Dr. Robert J. Cotter
The Johns Hopkins
School of Medicine
725 North Wolfe Street
Baltimore MD 21205

Programming the 1802

Dr. Cotter’s last 1802 article appeared in the December 1978 issue. With this “welcome

back” 1802 article, he explains how to input and output data, add subtract and multiply.

n “The Amazing 1802" (Kilo-

baud, No. 20, p. 102) and
“Interfacing the EIf " (Kilo-
baud, No. 24, p. 40), | described
some hardware additions for
expanding the Elf Il. This time
I'd like to share some pro-
gramming techniques tkat will
enable you to perform some
simple arithmetic calculations
on the Elf. This article will also
introduce you to some methods
for writing and calling subrou-
tines you may wish to incorpo-
rate into your own programs.

If you did build the address
decoder described in the latter
article, you will find it easier to
write and debug the programs
and subroutines described be-
low, since you can step up to
the correct memory locations
for entering the subroutines. If

you did not, then have no fear,
since all of the programs in this
article have been written on the
original 256 memory locations
that come with the basic Eif Il.
tn Table 11 have listed a sub-
set of the 1802 instructions
necessary for writing all of the
programs in this article. Only
one- and two-byte instructions
are used, since the three-byte
instructions are used for
branching onto additonal (256
byte} pages of memory. l've
also included the “level 1"
mnemonics so0 you may trans-
late the programs into the ap-
propriate op code -if you are
using a ditferent computer.
Before we begin program-
ming, recall also that, in ad-
dition to the 256 8-bit memory
locations, the Elf Il has sixteen

d | hexad binary
75 0100 1011
+ 58 +3A +0011 1010
133 1000 0101
Example 1.
locatlon bytes comments
[44] F8 4B 48—D
02 FC 3A 3A +D—D,DF
04 52 D--M(R2)
05 E2 R2=RX
06 64 M{RX)—~hex displays
Example 2.

122

16-bit registers and the 8-bit
$pecial purpose registers N, P,
X and D. The 16-bit registers
point to memory locations; the
N, P and X registers point to the
16-bit registers; and the D
register is used for arithemetic
and logic operations.

'Ho‘w to Add Two Numbers

" After | finished soldering my
E!f Il, my first inclination was to
try to add two numbers to-
gether, even though it is a lot
easier on a calculator. it takes
more steps on a microcomput-
er, and you have to think in hexa-
decimal and binary to under-
stand what is going on. Exam-
ple 1 shows the addition of two
numbers, 75 and 58.

.. The simplest way is to put
the first number, 4B, into the D
register using the LOAD IMME-
DIATE instruction F8. We enter:

F8 4B

The D register then acts as an
accumulator so that when you
add the number 3A to the con-
tents of D using the ADD IMME-
DIATE:

FC 3A

the D register will then contain
the answer, which must now be
read out on the displays.

~The Elf Il will output numbers
only from memory locations
(not registers). The 52 instruc-
tion will transfer our answer to
the memory location pointed to
by R2, one of the 16-bit regis-

ters. Output instructions, how-
ever, will only fetch data pointed
to by the register designated by
the 8-bit X register. An E2 in-
struction places a 2 in register
X, so that R2 = RX. A 64 instruc-
tion puts the answer on the dis-
plays. The whole program is
shown in Example 2. If you
enter the program and press
the' RUN switch, the heéx dis-
plays will show the answer: 85.

“So far, so good! But what
happens if you add two num-
bers whose sum is greater than
256 (requiring more than 8
bits)? See Example 3. The
binary addition produces a
‘‘carry’ into the ninth bit. For-
tunately, this bit is retained ina
special register, the DF regis-
ter, whenever the ADD IMMEDI-
ATE command, FC, is used. A
rewrite of our program for this
addition is shown in Example 4.
We have added three new steps
that test DF for a “carry” bit
and turn on the LED to indicate
the carry.

