'KARNAUGH MAPS FOR FAST BIGITA’I'.'_;DESIGN

__ Aneat SImpIe methnd Ior wurkmg v.uth Ioglc P : o
HI]W T[I GET E)(THA FUNBTIONS FUH SIMPLE HANI]'*-’BAI.BUI.ATBRS;: ‘
_ Add memory, cunstant % at Illtla cnst ' o

' BUILD A DIRECT- READING LOGIG PROBE

Headuut dlsplavs hlgh Iow onen and pulse

| EST ﬁmm

Heathklt' “Dsgltal” l}nlnr T\l Reallstlc Py
Plckermg Duscrete 4- channel cartrulge
l}ruwn Electromc l:rossuver chkuclrc,ur

i

AVE you ever tackled a digi-
tal design project with vim
and vigor—only to find yourself en-
tangled in a morass of logic ones and
zeros and a ‘‘this goes up, and that
goes down" nightmare? If you have,
don't despair. There is a much neater,
much simpler method than the brute
force approach. This article provides
a coherent approach to digital de-
sign. The method is not a substitute
for intuition and practical seat-of-
the-pants experimentation, but a tool
for getting the end results quickly.
Before getting down to actual
techniques, it might be wise to do a
little reviewing. The truth tables for
the AND, OR, and NOT (or COMPLE-
MENT, or INVERTER) functions are
shown in Fig. 1. The function a AND b
is written ab; a OR b is writtena + b;
and NOT a is written a. Note that + as
defined here is different from ordi-
nary addition, and merely symbolizes

a b |ub a b |u+b a _a
00| 0 ojo|oO o1
of|l}]o Q | 110
110]0 IL{o}1
{16 I | I 1] NOT OR
AND OR COMPLEMENT
FUNCTION FUNCTION FUNCTION
AND GATE OR GATE INVERTER
Fig. 1

the function defined by the truth table
of Fig. 1. A truth table is simply an
array, one side of which contains all
possible combinations of the input
variables and the other side of which
contains the corresponding values of
a logic function—or output. Figure 1
also shows the digital logic gate sym-
bols for the three functions.

Any logic function can be con-
structed from these three basic types
of functions or gates. It is often con-
venient, though, when working with a
particular type of logic family (TTL,
DTL, etc.) to use two other types of
function, the NAND and the NOR. The
NAND function of a and b is written
ab, and the NOR function,a + b. Their
truth tables and logic symbols are il-
lustrated in Fig. 2. All of these func-
tions except the NOT, or INVERTER,
can be extended in an obvious way to
include more than two inputs. With
these functions at hand, it becomes
possible to construct any logic func-
tion desired.

In manipulating the basic functions

a0

to form more complex ones, it is ex-
pedient to have available two impor-
tant, yet simple, rules of basic logic
theory known as DeMorgan's Laws.
Figure 3 contains truth tables for the
logic functions ab, a + b, a + b, and
ab. Comparing them yields the for-
mulas of DeMorgan’s Laws:

1)ab =a +b

2)a +b =ab
These formulas are useful in imple-
menting digital functions using only
NAND or only NOR gates.

Why Map Techniques? A truth
table is one way of specifying a logic
function—the Karnaugh map (pro-
nounced Kar-no) is another. To get an
idea of what such a map is, and why it
is a convenient tool, let's look at a
practical digital design problem.
Suppose we are faced with design-
ing the digital black box of Fig. 4,
which has three inputs a, b and ¢, and
a single output f(a,b,c). The black box
is to provide a logic one output under

the following input conditions:
a b |ab a b |aFm
ofo|1 ol|o]1
of 1]t o|I|o
t{oft 1|o|o Fig.2
1|1]o 1l1]o
AN NOR
FUNCTION FUNCTION
s e
NAND GATE NOR GATE

a=b=c=1,a=c=1and b=0,a=0and
b=c=1, ora=b=0and c=1. How can
we manufacture the digital logic in-
side the box from this specification?

One possible answer is to be
methodical. A person unfamiliar with
map techniques—but very method-
ical—might reason in the following
way.

