DEBUGGING AIDS

HAT DO you use your computer’s
front panel for? Loading programs
into memory, monitoring their execution,
altering their execution with the senhse
switches, single-stepping the program to
find errors (“bugs”), changing memory

_locations, and troubleshooting hardware

are some examples. Last month, the
role of monitor programs such as Moto-
rola’s Mikbug in performing routine com-
puter operation tasks was described
here. It should have been apparent that
the use of a monitor for such functions is
far more convenient than using a tradi-
tional front panel. But what about non-
routine, troubleshooting tasks such as
tracing the execution of a new, untried
program or locating a hardware mal-
function on a new board? Many hobby-
ists feel that a control panel is indispens-
able in such situations. Let us examine
how monitor software can be used to
perform even these “debugging” func-
tions more effectively than a front panel.

Breakpoints. Assume that you have
just finished writing a relatively complex
program of 200 instructions in machine

001:000 006 123
001:002 016 156
001:004 026 356
001:006 036 312
001:010 315 000 003
001:013 311

003:000 173 . DSUB
003:001 221
003:002 137
003:003 172
003:004 230
003:005 127
003:006 311

Fig. 1. Program to be traced.
96

By Hal Chamberlin

language and are ready to test it. First
you load it into memory, hopefully using
a monitor and keyboard. After loading by
hand, you save the program on tape just
in case it wipes itself out in memory as
errant programs often do. Then using
the monitor's “G” command you exe-
cute the program. Chances are it does
not execute properly. In fact, it's prob-
ably not even close. At this point debug-
ging begins, which can take consider-
able time without good debugging tools.
If you have an Altair, Imsai or other
front-panel oriented computer you will
probably single-step your way through
the program in an effort to find out where
it goes awry. This means simply that the
computer is placed in a single-step oper-
ating mode where every operation of the
“single-step” switch causes exactly one
machine cycle to be executed. General-
ly,'as each cycle is executed, you can
see in the console lights the memory or
input/output address referenced by the
cycle and the data transferred. Addition-
al status lights identify the type of cycle
out of about a half-dozen possibilities.
However there are many things that the

panel lights fail to show. For example,

when executing an “add register B to

register A” instruction in single-step
mode, you will only see the memory ad-
dress of the instruction and the opera-
tion code, 200 in octal. You will not see
the contents of register A, register B, or
the result of the addition. Even the con-
dition flags such as overflow are hidden
from view. Obviously the panel is of lim-
ited value if you think the root of a partic-
ular bug lies in incorrect register con-
tents or if there is an uncertainty as to
what a specific instruction does. If this
information is critical (as it often is), you
must temporarily modify your program to
store the necessary data into memory
and then halt so that it may be ex-
amined.

Another often encountered difficulty is
that single-stepping through a loop a
dozen times to catch an error that oc-
curs on the thirteenth iteration can take
a long time. If the problem occurs on the
387th iteration it would not even be prac-
tical to single-step. Again the program
must be temporarily modified to make it
halt close to the error condition. Such
temporary patches are called “break~
points.”

Many monitors have commands or
functions that make inserting and keep-
ing track of breakpoints much easier. A
command like “3:213B” might insert a
breakpoint at location 213 in page 3 (oc-
tal notation). What would actually hap-
pen is that the monitor would first look at
the indicated address and save whatev-
er was there. Next it would store a CALL
instruction in the same location which
would transfer control to a “breakpoint
subroutine” in the monitor. This monitor

TEST OF DOUBLE PRECISION SUBTRACT

MVI B,123Q SET BC TO 123:156 = 21358 DECIMAL
MVI C,156Q '

MVI D,356Q SET DE TO 356:312 = -4405 DECIMAL
MVI E,312Q

CALL DSUB DO THE SUBTRACTION

RET 'RETURN TO THE MONITOR

DOUBLE PRECISION SUBTRACT REGISTERS B AND C FROM
D AND E WITH RESULT PLACED IN D AND E

MOV A
SUB C
MOV E,A
MOV A,D
SBB B
MOV D

E : SUBTRACT LOWER BYTES

MOVE RESULT INTO E
SUBTRACT UPPER BYTES

WA MOVE RESULT INTO D
RET RETURN'

POPULAR ELECTRONICS

- 002:232 123 3:0,3:6T

002:232 123 T:OG

(Command to trace between 003:000 and 003:006
(Command to start execution at 001:000

003:000 173 A=312 B=123 C=156 D-356 E=312 H=113 L=002 SP=017:374 FLG=

003:001 221 A=130
003:002 137 E=130
003:003 172 A=356

003:004% 230 A=203 FLG=SA

003:005 127 D=203

002:232 123 (next command)

routine prints the contents of all registers
and the condition flags.