Improving the Program

We need to improve the pro-
gram. in step 04 we momentari-
ly placed our answer in mem-
ory, and in steps 05 and 06 we
designated this location as the
source of our output dispiay.
This location is determined by
R2, which may be pointing to
any arbitrary location when the
Elf is turned on. It may, in fact,
write the answer in one of the
program locations and erase

Op Code Mnemonic Name Operation
N INC INCREMENT REG N RN +1 decimal hexadecimal binary
2N DEC DECREMENT REG N AN -1
8N GLO GET LOW REG N AN.0~D 58 3A 0011 1010
9N GHI GET HIGH REG N AN.1-~D +242 +F2 41111 0010
AN PLO PUT LOW REG N D-RN.0 300 12 1 0010 1100 -
BN PHI PUT HIGH REG N D—AN.1
7A REQ RESET Q 0~Q (light off) Example 3.
7B SEQ SETQ 1--Q (light on)
DN SEP SET P N—P
EN SEX SET X N-X
4N LDA LOAD ADVANCE MN~D,AN + 1
5N STR STORE VIA N D—~MN
Fo LDX LOAD VIA X MX=D focation bytes cominents
F1 OR OR MX OR D~D
F2 AND AND MX AND D-D 00 F8 A 3A~D
Fa XOR EXCLUSIVE-OR MX XOR D~D 02 FC F2 F2+D-DODF
Fé SHR SHIFT RIGHT shift D right 04 52 D~M(R2)
- LSB—DF 05 E2 X—=2
76 SHRC SHIFT RIGHT WITH rotate D right 06 64 M(RX)—~hexdisplays
CARRY LSB-DF, DF~MSB Qa7 33 0A GO TOOAIfDF =1
FE SHL SHIFT LEFT shift D left 09 00 STOP
MSB—DF 0A 78 Q—~ON
7E SHLC SHIFT LEFT WITH rotate D left
CARRY MSB—DF, DF—LSB Example 4.
F4 ADD ADD MX +D—~DF,D
74 ADC ADD WITH CARRY MX +D + DF—~DF,D
F5 sD SUBTRACT D MX - D--DF D
75 SDB SUBTRACTWITH BORROW MX ~ D - DF~DF,D
c4 NOP NO OPERATION continue computation. The 64 instruc- second operand). The instruc-
8N ouT OUTPUT(N=1-7) MX--BUS, RX + 1 tion displays the number we tions 52 and 64 read out the an-
64 (N=4) MX~hex display have just entered so that we swer, and the remaining steps
6N INP INPUT (N =9 ~F) BUS—D,MX) . .
6G (N=C) keyboard—D,MX can verify that it was entered test the carry register, DF, be-
30 MM BR UNCOND SHORT BRANCH GO TO MM correctly. fore returning the program for
31 MM BQ SHORT BRANCH IF Q =1 GOTOMMItQ=1 Steps 9to 11 are used to ac- the next computation.
39 MM BNQ SHORT BRANCH IF Q=0 GO TOMM if Q=0 t th d d and T .
32 MM BZ "SHORT BRANCH {F D=0 GotoMmitb=os C€Pt the second operand an ry the program out using
3A MM BNZ SHORT BRANCH IF D#0 GO TO MM if D#00 copy it into D and onto A1, the the previous examples. Press:
33 MM BDF SHORTBRANCHIFDF=1 GOTOMMIfDF=1 " gecond position on the stack. RUN; 4B INPUT; 3A INPUT; IN-
3B MM BNF SHORT BRANCH IF DF =0 GO TOMM it DF =0 ; . .))) o
a7 MM B4 SHORT BRANCH IF GO TO MM if INPUT The 64 instruction again veri- PUT. The display will read ““85
EF4=1 switch is down fies this number on the dis- and the LED will be off. Next,
IF MM BN4 HORT BRANCH IF T i T
STORT BRANC Giwgc';:"i"s'LLNPU plays. enter: 3A INPUT; F2 INPUT; IN-
F8 KK LDI LOAD IMMEDIATE KK—D Addition will not take place PUT. The displays will show
F9 KK ORI OR IMMEDIATE KK OR D—D until the INPUT switch has ““2C” and the LED will be on, in-
FA KK ANI AND IMMEDIATE KK AND D~D been depressed and released dicating a carry.
FB KK XRI XOR IMMEDIATE KK XOR D—~D ;
FD KK SD! SUBTRACT D IMMEDIATE KK - D — DF—~DF,D one more time (steps 13, 14). In . . .
FC KK AD) ADD IMMEDIATE KK +D—DF,D step 15 the stack pointer re- Double-Precision Arithmetic

Table 1. COSMAC 1802 instruction sheet.

an instruction! Therefore, we
will need to set R2 to point to
some location well beyond the
program.

Also, it is inconvenient, to
say the least, to have to write a
new program for each set of ad-
ditions. Therefore, we will re-
write our program so that after
execution is begun it awaits
two operands from the key-
board, performs the computa-
tion, displays the answer and
resets the program for the next
computation. Program A gives
the listing for such a program.