“The output function f(a,b,c) is
logic one whenever a=b=c=1. An
AND gate puts out a one whenever all
inputs are logic one, so let's use an
AND. But the AND output is zero for
all other input combinations, and
f(a,b,c) is a one for several other input
conditions.

“Well, the AND gate did pretty well
for the firstinput combination, so why
not try it for the second? Let's take
the complement of b by passing it
through an INVERTER and run it into
an AND gate with a and ¢. This AND
will put out a one when a=c=1 and
b=0, as desired. This seems to be
working well, so let's do the same
with each of the other two combina-
tions."

With all the AND gates and INVER-
TERs arranged as above, our method-
ical experimenter will then observe
that, since f(a,b,c) is to be a logic one
whenever the input variables form the
first combination, or the second, or
the third, or the fourth, all he has to
do is OR the outputs of the four ANDs
to generate f(a,b,c). The resulting
logic is shown in Fig. 5.

Now this logic design works. It will
do the digital job, but it is inefficient.
It requires four AND gates, one OR,
and two INVERTERs. This is costly,
and it would cause quite a few layout
problems because of the numerous
interconnections. In addition, the de-
sign procedure outlined above is slow
and, for more complicated circuits,
error prone. What can be done to
streamline the procedure?

al
1
ol

da b
ojlo|1
o1 |1

b

o ©O|a

POPULAR ELECTRONICS

o

90— pigITAL Fig. 4

bo=— BLACK [—o0f{a,b,c)
BOX

Fig. 5

c O

f{o,b,c)

_ |
s e

The answer is the Karnaugh map.
This is just a rectangle divided up into
a number of squares, each square
corresponding to a given input com-
bination. The Karnaugh map of our
function f(a,b,c) is shown in Fig. 6.
The right half of the map corresponds
to a=1, the left half to a=0 (@=1), the
middle half to b=1, and so on. The
basic idea is that there is one square
for each input combination. If we
write into that square the value of the
output function for that particular
input combination, we will have com-
pletely specified the function. The
ones and zeros in Fig. 6 are the values
which f(a,b,c) assumes for the as-
sociated input variable combinations.

Now recalling our methodical de-
sign procedure, it is easy to see that
each square which has a one in it cor-
responds to the AND function of
those input variables, and f(a,b,c) can
be generated as the OR function of all
of the ANDs.

A key factor arises here. It isn't
necessary to include all of these AND
functions, and the Karnaugh map
tells us how to eliminate some of the
terms. For example, looking at Fig. 6,
we see that f(a,b,c) is a one for four
adjacent boxes forming the bottom
half of the map. (We will consider
squares on opposite edges to be ad-
jacent.) It is also easy to see the fol-
lowing: The only variable which does
not change as we go from one gguare
with a one to another with a offe is c.
It remains at one. What this means is
thatf(a,b,c) cannot depend ona and b
because, regardless of their values,
f(a,b,c) isaoneaslongasc=1. There-
fore we can forget about a and b, and

el oS
l|o|ofoo] o
| E RS b O=—fp— —0f{a,b,c)
C O
5T
Fig. 6 Fig. 7

SEPTEMBER 1975

implement our black box as shown in
Fig. 7. We have grouped together the
four adjacent squares to eliminate a
and b. Notice that we have simplified
things a great deal, since we now
need no gates at all.

Using a Karnaugh Map. Maps
of one, two, three, and four vari-
ables are shown in Fig. 8. Maps of one
variable are rarely used, and maps
with more than four variables are sel-
dom needed—even if such a problem
were to chance along, the Karnaugh
map would not be the tool to use. Its
value depends on the pattern recog-
nition capability of the user, and it
becomes hard to recognize pattern
groupings in maps of more than four
variables.

Using the three-variable map as an
example, note that there is one box
for abe, one for abe, another for abc,
and so on, with abc corresponding to
the input combination a=1, b=1,
¢=1; abc to a=1, b=0, ¢=1; and abc
to a=0, b=1, ¢=0; etc. Each box,
then, corresponds to a single row in
the truth table. The map is arranged
in such a way that half of it corres-
ponds to the uncomplemented form
of a given variable and the other half
to its complemented form; and the
variables are interleaved so that every
input combination corresponds to
exactly one square, and conversely.
Usually only the uncomplemented
form of each variable is written—it
being clear that the other half of the
map corresponds to the com-
plemented form.

