Simulation of Motion:

Lol
o

“ey
g
i

About the Author

Stephen P Smith’s pet project as an amateur is a PASCAL compiler for a
personal computer. Professionally, he leads the Computer Sciences Corpora-
tion support team attached to the range safety office at NASA Wallops
Flight Center, where he and his team of analysts develop analytical methods
and construct digital simulations of flight paths, flow fields and structural
responses of rockets and aircraft. The BASIC programs which are part of this
article and the remaining parts to come in several installments were developed
and run on a Tektronix 4051, which uses a 6800 microprocessor and includes
a BASIC interpreter.

One of the most delightful applications
for personal computers is games, not just
playing them, but creating them. If you are
like most enthusiasts, you will have begun
with random number games like blackjack,
but sooner or later you will want to work
with games involving moving objects. To
describe that motion using a microcomputer
you will need to use a form of simulation.
The simulation could involve detailed mathe-
matical models solved with elegant numeri-
cal techniques.

More likely, the novice will begin by fol-
lowing the pattern of the simple lunar
lander games which have appeared often
in BYTE (see “Kim Goes to the Moon,” by
Butterfield in April 1977 BYTE, or “Con-
trolling Small DC Motors with Analog
Signals” by Dwyer, Critchfield and Sweer in
September 1977 BYTE). The truly ad-
vanced simulations are best left to pro-
fessionals with mainframe computer power,
but the home user can progress well beyond
the simple lunar lander game. By picking up
the basic physics and simple numerical

18 BYTE November 1977

An Improved Luna:

Stephen P Smith
POB 841
Parksley VA 23421

methods presented in this article and the
following ones, you will learn to simulate
a wide variety of motion. Whether you use
these simulations to create games, like the
real time LEM simulator presented here, or
to develop new applications for your per-
sonal computer system, you will acquire
some valuable additions to your applications
software toolbox.

For any application involving motion,
your simulation will be required to predict
the speed and position of an object at some
time in the future. The predictions can be
made using a microcomputer if you first
limit the type of motions considered at
any point in the program. In the lunar
lander game, for example, the excursion
module (LEM) is only allowed to move up

~and down. The simulation is said to have one

degree of freedom. Other degrees are
possible, but the separation into different
degrees of freedom is an important first
step.

Let’s see how a one degree of freedom
simulation is performed. Thanks to Sir Isaac
Newton and his apple (that was a fruit, not
a computer), we know that an object will
continue to move in any degree of freedom
without changing speed until a force acts
on it. To predict how the LEM will move,
we need only to examine the forces which
might be present and determine how they
effect the up and down motion.

Because the moon has no atmosphere to
involve us in aerodynamics, only two forces
need be considered, gravity and thrust.
Gravity makes the LEM fall faster. Thrust

Teer -

v’

[km rgljdif {f#} -

s

ord ~100ufs |

Generic Unit Metric
Length 1 meter

Velocity 1 meter per second
Acceleration

Mass 1 kilogram

Force 1 newton

Table 1: This article was written using the

1 meter per second per second

3.2808 feet

3.2808 feet per second

2.2369 miles per hour

3.2808 feet per scond per second
2.2046 pounds (mass)

0.0685 slugs (mass)

0.2248 pounds (force)

{1 | N | A R

metric system of units. As the

front runners in an exciting new technical hobby, we should be more ready
than most to accept the coming metric conversion in this country, but if you
haven’t been converted yet, the above table will be useful,

Verncol, MoTI07

“HM o+ { 4

10,000, ‘r{ le

el

= CI‘T‘?U:Q%/\/\

0

Heavenly
Body

Moon
Earth
Mercury
Venus
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

Surface
Gravity
(m/sec2)

1.62
9.80
3.95
8.72
3.84
23.16
"8.77
9.46
13.66
4.89

\ o
. 8‘;@,\,\5*5 -Q éu,(fg%

makes it fall more slowly. The exact effect
of each can be calculated with only a few
operations.

Gravity is the simpler of the two. It has
exactly the same effect on every object.
During each second of a lunar landing near
the moon’s surface, the moon’s gravity will
make a LEM fall 1.62 meters per second

_faster. (Those of you who wish to land on

“more exotic heavenly bodies are referred
to table 2.) In most simulations, speed and
position are considered positive if they are
directed upward, in this case away from the
lunar surface. To simulate 1 second of fall
through lunar gravity we must subtract 1.62
meters per second from the present speed.
If the LEM is moving at =100 meters per
second now (100 m/sec downward), 1
second later it will be moving at -101.62
meters per second.

In many games, the effect of thrust is
also simulated by a constant change in

" speed. Often it is given in multiples of
, gravity called “g”s. One “‘g” of thrust adds
1.62 meters per second to the speed, just
as gravity subtracts that amount. Two
“g”s add twice that, and so on. This
assumption reduces the complexity of the

Surface
Heavenly Gravity
Body (m/sec2)
Asteroids
Ceres 0.85
Pallas 0.54
Juno 0.21
Vesta 0.43
Jupiter’s moons
Ganymede 3.43
lo 2.26
Europa 1.98
Callisto. 3.20

Note that the gravitational accelerations shown in this table are surface accelerations,
valid during the final stages of a landing when a spacecraft is relatively near the heavenly
body. A more complicated simulation is required if movement far away from the hea-
venly body is contemplated.

Table 2: Players who grow adept at lunar landings may wish to try landing
on some other heavenly bodies. The above table of accelerations due to
gravity is provided for them.

20

BYTE November 1977

simulation, but it fails to demonstrate the
way in which forces actually cause change:
in speed.

Unlike gravity, forces such as thrust dc
not have the same effect on every object.
They have a larger effect on light objects
than they have on heavier ones. It is
important to consider this fact in accurate
simulations, because weights can change.
The LEM becomes lighter as it burns fuel
to create thrust. A given value of thrust
will have a larger effect toward the end
of the flight than it will at the beginning.

Weight is not really the correct term to
use when calculating that effect. We should
talk instead of mass. The difference is
subtle, but important. Mass is a basic pro-
perty of matter. Weight is the result of
gravity pulling on the mass. A man on the
moon weighs only 1/5 as much as he does
on earth, but his mass is the same. This is
true because the moon’s gravity pulls only
1/5 as strongly on his mass. The effect of
a force is determined by the mass of an
object, not by its weight. A given thrust
will have the same effect on a LEM whether
the LEM is landing on the moon, on earth,
or is floating “weightless” in space.

In the metric system, the unit of mass
is the kilogram. The unit of force is the
newton. These units are very convenient
for calculating the effect of a force on the
motion of an object. The force (in newtons)
divided by the mass (in kilograms) is exactly
equal to the rate of change in speed
(“acceleration” in meters per second per
second). No additional constants are needed
as they are when units of feet and pounds
are used. For example, let our LEM have a
mass of 1000 kg and let its engine produce a
thrust of 10,000 newtons. To simulate 1
second of thrust, a program would add 10
meters per second to the speed (10000/
1000) to account for 1 second’s worth of
acceleration.

Remember though that during the same
second 1.62 meters per second must be sub-
tracted to simulate the effect of gravitational
acceleration. The actual change in speed will
be 10.-1.62=8.38 meters per second. In two
seconds, the change will be twice that or
16.76 meters per second. In half a second,
the change will be one half as much and so
on. While this may seem obvious, it illus-
trates an important point. The change that
each force makes in the speed in 1 second
may be determined separately. The separate
effects are added up and then multiplied
by the length of time we are simulating
to find the actual value the simulation pro-
gram will add to the speed.

Now that we can predict speed, let’s
apply the same technique to predict the"

%;‘}&‘:* b @ [{‘: ¥

= O

= ph RO12071E

22 BYTE November 1977

(RS S

T r Bg=-io0 4oy
Ay = (0,00 Q= o
et 0use
Douredtvatd Tagfamds
S* LOC)V‘ TE
Mgz Sooo R A
) 2505/ pro
Ny = “IOJr(p.z,g) - -4

Photo 1: A scene from the “lunar lander” program which is the Digital
Equipment Corportation 's graphics equipment demonstration program.
This simulation is a real time model of a lunar landing in which a light pen
is used to input control information and displays track the landing. The
object of the game is to land near (but not on) the only MacDonalds’ ham-
burger stand on the moon. This simulation, like the one discussed in the
article, has two degrees of freedom, superficially it differs from the program
of this article largely in its incorporation of real time graphic display light pen
control inputs and a model of the lunar terrain.

position. We have shown that if the LEM is
moving downward at 100 meters per second
now, (speed=—100) then in 2 seconds the
speed will be -100.+2.x(THRUST/MASS
-1.62). Similarly, if the LEM is 10000
meters above the moon now, in 2 seconds it
will be 10000.+2.x(speed) meters up. Just as
we multiply the forces by time and add the
product to the speed, we multiply the speed
by time, and add the product to the posi-
tion.

What we have just done is to predict the
speed and position at a ‘“‘step” of 2 seconds
into the future. In the jargon of simulation,
2 seconds is the step size. The step size can
take any value you choose. Returning to the

1000 kg LEM, let the step size be 0.1

seconds. For a present speed of —100 meters
per second, the speed predicted for 0.1
seconds in the future is —100.+0.1x(10000./
1000.-1.62)=-99.16 meters per second. If
the position now is 10000 meters, then the
position predicted for 0.1 seconds in the
future is 10000.+0.1x(-99.16)=9990.08
meters above the moon.

Using these values of speed and position
we can find new values for the forces and
mass. We can then step the simulation into
the future once again. The process can con-
tinue indefinitely, but usually one or more
variables is tested for an end condition at
each step. The test might be on position
(Are you still above the moon?), on mass
(Is there fuel remaining?), or on some other
variable. Should any of the tests fail, the
program will branch and end the simulation.

Adding a New Degree of Freedom

You now know the basic procedure for
simulating motion in one degree of freedom.
The LEM simulation has been in one degree
because we have only predicted the up and
down movements. These are called vertical
motions. Suppose that we also predict the
way the LEM moves horizontally, in other
words, from side to side. The pilot must not

/

ey
"'\»
,

only reach the surface of the moon success-
fully, but also land close to his target. While
the pilot’s task has become more compli-
cated, our simulation fortunately has not.
Just as we are able to calculate the effects
of each force separately, we are able to
make calculations for speed and position
separately in each degree of freedom.

To make those calculations for the
second degree of freedom, first determine
what forces are acting. Gravity, by defini-
tion, acts only up and down. It does not
enter into the horizontal calculations. So far,
thrust has also been limited to vertical
action, but we can easily add a second
thrust acting to the side. Positive horizontal
thrust should cause the LEM to move left,
while negative thrust moves it right.

Since there are no other forces to con-
sider, the change in horizontal velocity (in
meters per second) will be exactly egual
to the horizontal thrust (in newtons) divided
by the mass (in kilograms). This is; of
course, the same equation used in the first
or vertical degree of freedom. Similarly, the
same equations used to calculate vertical
speed and position will be used to calculate
horizontal speed and position.