Step 1 sets R2 to point to lo-
cation AO0. R2 is called the
“stack pointer,” which we will
set at AQ for ail the programs in
this article. All variables will
then be located in memory be-
ginning at this location and
may be fetched as they are

used in computations. Step 2
resets the carry register, DF, by
loading 00 into the D register
and then shifting 0 into DF. This
is necessary since DF may con-
tain a logical 1" when the com-
puter is turned on. Step 3 desig-
nates our stack pointer, R2, as
the output register.

Steps 4 to 6 illustrate the
technique for accepting vari-
ables from the keyboard during
execution. There are two loops
(at steps 4 and 5) that wait for
the INPUT switch to be de-
pressed and released. If a num-
ber has been entered on the
keyboard before pressing the
INPUT switch, the instruction
6C will place that numberinto D
and in the first position on the
stack, in this case, AC. The 7A
instruction resets Q, since it
may be ON from a previous

turns to the top of the stack and
adds (instruction F4) the num-
ber in location AQ with the con-
tents of D (which still holds the

It is common in computer
computations to work in
“double precision.” For an 8-bit
computer this means working

Location Bytes Step
0000 F8 AO A2 1
03 F8 00 F6 2
06 E2 3
07 3F 07 4
09 37 09 5
aB 6C 6
oC 7A 7
oD 64 8
0E 3F OE 9
10 37 10 10
12 6C 11
13 64 12
14 JF 14 13
16 37 16 14
18 22 22 15
1A Fa 16
18 52 17
1C 64 18
1[0 33 21 19
1F 30 00 20
21 78 21
22 30 00 22

Program A. Addition program.

Comments

AO—D, D—~R2.0

00—D, shift D right

2—X

GO TO 07 if INPUT switch is up

GO TOO09it INPUT switch is down
keyboard bytes—D, M2

reset Q

M2—hex display

GO TO OE if INPUT switch is up

GOTO10if INPUT switch is down
keyboard bytes—~D, M2

M2—hex display

GO TO 14 if INPUT switch is up

GO TO 16if INPUT switch is down
R2-1,R2-1

MX + D—~DF,D

D—M2

M2-hex displays

GOTO 21 DF =1

GOTOO00

Q—-ON

GO TO 00

123

.,

PUNCH TAPE

DATA1-K RESIDENT
ASSEMBLER/EDITOR
FOR THE

MOS TECHNOLOGY 6502

The DATA1-K resident asssmbier/editor is the new,

afficiant 0 the y of mi

All assambier editor functions are performed entirely

within memory. In most cases there is no need for a special
computer system| Program with the DATA1.K on the

system which will ultimetely make use of tha object cods. This

not only lowers the initiel cost of a development system but graatly ALSO AVAILASLE IN CASSETTE

decreases the amount of time spent on program debugging.

The DATAL-K f 600 lines per mi d uses

the standard MOS Technology Amsembler Language. The DATA1-K

features a truly general purpose line oriented text editor with error correction and
paged output capability. The DATA1-K is currently in use by: General Electric, Western
Electric, Eaton, Monitor Systems, the University of Cincinnati, and many others.

It is presently available on KIM-1 format paper tape or cassette and it inciudas one year
warranty and update,

Price: $250.00

Available from Johnson Computer, P.O. Box 523, Medina, OH 44256. Phone: (216) 725-4560.
Tarms: Payment with order/add $2.00 shipping and handiing/sdd §10.00 for cassetts version.

Dalivery: stock to 30 days.

JOHNSON

COMPUTER - o, sox sea meoma. orio aa2sg v 44

Reduce progrg

s1s02 Buiuw

TRS 80-PET-APPLE
SOFTWARE -

GALACTIC BLOCKADE RUNNER —an exciting. different and sophisticated
Space war game with interesting graphic displays Plays better than many ot