Now, a logic function is displayed
by placing ones and zeros in the
boxes on the map. If a given input
combination produces an output, or
function value, of one, a one is placed
in the corresponding square on the
map. If the output is zero, a zero is
placed in the square. As an example,
look at the logic function in Fig. 9. On
the Karnaugh map, the box given by
abc has a1init. This means thatfis a
logical one when the input variables
have the value a=1, b=1, and c=1.
The box given by abc has a 0 in it.
This means that f=0 when a=1, b=1,
and ¢=0. These entries, as well as all
the others, can be verified by looking
at the truth table.

The logic function in Fig. 9 is not at
all simple looking. The question is,
how can the function be reduced to
its simplest form? Variables can be
eliminated from the function by use of
the following definition and rules:

Definition: Two boxes are adjacent if
the corresponding variables differ in
only one place, for example if one box
corresponds to abc and the other to
abc. Notice that boxes on opposite
edges of the map are adjacent under
this definition.

Rule 1: If two boxes containing ones
are adjacent, the single variable which
differs between the two (uncom-
plemented for one, complemented for
the other) can be eliminated and the two
boxes combined. These two boxes cor-
respond to the AND function of all the
variables except the one eliminated.

Rule 2: If four boxes containing ones
are adjacent in such a way that each
box is adjacent to at least two others,
these boxes can be combined and the
two variables eliminated—those two
which appear in both complemented
and uncomplemented form somewhere
within the group. The group of four cor-
responds to the AND function of all the
variables except for the two which have
been eliminated.

Rule 3: The same procedure holds for
eight, sixteen, and so on, adjacent
boxes. Each box in a grouping must be
adjacent to three, four, etc., others
within that group.

Rule 4: The various AND functions
produced by the above groupings are
“ORed" together to yield the simplest
function.

It should be noted that a given box
can be included in more than one
grouping if that will simplify the over-
all function, but each grouping
should contain at least one box which
doesn’t belong to an existing group-

a

a
Dj ONE-VARIABLE MAP

a_a

ol

TWO-VARIABLE MAP

e

ol

THREE-VARIABLE MAP

ol

FOUR-VARIABLE MAP

al >~ al

91

[
l
|
r.

f=abc + dbc + abc +Tbe
LOGIC FUNCTION

afbowc | f S
— |

o|lo|o]|o c> ololo|1

ofo|1]o e o]

ol|1]olo 5 b~ b
KARNAUGH MAP FOR f

0 | |

| 0|0 I

] 0 | |

1 | 0|0

o)

TRUTH TABLE FOR f
Fig. 9 A
olofolf
Oun)n]
b

\ f=ab+be
Fig. 10 simpLIFIED FUNCTION

X

ing (otherwise, this would lead to re-
dundancy).

To illustrate, the Karnaugh map of
Fig. 9 is repeated in Fig. 10, along
with the adjacency groupings and the
resulting simplified function. Note the
contrast in simplicity. The boxes rep-
resented by abec and abc, although
adjacent, are not grouped together
because each is already included in
an existing grouping. Now we are
equipped to tackle a real-life problem.

BCD-to-Decimal Decoder. Con-
sider the BCD counter of Fig. 11,
with the four output variables a, b, c,
and d. Suppose we need to decode
the count of decimal eight and pro-
vide a control pulse, lasting one clock
period, to some other digital circuit.
We must build a logic function fq

defined by the truth table of Fig. 11.
This truth table introduces a new var-
iable, called a don’t care and given
the symbol “X!"' The don't care means
that we can define the output func-
tion fy to be either zero or one for that
particular input combination—simply
because the input combination will
"never occur. A BCD counter never
counts above decimal nine. The X's
can be given values of zero or one so
as to simplify the resulting function.
In our case, the don’t cares have been
chosen as indicated by the smaller
ones and zeros.on the map. Notice
the very simple form for the function
f.. which can be constructed from a
single AND gate and an INVERTER.

