macro Definition:

Example:

get__time macro

mov ah,2CH
int 21H
endm

The following program continuously displays the time until
any key is pressed.

time db "00:00:00.00",13,10,"$"

ten db 10

func_2CH: get__time THIS FUNCTION
convert ch,ten,time ;see end of chapter
convert clten,time{3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl ten time[9] ;see end of chapter
display time ;see Function @9H
check__kbd__status ;see Function 0BH
cmp al@FFH ;has a key been pressed?
je all_done ;yes, terminate
jmp func__2CH ;no, display time

all__done: ret

89

SetTime

Set Time

Function Call 2DH

Sets the time to a valid time in binary given in CX and DX.

Entry Conditions:

AH = 2DH
CH = bour (0-23)

CL = minutes (6-59)
DH = seconds (4-59)
DL = bundredths of a second (0-99)

Exit Conditions:

If AL = @O0H, the time specified on entry is valid.
If AL = FFH, the time was not valid; the function was
canceled.

Macro Definition:

Example:

90

set_time macro hour,minutes,seconds,hundredths
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths

mov ah,2DH
int 21H
endm

The following program sets the systern clock to @ and
continuously displays the time. When a character is typed,
the display freezes; when another character is typed, the
clock is reset to @ and the display starts again.

time db “00:00:00.00",13,10,8"
ten db 10
func_20H: set_time 0,000 THIS FUNCTION

Chapter 1/ System Calls

read__clock: get__time
convert ch ten.time

stop:

convert cl.ten time[3]
convert dh,ten,time[6]
convert dlten timef9]

display time
dir__console__io FFH
cmp al@@H

jne stop

jmp read__clock
read__kbd

jmp func_2DH

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function @9H
;see Function 06H
;was a char. typed?
;yes, stop the timer
;no keep timer on
;see Function @8H
;keep displaying time

91

SetVerify

Set/Reset Verify Flag Function Call 2EH

Specifies whether each disk write is to be verified or not.
MS-DOS checks this flag each time it writes to a disk.

The verify flag is normally off; you may wish to turn it on
when writing critical data to disk. Because disk errors are
rare and verification slows writing, you will probably want
to leave it off at other times.

Entry Conditions:
AH = 2EH

AL = verify flag
00H = do not verify

@1H = verify
Macro Definition:
verify macro switch
mov alswitch
mov ah,2EH
int 21H
endm

Example:
The following program copies the contents of a single-sided
disk in Drive A to the disk in Drive B, verifying each write.
It uses a buffer of 32K bytes.

on equ 1

off equ 0

prompt db “Source in A, target in B"13,10
db “Any key to start. $”

start dw 0

buffer db 64 dup (512 dup(?)) ;64 sectors

92

Chapter 1/ System Calls

func_2DH:

copy:

disk__read

display prompt
read__kbd
verify on

mov ¢cx,5

push ¢x
abs__disk__read

abs__disk__write

add start,64
pop ¢x

loop copy
verify off
0,buffer,64,start
abs__disk__write

add start,64
pop ¢x

loop copy
verify off

;see Function @9H
;see Function @8H
THIS FUNCTION
;copy 64 sectors
;5 times

;save counter

@,buffer,64,start

;see interrupt 25H

1,buffer,64,start

;see Interrupt 26H
;do next 64 sectors
;restore counter
;do it again

THIS FUNCTION
;see Interrupt 25H

1,buffer,64,start

;see Interrupt 26H
;do next 64 sectors
;restore counter
;do it again

93

GetDTA

Get Disk Transfer Address Function Call 2FH

Returns the Disk Transfer Address.

Entry Conditions:
AH = 2FH

Exit Conditions:
ES:BX = pointer to current Disk Transfer Address

Error Returns:
None.

Example:

Get DTA equ 2FH
mov ahGetDTA
int 21H

94

GetVersion

Get Version Number Function Call 30H

Returns the MS-DOS version number. AL:AH contains the
two-part version designation on return. For example, for MS-
DOS 2.0, AL would contain 2 and AH would contain 0.

Entry Conditions:
AH = 30H

Exit Conditions:
major version number

AL =
AH = minor version number
BH = OEM (original equipment manufacturer) number

BL:CX = 24-bit user number

Error Returns:
None.

Example:

GetVersion equ 30H
mov ah,GetVersion

int 21H

95

KeepProcess

Keep Process Function Call 31H

Terminates the current process and attempts to set the initial
allocation block to the specified size in paragraphs. No other
allocation blocks belonging to that process are freed up. The
exit code passed in AX is retrievable by the parent via
function call 4DH.

This method is preferred over Interrupt 27H and has the
advantage of allowing more than 64K to be kept.

Entry Conditions:

AH = 31H
AL = exit code
DX = memory size in paragraphs

Error Returns:

None.

Example:

KeepProcess equ 3H
mov alexitcode
mov dx,parasize
mov ah,KeepProcess
int 21H

96

SetCtrlCTrapping

CONTROL-C Check Function Call 33H

MS-DOS ordinarily checks for a CONTROL-C on the
controlling device only when performing function call
operations 01H-OCH to that device. Function Call 33H allows
you to expand this checking to include any system call. For
example, with the CONTROL-C trapping off, all disk I/O
proceeds without interruption; with CONTROIL-C trapping
on, the CONTROL-C interrupt is given at the system call that
initiates the disk operation.

Note: Programs that wish to use Function Calls 66H or 07H
to read CONTROI-Cs as data must ensure that the CONTROL-
C check is off.

Entry Conditions:

AH = 33H

AL = function
O0H = Return current state
01H = Set state

DL = switch (if setting state)
00H = Off
01H = On

Exit Conditions:

Error Return:

DL = current state

00H = Off
01H = On
AL = FFH

The function passed in AL was not in the range G0H-01H.

97

Chapter 1/ System Calls

Example:

98

SetCtriCTrapping

equ
mov
mov
mov

33H

dlval

al,func
al,SetCtriCTrapping

GetVector

Get Interrupt Vector

Function Call 35H

Returns the interrupt vector associated with a specified
interrupt. Note that programs should never get an interrupt
vector by reading the low memory vector table directly.

Entry Conditions:

AH = 35H
AL

[l

Exit Conditions:

interrupt number

ES:BX = pointer to interrupt routine

Error Returns:

None.

Example:

GetVector equ
mov
mov
int

35H
al,interrupt
ah,GetVector
21H

99

GetFreeSpace

Get Disk Free Space

Function Call 36H

Returns the amount of free space on the disk along with
additional information about the disk.

Entry Conditions:
AH = 36H

DL = drive (@ = default, 1 = A, etc.)

Exit Conditions:

BX
DX
X
AX

number of free allocation units on drive
total number of allocation units on drive
bytes per sector

sectors per allocation unit or

AX = FFFF (if drive number is invalid)

Error Returns:
AX = FFFFH

The drive number given in DL was invalid.

Example:

GetFreespace equ
mov
mov
int

100

36H

dldrive
ah,GetFreespace
21H

International

Return Country-Dependent Function Call 38H
Information

Returns information pertinent to international applications
in a buffer pointed to by DX:DS. The information is specific
to the country indicated in AL. The value passed in AL is
either @ (for current country) or a country code. Country
codes are typically the international telephone prefix code
for the country.

If DX = -1, this call sets the current country to the country
code in AL. If the country code is not found, the current
country is not changed.

This function is fully supported only in versions of MS-DOS
2.01 and higher. It exists in MS-DOS 2.0, but is not fully
implemented.

101

Chapter 1/ System Calls

This function returns, in the block of memory pointed to
by DS:DX, the following information:

WORD Date/time format

5-BYTE ASCIIZ string
Currency symbol

2-BYTE ASCIIZ string
Thousands separator

2-BYTE ASCIIZ string
Decimal separator

2-BYTE ASCIIZ string
Date separator

2-BYTE ASCIIZ string
Time separator

1-BYTE Bit field

1-BYTE
Currency places

DWORD
Case Mapping call

2-BYTE ASCIIZ string
Data list separator

The format of most of these entries is ASCIIZ (a NUIL
terminated ASCII string), but a fixed size is allocated for each
field for easy indexing into the table.

102

Chapter 1/ System Calls

The date/time format has the following values:

0 - USA standard h:m:s m/d/y
1 - Europe standard h:m:s d/m/y
2 - Japan standard y/m/d h:m:s

The bit field contains 8 bit values. Any bit not currently
defined must be assumed to have a random value.

Bit @ = 0 If currency symbol precedes the currency
amount.
= 1 If currency symbol comes after the currency
amount.
If the currency symbol immediately pre-
cedes the currency amount.
= 1 If there is a space between the currency
symbol and the amount.

Bit 1

[l
S

The time format has the following values:

0 = 12-hour time
1 = 24-hour time

The currency places field indicates the number of places
which appear after the decimal point on currency amounts.

The Case Mapping call is a FAR procedure which performs
country-specific lower-to-upper-case mapping on character
values from 80H to FFH. It is called with the character to
be mapped in AL. It returns the correct upper-case code for
that character, if any, in AL. AL and the FLAGS are the only
registers altered. It is allowable to pass codes below 80H to
this routine; however, nothing is done to characters in this
range. In the case where there is no mapping, AL is not
altered.

Entry Conditions:

AH = 38H
DS:DX = pointer to 32-byte memory area
AL = country code (In MS-DOS 2.0, this must be 0.)

103

Chapter 1/ System Calls

Exit Conditions:
Carry set:
AX = error code

Carry not set:
DX:DS = country data

Error returns:

AX = 2
File not found. The country passed in AL was not found
(no table exists for the specified country).

Example:
Ids dx, blk
mov ah, 38H
mov al, country__code
int 21H

;AX = country code of country returned

104

MkDir

Create Sub-Directory Function Call 39H

Creates a new directory entry at the end of a specified
pathname.

Entry Conditions:

AH = 39H
DX:DS§ = pointer to ASCIIZ patbhname

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX =3
Path not found. The path specified was invalid or not
found.

AX =5
Access denied. The directory could not be created (no
room in the parent directory), the directory/file already
existed, or a device name was specified.

Example:

MkDir equ 39H
lds dx,pathname
mov ah,MkDir
int 21H

105

RmDir

Remove a Directory Entry Function Call 3AH

Removes a specified directory from its parent directory.

Entry Conditions:

AH = 3AH
DS:DX = pointer to ASCIIZ patbhname

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX = 3
Path not found. The path specified was invalid or not
found.

AX =5
Access denied. The path specified was not empty, was
not a directory, was the root directory, or contained
invalid information.

AX = 16
Current directory. The path specified was the current
directory on a drive.

Example:

RmDir equ 3AH
lds dx,pathname
mov ah,RmDir
int 21H

106

ChDir

Change the Current Function Call 3BH
Directory

Sets the current directory to the directory specified. If any
member of the specified pathname does not exist, then the
current directory is unchanged.

Entry Conditions:

AH = 3BH
DS:DX = pointer to ASCIIZ pathname

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

A=23
Path not found. The path specified either indicated a
file or the path was invalid.

Example:

ChDir equ 3BH
Ids dx,pathname
mov ah,ChDir
int 21H

107

Create

Create a File Function Call 3CH

Creates a new file or truncates an old file to zero length in
preparation for writing. If the file did not exist, then the file
is created in the appropriate directory and the file is given
the attribute(s) found in CX. (See the section ‘‘Disk
Directory” in Chapter 4 for a discussion of file attributes.)
The file handle returned has been opened for read/write
access.

Entry Conditions:

AH = 3CH
DS:DX = pointer to ASCIIZ patbname
CX = file attribute(s)

Exit Conditions:

Carry set:
AX = error code
Carry not set:
AX = file bandle number

Error Returns:

AX =5
Access denied. The attributes specified in CX included
one that could not be created (directory, volume ID), a
file already existed with a more inclusive set of attibutes,
or a directory existed with the same name.

AX = 3
Path not found. The path specified was invalid.
AX = 4

Too many open files. The file was created with the
specified attributes but there were no free handles
available for the process, or the internal system tables
were full.

108

Chapter 1/ System Calls

Example:

Creat

equ
lds
mov
mov
int

3CH
dx,pathname
cx attribute
ahCreat

21H

109

Open

Open a File Function Call 3DH

Opens a file. The following values are allowed for the access
code:

0 - The file is opened for reading.
1 - The file is opened for writing.
2 - The file is opened for both reading and writing.

The read/write pointer is set at the first byte of the file and
the record size of the file is 1 byte. The returned file handle
must be used for subsequent 1/O to the file.

Entry Conditions:

AH = 3DH
DS:DX = pointer to ASCIIZ pathname for file to open
AL = access code (0 = read, 1 = write, 2 = read and write)

Exit Conditions:

Carry set:
AX = error code
Carry not set:
AX = file bandle number

Error Returns:

AX = 12
Invalid access. The access specified in AL was not in the
range @ - 2.

AX =2
File not found. The path specified was invalid or not
found.

AX =5
Access denied. The user attempted to open a directory
or volume ID, or open a read-only file for writing.

AX = 4
Too many open files. There were no free handles
available in the current process or the internal system
tables were full.

110

Chapter 1/ System Calls

Example:

Open

equ
lds
mov
mov
int

3DH
dx,pathname
al,access
ah,Open

21H

i

Close

Close a File Handle Function Call 3EH

Closes the file associated with a specified file handle. Internal
buffers are flushed.

Entry Conditions:

AH = 3EH
BX = file handle for file to close

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Return:

AX = 6
Invalid handle. The handle passed in BX was not
currently open.

Example:

Close equ 3EH
mov bx,handle
mov ahClose
int 21H

112

Read

Read from a File or Device Function Call 3FH

Transfers a specified number of bytes from a file into a buffer
location. It is not guaranteed that all bytes will be read; for
example, reading from the keyboard will read at most one
line of text. If the returned value for number of bytes read
is zero, then the program tried to read from the end of file.

All I/O is done using normalized pointers; no segment wrap-
around will occur. (This means that MS-DOS takes the
pointer you specify in DS:DX and modifies it so that DX is
G00FH or smaller.)

Entry Conditions:

AH = 3FH

DS:DX = pointer to buffer

CX = number of bytes to read

BX = file bandle for the file to read

Exit Conditions:

Carry set:)
AX = error code
Carry not set:
AX, = number of bytes read

Error Returns:
AX =6
Invalid handle. The handle passed in BX is not currently
open.
AX =5
Access denied. The handle passed in BX was opened in
a mode that did not allow reading.

113

Chapter 1/ System Calls

Example:

114

Read

equ
Ids
mov
maov
mov
int

3FH
dx,buffer
cx,count
bx,handle
ah,Read
21H

Write

Write to a File or Device Function Call 40H

Transfers a specified number of bytes from a buffer into a
file. If the number of bytes written is not the same as the
number requested, then an error has occurred.

If the number of bytes to be written is zero, the file size is
set to the current position. Allocation units are allocated or
released as required.

All I/O is done using normalized pointers; no segment wrap-
around will occur. (This means that MS-DOS takes the
pointer you specify in DS:DX and modifies it so that DX is
QOOFH or smaller.)

Entry Conditions:

AH = 40H

DS:DX = pointer to buffer

CX = number of bytes to write
BX = file handle for file to write

Exit Conditions:

Carry set:
AX = error code
Carry not set:
AX = number of bytes written

Error Returns:
AX =6
Invalid handle. The handle passed in BX is not currently
open.
AX =5
Access denied. The handle passed in BX was opened
in a mode that did not allow writing.

115

Chapter 1/ System Calls

Example:

116

Write

equ
Ids
mov
mov
mov
int

40H
dx,butfer
cx,count
bx,handle
ah Write
21H

Unlink

Delete a Directry Entry Function Call 41H

Removes a directory entry associated with a specified
filename.

Entry Conditions:

AH = 41H
DS:DX = pointer to pathname

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX = 2
File not found. The path specified was invalid or not
found.

AX = 5
Access denied. The path specified was a directory or was
read only.

Example:

Unlink equ 4H
Ids dx,pathname
mov ah,Unlink
int 21H

117

LSeek

Move a File Pointer Function Call 42H

Moves the read/write pointer a specified number of bytes
according to the following methods:

@ - The pointer is moved to the specified offset from
the beginning of the file.

1 - The pointer is moved to the current location plus
the offset.

2 - The pointer is moved to the end of file plus the
offset.

Entry Conditions:

AH = 42H

CX:DX = distance to move the pointer, offset in bytes (CX
contains the most significant part)

metbod of moving (0, 1, or 2; see above)

file bandle

AL
BX

Exit Conditions:

Carry set:
AX = error code
Carry not set:
DX:AX = new file pointer position

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not currently
open.

AX =1
Invalid function. The function passed in AL was not in
the range 0-2.

118

Chapter 1/ System Calls

Example:

LSeek

equ
mov
mov
mov
mov
mov
int

42H

dx offsetlow
cx,offsethigh
al,method
bx,handle
ah,LSeek
21H

119

ChMod

Change Attributes Function Call 43H

Gets the attributes of a file, or sets the attributes of a file
to those specified. (See the section “Disk Directory” in
Chapter 4 for a description of file attributes.)

Entry Conditions:

AH = 43H
DS:DX = pointer to ASCIIZ patbname of file
AL = function number
O1H = set file’s attributes to those in CX
O0H = return file's attributes in CX
CX = attribute(s) to be set

Exit Conditions:

Carry set:
AX = error code
Carry not set:
CX = current attribute(s) (if AL = @00H on entry)

Error Returns:

AX =3
Path not found. The path specified was invalid.
AX = 5

Access denied. The attributes specified in CX included

one that could not be changed (directory, volume ID).
AX =1

Invalid function. The function passed in AL was not in

the range ¢-1.

Example:

ChMod equ 43H
Ids dx,pathname
mov dx,attribute
mov al,function
mov ah,43H
int 21H

120

Ioctl

I/0 Control for Devices Function Call 44H

Gets or sets device information associated with an open
handle, or sends or receives a control string to a device
handie or device.

The following values are allowed for the function code
passed in AL:

@ — Get device information (returned in DX).
1 — Set device information (as determined by DX).
2 — Read the number of bytes indicated in CX from

the device control channel into buffer pointed to
by DS:DX. (BX = file handle.)

3 — Write the number of bytes indicated in CX to the
device control channel from the buffer pointed
to by DS:DX. (BX = file handle.)

— Same as 2, but use the drive number in BL.

— Same as 3, but use the drive number in BL.

— Get input status.

7 — Get output status.

[«) RV TN

You can use this system call to get information about device
channels. In addition, you can make calls on regular files
using function values @, 6, and 7; other function values return
an “Invalid function’ error.