the Star Treks out there T1/4 T2/16 P A 39 95
SCI-FI GAME SAMPLER—inciudes J games —Space Monster. Lunar Lander
and Space Battle all with graphics T1/4 T216 P $5 9%
SOLARIA — 5 lantasy ec) —you won't bels ve
the compiexity of this one’'s output 72/16 P $9.95
MICROCHESS — play chess with your computer Uses graphic display and
provides various levels of dithiculty. T1/4 T2/4 P A $19 95
BRIDGE CHALLENGER —why wait to get 3 other people together 1o play?
Your compuler’'s ready anytime. T2/16 P A $14 95
PILOT —The CAl language This version has more features than many of those
' on the markel including abuiltneditor T1/4 T2/4 $14 95
& MICRO-TAX 78— juet in time t0 heip you prepare your returns. Does form 1040
end scheduies A. B. C. SE. D 4 4797 T2/16 31295
RENUMBER—a Quage program for 1ng your EIASIC pro-
I grams. one of your most useful programming tools T2/4 $14 95
PERSONAL FINANCE PACKAGE -1 programs :n this one Checking Ac-
count Budget Planner and interest Calculalor T1/4 T2/4 $9 95
AIR RAID -~ a machine ianguage. reai-1ime. arcade type game Shoot down
planes asihey liyby Ti/4 T2/4 $14 95

RSM-25 —a machine langQuage monitor for the TRS-80 Many many leatures

Disk Version 329 95

T

Q @ buiit in d $26 95

APPLETALKER— speach synthesis tor your APPLE computer! $15 99

APPLELISTENER—speech recognilion for your APPLE computer A nice

companion program to the one above Just think of what you cando' $19 95
MANY MORE — SEND FOR FREE CATALOG - GIVE TYPE OF COMPUTER

TRS-KO Level'Mem P Commodore PET A Applell

18% OFF IF YOU BUY -3 OR MORE!

WRL WRVVEW BOFVIIRLGE

900 Salem Road, Dept. K
Dracut, MA 01826

617-682-8131

a0

124

Memory Allocation
0000-003F

MAIN PROGRAM

used for reading in variables, determining
the type of computation and displaying

answers
0040-0049
0050-0059
0060-0080
00A0-00A4

Register Allocation

R2 =R(SP)

R3 = R(PC)

RS5 = R(RET)
RF = R(ACC)

with 16 bits, which gives an ef-
fective computation range from
0 to 65,535. Because the D reg-
ister is only 8 bits long, it canno
longer be used as the accumu-
lator. Instead, the 16-bit regis-
ter, RF, will be used as the ac-
cumulator, R(ACC), while R2
will still serve as the stack
pointer, R(SP).

Also, at this stage we want to
think ahead a little. We will
want to write programs for sub-
traction and multiplication, as
well as addition. We can cut
down on our programming if we
write all of these operations as
subroutines. Therefore, we will
first turn our attention to writ-
ing a program that will input the
variables, store them on a
stack, call the appropriate sub-
routine and display the an-
swers. This will be the MAIN
program.

Table 2 shows how we will
organize the memory locations
to accommodate the MAIN pro-
gram, the subroutines and the
variables stored via the stack
pointer. We will also designate
two new registers for subrou-
tining. Register R3 will be used
to point to a subroutine, while
register R5 will store the return
location when the subroutine

darimal haxadecimal

39,730 9832

+49,905 +C2F1

89,635 15E23
Example 5.

+” Reader Service—see page 179

ADD subroutine

SUBT subroutine

MULT subroutine

stack pointer

storage of operands, answers and subroutine
locations

AQ operand 1, high-order byte
A1 operand 1, low-order byte
A2 operand 2, high-order byte
A3 operand 2, low-order byte
A4 subroutine to be called

the stack pointer

the program counter, used to call subroutines
stores return location for main program
accumulator register; contains one of the
operands and the answer.

Table 2.

has been executed.

The MAIN Program

The program to input and
output the variables is listed as
Program B. Step 1 sets the
stack pointer, R(SP), while
steps 2 and 3 clear DF and Q.
Steps 4 to 6 should now be
familiar as the loop that awaits
the variables that will be copied
onto the stack beginning at lo-
cation AO. The program will ac-
cept two double-precision oper-
ands and store these in loca-
tions A0 to A3. It also accepts a
fifth number (40, 50 or 60) to in-
dicate which subroutine (ADD,
SUBT or MULT) is to be exe-
cuted.

Steps 7 to 9 test to see if the
stack pointer has reached AS5. It
then stops accepting variables
and continues execution. In-
struction 22 returns the stack
pointer to A4, which contains
the address of the subroutine.
In step 11 this is loaded into the
pointer register, R3. Step 12
sets the return location into R5.

