Computer Bits

HIGH-LEVEL LANGUAGES
\URING the short 30-year history of
’computers in deneral and even

shorter 4-year history of microcomput-
ers, the most significant software devel-
opment has been the availability and
use of high-level computer languages.
The term “high level” is used because
these languages allow a programmer to
interact with the machine on a less de-
tailed and more meaningful basis than
does a so-called “low-level” machine
language. The high-level languages per-
mit the average person to use a comput-
er system effectively without having to
acquire a large amount of specialized
knowledge about binary number sys-
tems, memory mapping, character
codes, and other such nonsense. Also a
given high-level language tends. to be
the same regardless of the particular
type of computer involved. This, of
coufse, is not true with machine or as-
sembly language, which is entirely dif-
ferent when going from one computer
type to another.

High-level languages can be broken
down into two basic groups. The first
group consists of geheral-purpose pro-
gramming languages. These are intend-
ed for use in writing computer programs,
both casual and professional. They are
called general purpose because they
can be used, at least in theory, to write
any kind of computer program. Some
specialization does exist however. For
example, FORTRAN is best suited for
complex scientific calculation but has
been used for business data processing.
COBOL is the most widely used lan-
guage for business programming but it
also has scientific applications although
itis very inefficient in that field.

Members of the second group are
called “application languages”. These
are assoclated with particular “applica-
tion package” programs. One example
is ECAP which stands for Electronic Cir-
cuit Analysis Program which is used to
simulate and analyze the behavior of
electronic circuits. The ECAP language
is used to describe the circuit of interest
and to instruct the program on what to
do with the circuit just described. Anoth-

By Hal Chamberlin

er is COGO standing for Civil Engineer-
ing Coordinate Geometry, which is used
to aid surveyers in evaluating and map-

ping parcels of land. Using an applica- .

tion program and associated language
for its intended purpose is vastly simpler
than writing a program to do the same
thing from scratch with a general-pur-
pose language.

Of course, all of these advantages of
high-level computer languages do not
come free. A given program written in a
high-level language invariably requires
more computer memory and more exe-
cution time. The differences generally
are not trivial either. On a large machine
the difference in memory requirements
can easily be 3 to 1 and execution time 5
to 1. On a microprocessor, the memory
difference might actually be smaller but
the time difference can be 10 to 1 to over
100to 1.

The difference in programming effort
swings to the other extreme with high-
level languages requiring as little as
one-tenth the effort from inexperienced
programmers. Professional - program-
mers cope better with machine-level lan-
guages but the difference is still sub-
stantial. In effect, machine language
gives the programmer complete control
over the details of programming thus
providing the opportunity to write an effi-
cient program, one that takes a mini-
mum of memory and execution time.
The situation is analogous to automatic
versus manual transmissions in cars.
Better gas mileage, quicker accelera-
tion, and better handling in snow is pos-
sible with a 4-speed manual transmis-
sion but the automatic is more conven-
ient and easier to learn.

Most hobbyists want to run BASIC on
their systems and are willing to pay a
premium in order to do so. BASIC is a
well-known, very easy to learn, general-
purpose computer language that works
well on small systems. It is particularly
effective for small- to medium-sized pro-
grams involving mathematics and char-
acter string manipulation.

Several other languages are now
slowly being implemented on microcom-

puters. Probably the most widely de-
sired is FORTRAN which is better suited
than BASIC for writing large or complex
programs. Accordingly, larger systems
with more main memory and mass stor-
age devices are required to run FOR-
TRAN. Many application packages such
as ECAP mentioned earlier are written
in FORTRAN. Actually BASIC was mo-
delled after FORTRAN with many of its
difficult or confusing features omitted or
modified.