Calls AL=0 and AL=1:
The bits of DX are defined as follows. Note that the upper
. byte must be zero on a set call (A=1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R|cC blEIR|s|11]i]1
e | T s{o[alP|s|s|s|s
s |R Reserved DIFIW]E|C|N|C]|C
L E clejulof!
v LIK[L|T([N

121

Chapter 1/ System Calls

ISDEV = 1 if this channel is a device.
= Q if this channel is a disk file (bits 8-15 = @ in
this case)
If ISDEV =1:
EOF = @ if end of file on input.
RAW = 1 if this device is in Raw mode (literal mode

with no interpretation given to characters).
@ if this device is cooked (normal mode where

the device interprets the characters).
SPECL =1 if this device is special.

ISCLK =1 if this device is the clock device.

ISNUL =1 if this device is the null device.

ISCOT =1 if this device is the console output.

ISCIN =1 if this device is the console input.

CTRL = @if this device cannot process control strings
via calls AL=2 and AL =3.

CTRL =1 if.this device can process control strings via
calls AL = 2 and AL = 3. Note that the CTRL bit
cannot be set by the Ioctl system call.

If ISDEV = 0:
EOF = @ if channel has been written.

Bits ®-5 are the block device number for the
channel (0 =A, 1 = B, etc).

Bits 4, 8-13, and 15 are reserved and should not be altered.

Calls AL=2, AL=3, AL=4, and AL=35:

These four calls allow arbitrary control strings to be sent or
received from a device. The call syntax is the same as for
the read and write calls, except for calls AL =4 and AL=5
which pass a drive number in BL instead of a handle in BX.

An “Invalid function” error is returned if the CTRL bit is zero.
An “Access denied” error is returned by calls AL=4 and
AL =5 if the drive number is invalid.

Calls AL=6 and AL=17:

122

These calls allow you to check to see if a file handle is ready
for input or output. Checking the status of handles open to
a device is the intended use of these calls. Checking the status
of a handle open to a disk file is also allowed, and is defined
as follows:

Chapter 1/ System Calls

Input: Always ready (AL =FFH) until end of file is
reached, then always not ready (AL = 0@H) unless
the current position is changed via the Move a File
Pointer function call (42H).

Output: Always ready (even if disk is full).

NOTE: The status is defined at the time the system is called.
In future versions of MS-DOS, by the time control is returned
to the user from the system, the status returned may not
correctly reflect the true current state of the device or file.

Entry Conditions:

AH = 44H

BX = bandle

BL = drive (@ =default, 1=A, etc.) (for calls AL = 4, 5)
DS:DX = pointer to data or buffer

CX = number of bytes to read or write

AL = function code (0-7; see below)

Exit Conditions:

i Carry set:
1 AX = error code
| Carry not set:
For calls AL=2, 3, 4, 5:
AX = number of bytes transferred
For calls AL =6,7:
AX = QOH (not ready)
or
AX = FFH (ready)

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not currently
open.

AX =1
Invalid function. The function passed in AL was not in
the range 0-7.

AX = 13
Invalid data.

[123

Chapter 1/ System Calls

Example:

124

AX

locti

=5

Access denied (for calls AL = 4, 5, 6, 7).

(or

equ
mov
mov
mov
Ids

mov

mov
mov
int

44H

bx, handle
bl, drive
dx, data
dx, buffer
dx, count

al, function
ah, loct!
21H

for calls AL =4,5)

and
for calis AL =2,
3 4, 5)

P e

Dup

Duplicate a File Handle Function Call 45H

Takes an already opened file handle and returns a new handle
that refers to the same file at the same position.

Entry Conditions:

AH = 45H
BX = file bandle to duplicate

Exit Conditions:

Carry set:

AX = error code
Carry not set:

AX = new file handle

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not currently
open.

AX = 4
Too many open files. There were no free handles
available in the current process or the internal system
tables were full.

Example:

Dup equ 45H
mov bx, handle
mov ah, Dup
int 21H

125

Dup?2

Force a Duplicate of a Function Call 46H
File Handle

Takes an already opened file handle and returns a new handle
that refers to the same file at the same position. If there was
already a file open on the handle specified in CX, it is closed
first.

Entry Conditions:

AH = 46H
BX = existing file bandle
CX = new file bandle

N

it

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX = 6
Invalid handle. The handle passed in BX is not currently
open.

AX = 4
Too many open files. There were no free handles
available in the current process or the internal system
tables were full.

Example:

Dup2 equ 46H
mov bx, handle
mov ¢x, newhandle
mov ah, Dup2
int 21H

126

CurrentDir

Return Text of Current Function Call 47H
Directory

Returns the current directory for a particular drive. The
directory is root-relative and does not contain the drive
specifier or leading path separator.

Entry Conditions:
AH = 47H
DS:SI = pointer to G4-byte memory area to receive directory
DL = drive (d=default, 1=A, 2=B, etc.)

Exit Conditions:

Carry set:
AX = error code
Carry not set:
DS:DI = pointer to 64-byte area containing directory

Error Returns:

AX = 15
Invalid drive. The drive specified in DL was invalid.

Example:

CurrentDir equ 47H
Ids si, area
mov dl, drive
mov ah, CurrentDir
int 21H

127

Alloc

Allocate Memory Function Call 48H

Returns a pointer to a free block of memory that has the
requested size in paragraphs.

Entry Conditions:

AH = 48H
BX size of memory to be allocated, in paragraphs

Exit Conditions:

Carry set:
BX = maximum size that could be allocated, in
Dbaragrapbs (if the requested size was not available)
Carry not set:
AX:0 = pointer to the allocated memory

Error Returns:

AX =8
Not enough memory. The largest available free block is
smaller than that requested or there is no free block.
AX = 7
Arena trashed. The internal consistency of the memory
arena has been destroyed. This is due to a user program
changing memory that does not belong to it.

Example:

Alloc equ 48H
mov bx, size
mov ah, Alloc
int 21H

128

Dealloc

Free Allocated Memory Function Call 49H

Returns to the system pool a piece of memory that was
allocated by the Allocate Memory function call (48H).

Entry Conditions:

AH = 49H
ES = segment address of memory area to be freed

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX = 9
Invalid block. The block passed in ES is not one
allocated via the Allocate Memory function call (48H).

AX = 7
Arena trashed. The internal consistency of the memory
arena has been destroyed. This is due to a user program
changing memory that does not belong to it.

Example:

Dealloc equ 49H
mov es, block
mov ah, Dealloc
int 21H

129

SetBlock

Modify Allocated Memory Function Call 4AH
Blocks

Attempts to “grow” or ‘‘shrink’” an allocated block of
memory.

Entry Conditions:

AH = 4AH
ES = segment address of memory area
BX = requested memory area size, in paragraphs

Exit Conditions:

Carry set:

BX = maximum size possible, in paragrapbs (if the
requested size was not available on a grow
request)

Carry not set:

No error.

Error Returns:

AX =9
Invalid block. The block specified in ES is not one
allocated via this call.

AX = 7
Arena trashed. The internal consistency of the memory
arena has been destroyed. This is due to a user program
changing memory that does not belong to it.

AX = 8
Not enough memory. There was not enough free
memory after the specified block to satisfy the grow
request.

Example:

SetBlock equ 4AH
mov es, block
mov bx, newsize
mov ah, SetBlock
int 21H

130

Exec

Load and Execute a Program Function Call 4BH

Allows a program to load another program into memory and
optionally begin execution of it.

A function code is passed in AL:

0 - Load and execute the program. A Program
Segment Prefix is established for the program and
the terminate and CONTROL-C addresses are set
to the instruction after the Exec function call.

3 - Load the program, do not create the program
segment prefix, and do not begin execution. This
is useful in loading program overlays.

For each value of AL, the parameter block pointed to by
ES:BX has the following format:

AL = 0 Load and execute program

WORD segment address of environment string

DWORD pointer to command line to be placed at
PSP + 80H

DWORD pointer to default FCB to be passed at
PSP + S5CH

DWORD pointer to default FCB to be passed at
PSP + 6CH

AL =3 Load overlay

WORD segment address where file will be loaded

WORD relocation factor to be applied to the image

131

i
x
z
.
1
|

o RS R R TR R

Chapter 1/ System Calls

132

For function AL = @, there must be enough free memory
for MS-DOS to load the program. For function AL = 3, it
is assumed that the program doing the loading will load the
overlay into its own memory space, 5o no free memory is
needed.

Note that all open files of a process are duplicated in the child
process after an Exec call. This is extremely powerful; the
parent process has control over the meanings of stdin,
stdout, stderr, stdaux, and stdprn. The parent could, for
example, write a series of records to a file, open the file as
standard input, open a listing file as standard output, and
then Exec a sort program that takes its input from stdin and
writes to stdout.

Also inherited (or passed from the parent) is an
“environment.” This is a block of text strings (less than 32K
bytes total) that convey various configuration parameters.
The format of the environment is as follows:

(paragraph boundary)

BYTE ASCIIZ string 1

BYTE ASCIIZ string 2

BYTE ASCIIZ string n

BYTE of zero

Typically the environment strings have the form:
parameter = value

For example, COMMAND.COM might pass its execution
search path as:

PATH = A: BIN;B: BASIC LIB

A zero value of the environment address causes the child
process to inherit a copy of the parent’s environment
unchanged.

Chapter 1/ System Calls

Entry Conditions:

AH

= 4BH

DS:DX = pointer to ASCIIZ pathname
ES:BX = pointer to parameter block

AL

Exit Conditions:

= function code
00H = load and execute program
#3H = load program

Carry set:

AX = error code

Carry not set:

Error Returns:

Example:

AX

AX

AX

AX

AX

Exec

No error.

=1

Invalid function. The function passed in AL was not @,
1, or 3.

= 10

Bad environment. The environment was larger than 32K
bytes.

=11

Bad format. The file pointed to by DS:DX was an EXE
format file and contained information that was
internally inconsistent.

= 8

Not enough memory. There was not enough memory
for the process to be created.

=2

File not found. The path specified was invalid or not
found.

equ 4BH

Ids dx, pathname
les bx, block
mov al, function
mov ah, Exec

int 21H

133

Exit

Terminate a Process

Terminates the current process and transfers control to the
invoking process. In addition, a return code may be sent.
All files open at the time are closed.

This method is preferred over all others (Interrupt 20H, JMP

a).

Entry Conditions:
AH = 4CH

AL = return code

Error Returns:

None.
Example:
Exec equ
mov
mov

int

134

4CH
al, code
ah, Exit
21H

Function Call 4CH

Wait

Retrieve the Return Code Function Call 4DH
of a Child

Returns the Exit code specified by a child process. It returns
this Exit code only once. The low byte of this code is that
sent by the Keep Process function call (31H). The high byte
indicates the circumstances that caused the child to
terminate, and is one of the following:

o - Terminate/abort

1 - CONTROL-C

2 - Hard error

3 Terminate and stay resident

Entry Conditions:
AH = 4DH

] Exit Conditions:
AH = exit code

Error Returns:

None.
-, Example:
Wait equ 4DH
mov ah, Wait
{ int 21H

| W S o e AT

135

FindFirst

Find Matching File Function Call 4EH

Takes a pathname with wild-card characters in the filename
portion and a set of attributes and attempts to find a file that
matches the pathname and has a subset of the required
attributes. If one is found, a data block at the current Disk
Transfer Address is written. The block contains information
in the following form:

21 bytes - Reserved for MS-DOS use on subsequent
FindNext function calls (4FH)

1 byte - Attribute found

2 bytes - Time of file

2 bytes - Date of file

2 bytes - Least significant word of file size

2 bytes - Most significant word of file size

13 bytes - Packed filename and extension

To obtain the subsequent matches of the pathname, see the
description of the FindNext function call (4FH).

Entry Conditions:
AH = 4EH
DS:DX = potnter to ASCIIZ pathrname
CX = search attributes

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:
AX = 2
File not found. The path specified in DS:DX was an
invalid path.
AX = 18
No more files. There were no files matching this
specification.

136

e Y

L L T

Chapter 1/ System Calls

Example:
FindFirst

equ
lds
mov
mov
int

4EH

dx, pathname
cx, attribute
ah, FindFirst
21H

137

FindNext

Find Next Matching File Function Call 4FH

Finds the next matching entry in a directory. The current
Disk Transfer Address must contain the block returned by
the FindFirst function call (4EH).

Entry Conditions:
AH = 4FH

Exit Conditions:

Carry set:
AX = error code
Carry not set;

No error.
Error Returns:
AX = 18
No more files. There are no more files matching this
pattern.

Example:

FindNext equ 4FH
;DTA contains block returned by

;FindFirst
mov ah, FindNext
int 21H

138

GetVerifyFlag

Return Current Setting Function Call 54H
of Verify

Returns the current setting of the verify flag.

Entry Conditions:
AH = 54H

Exit Conditions:
AL = current verify flag value

00H = off
01H = on
Error Returns:
None.
Example:
GetVerifyFlag equ 54H
mov ah, GetVerifyFlag

int 21H

139

Rename

Move a Directory Entry Function Call 56H

Renames 2 file and/or moves it to another directory. This is
done by giving the file a new filename, path, or both. The
drive for both paths must be the same.

Entry Conditions:

AH = 56H
DS:DX = pointer to ASCIIZ patbhname of existing file
ES:DI = pointer to new ASCIIZ pathname

Exit Conditions:

Carry set:

AX = error code
Carry not set:

No error.

Error Returns:

AX =2
File not found. The filename specified by DS:DX was
not found.

AX = 17
Not same device. The source and destination are on
different drives.

AX =5
Access denied. The path specified in DS:DX was a
directory, the file specified by ES:DI already exists, or
the destination directory entry could not be created.

Example:

Rename equ 56H
lds dx, source
les di, destination
mov ah, Rename
int 21H

140

FileTimes

Get or Set a File’s Date Function Call 57H
and Time

Returns or sets the date and time of last write for a file
handle. The date and time are not recorded until the file is
closed.

Entry Conditions:

AH = 57H

AL = function code
0QOH = get date and time
01H = set date and time

BX = file bandle

CX = time to be set (if AL

DX = date to be set (if AL

01H)
01H)

Exit Conditions:

Carry set:
AX = error code
Carry not set:
If AL = 00H on entry:
CX = time of last write
DX = date of last write

Error Returns:
AX =1
Invalid function. The function passed in AL was not @
or 1.
AX = 6
Invalid handle. The handle passed in BX was not
currently open.

141

Chapter 1/ System Calls

Example:

142

FileTimes

equ
mov
mov

mov
mov
mov
int

57H

al, function

bx, handle

;if al = 1 then the next two are
;mandatory

cx, time

dx, date

ah, FileTimes

21H

Chapter 1/ System Calls

Macro Definitions for MS-DOS System
Call Examples

Interrupts
terminate macro ;PROGRAM_TERMINATE
int 20H ;interrupt 20H
endm
;ABS_DISK__READ
abs__disk__read macro disk,buffer,num__sectorsfirst__sector
mov al,diskmov bx,offset buffer
mov €x,num__sectors
mov dx,first__sector
int 25H ;interrupt 25H
popf
endm
JABS_DISK_WRITE
abs__disk__write macro disk,buffer,num__sectorsfirst__sector
mov al disk
mov bx,offset buffer
mov cx,num__sectors
mov dx,first_sector
int 26H ;interrupt 26H
popf
endm
stay__resident macro last__instruc ;STAY_RESIDENT
mov dx,offset last__instruc
inc dx
int 27H ;interrupt 27H
endm
Functions
terminate__program macro TERMINATE PROGRAM
xor ah,ah ;function 00H
int 21H
endm
read__kbd__and__echo macro ‘READ__KBD__AND__ECHO
: mov ah,1 function @1H
int 21H
endm

143

Chapter 1/ System Calls

display__char macro character

mov dl,character
mov ah,2
int 21H
endm
aux__input macro
mov ah3
int 21H
endm

aux__output macro

mov dl,character
mov ah4

int 21H

endm

print__char macro character

mov di,character
mov ah,5

int 21H

endm

dir__console__io macro switch

mov dl,switch
mov ah,6
int 21H
endm
dir__console__input macro
mov ah,7
int 21H
endm
read__kbd macro
mov ah8
int 21H
endm
dispiay macro string
mov dx,offset string
mov ahg
int 21H
endm

144

;DISPLAY__CHAR

;function 82H

JAUX_INPUT
function @3H

JAUX_OUTPUT

;function 04H

iPRINT__CHAR

;function @5H

;DIR_CONSOLE_[O

;function @6H

;DIR_CONSOLE__INPUT
;unction @7H

;READ_KBD
:function @8H

;DISPLAY

;function @9H

Chapter 1/ System Calls

get__string macro limit,string

mov dx,offset string
mov string, limit
mov ah,0AH
int 21H
endm

check__kbd__status macro
mov ah,0BH
int 21H
endm

flush_and__read__kbd macro switch

mov al,switch
mov ah,0CH
int 21H
endm
reset__disk macro disk
mov ah,0DH
int 21H
endm
select__disk macro disk
mov dl disk[-65]
mov ah,0EH
int 21H
endm
open macro fcb
mov dx,offset fcb
mov ah,0FH
int 21H
endm
close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H
endm
search__first macro fcb
mov dx,offset fcb
mov ah,11H
int 21H
endm

;GET__STRING

;function 0AH

;CHECK__KBD__STATUS
;function 08H

;FLUSH__AND__READ__K8D

;function OCH

:RESET DISK
;function ODH

;SELECT__DISK

:function QEH

;OPEN

:function OFH

;CLOSE

;function 16H

;SEARCH_FIRST

:Function 11H

145

Chapter 1/ System Calls

146

search__next macro fch

mov dx,offset fcb
mov ah,12H
int 214
endm
delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm
read__seq macro fcb
mov dx,offset fch
mov ah,14H
int 21H
endm
write__seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm
create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm
rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm
current__disk macro
mov ah,19H
int 21H
endm
set__dta macro buffer
mov dxoffset buffer
mov ah,1AH
int 21H
endm