—5 Return to the example used earlier, but

also consider the horizontal motion. Let the
LEM start 100 meters to the left of its
target moving at 10 meters per second to
the right. Generally motion to the left will
be considered positive and to the right
negative, so the horizontal speed is -10
meters per second. We found that during a
step of 0.1 seconds the vertical speed
changed from -100 to -99.16, and the
position changed from 10000 to 9990.08.
Quite apart from those calculations, we may
set a horizontal thrust, say 5000 newtons,
and find that during the same step* the
horizontal speed will become -10+0.1x
(5000/1000) or -9.5 meters per second.
The horizontal position will become
100.40.1x(-9.5)=99.05 meters. After
making ‘ these calculations, the simulation

Continued on page 216

Continued from page 22

216

BYTE November 1977

Listing 1: Most of the lunar landing games |
have seen are not flexible enough to run a
two degree of freedom real time simulation
as described in this article, so | have included
this listing. At each initialization, this
program finds a random set of starting
conditions (speed, position, mass, etc) that is
consistent with a safe landing. It then keeps
track of speed, position and fuel con-
sumption, printing them as required, and
indicating when the surface has been
reached. The following adjustments will have
to be made by each user:

1. Function USR(X) must be provided to
return the current desired thrust
settings, 0 to 100% in the vertical
direction, and =100 to +100% in the
horizontal direction. These inputs are
best achieved by analog to digital con-
version from joysticks or slide pots.

2. The step size and print interval must
be adjusted for your system clock and
peripheral speed in order to simulate
real time operation accurately.

3. Function RND(1.) is assumed by the
program to return values between O.
and 1. Alterations may be necessary
to suit your version of BASIC.

4. The comments printed by the program
have deliberately been kept short. A
better game could be fashioned by
adding instructions, comments on
performance, low fuel warning, etc.
In other words, customize the simula-
tion to suit your own tastes.

program should check for end conditions
and, if none are found, begin another step.
The speed of a computer. makes it
possible to find results quickly for times far
into the future, even if the step size is quite
small. This is fortunate, because as our simu-
lation stands now, an error is introduced at
each step that becomes worse as the step
size becomes larger. The error occurs
because in a real LEM the mass and speed
are changing all the time, but in our simula-
tion they can be changed only between
steps. A variety of numerical methods
have been developed to cope with this
problem. In our example, simply using
the average of the beginning and ending
values in each step would be quite effective.
Actually, if the step size is small, say 0.01
seconds, even this is not necessary. It is true
that by using the average values the program
could be made to run faster, but it would
also need to store several extra variables,
require more lines of code, and use more
memory. Obviously, there are trade-offs to

B

010 REM LUNAR LANDING SIMULATION
020 REM SET FUEL SAFETY FACTOR

025 REM ADJUST TO CONTROL DIFFICULTY
030 LETS=1.3

040 REM SET STEP SIZE AND PRINT INTERVAL
050 LET D=0.01

060 LET K=1.0

070 REM SET GRAVITY ACCELLERATION
080 LET G=1.62

090 RANDOMIZE

100 REM SET NEW STARTING CONDITIONS
110 LET M=1024.+1024.*RND(1.)

115 PRINT “LEM MASS ="M

120 LET F=G*M*(4.+4.*RND(1.))

130 PRINT “MAX THRUST =" F

140 LET A=1.333*F/M-G

150 LET V=F/M*64.*RND(1.)

160 LET U=0.

170 LET Y=V**2./(2.¥A)*(1.+RND(1.))

180 LET X=V

182 REM V IS VERTICAL SPEED

184 REM U IS HORIZONTAL SPEED

186 REM Y IS VERTICAL POSITION

188 REM X IS HORIZONTAL POSITION
190 REM HALF OF MASS IF FUEL

192 REM M-P IS FUEL REMAINING

200 LET P=M/2.

210 REM FIND FUEL BURN RATE, I

220 LET I=(2.¥Y+V**2./G)/(1.+A/G)

230 LET I=P/(SQR(I/A)*F*S)

240 PRINT “ALTITUDE, SPEED, FUEL, RANGE"
250 REM BEGIN DECENT CALCULATIONS
260 PRINTY,V, M-P, X

270 LET T=0.

280 IF M=P THEN 360

285 REM GET VERTICAL THRUST

290 LET A=USR(1.)*F/100.

300 REM GET HORIZONTAL THRUST

305 LET B=USR(2.)*F/100.

310 LET M=M-(A+B)*I*D

320 IF M>P THEN 360

330 PRINT “FUEL EXHAUSTED"

340 LET A=0.

342 LET B=0.

350 LET M=P

358 REMPREDICTNEWU,V, X, Y

360 LET V=V+D*(G-A/M)

370 LET U=U+D*B/M

380 LET Y=Y-V*D

390 LET X=X-U*D

395 REM TEST FOR END CONDITIONS
400 IF Y<4. THEN 440

410 T=T+D

420 IF T>K THEN 260

430 GOTO 290

440 PRINT “MODULE HAS LANDED"

450 PRINT “SPEED =",V

460 PRINT “RANGE ="' X

470 IF V<8. THEN 500

480 PRINT “BETTER LUCK NEXT TIME"
490 GOTO 110

500 IF X<128. THEN 530

510 PRINT “ITS A LONG WALK TO BASE"
520 GOTO 110

530 PRINT “CONGRATULATIONS, GOOD LANDING"
540 GOTO 110

550 END

be made among speed, accuracy, complexity
and size. In each simulation, the programmel
must decide which combination is best.

For our games application, the combina
tion is not critical. A high degree of accuracy

"is not required, and the program is shor

enough that memory requirements shoulc
not be a problem. The selection of speed
however, presents an opportunity tha
is unique to the user of a dedicated system
With a little trial and error, it should bt
possible to find the step size which cause
your system to take exactly 1 second tc
calculate and display the speed and positio!

Circle 131 on inquiry card.

BUSINESS APPLICATION SOFTWARE

MINi WORD PROCESSING (MWP) enables the
user to prepare letters, text and mailing labels or
envelopes. When used for correspondence pro-
cessing, MWP allows each entry in the name/
address file to be described by a number of group
codes and document codes. For example, an
entry could be group coded by date and inquiry
type. Phrases, paragraphs or pages can be spe-
cified as document codes to produce an indivi-
dualized letter for each name/address. MWP
provides in-line editing and page or phrase in-
sertions during text generation. The letter and
text output modules provide text insert or re-
placement, margin control and page numbering.

DISK SORT supports fixed or variable length
sequential files of any size and will sort or merge

An interactive generator allows the user to define
a customized sort/merge program for each task.
Multiple sort/merge tasks can run unattended
with user defined job-stream links (eg. sort 12
files, merge them with another sorted file and
link to your report program). Memory and disk
space are managed by the system to minimize
processing time.

UNIVERSAL DATA ENTRY (UDE) system inter-
acts with the operator to generate custom key-
to-disk modules. User defined displays provide
“fill in the blanks’’ simplicity. Validation pro-
cedures such as check digits, value tables, range

“tests, batch totals and record counts improve

data quality. Selectable field duplicate or incre-
ment eliminate repetitive entries. UDE supports

UDE modules can be generated for any applica-
tion that requires keyed input.

The above systems are extremely easy to use and
include carefully created prompts and error re-
covery, well written user manuals with varied ex-
amples and extensively documented programs
with detailed remarks. Each of these systems is
priced at $195. The programs are supplied on
diskette and run under MITS Disk Extended
BASIC. See your computer dealer or contact us.

THE SOFTWARE STORE
706 Chippewa Square
Marquette, M1l 49855

on any number of keys anywhere in the record. fixed or variable length disk files. Specialized

Master Charge

906/228-7622 ° VISA

1 second into the future. One machine
might do 100 steps of 0.01 seconds and then
print the speed, etc. Another might do 64
steps of 0.015625 seconds before displaying
new results. Still another, with slow
peripherals, might output speed and position
only once every 2 or 3 seconds. In any case,
as long as the simulated data appears-at
the same time that real data would, your
system will be said to be running a real time
simulation. A real time lunar lander game
gives you exactly the same time to react as
would be given a real excursion module
pilot.

To help you implement this idea on your
own system, a BASIC language program has
been included with this article as listing 1.
It should be easy to follow, but a few points
are worth explaining. At each step the pro-
gram will need to obtain the thrust settings.
This is done through a function called USR.
Bzcause systems differ widely, the content
of USR is left to you. Some systems will be
able to use a register to hold the thrust;
others will access memory location; and
some may have to query an input port. Also
left to the user is the manner in which the
thrust settings are updated. Obviously, they
cannot be entered at the keyboard for each

0.01 second step. The keyboard could be
used via an interrupt routine however.
Ideally, you could implement Thomas
Buschbach’s joystick interface (March 1977
BYTE, page 88) to allow continuous control
of thrust in both degrees of freedom. What
began as a simple game will now have
become a real time lunar landing simulator
requiring quick thinking and a good bit of
practice to master.

If you use this idea then my article will
have succeeded in its purpose of introducing
some of the basic concepts of simulation.
Techniques like separating the problem
into degrees of freedom, determining the
effect of each force separately, and stepping
the simulation into the future are all
fundamental to any prediction of motion.
The differences between this lunar lander
game and the complex simulations used in
the space program lie in the way forces
are determined and in the numerical
methods used to calculate speed and posi-
tion. In future articles, other applications
for simulation on microcomputers will be
discussed as a means for demonstrating some
of those advanced techniques. For now,
try applying the ideas presented here to
create a game of your own.®

ductivity.

6800 REFERENCE GUIDE

FOR PROFESSIONAL AND HOBBYIST

The TOOL you have been waiting for. A 6800 Reference Data Guide (similar to the |BM green card)
containing just about every piece of pertinent information that you are currently spending valuable
time searching for. The guide saves TIME, EFFORT and WORK SPACE when programming, debug-
ging and utilizing the 6800 system.

Included are INSTRUCTIONS, SPECIAL OPERATIONS, HEXADECIMAL /DECIMAL CONVERSION
TABLES, code translation tables for MACHINE CODES/MNEMONICS/ASCII/HOLLERITH/BI-
NARY, 6800 MPU, 6820 PIA, 6850 ACIA and almost everything else that will increase your pro-

TRY IT, YOU'LL LOVE IT.
Send $4.95 plus 35¢ shipping and handling to:

MICRO AIDS, P.O. Box 1672, St. Louis, Missouri 63011

Circle 84 on inquiry card.

BYTE November 1977 217

T L T

IR

SRR

Stephen P Smith
POB 841
Parksley VA 23421

112

BYTE December 1977

. Part 2:
Simulation of Motion An Automobile Suspension

Have you ever taken your system out toa
club meeting or demonstration, only to find
that something is ruining your car’s hand-
ling? Was it because of the heavy power
supply in the back seat? Would heavy duty
shock absorbers help? You can answer these
questions using your personal computer and
the simulation techniques found here.