Another language generating much
interest among advanced hobbyists is
APL. This is a highly symbolic language
that is very adept at handling arrays of
numbers and other structured data.

inside High-Level Languages. Ac-
tually a high-level language package is
nothing more than a program itself, al-
though it is vety complex. Simply stated,
the ‘“language processor program”
looks at statements in the particular
high-level language and translates them
into equivalent machine-language oper-
ations. Such language processor pro-
grams are called “compilers” and “inter-
preters” -according to the two distinctly
different methods of translation. Inciden-
tally, most language processors are writ-
ten in machine language to maximize ef-
ficiency of the translation process which,
as will be shown later, is very important.

When using the compiler type of
translator program, it is really a two-step
process to take a program written in the
high-level language and get it running
on the computer. First the compiler pro-
gram takes the high-level language
statements, which as a group are called
the source program, and translates
them, one at a time, into equivalent ma-
chine-language instructions. The collec-
tion of generated machine-language in-
structions is sent to a storage device
(such as a cassette or floppy disk) and is
called the object program. Now we have
an equivalent program in machine lan-
guage written on the storage device
which completes step one.

Before the object program can be run,
it must be loaded into memory. Along
with it are loaded some utility subrou-
tines which are called the run-time pack-
age. These subroutines perform gener-
ally needed functions such as binary/
decimal conversion, mathematical func-
tions, and others. Usually a special load-
er program is required to read the object
program and run-time package into
memory and get them properly linked
together. After the loading process is
complete, the program may actually be
run just as though it had been written in

POPULAR ELECTRONICS

machine language in the first place.

Using the interpreter type of translator
is generally much simpler. The main
idea is to make the programmer believe
that the computer is actually executing
the high-level language directly. Accord-
ingly a portion of the interpreter is actu-
ally a text editor which aids the program-
mer in entering the high-level language
program into memory and changing it.
The source program in this case is
stored in memory as ASCII character
strings which is simply the original pro-
gram text or a slightly modified version
of it. After the program is typed in, it may
be run directly by using the second por-
tion of the interpreter.

In effect the interpreter looks at the
first program statement, translates it to
machine language, executes it, and then
forgets the translated version. Then the
second statement is processed in the
same manner. If a group of statements
constitutes a loop, each is translated,
executed, and thrown away in turn, even
though these statements may have
been translated hundreds of times previ-
ously. Actually most interpreters do not
generate real machine language and
then execute it. Instead, they scan the
high-level language statement, extract
the important information from it and act
directly on the basis of that information.
Thus the impression is given of a ma-
chine with a very powerful instruction set
that actually executes the high-level lan-
guage directly.

Now what about the relative merits of
the two techniques? The interpreter cer-
tainly sounds simpler and more conven-
ient to use and indeed it is. But what is
gained in ease of use is lost in execution
speed. Most programs spend nearly all
of their time in one or more short loops.
With an interpreter, the statements of
the loop are repeatedly scanned and
translated. Usually the translation proc-
ess for a statement takes longer than
the actual work specified by the state-
ment. With a compiler, all of the state-
ments of the program are translated
once so that, during execution, only the
time necessary to perform the useful
work is needed. Storage space for the
user program is not significantly different
between a compiler and an interpreter.
However, since the compiler program is
not in memory when the object program
is executing, it is likely that a larger pro-
gram could be accommodated with a
compiler.

The choice between interpreter and
compiler depends heavily on the lan-
guage. BASIC is’ nearly always imple-
mented as an interpreter in order to

MOVEMBER 1977

maximize its convenience. FORTRAN,
on the other hand, is usually compiled.
APL, due to its very structure, is always
interpreted. - Actually, since APL pro-
grams are so compact, the overhead as-
sociated with interpretation is much less
than with a verbose language such as
BASIC.

Hardware Required. Using BASIC
as an example, how large must a sys-
tem be to use it effectively? Usually the
only input/output device required is a
terminal of some sort. A mass storage
device is handy for saving programs but
is not necessary to run them. Thus the
important measure of system size is
simply the amount of memory present.
Accordingly, BASIC interpreters are
usually rated by the amount of memory
required by the interpreter and the num-
ber of language “features” supported.
Memory requirement figures often in-
clude a small area for storage of the
user program but this generally amounts
to only a few lines of BASIC.

