N ADDITION to its obvious appli-

cation as the central processing unit
(CPU) of a computer system, the micro-
processor has found its way into a vari-
ety of products ranging from kitchen
equipment to sophisticated laboratory
data-acquisition systems. The key to this
widespread utility is flexibility, which in
turn comes from the microprocessor’s
unique ability to alter its internal logic
in response to an external program.
Since the response to inputs from the
program is extremely rapid—on the or-
der of a few microseconds—the proces-
sor can change its electrical configura-
tion practically instantaneously, usually
fast enough to convince a human corre-
spondent that it is performing several
activities simultaneously.

Given the speed and flexibility of mi-
croprocessors, and the fact that they are
available at very reasonable prices, it is
often economical to use a single proces-
sor rather than a great many simpler
chips to synthesize logic functions, act
as a controller, or the like. To accom-
plish this, however, it is necessary to un-
derstand the architecture of the proces-
sor, its needs in terms of support circuit-
ry, how to program it, and how to inter-
face it with the “outside world.” Devel-
opment of the necessary understanding
is the goal of this multipart series.

Microprocessors vary in design, with
SEPTEMBER 1981

each design programmable only via its
own set of instructions. The unit that
will be covered in detail in this series is
the 8080. Since this CPU is the grand-
father of a growing family of processors,
including the Z80, 8048, and 8085, all
with a common internal programming
language, most of the information will
apply to the entire family as well. In-
structions not used by the 8080 will not,
however, be covered.

The Basic System. Like many pro-
cessors and logic elements, the 8080 re-
quires a small number of support ICs in
order to function. An 8080 along with its
support chips is called a CPU module.
The program that determines the in-
ternal states taken on by the CPU is
supplied to it in the form of electrical
signals. To generate these signals as re-
quired and in the proper order, the pro-
gram must be stored in some form of
“memory” device. These devices repre-
sent the binary digits (1, 0) by means of
“on-off”” switching devices or analogous
circuit elements. The binary code in
which program instructions are ex-
pressed is called machine language.
Each microprocessor (or microprocessor
family) has its own machine language.
Binary instructions or data that are
not subject to change can be stored per-
manently in ROM (read-only memory).

Popular Electronics

SEPTEMBER 1981

BY RANDY CARLSTROM

DESGNNG

WITH THE

8080 MICROPROCESSOR

Part 1. TheBasic System

With the widely used 8080 as a
model, the basic features of a central
processing system are explored

Elements that are variable must be
stored in RAM (random-access memo-
ry), which can be written, erased, and
rewritten by the CPU.

To affect or control devices that inter-
act with the outside world, the processor
must deliver signals to them. It does this
by means of an I/O (input/output) port.
As the name implies, an 1/O port can
also deliver signals to the CPU from de-
vices that sense external parameters.

Electrical signals representing data,
instructions, and addresses (the loca-
tions of particular items in memory)
pass between the CPU, memory devices,
and I/O ports via a set of dedicated lines
known collectively as buses. A typical
bus (Fig. 1) also supplies dc operating
power to the elements of the system.

Bus System. There are many ver-
sions of the bus system currently used,
with the S-100 and SS50 being two of
the most common. Although different
mechanically, they all contain three ma-
jor elements: the address bus, the data
bus, and the control bus. (Figure 1 does
not show the power supply lines and
common ground usually carried on the
bus system.)