Last month [page 78], | introduced some
basic ideas used in simulating motion. A
games application was used as an example.
This month I'll expand on that base, explain
some additional ways that forces can act,
and demonstrate a more accurate technigue
for computing speeds and positions. The
example I'll use will be a simulation of an
automobile suspension and " its response
to a varying road surface. Automobile
enthusiasts will be able to see how different
springs and shock absorbers would affect
the way a car rides. More important, all
cornputer users will acquire some additional
tools to use in their own simulations and
gain insights into new applications for their
personal systems.

First, let’s review the basic points made in
the last article. When beginning a simulation,
you will first divide the motion being
simulated into degrees of freedom. In other
words, you will decide which motions
you want to simulate, up and down, side
to side, etc. From then on, calculations
will be made separately for each degree of
frecdom. Next you will decide which
forces are acting in each direction and
determine how much each force would
change the speed of some object in 1 second.
If you use the metric system of units, the
change, or acceleration (in meters per
second per second), will be exactly equal to
the force (in newtons) divided by the mass
of the object (in kilograms). You will now
be ready to predict the speed and position of
the object at a step of D seconds into the
future. Add up the effects of the individual
forces. Multiply the total by D (the step
size) and add the product to the present

speed. This is the speed of the object at a
time D seconds into the future. Now multi-
ply the speed by D and add that product
to the present position. This is the position
the object will take in D seconds. The
simulation program will now calculate new
values for the forces and mass and step the
simulation forward once more. The process
will continue until an end condition is
reached.

In the lunar lander game simulation, two
degrees of freedom were considered, up and
down, and side to side. The up and down or
vertical motion was affected by gravity and
thrust. The side to side or horizontal motion
was affected only by thrust. Both of these
forces were determined independent of the
speed and position of the lander. Gravity
provided a constant change in speed, and
thrust was controlled by the user. In this
article we will explore variable forces which
are not determined by the user, but directly
by the speed and position we are simulating.

As mentioned earlier, the example we'll
use is an automobile suspension, the parts

. which connect the wheel to the body. The

most important of these parts are the spring
and the shock absorber. We will assume
that there are other parts which keep the
wheel from moving back and forth, but
only the wheel’s up and down motion
will be considered (see figure 1). Of course,
the entire car can also move along the road.
We will consider that as a second degree of
freedom. Let's examine separately the
forces that contribute to vertical and
horizontal motion.

Motion down the road results when the
car’s motor, through the wheels, pushes
the car forward. Air resistance and rolling
friction try to slow it down. To simplify
the simulation, we will assume that these
forces balance each other exactly. This
means that the speed along the road will
not change. If the speed starts at some
value other than zero, the horizontal pos¥
tion will change. As we will see later, the

GRAVITYI
WHEEL
VERTICAL
VELOCITY
Y=+.08
Y=-08 O 10) 20 30

Figure 1: A conceptual model of the “automobile” (unicycle, rather)
discussed in this article. The wheel in this model tracks the road surface exactly, and has its own vertical velocity due to the
horizontal velocity interacting with bumps in the road. The actions of
absorber suspension to the “body” of the automobile. The purpose of this simple
of the car body at any given point down the road, given the effects of gravity, shoc
by the bumps and holes. The table in the figure is taken from lines 605 and 606 of the BASIC
to plot the road surface. A better dynamic model of a car would have man y more degrees of free

simulation program must keep track of the
position along the road, because it will
determine how the wheel, and in turn
the body, moves up and down.

In the vertical degree of freedom we will
need to consider gravity. You will remember
from the last article that to simulate gravity
a program subtracts a constant value from
the speed for each unit step. (Speed and
position are considered positive if they are
directed upward.) On the earth the gravita-
tional acceleration constant is 9.8 meters per
second per second, so for each second of
simulated time, velocity changes by 9.8
meters per second. Since the car obviously
does not continue to move downward, there
must be other forces balancing gravity.
These are produced by the spring and shock
absorber, and are determined by the vertical
speed and position of the body.

Let’s examine the spring first. At its nor-
mal length (often called the free length) a
spring produces no force at all. If it is
Compressed, in other words forced to be-
come shorter, it will push back on whatever
IS compressing it. The shorter the spring
Is forced to become, the harder it will push
back. This is an example of a force that
depends upon position. In the automobile
&le, as gravity pulls the body down,

h—-———-

VERTICAL
VELOCITY
Yy

\SHOCK ABSORBER

HORIZONTAL
VELOCITY
(X)

| [|
40 \50 60 70
FROST HEAVE P

ROAD SURFACE LEVEL MODEL

the spring is compressed. The spring begins
to push upward on the body, and at some
point the two forces balance each other.
The body will eventually come to rest there.

Knowing a little information about the
sprjng we can compute that point. Springs
produce forces which are equal to the dis-
tance they are compressed times a constant.
The metric units for the constant are new-
tons per meter. Sample values are shown in
table 1, column a. Suppose that gravity
exerts a force of 5000 néwtons on the car
body; then a spring with a constant of
100000 newtons per meter would have to be
compressed .05 meters (100000.x.05=5000.)
to balance the pull of gravity. At this point
the system would be in equilibrium.

What about the shock absorber? It was
designed to produce a force that depends
not on how far it is compressed, but on how
fast it is being compressed. The faster you
try to move it, the harder it resists being
moved. Like the spring, a constant is used
to calculate the force, this time multiplying
the speed. The metric units for this constant
are newtons per meter per second and some
representative values are shown in table
1, column b. At equilibrium there is no
motion, so the shock absorber produces no
force. If you were to push down the car

which is modelled in the sample program of listing T as

the wheel in turn couple through the spring and shock
model is to calculate the vertical position
k absorber,

-] X
80 90 100

spring and excitement provided
program of listing 1, and is used
dom than this simple model.

BYTE December 1977 113

[T .

¢ g ETEEEISTTTTEEEER

R AL e R

P BN

Vehicle

Full size car (LTD, etc)

Intermediate (Torino, Cutlass, etc)

Compact (Nova, Aspen, etc)
Subcompact (Vega, Pinto, etc)

(a) (b)
Spring Damping
3200 1450
3000 1200
2800 1000
2600 700

Add 20% for heavy duty suspension.

Subtract 20% for front wheel.

Table 1:

stants for automobiles.

The units are metric: the
spring constant is quoted
as newtons per meter of
compression; the dampling
constant is- expressed das
newtons per meter per

second.

Table 2: A sample road

surface table. This table
is used to draw the sur-
face curve shown in
figure 1.
Horizontal Road
Position Surface
4] 0.0
10 0.0
12 0.08
13 0.08
14 0.0
20 0.0
21 -.04
22 -.04
23 -.08
24 0.0
30 0.0
50 0.1
51 0.0
100 0.0

114 BYTE December 1977

Representative
spring and damping con-

body at a speed of 2 meters per second, a
shock with a constant of 50 would resist
that motion with a force of 100 newtons
(50 x 2). When you let up on the body,
the spring would exert a greater force than
gravity and the body would move upward.
The shock absorber would also resist that
motion. This action is called damping. The
damping in an automobile suspension must
be carefully chosen so that the body returns
quickly to equilibrium, but does not con-
tinue to bounce back and forth for very long
afterward.

Armed with your present knowledge of
simulation you should be ready to make
just such a choice using a trial and error
approach. Calculate the forces on the body,
and then use them to find the speed and
position one step into the future. That speed
and position will be used to calculate new
values for the forces, which in turn will be
used to step the simulation forward once
more. Repeating the process continuously,
you will simulate the motion of the car
body. Try different values for the spring and
damping constants until the desired output
is achieved for a given set of inputs.

The inputs, you'll remember, are going
to be determined by the simulated position
in the horizontal degree of freedom. At each
position along the road the input routine
will determine the height of the road surface
above or below normal. If we assume that
the wheel does not leave the road this will
also give us the up and down motion of the
wheel. The data can be stored in 2 table
in memory. By entering different values for
the horizontal speed at the start of the
simulation, we can also vary how fast the
car will pass over our model road. At each
step the program will enter the table to find
the road height which corresponds to the
current horizontal position.

This method will work as long as there
is an entry in the table for every horizontal
position we will find. That could be a very
big table, especially if the step size is small.
To eliminate the need for large tables, we
can use a technique called interpolation.
Very simply, interpolation is done like this.
When the program enters the table, but
doesn’t find an entry exactly equal to the

current horizontal, it finds the next smaller
entry and the next larger entry. An inter-
polation formula is then used to figure out
where the present position falls between
the two table entries, and to calculate the
road surface which lies at the same point
between the corresponding table entries
of road height. For example, suppose a
program entered table 2 to find the road
surface corresponding to 2 horizontal
position of 11. It would find entries at
10 and 12 with corresponding road heights
of 0.0 and 0.08. Because 11 lies halfway
between 10 and 12, the interpolation
formula will find a corresponding road
surface that lies half way between 0.0 and
0.08 or 0.04. There are other interpolation
formulas that use three, four, or more of
the table points, but this method using two
is generally accurate enough with a reason-
ably detailed table. To simplify your
implementation of interpolation, | have
included a BASIC function in the program
of listing 1 which uses the 2 point method.
Users can simply place their own tables
in the data statement and use the function
in their programs, or they can follow
through the equations and implement them
directly.

In our automotive simulation, the inter-
polated table data will give us the vertical
road and wheel position. The difference
between this and the vertical position of
the body will be the amount the spring is
compressed. We can quickly calculate the
resulting force. If the simulation program
retains the wheel’s position from the pre-
vious step, it can also calculate the wheel's
vertical speed. Reversing the equation used
to find a new position, the speed is equal
to the difference in the two positions
divided by the step size. If the wheel moved
from .08 meters to .04 meters in a step of
0.01 seconds, its speed would be (.04-.08)/
01 =-4.0 meters per second. The difference
between this speed and the speed of the
body is used to calculate the force produced
by the shock absorber. All these calculations
are included in the BASIC program of listing
1. Readers who want more detail on the
equations will find them there as well-
commented program statements.

Also in that program is a new method for
computing speeds and positions. The
equations used in the lunar landing game
worked fairly well when the forces did not
depend upon the speed and position. In this
simulation they do, and even small errors
can snowball if not corrected. To do this,
we will use a powerful numerical technigue,
one which uses the results from three pre-
vious steps to help predict the next, an

which then goes back and corrects the
step when the predicted results are available.
It is called, logically enough, a predictor-
corrector method. Rather than attempt
to explain it here, I'll provide a BASIC
programming example which you can
adapt to your own simulations. Readers
with a good background in math may wish
to reference a book on numerical methods
for more details. In either case you will
have acquired a tool which will be very
useful in future simulations.