Now that the breakpoint is set up, the
program would be entered with the nor-
mal “G” command. When it got to the
“CALL BREAKPOINT” instruction that
was inserted, the registers and flags
would be printed. After the printout, the
monitor would be waiting for another
command. When the breakpoint is no
longer needed, an “E” command might
erase the breakpoint and restore the in-

~ struction it'saved.

A more sophisticated monitor could
allow multiple breakpoints. It would au-
tomatically keep track of the instruction
displaced by each breakpoint and identi-
fy the breakpoint when the registers
were printed. A really good breakpoint
routine might even execute the saved in-
struction after printing and then automa-
tically return to the program being de-
bugged. In this case, a breakpoint could
not be placed on top of a JUMP or CALL
instruction.

A breakpoint routine can also take
care of the “error on the 387th loop”
problem mentioned earlier. Each time
the breakpoint routine is entered, a soft-
ware counter is decremented. If the
counter is not zero, the user program is
re-entered without printing the registers.
Only when the counter finally does be-
come zero do the registers get printed—
thus saving a’ lot of time and paper.
There would, of course, be a cdmmand
to set the initial value of the counter.

Someé microprocessors make the task
of implementing a breakpoint facility in a
monitor much easier. In the 8080 a nor-
mal CALL instruction is three bytes long.
When placed in a breakpoint location,
the three bytes that were there have to
be saved. These three bytes might rep-
resent as many as three separate in-
structions making the “print registers
and continue” function very difficult to
implement. The 6800 or 6502, on the
other hand, has a one- byte BREAK in-
struction that seems to be custom de-
signed for just this function.

MAY 1977

Flig. 2, Monitor printout with trace.
Underlined portion typed by user.

Software Single-Step. Although
breakpoint capability in a monitor greatly
simplifies the debugging of machine lan-
guage programs, it is not real single-
stepping. A different class of monitor
routines called “trace routines” allows
the ‘software equivalent of single-step-
ping. It is interesting to note that some
microprocessors are “dynamic” and
cannot be stopped to allow the usual
hardware single-step function. With
these, a trace routine is the only way to
get a single-step operation.

Tracing is really equivalent to putting
a breakpoint at every instruction in a
program. Then when the program is ex-
ecuted, a printout of the location, in-
struction, and all registers would be giv-
en for each instruction executed. This
would be exactly equivalent to manual
single-stepping with the bonus of a writ-
ten record of every aspect of the pro-
gram execution. In a machine with a lot
of registers, time and paper may be
saved by only printing the registers that
have changed since the last printout. A
useful trace feature in a monitor would
allow the setting of trace limits so that
only the program section of interest
would be traced. A fancy trace feature
might even allow multiple sets of trace
limits with possibly a counter to delay
the printing until a specified number of
traced instructions has been executed.

How are trace routines actually imple-
mented? One simple method is to use
the interrupt feature of the microproces-
sor itself. With this method, a simple cir-
cuit added to the computer is activated
to issue an interrupt whenever an in-
struction is executed. This lnterrupt
would prohibit further interrupts and
cause execution of the monitor trace
print subroutine. The print routine would
not re-enable interrupts until just before
it returns to the interrupted program, the
one being traced. This prevents the
trace print routine from being traced it-
self. The trace limit feature is implement-
ed by having the trace print routine
check if the instruction about to be print-

ed is within the trace limits. If it is not,
printing is suppressed and a return to
the program is executed. An example is
shown in Figs. 1 and 2.

Another method involves interpreting
the instructions of the traced program
rather than executing them. An interpret-
er is a program that acts just like the mi-
croprocessor itself. It literally looks at the
operation codes, addresses, and other
components of the instruction and,
through software, accomplishes the
same result as the real microprocessor
would have. The purpose of this is that
the interpreter program may also store
or print detailed information about the in-
structions it “executes”, something the
real microprocessor, of course, would
not do. This technique requires much
more complex software than break-
points or trace using interrupts does but
it has an important advantage. Since the
interpreter routine simulates the ma-
chine, it can also simulate hardware fea-
tures that the real machine may not
have, such as memory protect. While
debugging, the simulator would trap any
instruction that attempts to jump outside
of the protected area as well as any in-
struction that tries to write into protected
memory.

Unfortunately the standard, readily
available monitors in read-only memory
generally do not have these debugging
functions. If anything, a simple break-
point facility is all that is offered. Special-
ized monitors, designed primarily for de-
bugging rather than routine operations,
on the other hand can probably do ev-
erything that has been discussed as well
as other handy functions. These moni-
tors are often found in the microproces-
sor manufacturer's development sys-

tems, such as Intel's MDS or Motorola's

Exorciser (meaning to “exorcise” bugs)
and are guite expensive. However the
functions described are not difficult to
implement and are certainly worth the
effort needed to write them. Club meet-
ings provide opportunities to exchange
such software with fellow hobbyists. <

97