The preceding was an example of
what is called combinational logic.
The outputs at a given time are de-
pendent only upon the inputs at that
time. Actually, the gates used to build
up a logic function have some delay.
In the case of combinational logic,
though, this just means that after the
input values are established, there is
some flat delay before the output
value is established. The delay is crit-
ical only if we have to compare the
output value with another being simi-
larly generated. If this is the case, we
could encounter problems with the
timing margins.

In the digital game we are playing,
though, the gate delays can be impor-
tant for a different reason. They allow
us to build so-called sequential
machines for storing information, as
well as for a myriad of other useful
things. The general idea of a sequen-
tial machine is illustrated in Fig. 12.

pecwAL _a b ¢ d|fe e
0 oflo|o 0 oo x| 1
1 ololo|1|o o|lo|x|o \
2 olof1]|ofo . oflo]| x| x° Fig. 11
3 ofo|1|1]o o|o|x xj
4 ol1]o]o]o \B/
5 ol1 0 | o KARNAUGH MAP FOR fg
6 o ! ! o0 SIHPLIFTEB;::J!NCTION
7 (o | OS] G e
8 1jlo|lo|o]1
9 1lolof|1|o
S O I Y T n—
? IR T B s
? 0 BRI o I T
? [(T R] fa
? 1o x
? L ST R S

TRUTH TABLE FOR fg
92

All the gate delays of delta
seconds—for illustrative purposes
only—are assumed to be lumped into
the output leads. The leads labeled x,,
x» and x, are the external inputs, and
those tagged g, g. and g, are the
outputs. (There could, of course, be
any number of inputs and any number
of outputs.) The leads labéled Q,, Q,
and Q, are assumed to respond in-
stantaneously to the inputs and fed-
back outputs.

If the inputs have been in one state
for a long time, the circuit will have
settled into a stable situation with g,
g.. and g, identical with Q,, Q., and Q.
respectively. Now suppose one Of
more of the inputs changes values.
Then no longer will the small g's be
the same as the upper-case Q's. After
the passage of (delta) time corres-
ponding to the gate delays, though,
the values of Q will have propagated
through to the outputs, and the small
q's will again be identical with the
large ones. For a given set of input
values, then, the small g's are called
the unstable states and the large ones
the stable states of the sequential
machine. The feature which allows
memory storage and other effects is
the regenerative characteristics
created by the feedback.

The R-$ Flip-Flop. An R-S flip-flop
is a one-bit digital memory whose
output is set to the one state by a one
on an input set (S) line and to the zero
state by a one on another line, called
the reset (R). An incomplete truth
table for this device is sketched in
Fig. 13. It is incomplete because the
output stable state is specified not
only in terms of ones, zeros, and don't
cares, but depends in addition on the
present (unstable) state q. We can
form a complete truth table by includ-
ing g as one of the input variables,
thus creating a feedback situation.
The complete truth table is also
shown in Fig. 13, along with the re-
sulting Karnaugh map and the de-
rived logic equation for the state Q.
Note that we must always have RS=0
(called the RS flip-flop constraint) to

PE—

COMBINATIONAL LOGIC Q2
—DIGITAL GATES— d3

(NO TIME DELAY) |

C = <l

Fig. 12

POPULAR ELECTRONICS

R_S R S 4@
o|lo]4q o|o 0
011 | 0|0 | |
I 1.0 | O ol O]
[S (ol TR (11

RS=0
INCOMPLETE TRUTH TABLE Oill €08 KO
1ol |6
el
o |l! [x}] O | | (o] I §
9. | |]| o 1 | Bt [0 [
\3 RS=0