Looking back over the two articles
you should begin to see some ideas for
your own simulations. They could involve

forces which are constant, user controlled,
or which depend directly on the motion
you are simulating. Inputs can come from
your keyboard, from an analog device such
as a joystick, or from tables interpolated
by your program. The outputs might tell
you how well you are playing a game, or
which of several configurations is best
for a design you are contemplating. In the
next article I'll continue to expand on the
types of forces considered. In particular,
I’ll show how you can handle forces which
act in more than one degree of freedom
and suggest some ways to handle rotary
motion.®

REM SET PROGRAM CONSTANTS
K1=-1080008

K2=-20800

N=500

U=1@

D=8.835

¥Eg SET INITIAL SPEED AND POSITION
P1=9.8%H/K1

Si=@

¥EH8FIND INITIAL ROAD SURFACE

X1=@
Yi=8
X=0

GOSUB 688
l%-sY-I!)/D

Ii=

REM CALCULATE INITIAL FORCES
Fi=(P1-11)3K1/H

F2=(S1=12)%K2/N

Al=F1+F2-9.8

REM ?ET PAST DATA EQUAL TO INITIAL DATA

RENM BEGIN SIMULATION

REM PREDICT SPEED AND POSITION
S=814D/24%(55KA1-59%A2+37XA3-9%A4)
PaP14+D/24%(55%S1-59%52+37%S3-9%S4)
X=X +UXD

REM FIND NEW ROAD SURFACE

QsSuUB 688

G 6
lZ-;Y-Il)/D

=
REM PREDICT MEW FORCES
Fi=(P-I11)XK1/N
F2=(S-12)sK2/M
A=F14F2-9.8
REM CORRECT SPEED AND POSITION
SuS14D/24%(ITA+193A1-5KA2+A3)
P=P1+4D/24%(9%3+19%51-5%82+53)
REM CORRECT FORCES AND UPDATE SRVED DATA
Fi=CP-11)3K1/H
F2=(P-12)%K2/N
A4=A3
A3=A2

A2=A1
Al=F1+F2-9.8
$4=S3

§3=52

§2=381

$1=8

Pi=P

T=T4+D

PRINT T,81,P1
IF X<18@ THEN 270
END

REM INTERPOLATE TRBLE TO FIND
REM VUALUE OF Y CORRESPONDING
REM TO GIVEN VALUE OF X

DATA 8,8,18,0,12,08.88,13,08,88,1
DATR 22,-8.04,23,-0.088,24,8, 30,
REM TABLE FORMAT IS X(1)>,Y(1),X
*; §§Xl THEN 678

8,08,21, -
8.1,51,8
(29 <as

"Y2=Y1

RERD X1,Y1

GO TO 628
Y=Y24(Y1-Y2) $(X-K2) /7 (X1-K2)
RETURH

BYTE December 1977

Automobile Suspension Simulator

Listing 1: This program was written to help interested readers
follow the mathematics of the accompanying article. Particular
attention should be paid to the interpolation subroutine and to
the equations for the predictor-corrector method of predicting
future positions and velocities. The program was not in tended to
be efficient; readers will surely be able to shorten it once the
method is understood. The following table defines the variable
names I’ve used.

KT = spring constant

K2 = damping constant

M = mass supported by the spring

V = horizontal speed of the entire car

D = time step size

T = elapsed time in the simulation

P, S, A = predicted values for vertical position, speed, and
total effect of forces

P1, S1, AT = present values of vertical position, speed, and
total effect of forces

S2, A2 = speed and effect of forces one step past

S3, A3 = speed and effect of forces two steps past

S4, A4 = speed and effect of forces three steps past

F1 = change in speed due to spring

F2 = change in speed due to damping (shock absorber)

17 = current vertical position of the wheel

12 = current vertical speed of the wheel

X = current position of car along the road

Y = road height at position X

X1, Y1, X2, Y2 = table entries for positions immediately
greater than and immediately less than the current value
of X

| expect it will occur to many of you that graphic rather than
printed output will make this program much clearer. The wave-
form produced by a plot of the data would give you a much
better feel for the motion of the car body. For the example in
this listing, try plotting position from —0.1 meter to +0.1 meter
versus time from 0 to 100 seconds.

One final note: to avoid losing data, it is important that the
jnterval between points of the table in the interpolation subrou-
tine is larger than the distance the car moves in one step. In other
words, if you want to model a road that changes rapidly, you will
have to reduce the step size (D) to a value less than the minimum
of (X(n) - X(n+1))/V.

Stephen P Smith

Parksley VA 23421

Simulation of Motion

Part 3:

Model Rockets and Other Flying Objects

Since becoming involved in personal com-
puting, I’'ve only met a few real applications
oriented users. Most microcomputer owners
are either hardware oriented, eg: hams or
other electronics hobbyists, or they are soft-
ware hackers. Both groups tend to love their
machines for their own sake and not neces-
sarily because they are useful. The users I've
met who are more interested in the answers
they get than in-how they got them have all
been running financial -programs. Despite
this thin showing, | believe that the next
large group to “discover’ personal com-
puting is going to be applications oriented.
They will be the business people and hobby-
ist¢ who need more computing power than
is available in a pocket calculator, but who
can’t justify access to a large computer.

Among this group will be the model
rocket and aircraft builders. Those people
delight in creating miniature NASAs, but
they have always lacked one important

resource, computing power. The govern-
ment and the aerospace industry invest a
great deal of effort in simulating flights
long before any hardware is put together.
Few hobbyists could do this until now. In
this article, Ill show how a microcomputer
can be used to simulate the flights of model
or amateur rockets and aircraft. The simula-
tions can be used as aids in design and
“mission” planning. | also hope to demon-
strate the desirability of personal computing
as an adjunct to other pastimes.

~As in my previous articles, these simula-
tions are intended to serve as examples. The
techniques involved can be applied in almost
any real world application. The lunar lander
game, for example, served to illustrate how
simulations are separated into degrees of
freedom, and how speed and position are
predicted for steps into the future. Those
concepts were also applied when we simu-
lated the motion of an automobile suspen-
sion system. That simulation illustrated how
forces could depend directly on the motion

Body Cyq being simulated. It also served to introduce
fat plate (1 \ o7 some powerful numerical techniques. All of
at plate square meter . H B
sphere (0.1 meter diameter) 0.003 these ?Onwpts W”.l‘ appl))/ to the ﬂlght
airplane body (2 square meters) 0.08 simulations. In addition, I’ll show how to
wing or fin edgewise (1 square meter) 0.012 calculate the effects of a force which acts
model rocket (2 cm diameter) 0.0001 . .
automobile (2 square meters) 0 in two degrees of freedom at the same time.
motorcycle and rider (2/3 square meters) 0.25 'l also introduce angular motion and

demonstrate the way in which a simula-
tion keeps track of how fast a body is
turning and where it is pointing. While
developing a flight simulation in detail, 1'll
try to point out specific areas where these
new techniques can be applied to the earlier
applications.

Let’s begin, in fact, by outlining a game

Table 1: Drag coefficients for various bodies. These coefficients include the
body area and air density term (1/2 x 1.192 kg/m3). They are intended to be
used in an equation of the form:

DRAG = SPEED? x Cy

If larger or smaller bodies are used, a simple ratio of areas will convert the
coefficient.

144 BYTE January 1978

—

simulation you can program. In the lunar
lander game, aerodynamic forces were
neglected, but these forces must be con-
sidered for atmospheric flight. They also
present a good example of forces which act
in more than one degree of freedom. We will
investigate them through the use of a simple
game I'll call EVEL. The object of the game
is to select the ramp angle and speed with
which to leap a motorcycle over a given
number of cards and land successfully on
the downward ramp. The motion will be in
two degrees of freedom, vertical and hori-
zontal. The forces will be gravity and aero-
dynamic drag.

We have seen in the previous articles how
gravity affects speed, and most people have
an intuitive understanding of drag. Drag is
the force you feel when you hold your hand
out the window of a moving car. It is the
resistance of air to a body moving through it
and it acts directly opposite the motion.
Drag is calculated in much the same way as
the force created by an automobile shock
absorber. In that example the force was
equal to the speed multiplied by a damping
coefficient. To calculate drag, we will mul-
tiply the -speed squared by a constant
called the drag coefficient (symbolically Cq).
Drag coefficients for some common bodies
are given in table 1. Cq takes into account
the size, shape and surface texture of the
body. In our simulations, it will also include
a factor for the density of the air (1.19 kg
per cubic meter). More detailed simulations
will take into account the changes in air
density and temperature which occur at
higher altitudes and adjust the aerodynamic
forces accordingly. To avoid this complica-
tion, we will restrict our simulations to
altitudes within a few thousand meters of
sea level. The formula we will use for calcu-
lating drag is DRAG = SPEED? x Cy.

If the only motion is upward, the drag
acts only in the vertical degree of freedom.
There are also cases in which it acts only
horizontally; but in general, there will be
motion jn both directions, and the drag,
which acts directly opposite the motion,
will be felt in both degrees of freedom
Because of its dependence on the square of
the speed, we cannot calculate separate ver-
tical and horizontal drags. We must calcu-
late one force and apportion it between the
two degrees of freedom.

50M/SEC

————— 40M/SEC

A; - 6aMA = (0 /in) (V/r"’f J
) &

the horizontal and vertical speed components.

Figure 1 shows a typical case. Here a
daredevil motorcyclist has just left his
takeoff ramp. Suppose we know from a
previous simulation step that his vertical
speed is 30 meters per second (m/sec) and
his horizontal speed is 40 m/sec. To cal-
culate drag, we must first find the total
speed. Our fortunate selection of degrees
of freedom now becomes apparent, because
the vertical and horizontal velocities can be
seen to form two sides of a right triangle. We
can compute the third side, or hypotenuse,
by applying the theorem of Pythagoras
(C* = A* + B?). The total velocity will be
equal to the square root of the sum of the
squares of the speeds in each.degree of free-
dom. In this case, the daredevil is moving at
v/ 30% + 402 = 50 m/sec. Using Cq from
table 1, we calculate a drag of 0.25 x 502
= 625 newtons, acting at some angle be-
tween horizontal and’vertical. This angle is
called the flight elevation (symbolically
GAMA in some computer programs). It can
be found using a little trigonometry. If we
let horizontal be O degrees, and let vertical
be 90 degrees, then GAMA is equal to the
arc tangent of the vertical divided by hori-
zontal velocity. In this case, GAMA = arc
tan (30/40) = 36.87 degrees. Knowing the
angle, it is easy to apportion the drag. The
forces which result are called components
of drag. The vertical component " (sym-
bolically Dy is given by Dy = DRAG x SIN
(GAMA). The horizontal component, Dy, is
given by Dp = DRAG x COS (GAMA). In

)
u U

Figure 1: The total speed and flight elevation angle can be calculated from

Ppoo it f»'ﬂ

3)\/ Dr- ;"\)(Gfﬁw)’(’ZSS"’
U%\." Do kgj%{@;,,‘»g»(o?é@s(;gﬁﬂ ami

BYTE January 1978

/
:

145

@v);s‘ws

|

Figure 2: The direction of flight is called the flight elevation (GAMA). The
direction the rocket is pointing is called the body elevation (THETA). The
difference between them is called the angle of attack (ALPHA= THETA

~GAMA).