SEARCH__NEXT

;function 12H

;DELETE

;function 13H

;READ__SEQ

;function 14H

WRITE_SEQ

;function 15H

;CREATE

;function 16H

;RENAME

;function 17H

;CURRENT__DISK
;function 19H

;SET_DTA

;function 1AH

Chapter 1/ System Calls

read__ran macro fcb ;READ__RAN
mov dx,offset fcb
mov ah,21H ;function 21H
int 21H
endm

write__ran macro fcb WRITE_RAN
mov dx,offset fcb
mov ah,22H ;function 22H
int 21H
endm

file__size macro fcb ;FILE_SIZE
mov dx,offset fch
mov ah,23H ;function 23H
int 21H
endm

set__relative__record macro fch :SET__RELATIVE_RECORD
mov dx,offset fch
mov ah,24H :function 24H
int 21H
endm

set__vector macro interrupt,seg__addr,off__addr ;SET__VECTOR

push
mov
mov
mov
mov
mov
int
pop
endm

ds

ax,seg__addr

ds,ax

dx,off__addr

al,interrupt

ah,25H ;function 25H
21H

ds

ran__block__read macro fch,count,rec__size ;RAN__BLOCK_READ

mov
mov
mov
mov
int
endm

dx,offset fcb

cx,count

word ptr fcb[@EH],rec__size

ah,27H ‘function 27H
21H

147

Chapter 1/ System Calls

ran__block__write macro fcb,count,rec__size ‘RAN__BLOCK__WRITE

mov
mov
mov
mov
int
endm

dx,offset fcb
cx,count

word ptr fcb[@EH],rec__size

ah,28H
21H

parse macro string,fcb

mov
mov
push
push
pop
mov
mov
int
pop
endm

si,offset string
di,offset fcb
es

ds

es

al,oFH
ah,29H

21H

es

get__date macro

mov
int
endm

ah,2AH
21H

set__date macro year,monthday

mov
mov
mov
mov
int
endm

cxyear
dh,month
dlday
ah,2BH
21H

get__time macro

mov
int
endm

ah,2CH
21H

-function 28H

;PARSE

-function 29H

‘GET__DATE
‘function 2AH

:SET__DATE

-function 2BH

‘GET_TIME
-function 2CH

:SET__TIME

set__time macro hour,minutes,seconds,hundredths

mov
mov
mov
mov
mov
int
endm

148

ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,2DH

21H

:function 2DH

Chapter 1/ System Calls

General

verify macro switch

move__string macro

mov
mov
int
endm

rep

convert

table
start:

al,switch
ah,2EH

21H

push
mov
mov
assume
mov
mov
mov
movs
assume
pop
endm

macro
local
jmp
db
mov
xor
xor
div
mov
mov
mov
mov
mov
mov
endm

VERIFY

;function 2EH

source,destination,num__bytes
‘MOVE__STRING

es
ax,ds
es,ax
es:data
si,offset source
di,offset destination
cx,num__bytes
es:destination,source
es:nothing
es

value,base,destination ;CONVERT
table,start

start
“0123456789ABCDEF”
al,value

ah,ah

bx,bx

base

bl,al

al,cs:table[bx]
destination,al

bl,ah

al,cs:table(bx]
destination[1],al

convert__to__binary macro string,numbervalue

ten

local
jmp
db

:CONVERT__TO__BINARY
ten,start,calc,muit,no__muit
start
10

149

Chapter 1/ System Calls

start: mov
xor
mov
xor
calc: xor
mov
sub
cmp
it
push
dec
mult; mul
loop
pop
no_mult: add
inc
loop
endm

convert__date macro
mov
mov
shr
mov
and
xor
mov
shr
add
endm

valued
€X,CX
cl,number
si,si

ax,ax
al,string[si]
al, 48

cx,2
no__mult
cx

cx

cs:ten
mult

cX
value,ax
si

caic

dir__entry ;CONVERT DATE
dx,word ptr dir__entry[25]
cl5

dicl

dh,dir__entry[25]

dh,1th

€X,exX

cldir__entry[26]

cli

cx,1980

Extended Example of MS-DOS System Calls

150

title DISK DUMP

zero equ
disk__B equ
sectors__per__read equ
cr equ
blank equ
period equ
tilde equ

0
1
9
13
32

46
126

INCLUDE B:CALLS.EQU

,subttl DATA SEGMENT
page +

Chapter 1/ System Calls

data segment

input__buffer db
output__buffer db

db
start__prompt db
sectors_prompt db
continue__prompt db

header db
end__string db
crlf db
table db
ten db
sixteen db
start__sector dw
sector__num label
sector__number dw
sectors__to__dump dw
sectors__read dw
buffer label
max__length db
current__length db
digits db

data ends

subttl STACK SEGMENT
page +

9 dup(512 dup(?))

77 dup(")

O0DH,QAH,‘$”

“Start at sector: $”
“Number of sectors: $”
“RETURN to continue $”
“Relative sector $"
ODH,0AH,0AH07H,"ALL DONES$"”
;DELETE THIS
ODHQAH,"$”
9123456789ABCDEFS”

10
16

1

byte

0
sectors__per__read
0

byte

]

0

5 dup(?)

stack segment stack
dw 100 dup(?)
stack__top label word

stack ends

subttl MACROS
page +

INCLUDE B:CALLS.MAC

;BLANK LINE

blank__line macro
local
push
call
mov

number
print__it

cX
clear_line
cx,number

151

Chapter 1/ System Calls

152

print_it: display
loop
pop
endm

subttl ADDRESSABILITY
page +

code segment
assume

start: mov
mov
mov
mov
mov
jmp
subttl PROCEDURES
page +

- PROCEDURES
; READ__DISK
read__disk proc;
cmp
jle
mov
mov
mov
mov
cmp
jle
mov
get__sector: push
int
popf
pop
sub
add
mov
xor
done: ret
read__disk endp
:CLEAR_LINE
clear__line proc;
push
mov
xor
move_ blank: mov

output__buffer
print__it
cX

¢s:code,ds:data,ss:stack
ax,data

ds,ax

ax,stack

85,ax

sp,offset stack__top

main__procedure

sectors__to__dump,zero
done

bx,offset input__buffer
dx,start__sector
aldisk_b
cx,sectors__per__read
cx,sectors__to__dump
get__sector
cx,sectors__to__dump
cx

disk__read

cx
sectors__to__dump,cx
start__sector,cx
sectors__read,cx

si,si

cx

cx,77

bx,bx
output__buffer(bx], <

Chapter 1/ System Calls

clear__line

;PUT__BLANK
put__blank

put__blank

1
'

setup

setup

;CONVERT __LINE
convert__line

convert__it:

display__ascii:

inc
loop
pop
ret
endp

proc;
mov
inc
ret
endp

proc;
display

get__string

display

bx
move__blank
cx

output__buffer[di],*
di

start__prompt
4 buffer
crif

convert__to__binary digits,
current__length,start__sector

mov
mov
display

get__string

ax,start__sector
sector__number,ax
sectors__prompt
4,buffer

convert__to__binary digits,
current__length,sectors__to__dump

ret
endp

proc;
push
mov
mov
convert

inc
add
call
loop
sub
mov
add
mov
cmp
jl
cmp

X

di9

cx,16
input__buffer[si],sixteen,
output__buffer[di]

si

di,2

put__blank

convert_it

si,16

cx,16

di4
output__buffer[di], period
input__buffer{si],blank
non__printable
input__bufferfsi] tilde

153

Chapter 1/ System Calls

ig non__printable

printable: mov d!,input_butfer{si

mov output__bufter[di].d!
non__printable: inc si

inc di

loop display__ascii

pop X

ret

convert__line endp

:DISPLAY__SCREEN
display__screen proc;

push cx
call clear__line
mov cx,17
:| WANT length header
dec cx
:minus 1 in ¢x
xor di,di
move__header: mov al,header[di]
mov output__buffer|di].al
inc di
loop move__header ;FIX THIS!
convert sector__num|1],sixteen,
output__buffer[di]
add di,2
convert sector__num,sixteen,
output__buffer[di]
display output__buffer
blank__line 2
mov cx,16
dump__it: call clear_line
call convert__line
display output__buffer
loop dump__it
blank__line 3
display continue__prompt
get_ char__no__echo
display crif
pop cx
ret

display__screen endp

154

Chapter 1/ System Calls

; END PROCEDURES
subttl MAIN PROCEDURE

page +
main__procedure: call setup
check__done: cmp sectors__to__dump,zero
ing all__done
call read__disk
mov cx,sectors__read
display__it: call display__screen
call display__screen
inc sector_number
Joop display__it
jmp check__done
all__done: display end__string
get__char__no__echo
code ends
end start

155

156

Chapter 2

MS-DOS Control Blocks
and Work Areas

File Control Block (FCB)

The Program Segment Prefix includes room for two FCBs
at offsets SCH and 6CH. The system call descriptions refer
to unopened and opened FCBs. An unopened FCB is one
that contains only a drive specifier and filename, which can
contain wild card characters (* and ?). An opened FCB
contains all fields filled by the Open File function call
(Function OFH) or the Create File function call (16H).

The user program must set bytes @0H-0FH and 20H-24H. The
operating system sets bytes 10H-1FH; they must not be altered
by the user program.

The fields of the FCB are as follows:
Offset Function

00H Drive number. 1 means Drive A, 2 means Drive
B, etc. If the FCB is to be used to create or open
a file, this field can be set to @ to specify the
default drive; the Open File function call
(Function QFH) sets the field to the number of the
default drive.

01H-08H Filename. Consists of eight characters, left-
justified and padded (if necessary) with blanks.
If you specify a reserved device name (such as
LPT1), do not include the optional colon.

09H-0BH Filename extension. Consists of three characters,
left-justified and padded (if necessary) with
blanks. This field can be all blanks (no extension).

OCH-0DH Current block. This is the number of the block
(group of 128 records) that contains the current
record. This field and the current record field
(offset 20H) are used for sequential reads and
writes. This field is set to @ by the Open File
function call.

157

Chapter 2 / MS-DOS Control Blocks and Work Areas

158

OEH-0FH

10H-13H

14H-15H

16H-17H

18H-1FH
20H

21H-24H

Logical record size in bytes. Set to 128 by the Open
File function call. If the record size is not 128
bytes, you must set this field after opening the file.

File size in bytes. The first word of this field is
the low-order part of the size.

Date of last write. The date the file was created
or last updated. The year, month, and day are
mapped into two bytes as follows:

Offset 15H
Y| Y[Y | Y[Y| Y| Y[|M|
15 14 13 12 11 10 9

Offset 14H
/M| M| M| D|D|D|D]|D|
7 6 5 4 3 2 1

Time of last write. The time the file was created
or last updated. The hour, minutes, and seconds
are mapped into two bytes as follows:

Offset 17H
| Hl H | H| H|H | M| M|M|
15 14 13 12 11 10 9 8

Offset 16H
M| M| M| S | s
7 6 5 4 3

Reserved for system use.

s | s |
21

S »w

Current record number. This is one of the 128
records (@ - 127) in the current block. This field
and the current block field (offset @CH) are used
for sequential reads and writes. This field is not
initialized by the Open File function call. You
must set it before doing a sequential read or write
to the file.

Relative record number. This is the number of the
currently selected record relative to the beginning
of the file (starting with @). This field is not
initialized by the Open File function call. You
must set it before doing a random read or write
to the file.

S —

e

rymug,u r e s L e i

Chapter 2 / MS-DOS Control Blocks and Work Areas

If the record size is less than 64 bytes, both words
of this field are used. If the record size is 64 bytes
or more, only the first three bytes are used. Note
that if you use the FCB at offset SCH of the
Program Segment Prefix, the last byte of the
relative record field is also the first byte of the
unformatted parameter area that starts at offset
80H (the default Disk Transfer Address).

Extended File Control Block

The Extended File Control Block is used to create or search
for files in the disk directory that have special attributes. It
adds the following 7-byte prefix to the FCB:

Byte
-7

-6 to -2

Function
Flag byte. Contains FFH to indicate that this is an
extended FCB.

Reserved.

Attribute byte. See the section on the disk
directory under “MS-DOS Disk Allocation™ for
the meaning of this byte.

If an extended FCB is referenced by a function call, the
register containing the reference should point to the first byte
of the prefix.

159

-

Chapter 2 / MS-DOS Control Blocks and Work Areas

Memory Map

160

The memory map addresses given below are in
segment:offset format. For example, 0090:0000 is absolute
address 09Q0H.

User memory is allocated from the lowest end of available
memory that will meet the allocation request.

0000:0000 Interrupt vector table
XXXX:0000 10.SYS - MS-DOS interface to hardware

XXXX:0000 MSDOS.SYS - MS-DOS interrupt handlers,
service routines (Interrupt 21H functions)

MS-DOS buffers, control areas, and installed
device drivers

XXXX:0000 Resident part of COMMAND.COM
Interrupt handlers for Interrupts 22H
(Terminate Address), 23H (CONTROL-C Exit
Address), 24H (Fatal Error Abort Address),
and code to reload the transient portion

XXXX:0000 External command or utility (COM or .EXE
file)

XXXX:0000 User stack for .COM files (256 bytes)

XXXX:0000 Transient part of COMMAND.COM -
Command interpreter, internal commands,
batch processor

Chapter 2 / MS-DOS Control Blocks and Work Areas

Program Segment

When you enter an external command or execute a program
through the EXEC function call, MS-DOS determines the
lowest available free memory address to use as the start of
the program. This area is called the Program Segment.

At offset @ within the Program Segment, MS-DOS builds the
256-byte Program Segment Prefix control block. At offset
200H, EXEC loads the program. An .EXE file with minalloc
and maxalloc both set to zero is loaded as high as possible.

The program returns from EXEC by one of four methods:

¢ By along jump to offset @ in the Program Segment
Prefix.

¢ By issuing an INT 20H with CS:0 pointing at the PSP

¢ By issuing an INT 21H with AH =0 and with CS:0
pointing at the PSP, or with AH = 4CH

®* By a long call to location 50H in the Program
Segment Prefix with AH = 0 or 4CH

It is the responsibility of all programs to ensure that the CS
register contains the segment address of the Program
Segment Prefix when terminating via any of these methods
except function call 4CH. For this reason, using function call
4CH is the preferred method.

All four methods result in transferring control to the program
that issued the EXEC. During this returning process, interrupt
vectors 22H, 23H, and 24H (Terminate Address, CONTROL-
C Exit Address, and Fatal Error Abort Address) are restored
from the values saved in the Program Segment Prefix of the
terminating program. Control is then given to the terminate
address. If this is a program returning to COMMAND.COM,
control transfers to its resident portion. If a batch file was
in process, it is continued. Otherwise, COMMAND.COM
performs a checksum on the transient portion, reloads it if
necessary, issues the system prompt, and waits for you to
type the next command.

When a program receives control, the following conditions
are in effect:

161

Chapter 2 / MS-DOS Control Blocks and Work Areas

162

For all programs:

The segment address of the passed environment is
contained at offset 2CH in the Program Segment
Prefix.

The environment is a series of ASCII strings (totaling
less than 32K) in the form:

NAME =parameter

Each string is terminated by a byte of zeroes, and the
set of strings is terminated by another byte of zeroes.
The environment built by the command processor
contains at least a COMSPEC = string. (The
parameters on COMSPEC define the path used by
MS-DOS to locate COMMAND.COM on disk.) The
last PATH and PROMPT commands issued will also
be in the environment, along with any environment
strings defined with the MS-DOS SET command.

The environment that is passed is a copy of the
invoking process environment. If your application
uses a “‘keep process”’ concept, you should be aware
that the copy of the environment passed to you is
static. That is, it will not change even if subsequent
SET, PATH, or PROMPT commands are issued.

Offset S0H in the Program Segment Prefix contains
code to call the MS-DOS function dispatcher. By
placing the desired function call number in AH, a
program can issue a far call to offset 50H to invoke
an MS-DOS function, rather than issuing an Interrupt
21H. Since this is a call and not an interrupt, MS-
DOS may place any code appropriate to making a
system call at this position. This makes the process
of calling the system portable.

The Disk Transfer Address (DTA) is set to 80H (the
default DTA in the Program Segment Prefix).

File control blocks at SCH and 6CH are formatted
from the first two parameters typed when the
command was entered. If either parameter contained
a pathname, then the corresponding FCB contains
only a valid drive number. The filename field will
not be valid.

Chapter 2 / MS-DOS Control Blocks and Work Areas

An unformatted parameter area at 81H contains all
the characters typed after the command (including
leading and imbedded delimiters), with the byte at
80H set to the number of characters. If the <, >, or
parameters were typed on the command line, they
(and the filenames associated with them) will not
appear in this area; redirection of standard input and
output is transparent to applications.

Offset 6 (one word) contains the number of bytes
available in the segment.

Register AX indicates whether or not the drive
specifiers (entered with the first two parameters) are
valid, as follows:

AL = FFH if the first parameter contained an invalid
drive specifier (otherwise, AL = 0@H).

AH = FFH if the second parameter contained an
invalid drive specifier (otherwise, AH = @0H).

Offset 2 (one word) contains the segment address
of the first byte of unavailable memory. Programs
must not modify addresses beyond this point unless
they were obtained by allocating memory via the
Allocate Memory function call (48H).

For executable (.EXE) programs:

Registers DS and ES are set to point to the Program
Segment Prefix.

Registers CS, IP, SS, and SP are set to the values
passed by MS-LINK.

For executable (.COM) programs:

All four segment registers contain the segment
address of the initial allocation block that starts with
the Program Segment Prefix control block.

All of user memory is allocated to the program. If
the program invokes another program through the
EXEC function call (4BH), it must first free some
memory through the Set Block function call (4AH)
to provide space for the program being executed.

The Instruction Pointer (IP) is set to 100H.

163

Chapter 2 / MS-DOS Control Blocks and Work Areas

* The Stack Pointer register is set to the end of the
program’s segment. The segment size at offset 6 is
reduced by 100H to allow for a stack of that size.

* A word of zeroes is placed on top of the stack. This
is to allow a user program to exit to
COMMAND.COM by doing a RET instruction last.
This assumes, however, that the user has maintained
stack and code segments for the program.

164

Chapter 2 / MS-DOS Control Blocks and Work Areas

Program Segment Prefix

The format of the Program Segment Prefix is illustrated
below. Programs must not alter any part of the PSP below

offset SCH.
00H End of Long call to
INT20 H allocation | Reserved MS-DOS function
block dispatcher (5
bytes)
08H Terminate address CONTROL-C exit
(IP,CS) address (IP)
10H .
CONTROL-C | Hard error exit address
Exit address (IP, CS)
(C9)
2CH
Environmental pointer
Used by MS-DOS
5CH
Formatted Parameter Area 1
formatted as standard unopened FCB
6CH
Formatted Parameter Area 2
formatted as standard unopened FCB
(overlaid if FCB at 5CH is opened)
8oH Unformatted Parameter Area
(default Disk Transfer Area)
165

| 166

o

Chapter 3

MS-DOS Initialization and Command

Processor

MS-DOS Initialization

When the system is reset or started with an MS-DOS disk
in Drive A, the ROM (Read Only Memory) bootstrap gains
control. The boot sector is read from the disk into memory
and given control. The 10.SYS and MSDOS.SYS files are then
read into memory, and the boot process begins.

The Command Processor

The command processor supplied with MS-DOS (file
COMMAND.COM) consists of three parts:

1.