KARNAUGH MAP COMPLETE TRUTH TABLE

Q=5+Rgqg
S0: @ =8 +Rq
=5 +R+g
(DEMORGAN'S LAW) Q
s
Fig. 13 NOR-GATE R-S FLIP FLOP

keep from violating the condition that
R=S=1 must never occur. Figure 13
also shows how DeMorgan’s Law is
used to get the function into a form
requiring only NOR gates for its con-
struction. By assuming all three pos-
sible combinations of input variables
(remembering the R=S=1 is disal-
lowed from ever occurring) and com-
puting outputs, the truth table can
easily be verified. It is also easy to
show in this way that the output
labeled @ is, indeed, the complement
of the output labeled Q for all input
conditions except the disallowed
R=S=1. -

The Clocked R-S Master-Slave
Flip-Flop. It is often desirable to
have available an R-S flip-flop which
changes state only on, for example,
the trailing edge (or 1-0 transition) of
a clock signal. It is possible to use the
Karnaugh map to derive the form of
such a flip-flop, but the end result, al-
though economical in number of
gates and number of inputs per gate,
would not shed much light on the in-
ternal workings.

This type of sequential maq{ﬁjne is
depicted in Fig. 14. When the clock
goes high, the R and S inputs are
passed through the input gates and
stored in the master. When the clock
goes low, the input gates are dis-
abled, and the information is coupled
through the transfer gates into the
slave flip-flop. The function of the
preset and clear inputs is evident. Try
assuming a set of input values for R
and S, and trace the information flow,
letting the clock change as described

SEPTEMBER 1975

above, to convince yourself that the
unit performs the R-S function.

The J-K Flip-Flop. Let's return to
our newly developed map technique
now and develop the (clocked) J-K
flip-flop as a last example. For con-
venience, since output changes are
allowed only on clock transitions,
let’s denote the unstable state g by Q.
and the stable state Q by Q... This is
reasonable, because @, is the stable
state just prior to the n' 1-0 clock
transition, and is the unstable state
just afterward, with the flip-flop set-
tling down into the stable state @,
before the next clock transition oc-
curs.

The incomplete and complete truth
tables are shown in Fig. 15, along
with the Karnaugh map and the re-
sulting simplified function. The J
serves as the S and K as the R,
respectively, of an R-S flip-flop. The
only difference is that the J=K=1
output is now defined (Q,)-

Let's use the clocked R-S flip-flop
to build the J-K from our derived
equation. For this purpose, let S=J/Q,
and R=KQ, be the inputs to the
clocked R-S. According to the R-S
equation,

Quy =S + RQ. =JQ, + (mn)c'n
Now, applying DeMorgan's law to
KQ. weget T
Qnir =JQn + (K + Q0)Qn =JQ, + KQ:

+ QnQn
But Q.Q. = 0 always, so
Qi = Jan fr _K—Qn
which is the J-K flip-flop equation.
Notice that the R-S constraint is satis-
fied, since _ x

RS = (JQu)(KQ.) = JK(Q:Qm) =0
Fig. 16 shows the construction of the
J-K from the R-S using two AND
gates. Again, test the operation by as-
suming a set of conditions for J and K
and tracing the logic flow. A glance
back at the incomplete truth table will
reveal that if J=K=1 (J and K inputs
tied to a logic one) the J-K forms a
toggle flip-flop.

The preceding examples have been
intended to accomplish two things. In
the first place, knowledge of the logi-
cal operation of the various types of
flip-flops is essential in order to use
them intelligently in an original de-
sign. As a second objective, they have
provided an effective demonstration
of the economy of thought which re-
sults when the Karnaugh may is used
in a digital design effort. @

CLEAR

TRANSFER
GATES

CLOCK <

PRESET

(cL)

CLOCKED MASTER SLAVE LOGIC DIAGRAM

T
[]
PRESET== | | 0 |—CLEAR
s cL R
vasliy Fig. 14
-8 SYMBOL
J_ K 9| Q%+ Ll
olo|o|o a Q
(ol e 14 KT N 1 *
alilelo Fig. 15 + 1
1 I 0
o £l V] o
1) |10 | O] S CILR
1 e Sl
I
oo | 1{1]ofr
Tk e
o TT)|o|o E_'_ I{Ljt1|o
\K COMPLETE TRUTH TABLE i i
KARNAUGH MAP Fi
Qp+1= Jan +iun 'g' 16

53