In most systems, there are 16 lines in
the address bus, thus enabling 2!¢ or
65,536 (64K) unique addresses. In an 8-
bit system, there are 8 lines on the data

§7

8080 microprocessor

bus, allowing 28 or 256 data combina-
tions. The control bus carries all system
synchronization signals .including the
“clock” that keeps ‘all CPU module
events in step. -
Memory. A

computer memory is

formed from a large array of semicon-"

ductor elements, each capable of storing
a single binary 1 or 0, organized into
groups of bits (short for “binary digits’’)
often called words. The number of bits
in each word is determined by the size of
the CPU registers (storage locations in-

ternal to the microprocessor) and the
number of data lines. A typical RAM -

arrangement is shown in Fig. 2. A mem-
ory word of eight bits is often referred to
as a byte. Each byte represents one of 28
or 256 unique values (0-255). As the
8080 microprocessor uses this memory
structure, it -is considered a byte-
oriented device. '
Each memory location contains one

word of memory bits, and is identified
‘by a unique number, or address, as-
signed to it. The CPU gains access to the .~

contents of any memory location by

SUPPORT
DEVICES

v

BUS SYSTEM .

TO
REAL-WORLD
DEVICE

Fig. 1. A typical bus system contains three major elements:
~address bus, data bus, and control bus.

ADDRESS
BUS

7§ DATA

CONTROL
BUS

means of its address. A memory word
may represent the encoded form of an

_instruction, ‘or may be data to be pro-
_cessed by the CPU. . ~

The CPU has control ef memory in

_the sense that it can read data and

instructions . from memory and write
data back into memory. Only when the

CPU receives a direct memory access

(DMA) signal via the control bus does it
relinquish control of memory. DMA al- -
lows a high- speed dev1ce such as a mag-

netic disk to gain access to memory and -
control it. As noted earher, memory that * -
can be read and written or altered is .
termed read/write memory, or random- -
“access memory (RAM). Memory that

can be read, but not altered by Writing, :
is termed read -only memory (ROM). -

I
Input/Output. To the 8080 the out-

-side world may consist of up to 256 - 2

input and 256 output devices. These are
usually referred to as peripherals, and
may include keyboards, printers, -dis-
plays, etc. Each peripheral communi-
cates with the CPU by exchange of data

‘bytes sent via its associated I/O port

and the data bus (Fig. 3). Each periph-
eral is assigned an addresss from 0 to
255, much as each memory location is
assigned an address. The portion of the
I/O system that actually conditions

-data for input and output is known as

the interface and generally there is one
interface for each peripheral The use of
a port for input or output is done under
program control. . :
Communication between the comput-
er and a peripheral is done in one of two
formats—serial or parallel. In parallel
data transfer, all eight bits of the data
byte are handled simultaneously. This
permits rapid movement of data. In
serial transfer, data is handled bit-by-bit
instead of a byte at a time. This is slow-
er, but has the advantage of using sim-
ple hardware (for example, a two-con-
ductor cable or a telephone circuit in-
stead of a multiconductor bus). When

two computers exchange data via, say,
. an intercom line, the parallel data from

buses of both computers is converted to
serial form and transmitted bit-by-bit
down the cable. The IC that performs .
the conversion from parallel to bit-serial
form (and vice versa) belongs to a fami-
ly of components known as UARTSs
(Universal . Asynchronous Receiver-
Transmitter). If used, the UART is part
of the computer’s I/O interface since it
is used for conditioning data for input
and output.

There are two basic types of serial
communication—RS232 and what is
called the 20-mA current loop. Basical-
ly, RS232 is a voltage circuit where a

Fig. 2. Arrangement of a 2102 random-access memory.
Eight of these are needed for 1024 by 8 bits.

logic 0 is a positive voltage, and a logic 1

is a negative voltage. The newest version
; 53 POPULAR ELECTRONICS
ki .

S A e e A T eI s S

ot S A RS 0 1 ok A

of this voltage interface is RS422—
which uses balanced transmission lines
and differential current sensing to elimi-
nate noise. The other commonly used
serial port is the 20-mA current loop in
which a flow of 20 mA in the series cir-
cuit produces a logic 1 while an absence
of current denotes a logic 0. Both of
these serial ports are controlled by a
baud rate generator that “clocks™ the
‘operational speed of the port. Most pe-
ripherals use either the RS232 or 20-
mA loops for communication.