In step 13, the stack pointer
is returned to the top of the
stack at AQ and in the next two
steps loads the high and low
bytes into the 16-bit accumula-
tor register. The stack pointeris
pointing to A2 when the D3 in-
struction sends the program
pointer to the appropriate sub-
routine location.

Step 17 is the return location
from the subroutine. The in-
struction DO restores control of
the program pointer by the reg-
ister RO. Steps 18 and 19 place

the high-order byte of the an-
swer (from the accumulator
register) into memory and onto
the output displays, while
steps 24 and 25 do the same for
the low-order byte after the IN-
PUT switch has been de-
pressed and released.

The 7B instruction in step 21
lights the LED if there has been
a carry, and steps 26 to 28 re-
turn the program for a new com-
putation if the INPUT switch is
depressed one more time. The
MAIN program can be used
with any of the subroutines that
follow.

The ADD Subroutine

Addition is accomplished in
the D register by adding the
low-order bits from memory

and the accumulator register
first, returning the &-bit result
to the accumulator and then
repeating the process for the
high-order bits. The first addi-
tion uses the F4 instruction
(ADD), but since this addition
may result in a “carry” into the
ninth bit (register DF), the in-
struction 74 (ADD WITH CARRY)
is used in the addition of the
high-order bits. A carry afterthe
second addition is tested in the
MAIN program.

The ADD subroutine is listed
as Program C and begins at lo-
cation 40. Remember that upon
entering the subroutine the
stack pointer is aimed at loca-
tion A2. The first step in the
subroutine increments R2 to
fetch the low-order bits first. At

Location Bytes Step
0000 F8 A0 A2 1
03 F8 00 F& 2
06 7A 3
07 3F 07 4
09 37 09 5
0B E2 6C 64 6
OE 82 7
OF FB AS 8
11 3A 06 9
13 22 10
14 FO A3 "

22 D3 16
23 Do 17
24 9F 52 18
26 64 19
27 3B 2A 20
29 . 21
2A 3F 2A 22
2C 37 2C 23
2E 8F 52 24
30 64 25
31 3F 31 26
33 37 33 27
35 30 00 28

Comments

set R(SP)

clear DF

reset Q

wait for INPUT to be depressed
wait for INPUT to be released
accept inputs from keyboard, store,
display and increment R{SP)
R2.0—-D

D XOR A5

GO TO 06 if D#0

decrement R(SP) to location A4
M2—D; D—R3.0 (subroutine pointer)
set return location in RS

reset R(SP) to AO

M2—RF.1; R2+ 1

M2—~RF.0; R2 +

call subroutine; 3—P

0—-P

RF.1—+D, D—~M2

display high-order bytes of answer
GO TO 2AIfDF =0

light Q

wait for INPUT to be depressed
wait for INPUT to be released
RF.0—D, D—=M2

display low-order byte of answer
wait for INPUT to be depressed
wait for INPUT to be released
return

Program B. MAIN program.

Location Bytes Step
0040 12 1
41 E2 2
42 8F 3
43 F4 4
44 AF 5
45 22 6
46 9F 7
47 74 8
48 BF 9
49 D5 10

Comments

R2 +1

x—2

RF.0—D; fetch R(ACC) low-order bits
M2 + D—D DF; add low-order bits
D—RF.0; store result in R(ACC)

R2 -1

RF.1—~D: fetch R(ACC) high-order bits
M2 + D + DF—D,DF; add high-order
bits and carry

D—~RF.1; store result in R(ACT)
return to MAIN program

Program C. Add subroutine.

Tarbell

Floppy Disc Interface
Designed for Hobbyists and
Systems Developers

1IN B
Plugs directly into your IMSAI or ALTAIR* and handles up
to 4 standard single drives in daisy-chain.
Operates at standard 250K bits per second on normal disc
format capacity of 243K bytes.
Works with modified CP/M Operating System and BASIC-E
Compiler.
Hardware includes 4 extra IC slots, built-in phantom boot-
strap and on-board crystal clock. Uses WD 1771 LSI Chip.
* 6-month warranty and extensive documentation.
¢ PRICE: Kit $190 Assembled $265
*ALTAIR is a trademark/tradename of Pertec Computer Corp.