Part 1 of this series,
“An Improved Lunar
Lander Algorithm,” began
on page 18 of November
1977 BYTE, while part 2,
“An Automobile Suspen-
sion,” appeared on page
112 of December 1977.

146 BYTE)anuary 1978

the current example, Dy = 625 x SIN (36.87)
= 375 newtons, and D = 625 x COS
(36.87) = 500 newtons. You can check these
calculations by noting that+/ 3752 + 5002
= 625. Readers familiar with trigonometry
will be able to confirm that

DRAG =+/DyZ ¥ Dp?.

in every case. This is the same formula we
used to find the total speed, so it should not
be surprising to find that the vertical and
horizontal speeds are also referred to as com-
ponents. h

The effect that the components of drag
have on the components of speed depends,
of course, on the mass. If our daredevil is
fairly small, and rides a light motorcycle, the
total mass in flight might be 150 kg. During
a step of 0.1 seconds, the horizontal speed
will decrease by 500/150x0.1 =0.333 m/sec.
A similar change occurs in the vertical speed,
but there we must also include gravity.
Remember from the previo-s simulations
that each second, gravity subtracts 9.8 m/sec
from the vertical speed. In 0.1 seconds it will
change from 30 m/sec to 30-(375/150 +
9.8)x0.1 = 28.77 m/sec. Knowing the new
speeds, you can compute the new position,
the new drag and the new flight elevation.
The simulation can be stepped forward again
and again until the daredevil returns to earth.

Because the drag components depend on
the square of the speed, it will probably be
necessary to use the predictor-corrector
formulas from my previous article to obtain
realistic results. The initial conditions of

total speed and ramp angle must be chosen.
For the first simulation step set GAMA
equal to the ramp angle and let the vertical
speed component equal SPEEDxSIN
(GAMA) and the horizontal component
equal SPEEDxCOS (GAMA). Figure that a
car is about 6 meters long, a bus about 15
meters, and the Snake River Canyon is
1451 meters wide. Good luck.

In many respects, a rocket or aircraft in
flight is much like our daredevil. 1t will be
moving horizontally and vertically and will
be acted upon by gravity and drag. There are
some other forces to be considered, how-
ever. For example, early in a rocket’s flight,
its engine will be producing thrust. Unless
the rocket is pointing directly upward or
directly parallel to the ground, we will also
have to apportion this force between hori-
zontal and vertical directions.

One way to do this is to assume that the
rocket always points in exactly the direction
it is moving. The flight elevation angle,
GAMA, can then be used to apportion
thrust just as it was used for drag. At each
simulation step, the program can interpolate
a table to find the value of thrust correspon-
ding to the current time. It then computes
the components and applies them to predict
new speeds and position. In this manner we
can build a two degree of freedom rocket
trajectory simulation. This simulation might
also be used for a game. Set up a duel
between two artillery battalions, or better
still, program a real time simulation like the
lunar lander game of my first article and try
to hit a moving target.

For most flight vehicles, the tendency to
point in the direction of movement is a
desirable characteristic. Unfortunately, this
is not generally the case. Vehicle imperfec-
tions, the effect of wind, and just the fact
that it takes a finite amount of time to turn
the vehicle, all affect the pointing of a
rocket. In order to indicate where the rocket
is pointing, we define another angle, the
body elevation angle (symbolically THETA).
THETA tells us where the vehicle is pointed
and is used to apportion thrust. The dif-
ference between THETA and GAMA is
called the angle of attack (symbolically
ALPHA). It is illustrated in figure 2.)

Unlike GAMA, there are no components
which may be used to compute THETA. We
must keep track of it with a third degree of
freedom. Just as altitude is calculated as the
position in the vertical degree of freedom,
THETA may be calculated as the position in
this third, or angular, degree of freedom.

Angular motion is handled in exactly the
same way as the linear motions we have
already been simulating. Just as position has
its angular equivalent, so do speed, force and
mass. It is as easy to calculate the speed with
which a body turns as it is to find the speed
with which it falls.

First we must calculate the angular
equivalent of a force. These are called
moments (also called “torque”), and have
metric units of newton meters. As the units
imply, each moment has a force as part of
its definition, but it also depends on how
much leverage the force has. For example,
suppose you apply a force of 10 newtons to
the end of a 15 cm (0.15 meter) wrench.
A moment of T0x 0.15 = 1.5 newton meters
will be transferred to the bolt. If a 25 cm
wrench were used, a moment of 10 x 0.25 =
2.5 newton meters would result, and the
bolt would be proportionately tighter. In
rocket flights @ moment results as an aero-
dynamic effect whenever THETA is not
equal to GAMA. It has its own coefficient,
Cm. For small angles of attack, this coef-
ficient is multiplied first by the square of the
speed (linear speed, not angular) and then by
the angle of attack (ALPHA=THETA-

GAMA). The aerodynamic moment is there-
fore caused because the rocket is trying to
point itself in the direction it is moving.

The next element to be considered in the
angular equation is the equivalent of mass.
This is called moment of inertia, and the
leverage concept applies to it also. The
moment of inertia (usually shown symbolic-
ally as an upper case 1) depends on the mass
of the body, and also how widely spaced the
mass is. For example, a 50 kg set of bar
bells would have a much larger moment of
inertia than a single 50 kg weight. The units
of | are kilogram meters. Like mass, moment
of inertia is a property of matter. In our
rocket simulation, both may change as fuel
is burned, but their values can be determined
at any given time. It is general practice to
construct tables of mass and moment of
inertia which parallel the thrust table we
have already introduced. In each simulation
step, our program will interpolate the table
to find the current value of moment of
inertia and use it to find the effect of the
moments. The value of the metric units will
now become apparent.

Just as the force in newtons was divided
by the mass in kilograms to find exactly the

(o)

(book orders only). In New Hampshire, call: 924-3355, 9 to 5 EST.

‘THE SCELBI/BYTE PRIMER

The problem solver is here! The Scelbi/BYTE Primer is more than a reference book,
more than an idea book. It is a truly authoritative wide ranging text, featuring articles
by more than 50 recognized professional authors who know and love microcomputers.
Whether you're just learning the basics of programming, a business person looking for
efficient methods of inventory control and stock market analysis, or an old hand in need
of information on designing your own assembler, the information you need is here.
Many glossaries, profusely illustrated, over 400 pages. You won't want to be without this
must text from the leaders in the field. Only $10.95 plus 50 cents for postage and hand-
ling. Send coupon today or dial your order on the BITS toll free hot line: 800-258-5477

Please note: The BITS hot line operators
are equipped to handle Bank Americard and
Mastercharge customer orders only. Please
have your credit card number ready before
you call.

We invite dealer inquiries on the Scelbi/
BYTE Primer.

City State Zip

Book(s) @ $10.95 $
Postage, 50 cents $
Send today to:

BYTE Interface Technical Services, Inc. Total $

70 Main St O Check enclosed

Peterborough NH 03458 O Bill MC # / / Exp. Date
Eﬁ O Bill BA # / Exp. Date
Loooeal 7
Signature

Dealer inquiries invited.
In unusual cases, processing may exceed 30 days.
You may photocopy this page if you wish to leave your BYTE intact.

r
|
|
|
|
|
|
{ SCELBI/BYTE PRIMER
|
|
|
|
|
|
|
|
|
|

All orders must be prepaid.

Circle 8 on inquiry card. BYTE January 1978 147

148

REM PITCH PLANE TRAJECTOTY SIMULATION

REM INITIALIZE VARIABLES

DATA 8:0,0,8,0,8,0,8,0,0,0,8,0

READ UyWyUs ULy W1,U2,%X1,21,81,F1,M1,11,K

REM INITIALTZE E TIMECT),STEP SIZECH), PRINT INTERVALCK1)
H=0.

LET T=8

LET T1=T

“LET Ki=8.1/

REM SET INITIRL ALTITUDE (Z15>@2

21=1
REM SET DRAG(D) AND MOMENT(P> COEFFICIENTS
LET D=-1.8E-4
LET P=-3.BE-S
REHaSET LAUNCHER LENGTHCR> AND ELEVATION(L)

PRINT "LAUNCH ELEVATION =";L;" DEGREES"
LET L=L%8.81745

LET L1=L

LET G=L

LET R=Z1+1

REM SET WIND SPEED

N=5
PRINT ':IHD SPEED ="jN; " METERS/SECOND"

LET Ul

REM END INITIALIZATION, BEGIN TRAJECTORY .
PRINT "TIME ﬁ TITUDE RANGE SPEED"
PRINT “(SEC) METERS C(METERS) (M/SECO ™

REM GET THRUST(F), HQSS(H); t HOHENT OF INERTIA (ID*™
GOSUB 958
LET T-T+H

K=K+
REM PREDICTOR FORMULAS
REM ByW,2Z,ARE VERTICAL ACCELERATION,SPEED & POSITION
LET Bl=(SIH(G)*D*UZ*SIN(L)XFJ/M 9.8
LET W=Ni+HXB
LET 2= 21+HXH1
REM A,U,X ARE HORIZONTAL ACCELERATION, SPEED & POSITION
LET A1=(COS(G>XD¥U2+COSCL)¥F>/M
LET U=U1+HXA1
LET X=X1+HXCU1-N)
LET V2=(U+N)>1T2+H1T2
LET U=SQR(V2)

"REM_HO ANGULAR MOTION OH LAUNCHER-

IF _2<{R THEN 590
LET G=ATN(H/(U+N>>
IF _U+N>B THEN S3@
LET G=G+3.14159
REM NEGLCT ANGULAR MOTION AFTER BURNOUT
IF F=8 THEN 6186
REM C,Q,L ARE QHGULQR ACCELERATION, SPEED & POSITION
LET C1=Px(L-G)3y2/1
LET @=Q1+HxC1
LET L=L1+HxQ1
GOSuB 958
REM CORRECTOR FORMULAS
LET B—(SIH(G)tDXU2+SIN(L)¥F)/H 9.8
LET W=W1+H/2%(B+B1)
LET Z2=Z1+H/2%(H+H1)
LET Hi=H
21=2
LET A=(COSCG)XDXU2+COSC(LIXL)>/M
LET U=U1+H/2%(R+A1)
LET X=X1+H/2%(U+UD)
LET Ui=U

X=X
LET U2-(U4N)?2+H?2
LET U=SQR(Y
REM_NO QNGULQR MOTION ON LAUNCHER
IF 2<R THEN 8880
G=RTNCH/(U+N>)
IF U+N>8 THEN 778
G=G+3.14159
REM NEGLECT ANGULAR MOTION AFTER BURHOUT
IF F=8_THEN 888
LET C=P¥(L-G>*¥V2-1
LET @=Q1+H/2x({C+C1)>
LET L=L1+H/2%(Q+Q1>
LET 01=0
LET Li=L
IF K{K{ THEH 390
PR!HT T,Z,X,U
LET K
IF 2)8 THEN
gggPSTOP HHEN QLTITUDE RETURNS TO ZERO

REM INTERPOLATE TIME TABLE FOR F,H.&

DAT 8,5.6,8.08458,1.1E-4,8.1,13.3,0. 8446,
DATA 1,6,5.6,8.8337,1.
IF_T<T1 THEN 18580

LET T2=T{

LET F2=F1

LET M2=M1

LET 12=I1

READ T1,F1,M1,I1

GO _TO 988

LET H4=(T-T2>/(T1-T2>
LET F=F2+(F1-F2)%H4
LET M=M2+(M1-M2)>XH4
LET I=I2+4CI1-12)>%H4
RETURN

END

.1E-4,8.2
QE-4,1 735.658. 0333,1 BE-4,1

BYTE January 1978

A Model Rocket Simulator

Listing 1: This BASIC program illustrates
the use of an angular degree of freedom to
apportion a force between two linear de-
grees. It simulates the flight of a model roc-
ket that might be built from widely available
Rits. During the early part of the flight
(approximately 1 meter), the rocket rides on
a guiding rod. The rod prevents the body
from turning, so angular motion must be
suppressed in the simulation. After leaving
the launcher, the vertical, horizontal and
angular pitching motions are all considered.
A short time later, however, the fuel will be
exhausted and the thrust will drop to zero.
Because the only reason for computing
THETA was to apportion the thrust,
angular motion may be neglected from this

point until the vertical position becomes

zero (rocket returns to earth) and the
simulation ends.