Program Interrupt I/0 improves the
efficiency of CPU operation while data
is being transferred to or from a periph-
eral that is many times slower than the
CPU itself. Consider a computer pro-
cessing large amounts of data, portions
of which are to be output to a printer.
When the peripheral is ready for data, it

program and then

ADDRESS
BUS

INTERFACE

e

CONTROL
BUS

DATA
BUS

BAUD

RATE -——) L

SIGNAL

CONTROL
SIGNALS _J

Fig. 3. Each peripheral communicates with the CPU
through an associated 1/0 port and data bus.

BUS «

THREE-STATE
SWITCHES

Fig. 4. A three-state device
is an electronic switch
connected between each

PERIPHERAL B
IS CNLY ONE
CONNECTED TO
THE BUS

SEPTZMBER 1931

bus line and associated logic.

signals the CPU through a program in-
terrupt. When the CPU acknowledges
the interrupt, it completes the current
instruction being executed in the main
“automatically
branches to a routine that will output
the next data byte. After the byte is out-
put to the printer, the CPU returns to
where it left off in the.main program.
The 8080 is capable of handling up to
eight interrupts from eight I/O devices
using a special instruction of its instruc-
tion set. Data input is similarly handled.

Three-State Logic. There can be
. many peripherals connected to, and
communicating along, the same bus
lines. Thus, unless some form of “traffic-
control” is used, confusion can reign.
Keeping order is the purpose of the
three-state devices, shown in Fig. 4.

T0
REAL-WORLD
DEVICES

Simply, a three-state device can be
thought of as an electronic switch con-
nected between each bus line and its
associated logic. When the switch is
closed, the associated logic can accept or
deliver signals to the bus. But, when the
switch is open, the bus does not “see”
the logic—in effect, the logic does not
exist for the bus.

Programming. A program for a com-
puter or processor consists of a sequence
of operational instructions stored in
memory. Each instruction enables a sin-
gle elementary operation such as the
movement of a data byte, an arithmetic
or logical operation on a data byte, or a
change in instruction execution se-

- quence. The set of all instructions com-

mon to a given CPU is referred to as its
instruction set. The size of the instruc-
tion set is a measure of the CPU’s capa-
bilities. Another such measure is the
length of the binary words the CPU can
work with. Generally speaking, the larg-
er the instruction set, or word size, the
more powerful the CPU. The 8080 (an
8-bit CPU with 72 instructions) is thus

more powerful than the 4040 (a 4-bit

CPU with 60 instructions). Some micro-
processor instruction sets may approach
200 instructions in length.

A program is stored in memory
(RAM or ROM) as a sequence of bytes
that represent the instructions. The
memory address of the next instruction
to be executed is held in an internal reg-
ister of the CPU called the Program
Counter. Early in the execution phase of
each instruction, the program counter is
automatically advanced to the address
of the next sequential instruction in
memory. Thus, program execution pro-
ceeds sequentially (i.e. memory-location
213 is executed after location 212 is exe-
cuted, etc.) unless a transfer-of-control,
or BRANCH instruction (8080 JjuUMP,

CALL, or RETURN) is executed, which

causes the program counter to be set to a
specified memory address. Program ex-
ecution would then continue sequential-
ly from this new memory location. The
JUMP instruction specifies the address to
be jumped to, which can be anywhere in
memory. During execution of a jumP,
the CPU replaces the contents of the
Program Counter with the address con-
tained in the JUMP instruction.
Subroutines. A special type of jump
occurs when the stored program CALLS,
or accesses, a subroutine (a program
within a program). Usually, a subrou-
tine is a set of instructions that must be
executed repeatedly in the course of run-
ning the main program. Algorithms that
calculate mathematical functions and
routines to input or output data to a
peripheral device are often programmed
as subroutines. The subroutine type of