A resident portion resides in memory immediately
following MSDOS.SYS and its data area. This portion
contains routines to process Interrupts 23H (CONTROL-C
Exit Address) and 24H (Fatal Error Abort Address), as well
as a routine to reload the transient portion, if needed.
All standard MS-DOS error handling is done within this
portion of COMMAND.COM. This includes displaying
error messages and processing the Abort, Retry, or Ignore
message replies.

An initialization portion follows the resident portion.
During start-up, the initialization portion is given
control. It contains the AUTOEXEC file processor setup
routine. The initialization portion determines the
segment address at which programs can be loaded. It
is overlaid by the first program COMMAND.COM loads
because it is no longer needed.

A transient portion is loaded at the high end of memory.
This part contains all of the internal command
processors and the batch file processor. The transient
part of the command processor produces the system
prompt (such as A>), reads the command from the
keyboard (or batch file), and causes the command to be
executed. For external commands, it builds a command
line and issues the EXEC function call (function call 4BH)
to load and transfer control to the program.

167

168

Chapter 4

MS-DOS Disk Allocation

The MS-DOS area on a diskette is formatted as follows:

Reserved area - variable size

First copy of File Allocation
Table - variable size

Second copy of File Allocation
Table - variable size (optional)

Additional copies of File Allocation
Table - variable size (optional)

Root directory - variable size

File data area

Space for a file in the data area is not pre-allocated. The space
is allocated one cluster at a time, as needed. A cluster consists
of one or more consecutive sectors. All of the clusters for
a file are ‘‘chained” together in the File Allocation Table
(FAT).

A second copy of the FAT is usually kept for consistency. If
the disk should develop a bad sector in the first FAT, the
second can be used. This prevents loss of data due to an
unusable disk.

The clusters are arranged on disk to minimize head
movement for multi-sided media. All of the space on a track
(or cylinder) is allocated before moving on to the next track.
This is done by allocating all the sectors sequentially on the
lowest-numbered head, then all the sectors on the next head,
and so on until all sectors on all heads of the track are used.
The next sector to use will be sector 1 on head @ of the next
track.

169

Chapter 4 / MS-DOS Disk Allocation

For diskettes, the following table can be used:

Number Sectors
of per
Sides Track

DO = DN
O \O ® ®

FAT size Directory Directory Sectors

in Sectors Entries per
Sectors Cluster
1 4 64 1
1 7 112 2
2 4 64 1
2 7 112 2

MS-DOS Disk Directory

FORMAT builds the root directory for all disks. Its location
on disk and the maximum number of entries are dependent

170

on the media.

Since directories other than the root directory are regarded
as files by MS-DOS, there is no limit to the number of entries
they may contain.

All directory entries are 32 bytes in length, and are in the
following format:

00H-@7H Filename. Eight characters, left-aligned and
padded, if necessary, with blanks. The first byte
of this field indicates the file status as follows:

00H

The directory entry has never been used.
This is used to limit the length of directory
searches, for performance reasons.

The directory entry has been used, but the
file has been erased.

The entry is for a directory. If the second
byte is also 2EH, then the cluster field
contains the cluster number of this
directory’s parent directory (0000H if the
parent directory is the root directory).
Otherwise, bytes @1H through GAH are all
spaces, and the cluster field contains the
cluster number of this directory.

Any other character is the first character of a filename.

Chapter 4/ MS-DOS Disk Allocation

08H-0AH Filename extension.

0B

OCH-15H
16H-17H

File attribute. The attribute byte is mapped as
follows:

O1H File is marked read only. An attempt to open
the file for writing using the Open File
function call (function call 3DH) results in
an error code returned. This value can be
used along with other values below.
Attempts to delete the file with the Delete
File (13H) or Delete a Directory Entry (41H)
function call will also fail.

02H Hidden file. The file is excluded from
normal directory searches.

04H System file. The file is excluded from normal
directory searches.

08H The entry contains the volume label in the
first 11 bytes. The entry contains no other
usable information (except date and time of
creation) and may exist only in the root
directory.

10H The entry defines a sub-directory, and is
excluded from normal directory searches.

20H Archive bit. The bit is set to 1 whenever the
file has been written to and closed.

Note: The system files (IO.SYS and
MSDOS.SYS) are marked as read only,
hidden, and system files. Files can be
marked hidden when they are created. Also,
the read only, hidden, system, and archive
attributes may be changed through the
Change Attributes function call (43H).

Reserved.

Time the file was created or last updated. The
hour, minutes, and seconds are mapped into
two bytes as follows:

Offset 17H
ld | H | H|{H]|H|M|MI|IM]
7 6 5 4 3 2 1 (1]}

171

Chapter 4 / MS-DOS Disk Allocation

172

18H-19H

1AH-1BH

ICH-1FH

Offset 16H

I MM [M s s s s s
7 6 5 + 3 2 0

where:

HHHHH is the binary number of hours

(0-23)

MMMMMM is the binary number of minutes

(0-59)

$SS8S is the binary number of two-second
increments

Date the file was created or last updated. The

year, month. and day are mapped into two

bytes as follows:

Offset 19H

Yy |l Y I Y I Y [Y[Y| Y [M]
7 6 + 3 \

]
28]

Offset 18H
|M| M| M| DI|D|D|DI| D]
7 6 5 4 3 |

where:

YYYYYYY is 0-119 (1980-2099)
MMMM s 1-12
DDDDD is 1-31

Starting cluster; the cluster number of the tirst
cluster in the file.

Note that the first cluster tor data space on all
disks is cluster 002,

The cluster number is stored with the least
significant byte first.

Note: Refer 1o the section "How to Use the
File Allocation Table™ for details about

converting cluster numbers to logical sector
numbers.

File size in bytes. The first word is the {ow-
order part of the size.

Chapter 4 / MS-DOS Disk Allocation

File Allocation Table (FAT)

This section is included for system programmers who wish
to write installable device drivers. It explains how MS-DOS
uses the File Allocation Table to convert the cluster numbers
of a file to logical sector numbers. The driver is then
responsible for locating the logical sector on disk. Programs
must use the MS-DOS file management function calls for
accessing files. Programs that access the FAT are not
guaranteed to be upwardly compatible with future releases
of MS-DOS.

The File Allocation Table contains a 12-bit entry (1.5 bytes)
for each cluster on the disk. The first two FAT entries map
a portion of the directory; these FAT entries indicate the size
and format of the disk.

The second and third bytes always contain FFH.

The third FAT entry, which starts at offset 04H, begins the
mapping of the data area (cluster 002). Files in the data area
are not always written sequentially on the disk. The data area
is allocated one cluster at a time, skipping over clusters
already allocated. The first free cluster found will be the next
cluster allocated, regardless of its physical location on the
disk. This permits the most efficient utilization of disk space
because clusters made available by the erasing of files can
be allocated for new files.

Each FAT entry contains three hexadecimal characters. Any
of the following combinations is possible:

000 The cluster is unused and available.

FF7 The cluster has a bad sector in it. MS-DOS
will not allocate such a cluster. CHKDSK
counts the number of bad clusters for its
report. These bad clusters are not part of any
allocation chain.

FF8-FFF Indicates the last cluster of a file.

XXX Any other characters that are the cluster
number of the next cluster in the file. The
cluster number of the first cluster in the file is
kept in the file’s directory entry.

173

Chapter 4 / MS-DOS Disk Allocation

The File Allocation Table always begins on the first sector
after the reserved sectors. If the FAT is larger than one sector,
the sectors are contiguous. Two copies of the FAT are usuvally
written for data integrity. The FAT is read into one of the
MS-DOS buffers whenever needed (open, read, write, etc.).
For performance reasons, this buffer is given a high priority
to keep it in memory as long as possible.

How to Use the File Allocation Table

174

To find the starting cluster of the file, use the directory entry.
Next, to locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each FAT
entry is 1.5 bytes long).

2. The whole part of the product is an offset into the FAT,
pointing to the entry that maps the cluster just used. That
entry contains the cluster number of the next cluster of
the file.

3. Use a MOV instruction to move the word at the
calculated FAT offset into a register.

WA

If the last cluster used was an even number, keep the low-
order 12 bits of the register by ANDing it with FFF;
otherwise, keep the high-order 12 bits by shifting the
register right 4 bits with a SHR instruction.

5. If the resultant 12 bits are FF8H-FFFH, the file contains
no more clusters. Otherwise, the 12 bits contain the
cluster number of the next cluster in the file.

To convert the cluster number to a logical sector number
(relative sector, such as that used by Interrupts 25H and 26H
and by DEBUG):

1. Subtract 2 from the cluster number.
2. Multiply the result by the number of sectors per cluster.

3. Add to this result the logical sector number of the
beginning of the data area.

Chapter 5

Device Drivers

A device driver is a binary file with all of the code in it to
manipulate the hardware and provide a consistent interface
to MS-DOS. It has a special header at the beginning that
identifies it as a device, defines the strategy and interrupt
entry points, and describes various attributes of the device.

Note: For device drivers, the .COM file must not use the ORG
100H. Because it does not use the Program Segment Prefix,
the device driver is simply loaded; therefore, the file must
have an origin of zero (ORG @ or no ORG statement).

Types of Devices

There are two kinds of devices:
® Character devices
* Block devices

Character devices are designed to perform serial character
I/0. These devices have names, such as CON, AUX, and
CLOCK, and you can open channels (handles or FCBs) to
do I/O to them.

Block devices are the “‘disk drives’” on the system. They can
perform random I/O in pieces called blocks (usually the
physical sector size). These devices are not named as the
character devices are, and therefore cannot be opened
directly. They are identified instead via the drive letters (A,
B, C, etc.).

Block devices can consist of one or more units; thus, a single
driver may be responsible for one or more disk drives. For
example, block device driver ALPHA may be responsible for
Drives A, B, C, and D. This means that it has four units (@-3)
defined and takes up four drive letters. The position of the
driver in the list of all drivers determines which units
correspond to which drive letters. If driver ALPHA is the first
first block driver in the device list, and it defines 4 units (0-3),
then they will be A, B, C, and D. If BETA is the second block
driver and defines three units (8-2), then they will be E, F,

175

Chapter 5 / Device Drivers

and G, and so on. The theoretical limit is 63 block devices,
but after 26 the drive letters are unconventional (such as |,
/, and ™).

176

Chapter 5 / Device Drivers

Device Headers

A Device Header is required at the beginning of a device
driver. A Device Header looks like this:

WORD Pointer to next Device Header
(Must be set to -1)

WORD Attributes

Bit 15 = 0 if block device

Bit 15 = 1 if character device

If bit 15 is 1:
Bit @ = 1 if current sti device
Bit 1 = 1 if current sto device
Bit 2 1 if current NUL device
Bit 3 1 if current CLOCK device
Bit 4 = 1 if special .
Bits 5-12 Reserved; must be set to @

Bit 14 is the IOCTL bit

Bit 13 is the NON IBM FORMAT bit

WORD Pointer to device strategy entry point

WORD Pointer to device interrupt entry point

8 BYTES Character device name field. Character
devices set a device name. For block devices
the first byte is the number of units.

Note that the device entry points are words. They must be
offsets from the same segment number used to point to this
table. For example, if XXX:YYY points to the start of this
table, then XXX:strategy and XXX:interrupt are the entry
points.

Pointer To Next Device Header Field

The pointer to the next Device Header field is a double word
field (offset followed by segment) that is set by MS-DOS to
point at the next driver in the system list at the time the
device driver is loaded. It is important that this field be set
to —1 prior to load (when it is on the disk as a file) unless
there is more than one device driver in the file. If there is

177

Chapter 5 / Device Drivers

more than one driver in the file, the first word of the double
word pointer should be the offset of the next driver’s Device
Header.

Note: If there is more than one device driver in the .COM
file, the last driver in the file must have the pointer to the
next Device Header field set to -1.

Attribute Field

178

The attribute field tells the system whether this device is a
block or character device (bit 15). Most other bits are used
to give selected character devices certain special treatment.
{(Note that these bits mean nothing on a block device.) For
example, suppose you have a new device driver that you
want to be the standard input and output. Besides installing
the driver, you must tell MS-DOS that you want your new
driver to override the current standard input and standard
output (the CON device). You do this by setting bits @ and
1 to 1. Similarly, you could install 2 new CLOCK device by
setting that attribute bit.

Although there is a NUL device attribute, the NUL device
cannot be reassigned. This attribute exists so that MS-DOS
can determine if the NUL device is being used.

The NON IBM FORMAT bit applies only to block devices and
affects the operation of the BUILD BPB (Bios Parameter
Block) device call. (Refer to “MEDIA CHECK and BUILD
BPB” later in this chapter for further information on this
call))

The other bit of interest is the IOCTL bit, which has meaning
on both character and block devices. This bit tells MS-DOS
whether the device can handle control strings (via the IOCTL
function call, Function 44H).

If a driver cannot process control strings, it should initially
set the IOCTL bit to 0. This tells MS-DOS to return an error
if an attempt is made (via Function 44H) to send or receive
control strings to this device. A device which can process
control strings should initialize the IOCTL bit to 1. For
drivers of this type, MS-DOS will make calls to the IOCTL
input and output device functions to send and receive [OCTL
strings.

A

Chapter 5 / Device Drivers

Name Field

The IOCTL functions allow data to be sent and received by
the device for its own use (for example, to set baud rate, stop
bits, and form length), instead of passing data over the device
channel as does a normal read or write. It is up to the device
to interpret the passed information, but it must not be treated
as a normal I/O request.

Strategy and Interrupt Routines

These two fields are the pointers to the entry points of the
strategy and interrupt routines. They are word values, so they
must be in the same segment as the Device Header.

This 8-byte field contains the name of a character device or
the number of units of a block device. If it is a block device,
the number of units can be put in the first byte. This is
optional, because MS-DOS will fill in this location with the
value returned by the driver’s INIT code. Refer to
“Installation of Device Drivers” in this chapter for more
information.

179

Chapter 5 / Device Drivers

Creating a Device Driver

180

In order to create a device driver that MS-DOS can install,
you must write a binary file with a Device Header at the
beginning of the file. Note that for device drivers, the code
should not be originated at 100H, but rather at @. The link
field (pointer to the next Device Header) should be —1,
unless there is more than one device driver in the file. The
attribute field and entry points must be set correctly.

If it is a character device, the name field should be filled in
with the name of that character device. The name can be
any legal 8-character filename.

MS-DOS always processes installable device drivers before
handling the default devices, so to install a new CON device,
simply name the device CON and set the standard input
device and standard output device bits in the attribute word
on a new CON device. The scan of the device list stops on
the first match, so the installable device driver takes
precedence.

Note: Because MS-DOS can install the driver anywhere in
memory, care must be taken in any far memory references.
You should not expect that your driver will always be loaded
in the same place every time.

Chapter 5 / Device Drivers

Installation of Device Drivers

MS-DOS allows new device drivers to be installed
dynamically at boot time. This is accomplished by INIT code
in the BIOS, which reads and processes the CONFIG.SYS file.

MS-DOS calls a device driver by making a far call to its
strategy entry point, and passes in a Request Header the
information describing the functions of the device driver.

This structure allows you to program an interrupt-driven
device driver. For example, you may want to perform local
buffering in a printer.

MS-DOS passes a pointer to the Request Header in ES:BX.
This is a fixed-length header, followed by data pertinent to
the operation being performed. Note that it is the device
driver’s responsibility to preserve the machine state (for
example, save all registers on entry and restore them on exit).
There is enough room on the stack to do about 20 pushes.
If more stack space is needed, the driver should set up its
own stack.

181

Chapter 5 / Device Drivers

Request Header

BYTE Length of record
Length in bytes of this Request Header

BYTE Unit code
The subunit the operation is for (minor
device) (no meaning on character devices)

BYTE Command code

WORD Status

8 bytes RESERVED

Unit Code Field

182

The unit code field identifies which unit in your device
driver the request is for, For example, if your device driver
has 3 units defined, then the possible values of the unit code
field would be 0, 1, and 2.

Chapter 5 / Device Drivers

Command Code Field

The command code field in the Request header can have the
following values:

Command Function

Code
0 INIT
1 MEDIA CHECK (block only, NOP for

character)
2 BUILD BPB (block only, NOP for character)
3 IOCTL input (called only if IOCTL bit is 1)
4 INPUT (read)
5 NON-DESTRUCTIVE INPUT NO WAIT
(character devices only)

6 INPUT STATUS (character devices only)

7 INPUT FLUSH (character devices only)

8 OUTPUT (write)

9 OUTPUT (write) with verify

10 OUTPUT STATUS (character devices only)

11 QUTPUT FLUSH (character devices only)

12 IOCTL output (called only if IOCTL bit is 1)

MEDIA CHECK and BUILD BPB

MEDIA CHECK and BUILD BPB are used with block devices
only.

MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS
passes its current media descriptor byte (refer to the section
“Media Descriptor Byte” later in this chapter). MEDIA
CHECK returns one of the following results:

®* Media Not Changed - current DBP (Disk Parameter
Block) and media byte are OK.

¢ Media Changed - Current DPB and media are wrong. MS-
DOS invalidates any buffers for this unit and calls the
device driver to build the DPB with media byte and
buffer.

® Not Sure - If there are dirty buffers (buffers with changed
data, not yet written to disk) for this unit, MS-DOS
assumes the DBP and media byte are OK (media not
changed). If nothing is dirty, MS-DOS assumes the media

183

Chapter 5 / Device Drivers

Status Field

184

has changed. It invalidates any buffers for the unit and
calls the device driver to build the BPB with media byte
and buffer.

® Error - If an error occurs, MS-DOS sets the error code
accordingly.

MS-DOS will call BUILD BPB under the following
conditions:

e If “Media Changed’ is returned
o If “Not Sure” is returned and there are no dirty buffers

The BUILD BPB call also gets a pointer to a one-sector buffer.
What this buffer contains is determined by the NON IBM
FORMAT bit in the attribute field. If the bit is zero (device
is IBM format-compatible), then the buffer contains the first
sector of the first FAT. The FAT ID byte is the first byte of
this buffer.

Note: The BPB must be the same, as far as location of the
FAT is concerned, for all possible media because this first
FAT sector must be read before the actual BPB is returned.
If the NON IBM FORMAT bit is set, then the pointer points
to one sector of scratch space (which may be used for
anything).

The following figure illustrates the status word in the Request
Header:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
E B'ID
E RESERVED lé 8 ERROR CODE (bit 15 on)

The status word is zero on entry and is set by the driver
interrupt routine on return.

Bit 8 is the done bit. When set, it means the operation is
complete. The driver sets it to 1 when it exits.