The smallest BASIC interpreters can
be as small as 2k bytes. Being so small,
they offer only the most important lan-
guage features and are often given the
name Tiny BASIC. The most distin-
guishing feature of a Tiny BASIC system
is that only integer numbers are allowed,
usually constrained to values between
—32,768 and +32,767. So-called “full-
featured” BASIC interpreters can run in
as little as 4k. These support normal
floating point (scientific notation) arith-
metic and common mathematical func-
tions but lack the features for character
string manipulation. The most common
interpreter size is 8k. All useful math-
ematical functions are allowed, two di-
mensional arrays are permitted, and
statements are provided for handling
character strings. The ultimate is vari-
ously called Disk BASIC, 12K BASIC,

names. In addition to all of the features
just mentioned, these interpreters allow
user programs to set up and access files
of data on a floppy disk or cassette tape.
If any kind of home accounting or small
business applications are expected to
be written in BASIC, then this is the ver-
sion that is needed.

As noted above, additional memory is
required for all but the most trivial pro-
grams. Although it is difficult to judge
how much memory a given program will
require without actually trying it, a good
rule of thumb is to allow 1k per 50-line
page of sparsely commented BASIC
statements. If long statements with a lot
of comments are mdre your style, 2k per
page might be a better figure. Also,
many Iinterpreters allow the mathemati-
cal functions to be deleted if not needed
thus freeing 500 to 1000 more bytes of
memory.

Speed is even harder to pin down
than memory requirements; but com-
pared to machine language, BASIC is
quite slow. Simple arithmetic operations
such as addition and subtraction gener-
ally take about 5 milliseconds each while
multiply and divide take a little loriger. Of
course the floating point arithmetic;
which itself is a complicated subroutine
in the interpreter, is partially responsible
but tests have shown that even integer-
only Tiny BASIC'’s are not much faster.
Thus the conclusion is that the interpre-
tation process takes a lot of time. In
many cases of course, speed is of no
consequence, but if a lot of calculation is
to be done the time can add up quickly.
An excellent article in the June, 1977 is-
sue of Kilobaud magazine compares the
speed capabilities of several BASIC in-
terpreters. :

Increased use of high-level languages
is definitely a wave of the future which
will be spurred on by the development of
microprocessors specifically designed
to support such languages. <

Extended BASIC, and other similar

The ideal way to save your valuable copies, keep
them well p_rute:ted and make it easy for you to
refer to any issue at any time. Both decorative and

attractive enough to enhance the decor of any room,
each case holds a full year's copies. Constructed of
reinforced fiberboard, these durable cases are
covered in a rich-textured leatherette. The gold
embossed back adds to its elegance and makes
each case a welcome addition to your bookshelf
or cahinet.

Cases are available for your favorite magazines.

Orily $5.95 each, 3 for $15.50 in any combination
of titles, including all postage and handling charges.

Qutside U.S.A. add $1 per case. -
.

CHARGE YOUR ORDER TO YOUR AMERICAN |
EXPRESS, BANKAMERICARD, MASTER
CHARGE OR DINERS CLUB ACCOUNT. 7

" Ziff-Davis Serv. Div., Dept. JJ, 595 B'way, N.V. 10012
Please send the Magazine Cases indicated below:

PE-65 TITLE QUANTITY

CHECK: [All Black [] Maroon Back, Black Sides

[] ENCLOSED I1S'$_. - . PE-117
[] CHARGE: [BankAmericard [] Master Charge

[American Express [] Diners Club
Account # Exp. Date

Master Charge Interbank #—_ .~ =
(4 numbers over your name)

Signature

Print Name

Address

City. State. _Zip

Residents of Calif., Col., Fla., lll., Mich., Ma.,

N.Y. State, D.C. and Tex. add applicable sales tax.