59

b e
> !.,-4.... MM;MM__.‘&_

| ~EAST/
WEST

; MEGA SALES co

EPSON MX-80
PRINTER

INTERFACES:
IEEE $55, TRS#80 $35.
APPLE INTERFACE +
CABLE $90. RSe 232 $70

- APPLE Il PLUS 48K
$1189

S e - —
ATAR! 800 32K)_

$769

=

RADIO SHACK
16K Level Il Model 3
$334

MEC 5510 SPINWRITER
INTERTEC SUPERBRAIN

64K RAM
OKIDATA MICROLINE - 83
OKIDATA MICROLINE - 80 $
APPLE DISK

w/3.3 DOS Controller $
APPLE DISK w/o Controlier
BASE Il Printer
DIABLO 630

w/Tractor Option ' $
HAZELTINE 1420
NORTHSTAR HORIZON 32K QD $ 2975
ATARI 400 16K :
RADIO SHACK 64K Model 2
ANADEX DP - 9500

=

ot

e s R R

RS

{1 NEC MONITOR 229
| TELEVIDEO 912C 669
H TELEVIDEO 920C 729
959

ATARI 825 Printer

ATARI 850 Interface
Or both together
ATARI 810 Dlsk

WO WAREHOHSE l.OCATIONS
TO ENSURE FAST DELIVERY!

$

$

_ $
TELEVIDEO 950 g
$

$

1-800-556-7586

12 Meeting Street
Cumberiand, R1 02864
1-401-722-1027

1-800-235-3581

3353 Old Conejo Road

Mewbury Park, CA 91320
1-805-499-3678

CA. 1-800-322-1873

//MEGA SALES CO

8080 microprocessor

jump requires the CPU to store the con-
tents of the program counter at the time
the jump occurs (when the CALL instruc-
tion is executed). This enables the pro-
cessor to resume execution of the main
program after the last instruction of the
subroutine has been executed.

The processor has a special method of
handling subroutines to insure an or-
derly return to the main program. When
the CPU receives a CALL instruction
from memory, it advances the Program
Counter to the address of the next se-
quential instruction, and saves the
Counter’s contents in a.special memory
area known as the Stack. The latter
holds the memory address of the instruc-
tion to be executed after the subroutine
is completed. The processor then loads
the address specified in the"CALL in-
struction into its Program Counter.
Consequently, the next instruction that
is to be executed will be the first step of
the subroutine.

Normally the last step of any subrou-
tine is a RETURN instruction. When the
processor executes the RETURN instruc-
tion, it replaces the current contents of
the Program Counter with the address
contained on the “top” (last entry) of
the Stack. Since this address was the
one originally saved by the CALL instruc-
tion, the processor will resume execution
of the calling (main) program at the
point immediately following the original
CALL instruction. Note that this opera-
tion is very similar to executing a JUMP
instruction, the difference being that the
JUMP address is contained in the Stack
area rather than in the JUMP instruction
itself.

A subroutine may CALL another sub-
routine. This is called “nesting subrou-
tines.” If the microprocessor being used
has a Stack for storing RETURN ad-
dresses, the maximum depth of nesting
subroutines is determined solely by the
depth of the Stack itself. So if the Stack
has space for saving five return ad-

dresses, then five levels of subroutines -

can be accommodated.

Microprocessors have different meth-
ods of maintaining their Stack. Some
store the RETURN addresses within regis-
ters in the processor, but this limits the
levels of subroutine nesting. Others,
such as the 8080, use a reserved area of
RAM for the Stack and maintain a
Stack Pointer (an internal register of
the CPU) which contains the address of
the most recent Stack entry; i.e., the
Stack Pointer always “points™ to the top
of the Stack. This type of Stack may be
looked upon as a last-in-first-out
(LIFO) memory, and allows virtually
unlimited subroutine nesting.