Chapter 5 / Device Drivers

Bit 15 is the error bit. If it is set, then the low 8 bits indicate
the error. The errors are:

Q0H Write Protect Violation
01H Unknown Unit

@2H Drive Not Ready

03H Unknown Command
04H CRC Rrror

05H Bad Drive Request Structure Length
O6H Seek Error

07H Unknown Media

O8H Sector Not Found

09H Printer Out of Paper
@AH Write Fault

OBH Read Fault .

OCH General Failure

Bit 9 is the busy bit, which is set only by status calls.

For output on character devices: If bit 9 is 1 on return,
a write request (if made) would wait for completion of a
current request. If it is @, there is no current request, and
a write request (if made) would start immediately.

For input on character devices with a buffer:If bit 9 is
1 on return, a read request (if made) would go to the physical
device. If it is @ on return, then there are characters in the
device buffer and a read would return quickly. It also
indicates that the user has typed something. MS-DOS
assumes. that all character devices have an input type-ahead
buffer. Devices that do not have a type-ahead buffer should
always return busy = @ so that MS-DOS will not continuously
wait for something to get into a buffer that does not exist.

One of the functions defined for each device is INIT. This
routine is called only once, when the device is installed. The
INIT routine returns a location (DS:DX), which is a pointer
to the first free byte of memory after the device driver
(similar to “Keep Process”). This pointer method can be used
to delete initialization code after it has been used in order
to save space.

Block devices are installed the same way and also return a
first free byte pointer as described above. Additional
information is also returned, such as the number of units.

185

Chapter 5 / Device Drivers

186

The number of units determines logical device names. For
example, if the current maximum logical device letter is F
at the time of the install call and the INIT routine returns
4 as the number of units, then the units will have logical
names G, H, I and J. This mapping is determined by the
position of the driver in the device list and the number of
units on the device (stored in the first byte of the device name
field).

A pointer to a BPB (BIOS Parameter Block) pointer array is
also returned. There is one table for each unit defined. These
blocks will be used to build an internal DOS data structure
for each of the units. The pointer passed to the DOS from
the driver points to an array of n word pointers to BPBs,
where n is the number of units defined. In this way, if all
units are the same, all of the pointers can point to the same
BPB, in order to save space.

Note that this array must be protected (below the free pointer
set by the return), since an internal DOS structure will be
built starting at the byte pointed to by the free pointer. The
sector size defined must be less than or equal to the
maximum sector size defined at default BIOS INIT time. If
it isn’t, the install will fail.

The last thing that INIT of a block device must pass back
is the media descriptor byte. This byte means nothing to MS-
DOS, but is passed to devices so that they know what
parameters MS-DOS is currently using for a particular drive
unit.

Block devices may take several approaches; they may be
dumb or smart. A dumb device defines a unit (and therefore
an internal DOS structure) for each possible media drive
combination. For example, unit @ = drive @ single side, unit
1 = drive @ double side. For this approach, media descriptor
bytes mean nothing. A smart device allows multiple media
per unit. In this case, the BPB table returned at INIT must
define space large enough to accommodate the largest
possible media supported. Smart drivers will use the media
descriptor byte to pass information about what media is
currently in a unit.

Chapter 5 / Device Drivers

Function Call Parameters

INIT

All strategy routines are called with ES:BX pointing to the
Request Header. The interrupt routines get the pointers to
the Request Header from the queue that the strategy routines
store them in. The command code in the Request Header
tells the driver which function to perform.

Note: All DWORD pointers are stored offset first, then
segment.

Command code = @

ES:BX

13-BYTE Request Header

BYTE Number of units

DWORD Break address
DWORD Pointer to BPB array
(Not set by character devices)

The number of units, break address, and BPB pointer are set
by the driver. On entry, the DWORD that is to be set to the
BPB array (on block devices) points to the character after
the ‘ =’ on the line in CONFIG.SYS that loaded this device.
This allows drivers to scan the CONFIG.SYS invocation line
for arguments.

Note: If there are multiple device drivers in a single .COM
file, the ending address returned by the last INIT called will
be the one MS-DOS uses. It is recommended that all of the
device drivers in a single .COM file return the same ending
address.

187

Chapter 5 / Device Drivers

MEDIA CHECK

Command Code = 1

ES:BX

13-BYTE Request Header

BYTE Media descriptor from DPB

BYTE Returned

In addition to setting the status word, the driver must set
the return byte to one of the following:

-1 Media has been changed
@ Don’t know if media has been changed
1 Media has not been changed

If the driver can return -1 or 1 (by having a door-lock or
other interlock mechanism), MS-DOS performance is
enhanced because MS-DOS does not need to re-read the FAT
for each directory access.

BUILD BPB (BIOS Parameter Block)

188

Command code = 2

ES:BX

13-BYTE Request Header

BYTE Media descriptor from DPB

DWORD transfer address

(Points to one sector worth of scratch space or
first sector of FAT depending on the value of the
NON IBM FORMAT bit)

DWORD pointer to BPB

If the NON IBM FORMAT bit of the device is set, then the
DWORD transfer address points to a one-sector buffer, which
can be used for any purpose. If the NON IBM FORMAT bit
is @, then this buffer contains the first sector of the first FAT
and the driver must not alter this buffer.

Chapter 5 / Device Drivers

If IBM compatible format is used (NON IBM FORMAT BIT
= @), then the first sector of the first FAT must be located
at the same sector on all possible media. This is because the
FAT sector will be read before the media is actually
determined. Use this mode if all you want is to read the FAT
ID byte.

In addition to setting status word, the driver must set the
pointer to the BPB on return.

The information relating to the BPB for a particular piece
of media is kept in the boot sector for the media. In
particular, the format of the boot sector is:

3-BYTE Near JUMP to boot code
8 BYTES OEM name and version
WORD Bytes per sector
BYTE Sectors per allocation unit
WORD Reserved sectors
B BYTE Number of FATs
g WORD Number of root directory entries
WORD Number of sectors in logical image
BYTE Media descriptor
WORD Number of FAT sectors
WORD Sectors per track
WORD Number of heads
WORD Number of hidden sectors

The three words at the end (sectors per track, number of
heads, and number of hidden sectors) are intended to help
the BIOS understand the media. Sectors per track may be
redundant (could be calculated from total size of the disk).
Number of heads is useful for supporting different multi-
head drives which have the same storage capacity but

189

Chapter 5 / Device Drivers

different numbers of surfaces. Number of hidden sectors may
be used to support drive-partitioning schemes.

Media Descriptor Byte

The last two digits of the FAT ID are called the media
descriptor byte. Currently, the media descriptor byte has been
defined for a few media types, including 5-1/4” and 8"
standard disks.

Although these media bytes map directly to FAT ID bytes
(which are constrained to the 8 values F8H-FFH), media bytes
can, in general, be any value in the range GOH-FFH.

READ or WRITE

190

Command codes = 3,4,89, and 12
ES:BX (Including IOCTL)

13-BYTE Request Header

BYTE Media descriptor from DPB

DWORD Transfer address

WORD Byte/sector count

WORD Starting sector number
(Ignored on character devices)

In addition to setting the status word, the driver -must set
the sector count to the actual number of sectors (or bytes)
transferred. No error check is performed on an IOCTL I/O
call. The driver must correctly set the return sector (byte)
count to the actual number of bytes transferred.

-uy

Chapter 5 / Device Drivers

The following applies to block device drivers:

Under certain circumstances the BIOS may be asked to
perform a write operation of 64K bytes that seems to be a
“wrap-around” of the transfer address in the BIOS [/O
packet. This request arises because of an optimization added
to the write code in MS-DOS. It occurs only on user writes
that are within a sector size of 64K bytes on files “growing”’
past the current end of file. It is allowable for the BIOS to
ignore the balance of the write that wraps around, if it so
chooses. For example, a write of 10000H bytes’ worth of
sectors with a transfer address of XXXX:1 could ignore the
last two bytes. A user program can never request an I/O of
more than FFFFH bytes and cannot wrap around (even to
@) in the transfer segment. Therefore, in this case, the last
two bytes can be ignored.

NON-DESTRUCTIVE READ NO WAIT

STATUS

Command code = 5

ES:BX

13-BYTE Request Header

BYTE Read from device

If the character device returns busy bit = @ (characters in
buffer), then the next character that would be read is
returned. This character is not removed from the input buffer
(hence the term non-destructive read). This call allows MS-
DOS to look ahead one input character.

Command codes = 6 and 10

ES:BX

[13-BYTE Request Header J

All the driver must do is set the status word and the busy bit.

191

Chapter 5 / Device Drivers

FLUSH

Command codes = 7 and 11

ES:BX

LIS-BYTE Request Header

The FLUSH call tells the driver to flush (terminate) all
pending requests. This call is used to flush the input queue
on character devices.

The CLOCK Device

192

One of the most popular add-on boards is the real time clock
board. To allow this board to be integrated into the system
for TIME and DATE, there is a special device (determined
by the attribute word) called the CLOCK device. The CLOCK
device defines and performs functions like any other
character device. Most functions will be: “‘set done bit, reset
error bit, return.”’

When a read or write to this device occurs, exactly 6 bytes
are transferred. The first two bytes are a word, which is the
count of days since 1-1-80. The third byte is minutes, the
fourth hours, the fifth 1/100 seconds, and the sixth seconds.
Reading the CLOCK device gets the date and time; writing
to it sets the date and time.

e A

Chapter 6

BIOS Services

Device I/O Services

Introduction

The BIOS (Basic Input/Output System) is the lowest-level
interface between other software (application programs and
the operating system itself) and the hardware. The BIOS
routines provide various device input/output services, as well
as other services such as boot strap and print screen. Some
of the services that BIOS provides are not available through
the operating system, such as the graphics routines and
keyboard reset.

All calls to the BIOS are made through software interrupts
(that is, by means of assembly language “INT x’’
instructions). Each 1/O device is provided with two different
software interrupts, both of which transfer execution to the
same routine. One interrupt number is the same as that used
for the IBM PC/XT (for compatibility purposes); the other
is a newly-assigned software interrupt.

Entry parameters to BIOS routines are normally passed in
CPU registers. Similarly, exit parameters are generally
returned from these routines to the caller in CPU registers.
To insure BIOS compatibility with other machines, the
register usage and conventions are, for the most part,
identical.

The following pages describe the entry and exit requirements
of each BIOS routine. To execute a BIOS call, load the
registers as indicated under the “Entry Conditions.” (Register
AH will contain the function number in cases where a single
interrupt can perform more than one operation.) Then issue
one of the two interrupts given for the call. For example,
either »f the following can be used to read a character from
the keyboard:

MOV AH,0 MOV AH,0
INT 16H INT 51H

193

Chapter 6 / BIOS Services

194

Upon return, AL contains the ASCII character and AH the

keyboard scan code.

Note: All registers except those used to return parameters
to the caller are saved and restored by the BIOS routines.

Below is a quick reference list of software interrupts for all
device 1/0, special function, and system status services.

Service

Keyboard

Video Display

Serial Communications
Line Printer

System Clock

Floppy Disk

Floppy Disk Parameter
Pointer

Floppy and Hard Disk

Floppy Disk I/0 With
Hard Disk Present

Hard Disk Parameter Pointer

Boot Strap

Print Screen

Equipment

Memory Size

Software Interrupts

16 hex (22 dec)
51 hex (81 dec)

10 hex (16 dec)
52 hex (82 dec)

14 Hex (20 dec)
53 hex (83 dec)

17 hex (23 dec)
54 hex (84 dec)

1A hex (26 dec)
55 hex (85 dec)

13 hex (19 dec) -
56 hex (86 dec)

1E hex (30 dec)

13 hex (19 dec) -
40 hex (64 dec)

41 hex (65 dec) -

19 hex (25 dec)
49 hex (73 dec)

05 hex (5 dec)
4A hex (74 dec)

11 hex (17 dec)
4B hex (75 dec)

12 hex (18 dec) -
4C hex (76 dec)

Chapter 6 / BIOS Services

Keyboard

These routines provide an interface to the keyboard, which
is the input half of the console (CON) device. MS-DOS
considers the keyboard to be the default standard input
(STDIN) device.

Software Interrupts:

16 hex (22 dec)
or
51 hex (81 dec)

Function Summary:

AH = @: Read Keyboard (destructive with wait)
AH = 1: Scan Keyboard (nondestructive, no wait)
AH = 2: Get Current Shift Status

AH = 3: Flush Keyboard Buffer

AH = 4: Reset Keyboard

Function Descriptions:

Read Keyboard

Read the next character typed at the keyboard. Return the
ASCII value of the character and the keyboard scan code,
removing the entry from the keyboard buffer (destructive
read).

Entry Conditions:
AH =0
Exit Conditions:

AL
AH

ASCII value of character
keyboard scan code

]

195

Chapter 6 / BIOS Services

Scan Keyboard

Set up the zero flag (Z flag) to indicate whether or not a
character is available to be read from the keyboard. If a
character is available, return the ASCII value of the character
and the keyboard scan code. The entry remains in the
keyboard buffer (non-destructive read).

Entry Conditions:
AH =1
Exit Conditions:

Z = no character is available

NZ = a character is available, in which case:
AL = ASCII value of character
AH = keyboard scan code

Get Shift Status
Return the current shift status.
Entry Conditions:
AH = 2
Exit Conditions:

AL = current shift status (bit settings: set=true
reset = false)
bit @ = RIGHT SHIFT key depressed
bit 1 = LEFT SHIFT key depressed
bit 2 = CTRL (control) key depressed
bit 3 = AILT (alternate mode) key depressed
bit 4 = SCROLL state active
bit 5 = NUMBER lock engaged
bit 6 = CAPS lock engaged
bit 7 = INSERT state active

Flush Keyboard Buffer
Flush (clear) the keyboard buffer.
Entry Conditions:

AH = 3

196

Chapter 6 / BIOS Services

Reset Keyboard

Reset the keyboard. This call automatically flushes the
keyboard buffer.

Entry Conditions:

AH = 4

197

Chapter 6 / BIOS Services

Video Display

These routines provide an interface to the video display,
which is the output half of the console (CON) device. MS-
DOS considers the video display to be the default standard
output (STDOUT) device.

Note: The early versions of MS-DOS may not have the
following functions implemented: smooth scroll, side scroll,
scroll in a line, 8 text video pages.

Software Interrupts:

10 hex (16 dec)
or
52 hex (82 dec)

Function Summary:

Control Routines:
AH = 0: Set CRT Mode
AH = 1: Set Cursor Type

AH = 2: Set Cursor Position
AH = 3: Get Cursor Position
AH = 5: Select Active Page
AH = 6: Scroll Up

AH = 7: Scroll Down

Text Routines:
AH = 8: Read Attribute/Character
AH 9: Write Attribute/Character
AH = 10: Write Character Only

Graphics Routines:
AH = 11: Set Color Palette
AH 12: Write Dot
AH 13: Read Dot

1]

Other Routines:
AH = 14: Write TTY*"
AH = 15: Get CRT Mode
AH = 16: Get/Set Character Fonts
AH = 17: Write Attribute or Color Only
AH = 18: Additional Scroll Functions

198

Chapter 6 / BIOS Services

*Screen width is determined by the mode previously set.
Some ‘control” characters (ASCII Q@H-1FH) perform the
usual special terminal function. These include (but are not
limited to) NUL (@0H), BEL (07H), BS (88H), HT (@9H), LF
(0AH), FF (0CH), and CR (0DH).

Function Descriptions:

Set CRT Mode
Entry Conditions:
AH = ¢
AL = mode value, as follows:

Alpha Modes
AL = 0: 40x25 black and white

AL = 1: 40x25 color
AL = 2: 80x25 black and white
AL = 3: 80x25 color

Graphics Modes
AL = 4: 320x200 color graphics

AL = 5:320x200 black and white graphics
AL = 6: 640x200 black and white graphics
AL = 7: Reserved

Additional Modes
AL = 8: 640x400 color graphics
AL 9: 640x400 black and white graphics
AL = 10: 160x200 color graphics

Note: Graphics modes require a graphics hardware option.
Color modes require a color graphics hardware option.

e e T

199

Chapter 6 / BIOS Services

Set Cursor Type
Set the cursor type and attribute.
Entry Conditions:

AH = 1
CH = bit values:
bit 5 (blink bit): @
1

blinking cursor
steady cursor

bit 6 (display bit): @ = visible
1 = invisible :
bits 4-0 = start line for cursor within character Lk
cell £ 3
CL = bit values:
bits 4-0 = end line for cursor within character
cell

All other bits of CH and CL are reserved for future use and
should have a value of zero. The start and end lines for the
cursor determine the choice of block or underline cursor
in the case of the monochrome display. For the high-
resolution and medium-resolution graphics options, the start
and end lines are scaled to the size of the character cell.

Set Cursor Position
Write (set) cursor position.

Entry Conditions:

AH = 2

BH = page number (must be @ for graphics modes)
DH = row (@ = top row)

DL = column (0 = leftmost column)

Get Cursor Position
Read (get) cursor position.
Entry Conditions:

AH =3
BH = page number (must be @ for graphics modes)

200

Chapter 6/ BIOS Services

Exit Conditions:

DH = row of current cursor position (4 = top row)
DL = column of current cursor position (@ = leftmost
column)
CH = cursor type currently set [1]:
bit 5 (blink bit): @ = blinking cursor
1 steady cursor
bit 6 (displaybit): @ = visible
1 invisible
bits 4-@ = start line for cursor within char-
acter cell
CL = bit values:
bits 4-@ = end line for cursor within character
cell

"

See Set Cursor Type (AH = 1) above.

Select Active Page

Scroll Up

Select active display page (valid only for black and white
alpha modes).

Entry Conditions:

AH = 5
AL = new page value (9-7 for modes ¢ and 1, -3 for
modes 2 and 3)

Scroll active page up.

Entry Conditions:

AH = 0

AL = number of lines to scroll (¢ means blank entire
window)

CH = row of upper left corner of scroll window

CL = column of upper left corner of scroll window

DH = row of lower right corner of scroll window

DL = column of lower right corner of scroll window

BH = attribute (alpha modes) or color (graphics modes)
to be used on blank line

201

Chapter 6 / BIOS Services

Attributes:

76H = reverse video
08H = high intensity
80H = blink

01H = underline
@0H = invisible

07H = normal

Color:

See Set Color Palette (AH = 11).

Scroll Down
Scroll active page down.

Entry Conditions:

AH = 7

AL = number of lines to scroll (4§ means blank entire
window)

CH = row of upper left corner of scroll window

CL = column of upper left corner of scroll window

DH = row of lower right corner of scroll window

DL = column of lower right corner of scroll window

BH = attribute (alpha modes) or color (graphics modes)
Lo be used on blank line. See Scroll Up (AH = 6)
Jor attribute values and Set Color Palette (AH = 11)
Jor color values.