This type of simulation is particularly
useful for determining the effect of wind
on a rocket. The tendency a rocket has to
point in the direction it is moving also
causes it to turn into the wind. The highest
altitude may not, therefore, be achieved
with a vertical launch. By running a series of
simulations on his/her personal computer, a
model rocket builder can -determine in
advance the ideal launch angle for various
steady state wind speeds. The plots shown
in figure 3 illustrate this type of study.
Note that in each case the horizontal degree
of freedom is aligned with the wind.

Because the forces and moments in this
simulation depend on the motion, the
predictor-corrector method has been applied.
To conserve space, however, it is not the
fourth order method used in the automotive
simulation of last month’s article, but a
shorter second order version. Improved ac-
curacy would result if you were to imple-
ment the longer formulas. You may also
want to customize the output. For example,
a plot of angle of attack versus time might
be interesting. To print out ALPHA in
degrees, use (L-G) x 57.295 to convert from
units of radians. Special output exactly at
apogee (maximum adltitude), impact, or
motor burnout might also be helpful in
evaluating performance. The code is well-
commented, so feel free to dig in and adapt
this program to your own needs.

change in speed each second, so the moment
in newton meters can be divided by the
moment of inertia in kilogram meters to find
exactly the change in angular speed. In
angular degrees of freedom the units of
speed are radians per second and the posi-
tion will be computed in radians. There are
2 radians in a full circle, so 1 radian equals
57.296 degrees. Because most BASIC inter-
preters perform trignometric calculations in
radians, these units are to be preferred. Con-
version to degrees is easily made for input
and output.

Once the effect of each moment is known,
it is multiplied by the time step size and
added to the speed in exactly the same
technique used for linear motion. Similarly
the angular speed is multiplied by step size
to update the angular position. The predictor-
corrector method may be applied by saving
moments, and speeds from previous steps.
| have included a BASIC program with this
article which involves both the predictor-
corrector formula and angular motion in 2a
three degree of freedom (pitch plane)
trajectory simulation. Noting the similarity
between the angular and linear equations
used there should make this technique easier
to understand.

The concept of angular motion is easily
transferred to other applications, but to
make best use of it you really need some
familiarity with the forces and moments
which may appear. For example, an auto-
motive enthusiast will already understand
how the road surface induces motion in
the body of a car. We saw last month how to
simulate that motion for one wheel. If you
include two wheels, the front and back on
one side, a second degree of freedom in
body motion is introduced. Most people
would recognize that, but only someone
familiar with automobiles might realize
immediately that the two ends of the body
will not move up and down entirely inde-
pendently. The second degree of freedom
must be an angular one. It will measure the
pitching motion of the car while the original
degree measures its overall up and down
motion. The forces created by each set of
suspension parts will contribute to the
linear motion, and will be multiplied by
their leverage (perhaps their distance from
the driver's seat) to determine their affect
on the angular motion. At each step, the
angular motion will be combined with the
linear motion to compute new forces,
moments, etc, and the procedure will begin
again. Just how those angular motions are
combined with the linear ones, and how the
leverage of a force is determined, will be the
subjects of the fourth and last article in this
series.®

Figure 3: The program of listing 1 can be used to determine the best launcher .

elevation for any given wind.

LAUNCH ELEVATION
(DEGREES)

600 -
100 90 80

5001 70

400

ALTITUDE

(METERS)
300

200

100 |-

1 | 1 | | 1 1
—-300 -200 -100 (o] 100 200 300 400 500
RANGE (METERS)

Figure 3a: Trajectories with no wind.

WIND SPEED
(M/SEC)
600 -
.5 O s
10
500 |- 15
WIND
400 - DIRECTION
—
ALTITUDE
(METERS) 300
200 |-
100 -
! 1 | | [

-300 -200 -100 [¢] 100 200, 300 400 500
RANGE (METERS)

Figure 3b: 90° launch with wind.

LAUNCH ELEVATION

(DEGREES)
0_
60 1o 100
90
500
400+

WIND
ALTITUDE DIRECTION
(METERS) 300

200

100~

Il 1 1 |
-300 -200 -I00 (0] 100 200
RANGE (METERS)

Figure 3c: Trajectories with 10 m/sec wind.

BYTE)anuary 1978

149

Stephen P Smith
POB 841
Parksley VA 23421

42

BYTE February 1978

Simulation of Motion

Fonk 41 Exrended Oogess, popjcationd @) Raking

Have you ever wondered why the shapes
of boat hulls differ so widely? Boating
enthusiasts know that certain designs will be
best in lakes and rivers, and certain others in
open seas. Some boats are much roomier
than others; some are safer in rough water;
but what penalties in stability and riding
comfort might you pay for the extra room
or seaworthiness? The motion of a boat
depends on its response to the variety of
waves it encounters. These motions can be
simulated on your personal computer. You
can determine how a given design will re-
spond to any sea condition. The basic equa-
tions for -stepping speed and position into
the future will still apply, as they were
discussed in the earlier articles of this series;
but you’ll also need some new techniques.
As you implement this simulation, you’ll
discover that forces in a linear degree of
freedom can also produce moments and
their resulting motion in an angular degree
of freedom. In this article, I’ll show how
that interaction is handled. I'll also intro-
duce the concept of distributed forces, and
a numericai technique to handle them.
Although developed for a boating applica-
tion, these new ways of calculating forces
should find use in updating many of our
previous simulations.

We have already seen quite a variety of
ways to calculate forces. Gravity, a force
present in every simulation in the last three
articles, simply made a constant change in
the vertical speed at each step. Thrust, used
in rocket and aircraft simulations, came
either from a user input or from a table
interpolation. Forces in an automobile

suspension were found to depend directly
on the vertical position (spring force) and
the vertical speed (damping force). Aero-
dynamic forces were computed by multi-
plying a coefficient (je: constant) by the
sum of the squares of the speeds in each
linear degree of freedom. While these ex-
amples cover most of the situations you are
likely to encounter in simple models, any
new simulation might present some unique
requirement. -

For example, in all the calculations, the
forces have had one thing in common. They
acted at a single point. We call such forces
discrete. In reality, some are not discrete,
but act at many points on a body simultane-
ously. These are referred to as distributed
forces. Aerodynamic drag is a typical distri-
buted force. Although we used the drag co-
efficient to calculate a single force, the
retarding action of the air acts all over the
body. A coefficient is just one tool used to
convert distributed forces into discrete ones.
Not all distributed forces can be converted
using coefficients, so I'll introduce a more
general technique using the boating simula-
tion as an example.

The principle forces on a boat are gravity
and buoyancy, the floating power of the
hull. Because buoyancy is an upward push
provided by the water, it is not difficult. to
see that it is a distributed force covering the
entire area of the boat below the water line.
Converting this distributed force to a dis-
crete one will allow us to simulate the verti-
cal motion of the boat.

Perhaps more important to the boat de-
signer or buyer will be the angular, rolling

44

Wind Speed

2 m/sec
period (sec)
length (m)
height (m)

5 m/sec
period (sec)
length (m)
height (m)

10 m/sec
period (sec)
length (m)
height (m)

20 m/sec
period (sec)
length (m)
height (m)

Typical Bodies of Water

Rivers Lakes Inlets
0.6 1.0 15
0.56 15 23
0.02 0.06 0.12
0.8 1.2 20
0.1 2.25 5.0
0.05 0.08 Q.2
1.25 20 3.0
2.4 6.25 140
0.08 0.15 0.35
25 4.0 6.0

10.0 25.0 - 56.0
0.25 0.65 14

Bays Open Sea
20 3.5
3.1 20.0
0.15 0.5
24 4.5
9.0 30.0
0.25 0.75
425 7.0

28.0 80.0
0.7 2.0
8.5 14.0

110.0 300.0
28 7.5

Table 1: Characteristics of waves. The height, period and length of waves all vary, but for
certain conditions, average values have been established. The wave length and period are affec-
ted by the depth of the water. The height depends on the wind speed, how long it has been
blowing, and the width of the body of water. Readers who want to model real sea conditions
should find a good oceanography text, but the above summary should prove adequate for

casual use.

BYTE February 1978

and pitching motion of the boat. Angular
motion was introduced in a rocket flight
simulation (see January 1977 BYTE, page
144). In that case, it was entirely indepen-
dent of the linear motion. At the end of the
same article | suggested that the motion of
an automobile body should also be simula-
ted using an angular degree of freedom, but
that the angular and linear motions could no
longer be considered separately. This is also
true in the boating example. The moments
used to compute the angular motions will be
calculated directly from the linear motions.
Because the forces in the automotive example
are discrete, we'll develop the technique to
handle combined angular and linear motion
using the distributed forces of the boat
example. In that way, one simulation will
serve to demonstrate both of the new
concepts. I'll leave the development of a two
or four wheel automobile suspension simula-
tion to interested readers.

The motion of a boat is similar in many
ways to that of the automobile body. When
it is launched, a boat settles into the water in
response to gravity. As the hull displaces
more water, the buoyant force becomes
larger, until at some point, it balances gravity
and the boat stops sinking. This point is
called equilibrium and is analogous to the
equilibrium of an automobile suspension.
Unless there is a disturbance, the boat will
remain at equilibrium. In the automotive
example, disturbances came in the form of
a rising or falling road. With boats, we en-

counter a rising and falling sea, in other
words, waves.

Sea waves occur in a variety of shapes.
Their length (distance peak to peak), their
height (distance peak to trough), and their
period (time to rise and fall), all vary appar-
ently at random. In fact, these parameters
have fairly well defined relationships.
Readers with an interest in modeling sea
states should refer to a good marine science
text. For this simulation, we'll represent
waves with a sine function, and use the data
in table 1 to compute their size.