/ 950 DOVLEN PLACE. SUITEB
CARSON, CA 90746
{213) 538-4251 #{213) 538-2254

80— TRS-80—TRS-80—TRS-80—TRS-80—TRS-80—TRS-80—TRS-80—TRS-80 -Ti

SOftware_from &@@ service

b Z-50 DISASSEMBLER: $20.00

Shows the symbolic code for the machine instructions stored in the memaory of vour TRS-80. Displays ad-

dresses and machine code in hexadecimal, ASCII representation, and symbulic instruetions. with operands.
on video monitor or line printer. Decodes all Z-80 instructions! Zilow mncmonics usedl. Code can be
reassernbled using the TRS-80 Editor/ Assembler.
REQUIRES;

Level I or 11, We have a vension for all versions of the TRS-80 (please state which one o owm

2. DATA BASE MANAGE T

$39.00

This is a complete Data Base Management Program for the TRS-80 Disk System. [t employs five com-
mands: Find. Add. Change. Video and Print. You can name vour own headings for all fields and can store any
type of information for «quick retrieval. All headings and data are kept on disk. Fasy 1o use bt professional

Example of use: Store index of magazine articles «w vou don't have to flip through all of your computer
magazines to find an articte.
REQUIRES:
Level II Disk Basic and one disk drive, 16K RAM, comes on cassette, for disk add $7.50.
A HEXADECIMAL NUMERICAL KEY PAD. $69.95

Ribbon Cahle plugs into kevhoard or expansion interface. No modifications necesary

+. COMPBEHENSIVE MEMORY TEST: $7.05
Routines for all Level 11 TRS-80s.

5. INVENTORY: $20.00

Uses sequential files on disk to store inventory . You can list stock number, ttem name., location, how many,
cost per unit, number per case, cost per case, and next shipping date. Commands include: Check for item.

change item info. add new items. and print entire inventony to line printer. Can be used withont ine printer.
Easy to use, just load and run, type in vour inventory and you are ready for quick retrivsal of any item
REQUIRES:

Level 11 disk drive and basic. 16K RAM

6. LEVEL I RASIC ON CASSETTE $30.00
% $20.00

Al programs came on cassette unless noted. 1 you want it on disk. please sprcify o and add $7.30 o your
order. or send a diskette with your order. All orders shipped same dav. All programs guaranteed to run.

MASTER CHARGE & VISA WELCOME

Qurvnarey Cuipurey QUPFHaNE
Seunte

34D8 DEANBLEN L,

DONELOU, TH 872l

B15= Big= 45LY

»~ A75

3 Reader Service—see page 179

125

i
{
I
i
t

v

the end of the subroutine, the
instruction D5 makes register
R5 the program counter. Its ini-
tial location was set by the
MAIN program as the return
address.

Let's add two double preci-
sion numbers, represented in
decimal and hexadecimal, to
see how the program works
(see Example 5). Enter both the
MAIN program and the ADD
subroutine into the computer
and press the RUN switch.
Then enter: 9B INPUT, 32 IN-
PUT, C2 INPUT, F1 INPUT, 40
INPUT. The last entry is the lo-
cation of the subroutine and in-
dicates that you wish to add the
two numbers.

The displays will show the
number 5E and the LED wiil be
lit, indicating the carry. If you
press the INPUT switch again,
the displays will read 23. One
more depression of the INPUT
switch readies the program for
the next computation.

The SUBT Subroutine

The subroutine for subtrac-
tion is listed as Program D and
is similar to the ADD subrou-
tine. In this case, however, sub-
traction of the low-order bits is
accomplished with instruction
F5 (SUBTRACT), while the high-
order bits use 75 (SUBTRACT
WITH BORROW). Whenever a
borrow occurs, DF will be set to
“0.”” When it does not,
DF =*“1." Again, let’s try an ex-
ample:

A217
-3C85
6592

Enter the SUBT subroutine,
press the RUN switch and then
enter: 3C INPUT, 85 INPUT, A2
INPUT, 17 INPUT, 50 INPUT.
Note that the subtrahend is en-
tered first and that the last in-
put calls the SUBT subroutine.
The display will show 65, and
depressing the INPUT switch
will give the low-order byte 92.
The LED will be lit, indicating
that DF =1, that no borrow has
occurred and that the answer is
positive.

Suppose then, that we sub-
tract a larger number from a
smaller one:

3C85
- A217

- 6592

Location Bytes Step
0050 12 1
51 E2 2
52 8F 3
53 F5 4
54 AF 5
55 22 6
56 9F 7
57 75 8
58 BF 9
59 D5 10

Program D. Subt subroutine.