Read Attribute or Color/Character

Read a character and its attribute or color at the current
cursor position.

Entry Conditions:

AH = 8
BH display page number (not used in grapbhics
modes; 0FFH means remain in current page)

202

Chapter 6 / BIOS Services

Exit Conditions:

AL
AH

character read

attribute of character (alpba modes) or color of
character (graphics modes). See Scroll Up (AH =

6) for attribute values and Set Color Palette (AH
= 1I) for color values.

Write Attribute or Color/Character

Write a character and its attribute or color at the current
cursor position.

Entry Conditions:

AH
BH

X
AL
BL

9

display page number (not used in graphics
modes; OFFH means remain in current page)
number of characters to write

character to write

attribute of character (for alpha modes) or color
of character (for graphics modes; if bit 7 of BL
is set, the the color of the character is XOR ed with
the color value). See Scroll Up (AH = 6) for
attribute values and Set Color Palette (AH = 11)
JSor color values.

Write Character Only

Write character only at current cursor position.

Entry Conditions:

AH
BH

X
AL

10

= display page number (valid for black and white

alpba modes only; OFFH means remain in
current page)

number of characters to write

character to write

203

Chapter 6 / BIOS Services

Set Color Palette [3]

Select the color palette.

Entry Conditions:

AH = 11
BH = @ Set background color (0-15) to color value in
BL.
BL = colorvalue (@ = black/1 = blue/2 =
green/3 = cyan/4 = red /5 = magenta
/6 = yellow /7 = gray / 8 = black / 9
= light blue / 10 = light green/ 11 = light
cyan/ 12 = light red / 13 = light magenta /
14 = light yellow / 15 = white)
or
BH = 1 Setdefault palette to the number (@ or 1) in BL.

BL = 0 (1 = green/2 = red/3 = yellow
/4 = white /5 = lightcyan /6 =
light blue / 7 = light yellow)

BL = 1 (1 = cyan/2 = magenta/3 = white
/4 = lightred /5 = light green/6
= light blue / 7 = light yellow)

Write Dot
Write a pixel (dot).
Entry Conditions:
AH = 12
DX = row number
CX = column number
AL = color value (When bit 7 of AL is set, the resultant
color value of the dot is the exclusive OR of the
current dot color value and the value in AL.)
Read Dot

Read a pixel (dot).
Entry Conditions:

AH = 13
DX row number
CX column number

204

Chapter 6 / BIOS Services

Exit Conditions:

AL = color value of dot read

Write TTY

Write a character in teletype fashion. (Control characters are
interpreted in the normal manner.)

Entry Conditions:

AH = 14
AL character to write
BL Sforeground color (graphics mode)

"

\

Get CRT Mode
Get the current video mode.
Entry Conditions:
AH = 15
Exit Conditions:

AL = current video mode; see Set CRT Mode (AH = 0)
above for values

Get/Set Character Fonts

This service allows application programs to change character
sets (fonts). The “‘control” value passed in AL determines
whether the service will get (read) the pointer to the
character fonts or set (change) it.

Entry Conditions:

AH = 16
AL = control value, with bits baving the following
meanings:

bit @: if reset, read pointer to current character set
; if set, change pointer to new character set
| bit 1: if reset, references ASCII codes 0-127 only
! if set, references ASCII codes 128-255 only
bit 2: if reset, references fonts for 8x8 cells only
if set, references fonts for 8x16 cells only
bits 3-7: ignored

205

Chapter 6 / BIOS Services

ES:BX = pointer to new character set to use, if bit ¢ of AL
is set

Exit Conditions:

ES:BX = pointer to current character set in use, if bit ¢ of
AL is reset

The 8x8 character fonts are used by the medium-resolution
graphics option board only. The pointer ES:BX points to a
1K-byte table of 128 ‘cells’, each of which occupies 8
consecutive bytes. Each byte descibes a horizontal scan line;
the bits within the byte specify whether pixels are to be set
or reset on the video display. The most significant bit
corresponds to the left-most pixel and the least significant
bit to the right-most pixel. The first of the 8 consecutive bytes
is mapped to the top scan line of the 8x8 cell and the last
to the bottom.

The 8x16 character fonts are used for the monochrome
display and the high-resolution graphics option board. The
pointer ES:BX points to a 2K-byte table of 128 “cells”, each
occupying 16 consecutive bytes. These 8x16 cells are mapped
in exactly the same way as the 8x8 cells described above.

Write Attribute Only

206

Write the attribute only at the current cursor position.
Entry Conditions:

AH = 17

BL = attribute of character (alpha modes) or color of
character (graphics modes). See Scroll Up (AH =
G) for attribute values and Set Color Palette (AH
= 11) for color values.

X number of attributes to write

Chapter 6 / BIOS Services

Additional Scroll Functions

Scroll in any of four directions.

Entry Conditions:

AH

CH =

CL
DH
DL
BL

BH

18

row of upper left corner of window
column of upper left corner of window
row of lower right corner of window
column of lower right corner of window

= direction of scroll

0 = up
1 = down
2 = left
3 = right

buffer use flag

@ = data in user’s buffer

1 = no input data; use blanks with current
attribute

ES:SI = pointer to data buffer containing character/-

attribute pairs (if BH = @)

Note: The buffer must be arranged by rows; that is, all
character/attribute pairs in row 1 are first, all pairs in row 2
are second, etc., regardless of direction of the scroll as
indicated by the value in BL.

207

Chapter 6 / BIOS Services

Serial Communications

These routines provide asynchronous byte stream /O from
and to the RS-232C serial communications port. This device
is labeled the auxiliary (AUX) I/O device in the device list
maintained by MS-DOS.

Software Interrupts:

14 hex (20 dec)
or
53 hex (83 dec)

Function Summary:
AH = 0: Reset Comm Port

AH = 1. Transmit Character

AH = 2: Receive Character

AH = 3: Get Current Comm Status
AH = 4: Flash Comm Buffer

208

Chapter 6 / BIOS Services

Function Descriptions:

Reset Comm Port

Reset (or initialize) the communication port according to the
parameters in AL, DL, and DH.

Entry Conditions:

AH = 0
AL = RS-232C parameters, as follows:
7 6 5 4 3 2 1 0
¥ I LI T
Baud Rate Parity Stop Bits Word Length

000 = 110 baud x@ = none 0=1sb 00 =5 bits
001=150 baud 01=o0dd 1=2sb 01 = 6 bits
010 = 300 baud 11 = even 10 = 7 bits
011 = 660 baud 11 = 8 bits
100 = 1200 baud
101 = 2400 baud
110 = 4800 baud
111 = 9600 baud

DL
DH

comm port (channel) to be used; currently ignored

comm protocol to be used, as follows (set = true):

bit @ = use XON/XOFF protocol when receiving
(a la TERMINAL)

bit 1 = use XON/XOFF protocol when transmit-
ting (a la HOST)

Exit Conditions:

AX = RS-232 status; see Get Current Comm Status
(AH = 3) below

209

Chapter 6 / BIOS Services

Transmit Character
Transmit (output) the character in AL (which is preserved).
Entry Conditions:

AH =1
AL character to transmit

Exit Conditions:

AH = RS-232 status; see Get Current Comm Status
(AH = 3) below (If bit 7 is set, the routine was
unable to transmit the character because of a

timeout error.)
DL = comm port (channel) to be used; currently

ignored

Receive Character
Receive (input) a character in AL (wait for a character, if
necessary). On exit, AH will contain the RS-232 status, except

that only the error bits (1,2,3,4,7) may be set; the timeout
bit (7), if set, indicates that data set ready was not received.
Thus, AH is non-zero only when an error occurred.

Entry Conditions:
AH = 2

Exit Conditions:

AL = character received

AH = RS-232 status, see Get Current Comm Status (AH
= 3) below

DL = comm port (channel) to be used; currently
ignored.

Get Current Comm Status
Read the communication status into AX.
Entry Conditions:

AH = 3
DL = comm port (channel) to be used; currently

ignored

210

£

Chapter 6 / BIOS Services

Exit Conditions:

AH = RS$-232 status, as follows (set = true):

AL =

Flush Comm Buffer

bit @
bit 1 =
bit 2 =
bit 3 =
bit 4 =
bit 5§ =
bit 6 =
bit 7 =

data ready

overrun error

parity error

framing error

break detect

transmitter holding register empty
transmitter shift register empty
timeout occurred

modem status, as follows (set = true):

bit @ =
bit 1 =
bit 2 =
bit 3 =
bit 4 =
bit 5 =
bit 6 =
bit 7 =

delea clear to send

delta data set ready

trailing edge ring detector
delta receive line signal detect
clear to send

data set ready

ring indicator

receive line signal detect

Flush (clear) the serial interface buffer.

Entry Conditions:

AH = 4
comm port (channel) to be used; currently

DL =

DH

ignored

comm protocol to be used, as follows (set = true):

bit 0 =

bit 1 =

use XON/XOFF protocol when receiving
(a la TERMINAL)
use XON/XOFF protocol when transmit-
ting (a la HOST)

211

Chapter 6 / BIOS Services

Line Printer

These routines provide an interface to the parallel line
printer. This device is labeled “PRN” in the device list
maintained by the operating system.

Software Interrupts:

17 hex (23 dec)
or
54 hex (84 dec)

Function Summary:

AH = 0: Print Character
AH = 1: Reset Printer Port
AH = 2: Get Current Printer Status

Function Descriptions:

Print Character
Print a character.
Entry Conditions:

AH = 0
AL character to print
DX printer to be used (0-2); currently ignored

I

Exit Conditions:

AH = printer status; see Get Current Printer Status (AH
= 2) below
(If bit 0 is set, the character could not be printed
because of a timeout error.)

212

Chapter 6 / BIOS Services

Reset Printer Port
Reset (or initialize) the printer port.
Entry Conditions:

AH = 1
DX = printer to be used (0-2); currently ignored

Exit Conditions:

AH = printer status; see Get Current Printer Status (AH
= 2) below

Get Current Printer Status
Read the printer status into AH.
Entry Conditions:
AH = 2
Exit Conditions:

DX
AH

]

printer to be used (0-2); currently ignored
Dprinter status, as follows (set = true):

bit @ = timeout occurred

bit 1 = [unused]

bit 2 = junused]

bit 3 = I/O error

bit 4 = selected

bit 5 = out of paper

bit 6 = acknowledge

bit 7 = busy

213

Chapter 6 / BIOS Services

System Clock

These routines provide methods of reading and setting the
clock maintained by the system. This device is labeled
“CLOCK"” in the device list of the operating system.

Software Interrupts:

1A hex (26 dec)
or
55 hex (85 dec)

Function Summary:
AH = 0: Get Time Of Day

AH = 1: Set Time Of Day
AH = 2. Get Date And Time
AH = 3 Set Date And Time

Function Descriptions:

Get Time Of Day
Get (read) the time of day in binary format.
Entry Conditions:
AH = 0
Exit Conditions:

CX = bhigh (most significant) portion of clock count

DX low (least significant) portion of clock count

AL 0 if the clock was read or written (via AH =
0,1,2,3) within the current 24-hour period;
otherwise, AL > 0

1

The clock runs at a rate of 20 ticks per second.

214

Chapter 6 / BIOS Services

Set Time Of Day
Set (write) the time of day using binary format.
Entry Conditions:

AH =1
X bigh (most significant) portion of clock count
DX low (least significant) portion of clock count

il

This call resets the 24-hour rollover flag. It does not,
however, change the date. To do this, use the Set Date and
Time function (AH = 3) below.

Get Date and Time
Get the current date and time in system (MS-DOS) format.
Entry Conditions:
AH = 2
Exit Conditions:

BX = days since January 1, 1980 (0-65535)
CH = bours (4-23)

CL = minutes (#-59)

DH = seconds (0-59)

DL = bundredths of a second (4-99)

Set Date and Time
Set the current date and time in system (MS-DOS) format.

Entry Conditions:

AH = 3

BX = days since January 1, 1980 (6-65535)
CH = bhours (3-23)

CL = minutes (¢-59)

DH = seconds (#-59)
DL = bundredths of a second (0-99)

215

Chapter 6 / BIOS Services

Floppy and Hard Disk

216

The floppy and hard disk I/O interface described below is
provided for compatibility with existing applications
software and new software for the Model 2000. The areas
of support are divided into two groups:

* Floppy disk only system configuration
* Floppy and hard disk system configuration

The system determines the hardware configuration at boot
time for any given machine so that the appropriate software
support will be available at run time.

Chapter 6/ BIOS Services

Disk 1/0 Support for the Floppy Only
System Configuration

Software Interrupt:

13 hex (19 dec)
or
56 hex (86 dec)

Function Summary:
AH = 0: Reset Floppy Disk

AH = 1: Return Status of Last Floppy Disk Operation
AH = 2: Read Sector(s) from Floppy Disk

AH = 3: Write Sector(s) to Floppy Disk

AH = 4: Verify Sector(s) on Floppy Disk

AH = 5: Format Track on Floppy Disk

Function Descriptions:

Reset Floppy Disk

Reset the diskette system. Resets associated hardware and
recalibrates all diskette drives.

Entry Conditions:
AH = 0
Exit Conditions:

See ‘‘Exits From All Calls” below.

217

Chapter 6 / BIOS Services

Return Status of Last Floppy Disk Operation
Return the diskette status of the last operation in AL.
Entry Conditions:
AH =1
Exit Conditions:

AL = status of the last operation,; see “Exits From All
Calls” below for values

Read Sector(s) from Floppy Disk
Read the desired sector(s) from disk into RAM.
Entry Conditions:

AH = 2

DL = drive number (¢-1)

DH = bead number (9-1)

CH = cylinder number (8-79)

CL sector number (1 to number of sectors per track)
AL = sector count (1 to number of sectors per track)
ES:BX = pointer to disk buffer

Exit Conditions:

See “‘Exits From All Calls” below.
AL = number of sectors read

Write Sector(s) to Floppy Disk
Write the desired sector(s) from RAM to disk.

Entry Conditions:

AH = 3

DL = drive number (9-1)

DH = bead number (¢-1)

CH = cylinder number (4-79)

CL = sector number (1 to number of sectors per track)
AL = sector count (1 to number Of sectors per track)
ES:BX = pointer to disk buffer

Exit Conditions:

See “Exits From All Calls” below.
AL = number of sectors written

218

Chapter 6 / BIOS Services

Verify Sector(s) on Floppy Disk

Verify the desired sector(s).

Entry Conditions:

AH =
DL
DH
CH
CL
AL =

1]

il

It

4

drive number (0-1)

bead number (0-1)

cylinder number (0-79)

sector number (1 to number of sectors per track)
sector count (1 to number of sectors per track)

Exit Conditions:

See “Exits From All Calls” below.

AL =

number of sectors verified

Format Track on Floppy Disk

Format the desired track.

Entry Conditions:

AH =
DL
DH
CH
CL
ES:BX

"

i}

W

5
drive number (0-1)
bead number (¢-1)
cylinder number (0-79)
number of sectors per track
= pointer to a group of address fields for each
track. Each address field is made up of 4 bytes.
These are C, H, R, and N, where:
C = cylinder number
H = head number
R = sector number
N = the number of bytes per sector
(@1 =256, 02=512, 03 = 1824)
There is one entry for every sector on a given
track.

Exit Conditions:

See “Exits From All Calls” below.

219

Chapter 6 / BIOS Services

Exits From All Calls:

AH = status of operation, where set = true:
bit @ = bad command or command parameter
error

bit 1 = address mark not found error
bit 2 = sector not found error

bit 3 = DMA overrun error

bit 4 = CRC error

bit 5 = FDC failure

bit 6 seek error

bit 7 = timeout error

[NC] = operation successful (AH = 0)
[C] = operation failed (AH = error status)

Software Interrupt:

1E hex (30 dec)

Function Summary:

Floppy Disk Parameter Pointer

220

This is a double word pointer to the current floppy disk
parameter block. This parameter block is required for floppy
disk operation. To change the way the floppy disk driver
operates, you should build another parameter block and load
the segment and offset of this parameter block into the
software interrupt 1E hex vector area.

The Floppy Disk Parameter Pointer points to a parameter
table similar to the following:

DB11100001B ;SAT =E, HD UNLOAD =01 - 1st fdc specify byte
DB100011008 ;HD LOAD =8C, MODE =DMA - 2nd fdc specify byte
DB ? ;not used

DB ? ;bytes per sector 1=256, 2=512, 3=1024
DB ? ;sectors per track (eot)

DB ? ;Gap length

DB ? ;DTL (Data Transfer Length)

DB ? ;Gap length for format

DB 7 ;Fill byte for format

DB ? ;Head settling time (in milliseconds)

DB ? ;Motor start time (in 1/8 second intervals)

Chapter 6 / BIOS Services

Disk 1/0 Support for the Floppy &
Hard Disk System Configuration

Software Interrupt:
13 hex (19 dec)

Function Summary:

AH =
AH =
AH =
AH =

: Hard Disk Drive Ready Test
: not used
: not used
: not used

AH = 0: Reset Hard Disk
AH = 1. Return Status of Last Hard Disk Operation
AH = 2: Read Sector(s) from Hard Disk
AH = - 3: Write Sector(s) to Hard Disk
AH = 4: Verify Sector(s) on Hard Disk
AH = 5: Format Track on Hard Disk
AH = 8: Return Hard Disk Drive Parameters
AH = 9: Initialize Hard Disk Drive Parameters
AH = 12: Perform Seek on Hard Disk
AH = 13: Reset Hard Disk System
AH = 14: Read Hard Disk Sector Buffer
AH = 15: Write Hard Disk Sector Buffer
16
18
19
20

Function Descriptions:

Note: If bit 7 in register DL is set on entry to software
interrupt 13 hex, hard disk 1/O will occur. If bit 7 in register
DL is not set on entry, floppy disk I/O will occur through
interrupt 40 hex (see Interrupt 40 hex below).

221

Chapter 6 / BIOS Services

Reset Hard Disk

Reset the hard disk system. Reset associated hardware and
recalibrate all hard disk drives.

Entry Conditions:

AH = @
DL drive number (with bit 7 set to indicate bard disk)

h

Exit Conditions:

See “Exits From All Calls”’ below.