Dealing just with forces for a moment,
let’s see how a small object is affected by
wave motions. Figure 1 shows a bottle, float-
ing in a body of water. We know from our
previous simulations that every second,
gravity subtracts 9.8 meters per second from
the bottle’s vertical speed. If the bottle is to
remain stationary, the effect of buoyancy
(force divided by mass) must be equal and
opposite (ie: 9.8 meters per second per
second upward). The mass of the bottle
should be known. Let it be 0.1 kilograms.
The buoyant force is equal to the weight of
the water displaced by the bottle. Remem-
ber that weight is a force, the effect of
gravity acting on a mass. The weight of the
water, in newtons, is equal to its mass, in
kilograms, times the effect of gravity,
9.8 meters per second per second. Each
1000 cubic centimeters (cc) of water has a
mass of 1 kilogram, and thus a weight of
9.8 newtons. Knowing this, and the mass of

the bottle, we can calculate the amount of
water that the bottle displaces. In other
words, we can find the volume, V, of the
bottle below the water line at equilibrium.
Force divided by mass must equal 9.8 to
balance gravity, so the equation 9.8 = 9.8/

1000 * V / 0.1 can be solved for V to find
that 100 cc of the bottle is under water. If
the bottle is 4 centimeters in diameter, we
will find (from the formula for the volume
of a cylinder) about 8 centimeters of its
length must be below the surface.

Now suppose that the surface of the
water rises suddenly. More than 8 cm of the
bottle will be underwater, and the buoyant
force will exceed gravity. The vertical speed
of the bottle will increase and it will rise
with the water. When the bottle reaches
equilibrium again it will still have a positive
vertical speed, so it will pass through that
point and continue to rise. Now, however,
it is gravity which is the larger force, and the
vertical speed will be reduced until the
bottle begins to descend. Eventually, these
motions will disappear (due to the drag force
applied by the water) and the bottle will
come to rest at equilibrium. This happens so
quickly that the bottle appears to be mov-
ing up and down exactly with the waves.

For larger objects, boats for example, the
actual motion may be more apparent. We
could treat a boat exactly like the bottle
and simulate its up and down motion. As |
suggested earlier, however, it is the angular
E Figure 1: A bottle sinks until it displaces an amount of water equal to jts own rolling and pitching motion of the boat that

: ~ weight. is of real interest. To simulate these motions,

>~ > OUTSTANDING
TERMINAL
& EQUIPMENT

IBM Correspondence
BM 2741 — compatible or
standard ASCI! (with Break and or BCD Code$795.00

. e |[BM 2741 C tible
(ontrol code features). RS232-C e RS23C |me°,2‘3i2'
interface. ‘

~ ASClI Code$995.00
RECONDITIONED SELECTRIC = ghegocrarae
- I TERMINALS

Print Buffer ~
CONTACT KEN PAYNE

® RS232C Interface
® Break and Control Code features
Dal-Data Inc. - 1111 W. Mockingbird Lane
Suite 1400 * Dallas, Texas 75247 < 214-630-9711

AVAILABLE

46 BYTE February 1978 Circle 16 on inquiry card

GRAVITY

}

CcG

Figure 2: The distribution of the buoyant force determines the angular
motion about the center of gravity.

48

BYTE February 1978

we will need to know not just the total
buoyant force, but also how it is distributed
over the hull. The device shown in figure 2
will illustrate a general techinique for finding
the distribution.

You can think of this device as two bottles
joined together with a stick or as the two
hulls of a catamaran. Just as we calculated
the buoyant force on the bottle in figure 1,
we can calculate separate forces on each of
these two bottles. The sum of the forces
can be used to compute the vertical motion
of one point on the device. This point is
called the center of gravity (CG). The loca-
tion of the center of gravity is critical. If
you were to place the stick on a knife edge
and find the point at which it balanced,
this would be the center of gravity. It is the
point on a body where the effect of gravity
appears to be concentrated. Because the
mass of an object is distributed throughout
its volume, weight is a distributed force.
By locating the center of gravity, however,
we have a tool that transforms it into a dis-
crete one.

We could also define a center of buoy-
ancy, the point at which the total buoyant
force appears to act. Unfortunately, the
location of this point can move significantly
as the bt rises and sinks in the water. The
center of gravity is also subject to some
movement, such as when a passenger moves
from the back to the front of the boat. Un-
like the movement of the center of buoy-
ancy, however, changes in the location of
the center of gravity are not tied directly to
the results of our simulation, the linear and
angular motion of the boat. For this simula-
tion, we will treat the center of gravity as
stationary, and try to avoid dealing with
the moving center of buoyancy.

Since we cannot deal with buoyancy as
simply as we do gravity, we will have to deal

with the individual parts of a body more
directly to find a general method of handling
the distribution. In the case of the “cata-
maran” in figure 2, this is fairly easy. First,
we assume that the bottles are small when
compared to the length of the stick. Next,
we assume that the center of buoyancy of
each bottle is at its center, no matter how
it sits in the water. Now, as far as our simu-
lation is concerned, the entire buoyant force
on the bottle acts at a point which is at a
known distance from the center of gravity.
This makes no difference to the vertical
degree of freedom, but it is the key which
allows us to simulate the angular motion.

Remember from the last article that a
moment is the product of a force times
a distance. In the current example, each
bottle creates a moment equal to the buoy-
ant force times the distance of the bottle
from the center of gravity. Note that we
define distarices to the right as positive, and
to the left as negative. Thus an upward force
on the righthand bottle creates a positive
(counterclockwise) - moment. An upward
force on the lefthand bottle creates a .
negative moment. In each simulation step,
the moments are summed and then divided
by the moment of inertia to find the change
in angular speed each second. With this value,
we can step the angular degree of freedom
into the future, and return to compute new
forces and moments.

Now we must determine how the com-
bined angular and linear motion can be used
to compute the new buoyant force. The force
is proportional to the volume of the bottle
below the waterline. For a single bottle, it
was computed from the position in the
vertical degree of freedom, and the location
of the water surface. With the two bottle
device, the vertical degree of freedom tells
us only the position of the center of gravity.
We must use the angular degrée to find the
relative position of other points on the
device. If there is a positive angular position,
the device will be turned counterclockwise
around the center of gravity. Consequently,
the lefthand bottle will be lower than the
center of gravity and the right one will be
higher. The exact difference is calculated
by multiplying the sine of the angular posi-
tion by the distance of the bottle from the
center of gravity. Again, note that points to
the left have a negative distance from-the
center of gravity. Positive angular positions
move them down.

Let’s illustrate this with an example.
Suppose the vertical position of the center
of gravity is 0.01 meters, and the angular
position is 2 degrees (0.035 radians). A
bottle 1.2 meters to the left would be at

0.01 + SIN (0.035) * (~1.2) = —0.32 meters

in other words, about 3 centimeters below
its equilibrium position. A bottle1 .2 meters
to the right would be

0.01 +SIN (0.035) * 1.2=0.052 meters high.

The vertical position of any other point can
be found similarly.

Having found the positions of the bottles,
we must now find the positions of the water
surface at each bottle. These will come from
a sine function modified by a representative
wave height, period and length. The argu-
ment of the function will be the sum of the
current time divided by the period, and the
bottle location (distance from the center
of gravity) divided by the wave length, all
multiplied by two 7 (to convert to radians).
Once evaluated, the function is multiplied
by one half the wave height (amplitude) to
arrive at a final surface position. Using this
scheme the surface varies with both time and
location in a good approximation of sea
waves.

The data in table 1 can be used to con-
tinue the example we began above. Let’s
place our two bottle catamaran in an inlet
with 5 meter per second winds. We have
determined that the water surface is given
by the following formula.

S = HEIGHT/2 * SIN (6.28318*(TIME/
PERIOD + LOCATION/LENGTH))

At TIME = 1.8 seconds, we would find that
the water surface at the left bottle is 0.2/2*
SIN(6.28318%(1.8/2+(1.2/5))=0.084 meters,
just below the equilibrium position. At the
right bottle, the surface is at 0.2/2*SIN
(6.28318*(1.8/2+1.2/5))=0.077 meters. If
we subtract the positions -of the bottles from
these values and add the 8 centimeter length
of the bottles underwater at equilibrium, we
will have calculated the length of each bottle
below the surface at TIME = 1.8 seconds.
For the left bottle this will be (-~0.084) —
(~0.032) +0.08 = 0.28 meters. For the right
bottle this will be 0.077 — 0.052 + 0.08 =
0.105 meters. If the bottles are 4 centi-
meters in diameter, then the left one dis-
places 0.04**2 * 3.14159/4 * 0.028 = 3.45
* 10 —5 cubic meters and has a buoyant
force of 9800 * 3.45 * 10-—5 = 0.345 new-
tons. The moment it produces is 0.345 *
(~=1.2) = —0.414 newton meters. Similarly,
the right bottle displaces 9.67 * 10 —5 cubic
meters and produces a force of 0.948 new-
tons and a moment of 1.14 newton meters.
The sum of the forces, 1.293 newtons, is
used to update the vertical degree of free-

Figure 3: The continuous hull of a boat can be divided into a series of dis-
crete segments or ‘bottles.” X js the distance from the center of gravity to
the center of the bottle. Y is the length of the bottle below the water line at
equilibrium. Note that the symmetry about the CG enab/es us to describe the

hull while only segmenting half of it.

X(m)

+0.05

dom. The sum of the moments, 0.534 new- £0.15
ton meters, is used to update the angular +0.25
degree of freedom. Now we can compute fg-ig
new positions, forces, moments, etc, and ;0:55
begin the cycle again. £0.65
Simulating the motion of a two bottle +0.75
catamaran may not be very useful, but the igg:

technique is easily extended to real boats.
Instead of thinking of the hull of your boat
as a continuous surface, think of it as a
collection of ‘“bottles.” Figure 3 shows a
boat hull that has been divided in this

Y(m)

0.50
0.49
0.47
0.45
0.42
0.39
0.36
0.31
0.37
0.22

8700Processor:

User Subroutines, Back-step key.

control, Positive indication of operation.

Cassette Interface: Load & Dump by file #,

6503 MPU, Wear free “Active Keyboard”,
Micro-Diagnostic® Extensive documentation, FullySe=ieted.

Piebug Monitor: Relative address calculator, Pointer High-low,

Tape motion

Applications systems from $90 (10unit quantity)
Development systems from $149 (single unit)

() Please send documentation

and price lists. $10 enclosed, name:

1 () T don't need documentation

please send price lists. address:

() Please send FREE CATALOG.
: city: state: zip:

ELECTRONICS ~ DEPT.2-B o 1020 W. Wilshire Blvd. » OklahomaCity. OK 73116 (405) B43-9626°

Circle 91 on inquiry card.