Comments

R2 +1

x—~2

RF.0—D; fetch R(ACC) low-order bits
M2 - D~D,DF; subtract low bits
D—RF.0Q; store result in RACC)

R2 -1

RF.1—D; fetch R(ACC) high-order bits
M2 - D - DF—DF,D; subtract with
borrow

D—RF.1; store result in R(ACC)
return to MAIN program

Location Bytes Step
0060 F8 00 AF 1
63 22 2
64 E2 3
65 Fo 4
66 3A 69 5
68 Do 6
69 F6 7
6A 52 8
6B 12 9
6C 3B 77 10
6E F8 73 A5 11
71 30 40 12
73 F8 77 A3 13
76 D3 14
77 12 15
78 FO 16
79 FE 17
7A 52 18
78 22 19
7C Fo 20
0 7E 21
7E 52 22
7F 30 63 23

Program E. Mult subroutine.

Comments

clear accumulator

R2 -1

x—2

M2—-D

GO TO 89 if D#00
return to MAIN program
shift D right

D—M2

R2 +1

GOTO 77 i DF=0

set return focation for MULT
GO TO ADD subroutine
reset R3

3P

R2 +1

M2-D

shift left; MSB—~DF
D—+M2

R2 -1

M2-D

rotate D left; DF~LSB; MSB—~DF
D—+M2

GO TO 63

The answer will appear as
9ABE, and the LED will be off.
This indicates that the answer
is negative and that we have
the “2's complement” of the
correct answer. To get the neg-
ative result, subtract that num-
ber from 0000, and the display
will read 6592 with the LED off
(negative).

The MULT Subroutine

Multiplication in binary is
done by shifting the multipli-
cand left and adding. There-
fore, the MULT subroutine,
listed as Program E, uses ADD
as a subroutine. Also, since the
multiplication of two 8-bit num-
bers produces a 16-bit answer,
the subroutine used here will
accept only 8-bit operands from
the MAIN program.

The subroutine works as fol-
lows. The multiplier is placed in
the D register and shifted right.

DF is then tested. If DF =1,
then the multiplicand is en-
tered into the accumulator reg-
ister. The multiplicand is then
shifted left. The multiplier is
shifted again and DF is tested.
If DF =1, then the ADD routine
is called to add the new multi-
plicand to the accumulator,
and the muliplicand is again
shifted left. If DF =0, no addi-
tion takes place, but the multi-
plicand is still shifted left.

The ADD subroutine is called
by a GO TO statement rather
than a program pointer, since,
unlike the MAIN program,
MULT will always call this sub-
routine. This means that it en-
ters the ADD subroutine still
under the control of R3. Before
entering the ADD subroutine,
however, MULT changes the R5
location so that the ADD sub-
routine will return to location 73
and not the MAIN program.

Return to the MAIN program

occurs when the multiplier
equals zero. Return is accom-
plished by placing control of
the program in the RO register,

. which is pointing to the next lo-

cation in the MAIN program
from where we left it.

Let’s try an example. Sup-
pose we wish to perform the fol-
lowing multiplication:

85
x AB

58D7

Enter the MULT subroutine,
press the RUN switch and en-
ter: 00 INPUT, 85 INPUT, 00 IN-
PUT, AB INPUT, 60 INPUT. 58
and D7 will appear on the dis-
plays.

Where Do We Go from Here?

All of this seems fairly com-
plicated compared to what you
candoonasimple, inexpensive
calculator. However, there are
several distinct advantages.
First, the subroutines could be
used to perform calculations
on data that is being contin-
uously fed to the computer
through an A/D converter—or
two separate inputs could be
compared, with the sum or dif-
ference plotted using a D/IA
converter.

Using the techniques de-
scribed here, you may also wish
to write a division subroutine or
expand the multiplication sub-
routine for double precision.
You also may rewrite the MAIN
program to solve an equation
like y = ax + b. The main advan-
tage that the microcomputer
has over the programmable cal-
culator is its ability to accept
data from something other
than a keyboard.

In future articles | pian to dis-
cuss several other things you
cando with your Elf iI: for exam-
ple, memory expansion in 256,
1K or 4K steps will allow you to
expand your computer at a rate
you can afford; an autoranging
A/D converter will automatical-
ly give you the most siginificant
8 bits, for many different signal
levels. | have also recently pur-
chased the COSMAGC Evalua-
tion Kit and plan to do a com-
parison of that system with the
Elf I1. | also plan an article on
timing for generating wave-
forms and one on a Teletype
interface.