Return Status of Last Hard Disk Operation
Return the hard disk status of the last operation in AL.
Entry Conditions:

AH =1
DL = drive number (with bit 7 set to indicate bard disk)

Exit Conditions:

AL = status of the last operation; see “Exits From All
Calls” below for values

Read Sector(s) from Hard Disk

Read the specified sector(s) from a hard disk into RAM.
Entry Conditions:

AH = 2

DL drive number (with bit 7 set to indicate bard disk)

DH = drive bead number (0-7 allowed, but may not be
more than the maximum number of beads per
drive)

CL bits 7,6 = most significant part of cylinder number

CH = least significant part of cylinder number
(bits 7,6 of CL plus bits 7-0 of CH equals the 10-
bit cylinder number)

CL bits 5-0 = sector number (1 to the number of sectors
Der track)

AL = sector count (must not exceed the number of
sectors per track)

ES:BX = pointer to disk buffer

222

A

Chapter 6 / BIOS Services

Exit Conditions:

See “Exits From All Calls” below.
AL = number of sectors read

Write Sector(s) to Hard Disk
Write the specified sector(s) from RAM to a hard disk.
Entry Conditions:

AH = 3

DL drive number (with bit 7 set to indicate bard disk)

DH drive bead number (-7 allowed, but may not be
more than the maximum number of beads per
drive)

CL bits 7,6 = most significant part of cylinder number

CH = least significant part of cylinder number
(bits 7,6 of CL plus bits 7-0 of CH equals the 10-
bit cylinder number)

CL bits 5-0 = sector number (1 to the number of sectors

per track)

AL = sector count (must not exceed the number of
sectors per track)

ES:BX = pointer to disk buffer

Exit Conditions:

See “Exits From All Calls” below.
AL = number of sectors written

Verify Sector(s) on Hard Disk
Verify the specified sector(s)

Entry Conditions:

AH = 4
DL = drive number (with bit 7 set to indicate hard disk)
DH = drive bead number (¢-7 allowed, but may not be

more than the maximum number of beads per
drive)
CL bits 7,6 = most significant part of cylinder number
CH = least significant part of cylinder number
(bits 7,6 of CL plus bits 7-@ of CH equals the 10-
bit cylinder number)

223

Chapter 6 / BIOS Services

CL bits 5-0 = sector number (1 to the number of sectors
Dper track)
AL = sector count (must not exceed the number of
sectors per track)

Exit Conditions

See “Exits From All Calls” below.
AL =number of sectors written and verified

Format Track on Hard Disk
Format the specified hard disk track.

Entry Conditions:

AH = 5

DL drive number (with bit 7 set to indicate hard disk)

DH drive head number (0-7 allowed, but may not be
more than the maximum number of beads per
drive)

CL bits 7,6 = most significant part of cylinder number

CH = least significant part of cylinder number
(bits 7,6 of CL plus bits 7-0 of CH equals the 10-
bit cylinder number)

CL bits 5-@ = sector number (1 to the number of sectors

per track)
AL = interrecord gap value (normally 4EH)
ES:BX = address of sector format table (512 bytes)

Exit Conditions:

See “Exits From All Calls”’ below.

Return Hard Disk Drive Parameters

Return the parameters associated with the hard disk drive(s).
Entry Conditions:

AH = 8
DL drive number (with bit 7 set to indicate hard disk)

Exit Conditions:

It

See “Exits From All Calls” below.
DL = number of bard disk drives

224

Chapter 6 / BIOS Services

DH = number of drive beads
CL bits 7,6 = most significant part of maximum cylinder
number

CH = least significant part of maximum cylinder
number
(bits 7,6 of CL plus bits 7-@ of CH equals the 16-
bit maximum cylinder number)

CL bits 5-@0 = maximum number of sectors per track

Initialize Hard Disk Drive Parameters

Initialize the hard disk drive parameters associated with the
specified hard disk drive.

Entry Conditions:

AH = 9
DL drive number (with bit 7 set to indicate hard disk)

u

Exit Conditions:

See “Exits From All Calls’’ below.

Perform Seek on Hard Disk

Seek the specified hard disk track.
Entry Conditions:

AH = 12

DL drive number (with bit 7 set to indicate hard disk)

DH drive bead number (¢-7 allowed, but may not be
more than the maximum number of beads per
drive)

CL bits 7,6 = most significant part of cylinder number

CH = least significant part of cylinder number
(bits 7,6 of CL plus bits 7-@ of CH equals the 1¢-
bit cylinder number)

Exit Conditions:

See “Exits From All Calls’’ below.

225

Chapter 6 / BIOS Services

Reset Hard Disk System

Reset the hard disk system. Reset associated hardware and
recalibrate all hard disk drives. This call has the same effect
as Reset Hard Disk (AH = @).

Entry Conditions:
AH = 13
Exit Conditions:

See “Exits From All Calls” below.

Read Hard Disk Sector Buffer
Read the hard disk sector buffer.
Entry Conditions:

AH = 14
DL = drive number (with bit 7 set to indicate hard disk)
ES:BX = pointer to buffer

Exit Conditions:

See “‘Exits From All Calls”’ below.

Write Hard Disk Sector Buffer
Write the hard disk sector buffer.
Entry Conditions:

AH = 15
DL = drive number (with bit 7 set to indicate bard disk)
ES:BX = pointer to buffer

Exit Conditions:

See “‘Exits From All Calls”’ below.

226

R

Chapter 6 / BIOS Services

Hard Disk Drive Ready Test
Check to see if the specified hard disk drive is ready.
Entry Conditions:

AH = 16
DL drive number (with bit 7 set to indicate hard disk)

Exit Conditions:

See “Exits From All Calls’’ below.

Exits From All Calls:

AH = status of operation, where set = lrue:
bit @ = bad command or command parameter
error

bit 1 = address mark not found error
bit 2 = sector not found error

bit 3 = DMA overrun error

bit 4 = CRC error

bit 5 = FDC failure

bit 6 = seek error

bit 7 = timeout error

[NC] = operation successful (AH = 0)
[C] = operation failed (AH = error status)

Software Interrupt:
40 hex (64 dec)

Function Summary:

This is the interrupt vector for floppy disk /O when one
or more hard disks are present.

Function Description:

If the high bit (bit 7) of DL is not set and hard disk(s) are
present, control is passed to the floppy drives via this
software interrupt.

227

Chapter 6 / BIOS Services

Software Interrupt:
41 hex (65 dec)

Function Summary:

Hard Disk Parameter Pointer

228

This is a double word pointer to the current hard disk
parameter block. This parameter block is required for proper
hard disk operation. To change the way the hard disk
operates, you should build another parameter block and load
the segment and offset of this parameter block into the
software interrupt 41 hex vector area.

The Hard Disk Parameter Pointer points to a parameter table
similar to the following:

dw
db
dw
dw
db
db
db
db
db
dd

R N S I N e I I IR

number of cylinders

number of heads

reserved, not used

write precompensation cylinder number
reserved, not used

reserved, not used

time out value

format time out value

test time out value

reserved, not used

Chapter 6 / BIOS Services

Special Function Services

Introduction

These additional BIOS services provide a way to perform
certain “special functions’” under software control. Those
which' are currently implemented are described on the
following pages.

229

Chapter 6 / BIOS Services

Boot Strap |

This special function re-boots the operating system. It is a
“cold boot” in the sense that the power-on sequence is
executed.

Software Interrupts:

19 hex (25 dec)
or
49 hex (73 dec)

230

Chapter 6 / BIOS Services

Print Screen

This special function prints an image of the current video
screen on the line printer.

Software Interrupts:

05 hex (5 dec)
or
4A hex (74 dec)

231

Chapter 6 / BIOS Services

System Status Services

Introduction

232

These BIOS services provide callers with the ability to
determine, and in certain cases change, the overall status of
the operating system and/or the BIOS. Those which are
currently implemented are described on the following pages.

Chapter 6 / BIOS Services

Equipment

This service returns the ‘‘equipment flag” (hardware
configuration of the computer system) in the AX register.

Software Interrupts:
11 hex (17 dec)

or

4B hex (75 dec)

The “equipment flag” returned in the AX register has the
meanings listed below for each bit:

Reset
Set

bit @
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
bit 8
bit 9
bit 10
bit 11
bit 12
bit 13
bit 14
bit 15

= the indicated equipment is not in the system
the indicated equipment is in the system

TVl/joystick option
Monochrome graphics option
Monochrome graphics with color option
Floppy disk drive #1

Floppy disk drive #2
[reserved]

[reserved]

[unused]

Black and white monitor
Color monitor

TV monitor

[reserved]

Joysticks

Printer

[reserved]

[unused]

233

Chapter 6 / BIOS Services

Memory Size
This service returns the total number of kilobytes of RAM
in the computer system (contiguous starting from address

0) in the AX register.

Software Interrupts:

12 hex (18 dec)
or
4C hex (76 dec)

234

Appendix A

Extended Screen and Keyboard Control

This appendix describes how you can change graphics
functions, move the cursor, and reassign the meaning of any
key on the keyboard by issuing special character sequences
from within your program. These sequences are valid only
when issued through MS-DOS function calls 1, 2, 6, and 9.

Before these special functions can be used, the extended
screen and keyboard control device driver must be installed.
To do this, place the following command in your
CONFIG.SYS file (see Appendix C in the MS-DOS
Commands Reference Manual for information on the
configuration file):

DEVICE = ANSL.SYS

In the control sequences described below, the following
apply:

e The symbol *“ * ” represents a decimal number that
you provide, specified with ASCII characters.

® The default value is used when no explicit value or
a value of zero is specified.

e ESC represents the 1-byte code for ESC (1BH). For
example, you could create ESC[5;9H under DEBUG
as follows:

E100 1B “[5;9H"

235

Appendix A |

Cursor Control

Cursor Position (CUP)
ESC [*;*H

Moves the cursor to the position specified by the parameters.
The first parameter specifies the line number and the second
parameter specifies the column number. The default value
for * is 1. If no parameter is given, the cursor is moved to
the home position (upper left corner).

Horizontal and Vertical Position (HVP)
ESC [*;*f

Moves the cursor in the same way as Cursor Position (CUP),
described above.

Cursor Up (CUU)
ESC [*A

Moves the cursor up one or more lines without changing
columns. The value of * determines the number of lines 3
moved. The default value for * is 1. This sequence is ignored %
if the cursor is already on the top line.

Cursor Down (CUD)

ESC [*B

Moves the cursor down one or more lines without changing
columns. The value of * determines the number of lines
moved. The default value for * is 1. This sequence is ignored
if the cursor is already on the bottom line.

236

Appendix A

Cursor Forward (CUF)

ESC [*C

Moves the cursor forward one or more columns without
changing lines. The value of * determines the number of
columns moved. The default value for * is 1. This sequence
is ignored if the cursor is already in the rightmost column.

Cursor Backward (CUB)

ESC [*D

Moves the cursor back one or more columns without
changing lines. The value of * determines the number of
columns moved. The default value for * is 1. This sequence
is ignored if the cursor is already in the leftmost column.

Device Status Report (DSR)

ESC [6n

The console driver outputs a Cursor Position Report (CPR)
sequence on receipt of DSR (see below).

Cursor Position Report (CPR)

ESC [*;*R

Reports current cursor position through the standard input
device. The first parameter specifies the current line and the
second parameter specifies the current column.

Appendix A

Save Cursor Position (SCP)

ESC [s

Saves the current cursor position. You can restore this
position with the Restore Cursor Position (RCP) sequence
(see below).

Restore Cursor Position (RCP)
ESC [u

Restores the cursor position to the value it had when the
console driver received the SCP sequence.

238

Appendix A

Erasing

Erase Display (ED)

ESC [2]

Erases the screen and sends the cursor to the home position
(upper left corner).

Erase Line (EL)

ESC [K

Erases from the cursor to the end of the line (including the
cursor position).

239

Appendix A

Modes of Operation

Set Graphics Rendition (SGR)
ESC [*;..;*m

Sets the character attribute(s) specified by the parameter(s)
described below. The attributes remain in effect until the next
occurrence of an SGR escape sequence.

Parameter Meaning

o All attributes off (normal white on black)
1 Highlight on (high intensity)
4 Underline on (monochrome display only)
5 Blink on
7 Reverse video on
8 Concealed on (invisible)

30 Black foreground

31 Red foreground

32 Green foreground

33 Yellow foreground

34 Blue foreground

35 Magenta foreground

36 Cyan foreground

37 White foreground

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

240

Appendix A

Set Mode (SM)

ESC [=*H

or ESC [=H
or ESC =0h
or ESC [?7h

Sets the screen width or type specified by the parameter.

Parameter Meaning

0

NV B W N =

Qo

Reset Mode (RM)

ESC [="1
or ESC[=1

40 x 25 black and white
40 x 25 color

80 x 25 black and white
80 x 25 color

320 x 200 color

320 x 200 black and white
640 x 200 black and white
wrap-around at end of line (new line
starts when old line filled)
640 x 400 color graphics
640 x 400 black and white
1620 x 200 color graphic

or ESC[=01

or ESC [?71

Parameters are the same as for Set Mode (SM) except that
parameter 7 resets the wrap-around mode (characters past
end-of-line are thrown away).

241

Appendix A

Keyboard Key Reassignment

ESC [*;*;...7p

or ESC [“string’’;p

or ESC [*;"string”’;*;*;"string”’;*p

or any other combination of strings and decimal
numbers

Changes the meaning of a key on the keyboard. The first
ASCII code in the control sequence defines which code is
being mapped. The remaining numbers define the sequence
of ASCII codes generated when this key is intercepted.
However, if the first code in the sequence is zero (NUL), then
the first and second codes make up an extended ASCII re-
definition. (See Appendix B for a list of ASCII and extended
ASCII codes.)

Examples:

1. Reassign the Q and q key to the A and a key (and vice

versa):
ESC [65;81p A becomes Q
ESC [97;113p a becomes q
ESC [81;65p Q becomes A
ESC [113;97p q becomes a

2. Reassign the F10 key to a DIR command followed by a
carriage return:

ESC [0;68;"dir’;13p

The 0;68 is the extended ASCII code for the F10 key. 13
decimal is a carriage return.

242

Appendix B

Keyboard ASCII and Scan Codes

The table in this appendix lists the keys on the Model 2000
keyboard in scan code order, along with the ASCII codes they
generate. For each key, the following entries are given:

Scan Code — A value in the range @1H-5AH which uniquely
identifies the physical key on the keyboard that is pressed.

Keyboard Legend — The physical marking(s) on the key.
If there is more than one marking, the upper one is listed
first.

ASCII Code — The ASCII codes associated with the key.
The four modes are:

Normal — The normal ASCII value (returned when only
the indicated key is depressed).

SHIFT — The shifted ASCII value (returned when SHIFT
is also depressed).

CTRL — The control ASCII value (returned when CTRL
is also depressed).

ALT — The alternate ASCII value (returned when AIT is
also depressed).

Remarks — Any remarks or special functions.
The following special symbols appear in the table:

X Values preceded by “x”’ are extended ASCII codes
(codes preceded by an ASCII NUL, 00).

— No ASCII code is generated.

* No ASCII code is generated, but the special function
described in the Remarks columu is performed.

[1 The ASCIH codes listed are the same as those
generated by corresponding keys on the IBM PC :
keyboard except for those enclosed by square
brackets. Codes in brackets are additional codes; that
is, the IBM PC keyboard generates no ASCII code in
any of these cases.

Note: All numeric values in the table are expressed in
hexadecimal.

243

Appendix B

Scan Keyboard ASCII Codes Remarks
Code Legend Normal SHIFT CTRL AILT

01 ESC 1B 1B 1B [x8B]

02 t1 31 21 — x78

03 @ 2 32 40 x03 x79

04 #3 33 23 — x7A

05 $ 4 34 24 — x7B

06 % 5 35 25 — x7C

07 6 36 SE 1E x7D

08 & 7 37 26 — x7E

09 * 8 38 2A — x7F

0A (9 39 28 — x80 |
0B) 0 30 29 — x81 |
0C _ - 2D 5F 1F x82
oD + = 3D 2B — x83

OE BACK SPACE 08 08 7F [x8C]

OF TAB 09 xOF [x8D] [x8E]

10 Q 71 51 11 x10

11 W 77 57 17 x11

12 E 65 45 05 x12

13 R 72 52 12 x13

14 T 74 54 14 x14

15 Y 79 59 19 x15

16 U 75 55 15 x16

17 I 69 49 09 x17

18 0 6F 4F OF x18

19 P 70 50 10 x19

1A {1 5B 7B 1B —

1B 1 5D 7D 1D —

1C ENTER oD oD 0A [X8F] (main keyboard)
1D CTRL * ' * . control mode
1E A 61 41 01 x1E

1F S 73 53 13 x1F

20 D 64 44 04 x20

21 F 66 46 06 x21

22 G 67 47 07 x22

23 H 68 48 08 x23

24 J 6A 4A 0A x24

25 K 6B 4B 0B x25

26 L 6C 4C 0C x26

27 D 3B 3A —_ —

28 v 27 22 — —

244

Appendix B

Scan Keyboard ASCII Codes Remarks
Code Legend Normal SHIFT CTRL ALT

29 * x48 [x85] [x90] [x91]

2A SHIFT * * * * left SHIFT

2B« x4B [x87] x73 [x92)

2C Z 7A 5A 1A x2C

2D X 78 58 18 x2D

2E C 63 43 93 X2E

2F A\ 76 56 16 x2F

30 B 62 42 02 x30

31 N GE 4E QE x31

32 M 6D 4D oD x32

33 <, 2C 3C — —

34 >, 2E 3E —_ —

35 ? 2F 3F — —

36 SHIFT * * * * right SHIFT

37 PRINT 10 * X72 [x46] print screen
toggle

38 ALT * * * * alternate mode

39 (space bar) 20 20 20 20

3A CAPS * * * * caps lock

3B F1 x3B x54 x5E x68

3C F2 x3C Xx55 x5F x69

3D F3 x3D x56 x60 x6A

3E F4 x3E x57 x61 x6B

3F F5 x3F x58 x62 x6C

40 F6 x40 x59 x63 x6D

41 F7 x41 x54 x64 XG6E

42 F8 x42 x5B x65 xG6F

43 F9 x43 x5C x66 x70

44 F10 x44 x5D x67 x71

45 NUM LOCK * * * * number lock

46 HOLD * * * * freeze display

47 \ 7 37 5C [x93] M

48 ~ 8 38 7E [x94] ot

49 PG UP 9 39 x49 x84 * T

4A v x50 [x86] [x96] [x97] i

4B | 4 34 7C [{x95] - t

4C 5 35 - — * T

4D 6 36 — - * t

4E > x4D [x88] x74 * smooth scroll
toggle

RN N o SR R v

245

Appendix B

Scan Keyboard ASCII Codes Remarks

Code Legend Normal SHIFT CTRL ALT

4F END 1 31 x4F X75 * T

50 N2 32 60 [x9A] ot

51 PG DN 3 33 x51 x76 * T

52 0 30 [x9B] [x9C] f

53 DELETE x53 [x8A] [x9D] [x9E]

54 BREAK x00 x00 * x0® BREAK routine
(INT 1BH)

55 INSERT X52 [x89] [x9F] [xA0]

56 2E [xAl] [xA4] [xAS5] (numeric »
keypad) !