BYTE February 1978

49

Listing 1: This program simulates the vertical and angular motion of a boat in manner. The hull can now be described by
response to sea waves. Because it involves a lengthy summation, it is inherently a table of Xs and Ys. The Xs represent the
slow. | have, therefore, used only the second order predictor corrector formu- distances from the center of gravity to the
las, and have employed a large step size. Readers who want more accuracy center of each bottle. The Ys represent the
and who can afford to wait for results should implement the fourth order lengths of each bottle below the waterline
equations presented in my previous article on automotive dpplications at equilibrium. Now, instead of making a
(December 1977 BYTE, page 1 12). They should also increase the number of series of calculations for one or two bottles,
“bottles” used to describe the hull, and decrease the step size. i we make them for many. just as before, the
It should also be noted that the program does not simulate the viscous sum of the forces influences the vertical
damping action of the water. As a result, if you are unfortunate enough to motion of the center of gravity, and the
specify a resonant frequency of the hull as the wave period, the boat will sum of the moments influences the angular
appear to leap out of the water. While this result is obviously erroneous, motion around the center of gravity.
it will highlight a design to be avoided. We now have an effective method for
dealing with distributed forces. We simply
}?g sgn ggéglggTaSELSéggggTéggnoN divide the area over which the force acts
111 REM X 15 DISTANCE FROM CG TO CENTER OF BOTTLE into small segments. Within each segment,
iég EE’I: ‘;({g)leﬁw OF BOTTLE BELOW WATER AT EQUILIBRIUM we neglect the distribution and calculate a
140 DATA 8.05,0.5,0,15,0.49,0.25,0.47,0.35,0.45,0,45,0.42 discrete force and moment. Finally, we
150 ,‘?—8;“_.815?69;39’9'65’9'36’8'75'9'31'9'85’9‘27’9’95’9'22 sum the force and moments to find the
?g REQD XCJI5 YOI effects on the linear and angular speeds.
188 NEXT J . i i
198 REM SET BUDYANCY FACTOR; "BOTTLE AREA"XDENSITY%3.8 | have included a BASIC program with
geg BES‘°’§"?3*9'8~~: OMENT OF INERTIA OF CROSS SECTION this article to illustrate the technique as
g?e §=g COMPUTE HASSCH> & HOK TKERTIA OF CROS: applied to our boating example. With the
211 1=0 data supplied, it computes the i
212 FOR J=1 TO 18 . supplied, putes tne rofling
214 M1=B-9.8%Y(J) motion of the hull cross section pictured
216 M=M+M1x2 i i i i i
218 Tol+Mirg U2 in flgure 3. Boating enthusiasts W‘l“ be able
220 NEXT J to insert some other hull cross sections (deep
%ig ﬁgg.ger SEA STATE: HEIGHTC(H)>,LENGTHC(L>,PERIOD(P) vee, trihull, etc) in the data statements and
gzg %=g compare the response to the sample sea
270 REM INITIALIZE INTEGRATION VARIABLES states. If lateral (side to Side) sections are
288 DATA ©,8,08,0,0,8,0,0,0,8,0,08,0,0 used, the program will simulate rollin
290 READ 2,21,0,01,A A1, R,R110,01,C,C1yT X program oning
306 REM INITIALIZE STEP SIZE AND PRINT INTERVAL motion. If longitudinal (fore and aft) sec-
312 b=o-1 tions are used, the program will compute
gg? Ké-e.I/D : VERTICAL POSITIGNCH) AHGULAR POSITIONCDEG pitching motions. Interested readers should
321 PRINT "TIME:SEC) JERTIC SITIOHCHY » POS (DEG»" .
330 REH SUM FORCES AND MOMENTS ON THE "ENTTLES" be able to extend the program to include
340 GOSUB €00 o three dimensional boat models and simulate
345 REM PRECDICT UERTICAL MOTION . -
346 REM f,U,2 ARE RCCELERATION,SPEED, AND POSITION both angular motions simultaneously.
ggg ﬁi;hg‘;gf With the inclusion of techniques for
%35 EEE‘EEEE}U AHGULAR MOTION handling distributed forces and combined
376 REM C,0;P ARE ACCELERATION,SPEED: AND POSITION angular and linear motion, your collection
388 C1=G-1 of software tools for simulating motion is
398 0=01+4D+C1 . .
400 R=R1+DX01 fairly complete. When using these tools ona
2%2 .'35'.2};”“ NEW FORCES AWD MOMENTS FOR CORRECTOR FORMULAS pemo_na} computer, you should try above all
438 T=T+D to limit the scope of your simulations.
449 GOSUB 698 ; : ; ;
445 REM CORRECT UERTICAL MOTION Determine which m_otlons really interest you
450 A=F/M-9.8) and neglect or restrict the others. Divide the
460 YuliD kil simulation into degrees of freedom, pref-
3;3 EEE ‘%ORRECT ANGULAR MOTIDN erably three or less if your program is to
499 G=01+D/2X¢C+C1) execute with reasonable speed. Compute
500 R=R1+D-2¥(Q+Q1) L
2 Rl ORLEARE FOR NEXT STEP each f9rce and moment m‘dl\{ldually, then
518 U1=U apportion and sum them within the degrees
20 z1=2 of freedom. Finally, step the velocity and
540 Ri= the position into the future. Use 2 small
558 IF K(K1 THEN 348 o)
560 PRINT T,2Z,R¥57.296 step size in your early runs, 0.01 seconds or
378 IF pcie THEN 348 less. Increase it to save run time only as long
508 REM CALCULATE AND SUM FORCES AND MOMENTS ON "BOTTLES® as your results do not change significantly.
gig E;g Following this procedure, and using the
66@ FOR J=1 TO 18 BASIC programming examples | have pro-
665 REM POSITIVE HALF OF HULL IS GIVEN .) iy
£22 FED U To VEERER EOSITOR OF MBS RRAEE TS e Yo soplcation Tor vo
SR L) CURFA < . e
O P XS INCE DB318R (T P+XC LY some interesting new applications for your
663 H1=Y(J)-Z-SINCRIXX{JI+H personal computer.
50 BYTE February 1978

g

Circle 89 on inquiry card. i

Listing 1, continued:

76 IF W1>8 THEN 672

671 H1=98

672 F1=BiU1

673 G1=X(JI%F{

675 REM MIRROR IMAGE GIVES HEGATIUE HALF
678 W=H/2%¥SIN(E.28318%(T/P-K(J)-L))
€679 Wi=Y(J)-Z+STH(RIXK(JI+H

€20 IF W1>8 THEN 682

681 H1=8

682 F2=BxMW1

700 G2=-X(J)*F2

710 F=F+F14F2

720 G=G+G1+G2

738 NEXT J
748 RETURN
758 END
! |
TIMECSECY UERTICAL POSITIONCHM) AHGULAR POSITION(DEG) unu nlnN T HNUW
83 8 B0saseracssae 3. 14pqaz0ire) Par's Pending
2.2 . B0234356869338 2, 2 ' -
.3 0.0240785135748 4.23593821533 S,QgMS ,,",gwra',’n‘,’ng]?:’t;g
.4 0.04682229037315 €, 190334£8235 9) turn cermet tri .
@.5 §.0789539577127 7.329318699994 only programmer with all " erimmers (for
5. € 9.18783765357 7.01051374777 these features: Bmplitude align W'?t and
8.7 B.127464633145 5,82510841752 e Converts a PROM memory ~ , Amplitude afignment)
9.3 9.1306129249753 1.41142156817 socket to a table top pro- luhac 298l o & handsome
R 8.118974303565 -3.40279261€98 grammer: No complex inter- aluminum case
1 §.0695565412445 -8,66151908825 facing to wire—just plug it ~PP-2708/16 ..A & T $295,
tl 8.6185595497413 ~-13.410855323% into a 2708 memory socket” KIT ~ $245,
1,2 -8,0565528427A%2 -16.6916991863 ® A short subroutine sends PP-2716 (Programs Intel’s
1.2 -9.128883c4883 -17.7238637249 data over the address lines 716) T $295.
1.4 -8.169475281978 -16.0583471104 to program the PROM Kn— $245.
1.5 -0.193013619278 -11,6821229385 ® Programs 2 PROMS for less
1,6 -0, 13645221183 -5.086270@420258 than the cost of a personal-
1.7 -0, 150554633294 2, 89982493065 ity module. (2708s and TMS
1.9 -8.0917208520104 10.3686349622 2716s)
1.9 -9.0206887363375 17.8618895739 @ Connect 2 or more in paral-
2 0.0503241234733 22.5634234899 m lel — super for production

programming Oliver Advanced Engineering, Inc.

. 676 West Wilson Avenue
e Complete with DC to DC Glendale, Calif. 91203

switching invertor and 10 (213) 240-0080

HE COMPUTER AGE FOR THE
SMALL BUSINESS HAS ARRIVED!

The Computer Matrt is offering the first complete line of off-the-shelf professional business software!

APPLICATIONS INCLUDE: . We will not be undersold by any company with nationally ad-

vertised prices on any of the following hardware:

e General Ledger—Daily Journal, Balance Sheet, Income State-
ment, G/L Report.

. A R bi Dail J LA R b Sal IMSAI SOLID STATE MUSIC
chrc;:;r;tsstateeceuvat ec Iany otJrrtlla gedh :CG;YaI les, Sales DIGITAL GROUP SD SALES
. AcL(J:oums Par;:t;es—Dﬁl;m\%ur'salng Opisn Pea(;aglz Vendor CROMEMCO HEURISTICS
Checks, Check Register, Cash Disbursements. PROCESSOR TECH 3ATA GENERAL IPLEX !
e Payroll—Payroll Register, Quarter/Year-to-Date, Checks, NORTH STAR ATIONAL MULTIPL ’
941's, W-2's. VECTOR TELETYPE ‘
e Solar Energy Analysis—analysis of feasibility of solar energy. TDL DECWRITERS ’
e Mail-Label—add, delete and change functions, full sorting and LEAR SIEGLER GRI i
letter writing capability. ICOM ALPHA MICRD
SWTP MICRO-TERM
COMING SOONI SEALS INTEGRAL DATA
e Project Control Accounting—provides logistic control and IMS
financial accounting of projects undertaken by the organization. |
e Educational Performance Evaluation—a system to store and Call for the lowest quote!

analyze student performance for any course which utilizes tests,
quizzes and homework for grades.
Medical Billing & Scheduling—clinical accounts receivable

package. RICK INATOME — [}l]mleiP}l 15T

e Point of Sale Inventory Control—full inventory control from'point

(TDL Software interfaced to North Star Disk.)

of sale. 1800 W. 14 Mile - Royal Oak, Michigan 48073 - (313) 576-0900
e Micro Information Retrieval—sophisticated system for record
access and manipulation. OPENING SOON
° Time Input Processor—stand-alone system for processing Dearborm Hgts., 420 Park Ave. W. Windsor, Ontario
time cards.)) N Michigan Chatham, Ontario Canada
e Word Processor—full function, CRT display, editing. (519) 354-2840

Circle 28 on inquiry card. BYTE February 1978 51