57 ENTER oD oD 0A [x8F] (numeric
keypad)

58 HOME x47 [x4A] x77 [XAQ]

59 Fll [x98] [xA2] [xAC] [xBG] |

5A FI2 [x99] [xA3] [xAD] [xB7] :

T The key provides a way to generate the ASCII codes of decimal numbers @
between 1 and 255. Hold down the (ALD key while you type on the |
numeric keypad any decimal number between 1 and 255. When you
release ALT, the ASCII code of the number typed is generated and
displayed.

Note: When the NUM LOCK light is off, the Normal and SHIFT columns for
these keys should be reversed.

246

Index

Entries which are bold are system calls.

Abort, 26
Absolute Disk Read, 14-15
Absolute Disk Write, 16-17
Additional Scroll Functions, 207
Alloc, 128
Allocate Memory, 128
Allocation

disk, 169-170

memory, 128, 130
ASCII Codes, keyboard, 244-246
ASCHZ strings, 20
Attribute

in FCB, 171

of a file, 4

retrieving, 120

setting, 120
Auxiliary device, 29, 30
Auxiliary Input, 29
Auxiliary Output, 3¢
Auxinput, 29
AuxOutput, 30

BIOS Parameter Block (BPB), 187-189
BIOS Services, 193

Additional Scroli Functions, 207

Boot Strap, 230

Disk /O Support see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines

Disk Routines see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines

Equipment, 233

Floppy and Hard Disk Routines, 221-228

Floppy Disk Only Routines, 217-220

Floppy Disk Parameter Pointer, 220

Flush Comm Buffer, 211

Flush Keyboard Buffer, 196

Format Track on Floppy Disk, 219

Format Track on Hard Disk, 224

Get CRT Mode, 205

Get Character Fonts, 205

Get Current Comm Status, 210

Get Current Printer Status, 213

Get Cursor Position, 200

Get Date and Time, 215

Get Shift Status, 196

Get Time of Day, 214

Hard Disk Drive Ready Test, 227

Hard Disk Parameter Pointer, 228

Initialize Hard Disk Drive Parameters, 225

Keyboard Routines, 195-197

Line Printer Routines, 212-213

Memory Size, 234

Perform Seek on Hard Disk, 225

Print Character, 212

Print Screen, 231

Read Attribute, 202

Read Color/Character, 202

Read Dot, 204

Read Hard Disk Sector Buffer, 226

Read Keyboard, 195

Read Sector(s) From Floppy Disk, 218

Read Sector(s) from Hard Disk, 222

Receive Character (Comm), 210

Reset Comm Port, 203

Reset Floppy Disk, 217

Reset Hard Disk, 222

Reset Hard Disk System, 226

Reset Keyboard, 197

Reset Printer Port, 213

Return Hard Disk Drive Parameters, 224

Return Status of Last Floppy Disk
Operation, 218

Return Status of Last Hard Disk
Operation, 222

Scan Keyboard, 196

Scroll Down, 202

Scroll Up, 201

Select Active Page, 201

Set Color Pallette, 204

Set Character Fonts, 205

Set CRT Mode, 199

Set Cursor Type, 200

Set Cursor Position, 200

Set Date and Time, 215

Set Time of Day, 215

Special Function Services, 229-231

System Clock Routines, 214-215

System Status Services, 232-234

Transmit Character (Comm), 210

247

Index

Verify Sector(s) on Floppy Disk, 219
Verify Sector(s) on Hard Disk, 223
Video Display Routines, 198-207
Write Attribute, 203
Write Attribute Only, 206
Write Character Only, 203
Write Colar/Character, 203
Write Dot, 204
Write Hard Disk Sector Buffer, 226
Write Sector(s) to Floppy Disk, 218
Write Sector(s) to Hard Disk, 223
Write TTY, 205
Boot sector, 188-189
Boot Strap, 230
Buffer
input, 40
type-ahead, 42, 43
Buftered Keyboard Input, 40-41
BUILD BPB, 183-184, 187-189

Change Attribute, 120
Change the Current Directory, 107
Character

displaying, 28

inputting, 27

printing, 31
Chbir, 107
Check Keyboard Status, 42
Child process, 132, 135
ChMod, 120
CLOCK device, 192
Close, 112
Close a File Handle, 112
Close File, 48-49
Command processor, 167
Coninput, 35-36
ConlnputFlush, 43
ConinputNoEcho, 37-38
ConlnputStatus, 42
Conio, 33-34
ConStringinput, 40-41
ConStringOutput, 39
CONTROL-C

check, 97

routine, 10
CONTROL-C Check, 97-98
CONTROL-C Exit Address, 10

248

Create a File, 108-109

Create File, 60

Create Sub-Directory, 105
Curdsk, 64

Current block (FCB), 157

Current Disk, 64

Current record number {FCB), 158
CurrentDir, 127

Date
returning, 85, 141
setting, 87, 141
Date of last write
in disk directory, 172
in FCB, 158
Dealloc, 129
Delete a Directory Entry, 117
Delete File, 54-55
Device
channels, 121-122
110 control, 121-123
reading from, 113
writing to, 115
Device
block, 175-176
character, 175
CLOCK, 192
creating, 180
dumb and smart, 186
header, 177179
installing, 181
NUL, 178
request header, 182-186
Device 1/O Services, 193-194
Additional Scrolt Functions, 207
Boot Strap, 230
Disk /O Support see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines
Disk Routines see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines
Equipment, 233
Floppy and Hard Disk Routines, 221-228
Floppy Disk Only Routines, 217-220
Floppy Disk Parameter Pointer, 220
Format Track on Floppy Disk, 219

Index

Format Track on Hard Disk, 224

Flush Comm Butfer, 211

Flush Keyboard Buffer, 196

Get CRT Mode, 205

Get Character Fonts, 205

Get Current Comm Status, 210

Get Current Printer Status, 213

Get Cursor Position, 200

Get Date and Time, 215

Get Shift Status, 196

Get Time of Day, 214

Hard Disk Drive Ready Test, 227

Hard Disk Parameter Pointer, 228

Initialize Hard Disk Drive Parameters, 225

Keyboard Routines, 195-197

Line Printer Routines, 212-213

Memory Size, 234

Perform Seek on Hard Disk, 225

Print Character, 212

Print Screen, 231

Read Attribute , 202

Read Color/Character, 202

Read Dot, 204

Read Hard Disk Sector Buffer, 226

Read Keyboard, 195

Read Sector(s) From Floppy Disk, 218

Read Sector(s) from Hard Disk, 222

Receive Character (Comm), 210

Reset Comm Port, 209

Reset Floppy Disk, 217

Reset Hard Disk, 222

Reset Hard Disk System, 226

Reset Keyboard, 197

Reset Printer Port, 213

Return Hard Disk Drive Parameters, 224

Return Status of Last Floppy Disk
Operation, 218

Return Status of Last Hard Disk
Operation, 222

Scan Keyboard, 196

Scroll Down, 202

Scroll Up, 201

Select Active Page, 201

Set Color Pallette, 204

Set Character Fonts, 205

Set CRT Mode, 199

Set Cursor Type, 200

Set Cursor Position, 200
Set Date and Time, 215
Set Time of Day, 215
Special Function Services, 223-231
System Clock Routines, 214-215
System Status Services, 232-234
Transmit Character (Comm), 210
Verify Sector(s) on Floppy Disk, 219
Verify Sector(s) on Hard Disk, 223
Video Display Routines, 198-207
Write Attribute, 203
Write Attribute Only, 206
Write Character Only, 203
Write Color/Character, 203
Write Dot, 204
Write Hard Disk Sector Buffer, 226
Write Sector(s) to Floppy Disk, 218
Write Sector(s) to Hard Disk, 223
Write TTY, 205
Direct Console 1/0, 33-34
Directory, 2-4
changing the current, 107
creating a sub-, 105
disk, 170-172
returning the current, 107
Directory entry
format, 170-172
moving, 140
removing, 106, 107
search for first, 50
search for next, 52
DirSearchFirst, 50-51
Disk
allocation, 169-170
directory, 170-172
free space on, 100
Disk 1/0 Support see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines
Disk Routines see Floppy Disk Only
Routines or Floppy and Hard Disk
Routines
Disk Transfer Address
returning, 94
setting, 65
Display Character, 28
Display String, 39

249

Index

Drive
as block device, 175-176
currently selected, 64
letter, 175-176
number (in FCB), 157
selecting, 45

Drivers, device, 175-192

Dup, 125

Dup2, 126

Duplicate a File Handle, 125

Environment, 132, 162
Equipment, 233
Error codes
for function calls, 19-20
Exec, 131-133
Exit, 134
Exit code, 96, 135
Extended File Control Block, 159
Extended Screen and Keyboard
Control, 235-242

Fatal Error Abort Address, 11-13
File
attribute (see Attribute)
closing, 48, 112
creating, 60, 108
deleting, 54
moving, 140
opening, 46, 110
renaming, 62, 140
size, 71
File Allocation Table (FAT), 169-170, 173-174
File Control Block (FCB), 46, 50, 157159
Extended, 159
File handle, 20
duplicating a, 125, 126
File Size, 71-72
File size
in disk directory, 172
in FCB, 158
Filename
in disk directory, 170
in FCB, 157
parsing, 82-83
separators, 82
terminators, 82

250

FileTimes, 141-142
Find Matching File, 136-137
Find Next Matching File, 138
FindFirst, 136-137
FindNext, 138
Flag
carry, 19
verify, 92, 139
Floppy and Hard Disk Routines, 221-228
Format Track on Hard Disk, 224
Hard Disk Drive Ready Test, 227
Hard Disk Parameter Pointer, 228
Initialize Hard Disk Drive Parameters, 225
Perform Seek on Hard Disk, 225
Read Hard Disk Sector Buffer, 226
Read Sector(s) from Hard Disk, 222
Reset Hard Disk, 222
Reset Hard Disk System, 226
Return Hard Disk Drive Parameters, 224
Return Status of Last Hard Disk
Operation, 222
Verify Sector(s) on Hard Disk, 223
Write Hard Disk Sector Buffer, 226
Write Sector(s) to Hard Disk, 223
Floppy Disk Only Routines, 217-220
Floppy Disk Parameter Pointer, 220
Format Track on Floppy Disk, 219
Read Sector(s) From Floppy Disk, 218
Reset Floppy Disk, 217
Return Status of Last Floppy Disk
Operation, 218
Verify Sector(s) on Floppy Disk, 219
Wirite Sector(s) to Floppy Disk, 218
Floppy Disk Parameter Pointer, 220
FLUSH, 192
Flush Buffer, Read Keyboard, 43
Flush Comm Buffer, 211
Flush Keyboard Butfer, 196
Format Track on Floppy Disk, 219
Format Track on Hard Disk, 224
Fname, 82-84
Force a Duplicate of a File Handle, 126
Free Allocated Memory, 129
Function call parameters, 187-192
Function calls, 19-155
alphabetic list of, 24-25
calling, 20-21

Index

calling, CP/M compatible, 21

categories, 19

descriptions of, 26-142

error codes, 19-20

numeric list of, 22-23

register treatment, 21
Function Request, 8

Get CRT Mode, 285

Get Character Fonts, 205

Get Current Comm Status, 210
Get Current Printer Status, 213
Get Cursor Position, 200

Get Date, 85-86

Get Date and Time, 215

Get Disk Free Space, 100

Get Disk Transfer Address, 94
Get Interrupt Vector, 95

Get Shift Status, 196

Get Time, 89

Get Time of Day, 214

Get or Set a File’s Date and Time, 141-142
Get Version Number, 95
GetDTA, 94

GetFreeSpace, 100

GetVector, 99

GetVerityFlag, 139

Hard Disk Drive Ready Test, 227
Hard Disk Parameter Pointer, 228

INIT, 185-186, 187
Initialize Hard Disk Drive Parameters, 225
Initialization, 167
Input

auxiliary, 29

direct consoie, 35

keyboard, 27, 35, 37, 40
International, 101-104
Interrupt

list of, 6

vector, retrieving, 99

vector, setting, 75
Interrupts, 6-18
/O Control for Devices, 121-124
loctl, 121124

Keep Process, 96
Keyboard

input, 27, 35, 48

read, 37, 43

status, 42
Keyboard ASCll and Scan Codes, 243-246
Keyboard Control, Extended, 235-238
Keyboard Routines, 195-197

Flush Keyboard Buffer, 196

Get Shift Status, 196

Read Keyboard, 195

Reset Keyboard, 197

Scan Keyboard, 196
Keyboard Input, 27

Line Printer Routines, 212-213
Get Current Printer Status, 213
Print Character, 212
Reset Printer Port, 213
Load and Execute a Program, 131-133
Logical record size (FCB), 158
LSeek, 118-119

Macro, 5

definitions, list of, 143-150
MEDIA CHECK, 183-184, 188
Media descriptor byte, 186, 190
Memory

allocating, 128

deallocating, 129

modifying allocated block of, 130
Memory map, 160
Memory Size, 234
MkDir, 105
Modify Allocated Memory Blocks, 130
Move a Directory Entry, 140
Move a File Pointer, 118-119
MS-DOS

command pracessor, 167

disk allocation, 1638-170

disk directory, 17@-172

initialization, 167

NON-DESTRUCTIVE READ NO WAIT, 191

Open, 110-111

Open a File, 110-111

251

SETHERS

Index

Open File, 46-47
Output
.auxitiary, 30
console, 28
direct console, 33
printer, 31

Parent process, 132
Parse Filename, 82-84
Perform Seek on Hard Disk, 225
Print Character, 212
Print Screen, 231
Print Character, 31-32
PrinterOutput, 31-32
Printing

a character, 31-32
Program Segment, 161-164
Program Segment Prefix, 161, 162, 163, 165
Program Terminate, 7

Random Block Read, 76-78
Random Block Write, 79-81
Random Read, 67-68
Random Write, 69-70
RBRead, 76-78
RBWrite, 79-81
Read, 113-114
Read

from file or device, 113

keyboard, 37, 43

random, 67

random block, 76

sequential, 56
Read Attribute, 202
Read Color/Character, 202
Read Dot, 204
Read from a File or Device, 113-114
Read Hard Disk Sector Buffer, 226
Read Keyboard, 37-38, 195
Read Sector(s) From Floppy Disk, 218
Read Sector(s) from Hard Disk, 222
READ or WRITE, 190-191

" Receive Character (Comm), 210

Registers

function call treatment of, 21
Relative record number (FCB), 158
Remove a Directory Entry, 106

Rename, 140

Rename File, 62-63

Request header, 182-186

Reset Comm Port, 209

Reset Disk, 44

Reset Floppy Disk, 217.

Reset Hard Disk, 222

Reset Hard Disk System, 226

Reset Keyboard, 197

Reset Printer Port, 213

Retrieve the Return Code of a Child, 135

Return code, 96, 135

Return Country-Dependent
Information, 101-104

Return Current Setting of Verify, 139

Return Hard Disk Drive Parameters, 224

Return Status of Last Floppy Disk
Operation, 218

Return Status of Last Hard Disk
Operation, 222

Return Text of Current Directory, 127

RmDir, 106

Scan Codes, keyboard, 243-246
Scan Keyboard, 196
Screen and Keyboard Control,
Extended, 235-238
Scroll Down, 202
Scroll Up, 201
Search for First Entry 50-51
Search for Next Entry, 52-53
Select Active Page, 201
Select Disk, 45
Serial Communication Routines, 208-211
Flush Comm Buffer, 211
Get Current Comm Status, 210
Receive Character, 210
Reset Comm Port, 209
Transmit Character, 210
Sequential Read, 56-57
Sequential Write, 58-59
SeqRead, 56-57

SeqWrite, 58-59

Set Color Pallette, 204
Set Character Fonts, 205
Set CRT Mode, 199

Set Cursor Type, 200

Index

Set Cursor Position, 200
Set Date, 87-88
Set Date and Time, 215
Set Disk Transfer Address, 65-66
Set Interrupt Vector, 75
Set Relative Record, 73-74
Set/Reset Verify Flag, 92-93
Set Time, 90-91
Set Time of Day, 215
SetBlock, 130
SetCtriCTrapping, 97-98
SetDTA, 65-66
SetRelRec, 73-74
Setvector, 75
SetVerify, 92-93
Special Function Services, 229-231
Boot Strap, 230
Print Screen, 231
Starting cluster, 172
STATUS, 190
StdConinput, 27
StdConOutput, 28
String
dispiaying, 39
System calls, 1-155
calling, 1, 5
extended example, 150-155
returning from, 1-2, 5
XENIX compatible, 2-3
System Clock Routines, 214-215
Get Date and Time, 215
Get Time of Day, 214
Set Date and Time, 215
Set Time of Day, 215
System Status Services, 232-234
Equipment, 233
Memory Size, 234

Terminate a Process, 134
Terminate Address, 9
Terminate But Stay Resident, 18
Terminate Program, 26
Terminating a program, 18, 26
Time

returning, 89, 141

setting, 90, 141

Time of last write
in disk directory, 171-172
in FCB, 158
Transmit Character (Commy), 210

Unlink, 117

Verity
flag, setting and resetting, 92
returning, 139
Verify Sector(s) on Floppy Disk, 219
Verify Sector(s) on Hard Disk, 223
Video Display Routines, 198-207
Additional Scroll Functions, 287
Get CRT Mode, 205
Get Character Fonts, 205
Get Cursor Position, 200
Read Attribute, 202
Read Color/Character, 202
Read Dot, 204
Scroll Down, 202
Scroll Up, 201
Select Active Page, 201
Set Color Pallette, 204
Set Character Fonts, 205
Set CRT Mode, 199
Set Cursor Type, 200
Set Cursor Position, 200
Wirite Attribute, 203
Write Attribute Only, 206
Write Character Only, 203
Write Color/Character, 203
Write Dot, 204
Write TTY, 205
Version
returning, 95

Wait, 135
Write, 115-116
Write
random, 69
random block, 79
sequential, 58
to a file or device, 115
Write Attribute, 203
Write Attribute Only, 206
Write Character Only, 203

253

T —

Index

254

Write Color/Character, 203

Write Dot, 204

Write Hard Disk Sector Buffer, 226
Write Sector(s) to Floppy Disk, 218
Write Sector(s) to Hard Disk, 223
Write TTY, 205

Write to a File or Device, 115-116

XENIX, 2

R

o

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA ‘ BELGIUM U K _
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7N
- 12/83SL Printed in U.S.A.

e e e eEm——— e S S