Flags. The CPU has a set of flags, or
internal flip-flops that are set or cleared
(i.e., set to a logic 1 or 0, respectively)

depending upon thé fesults of cértdin in-
structions as they are executed. Two
flags of the 8080 are: The “Zero Flag,”
which is set if the accumulator is 0 (ac-
tually 00000000 binary), and the “Car-
ry Flag,” which may be set when an
arithmetic instruction causes the accu-
mulator to overflow (i.e., carry or bor-
row from an addition or subtractlon) In

. most microprocessors there are other

flags besides these. The 8080 has a totai
of five.

Most proc&ssors have instructions
available that will store the accumulator
and other general-purpose registers and
flags on the Stack temporarily. Like-
wise, there are instructions available to
reload the general-purpose registers and
flags with data contained on the top of
the Stack. This allows the contents of
the registers and flags to be saved so
that they may be used in another activi-
ty, as for example, a subroutine. Just
before returning to the main program
from a subroutine, the subroutine will
restore the registers and flags it used
(assuming, of course, that the same reg-
isters and flags were saved on the Stack
prior to using them in the subroutine).

Let’s go over one last concept of a
CPU’s instruction set, which gives the
computer its “decision-making” power.
This is a special set of transfer-of-con-
trol instructions that transfer; program
execution to another pomon df themory
if the condition specified in tiie instruc-
tion is met. An example 1s the 8080
instruction JUMP-IF-ZERO. : : ‘

If the processor encouhit:rs 4 condi-
tional transfer-of-control (or z"t:dndmon-
al branch”) instruction, it chécﬁs to see
if the spccxﬁed conditiefi ‘is mét. The

““condition” is alway?ﬁ telatéd to ore of
the flags. In the caSe of JUMP-IF-ZERO,
program execution i§ trandferred to the
JuMP address con{amed m the instruc-
tion in the same mafiher a$ the uncondi-
tional JUMP if the Zero Flag is set. If the
Zero Flag is not set {cleartd), program
execution assumes its sequentlal flow
and executes the instruction immediate-
ly following the JUMP-IF-ZERO. A proces-
sor usually has a set of “Compare” in-
structions, that sét_and/or clear flags
depending upon the result of comparison
of two data words (the 8080 can com-
pare two registers, or a register and the
contents of a memory location). A con-
ditional branch instruction will often
follow a Compare instruction, so that
the proper execution path may be cho-
sen (the decision) based on the resuits of
the flags from the Compare. It is in this
manner that the CPU makes its “logical
decisions.” The 8080 also has various
conditional calls and conditional returns
in addition to the conditional JUMPS in
its instruction set. O

(7o be continued next month}

POPULAR ELECTRONICS

AR T

B TRt 1A 0 SR B o et

N Part 1 of this series, we discussed

the basic features of a central pro-
cessing system, using the 8080 as an
example. Included were descriptions of
how such features as the ‘memory,
input/output devices, and programming
work. Now we will examine how to
design a CPU module based on the
8080. The schematic of such a module is
shown in Figs. 5 through 7.

In the design of this module, one of
the objectives was to keep it as simple as
possible while retaining versatility in in-
terfacing and expansion. The module
incorporates 1K bytes (1024) of RAM
and 2K bytes of EPROM (erasable pro-
grammable read only memory) which
should be ample memory for most control
applications.

Most of the signals found in the CPU
module are available at the Bus Inter-
face of Fig. 7. The others, denoted by an
asterisk, are for interfacing the CPU
module to a Program Development
board that is to be presented in Part 3 of
the series. These signals will otherwise
normally be of no concern and should be
left open-circuited.

Circuilt Dascription. The 8080 micro-
processor, (/CI of Fig. 5) initiates and
directs all operations between itself, the
memory, and the I/O units. Crystal-

80 -

8080 MICROP

Part 2 The CPUModule

controlled clock generator- IC3 provides
two nonoverlapping clock phases (¢l
and ¢2) derived from the 18-MHz crys-
tal. The clock also generates a status
strobe, STSTB, at pin 7 for use in IC2 to
provide the control bus signals. Other
functions of IC3 include providing a
synchronized RESET signal (pin 1) to ICI
in response to an external asynchronous
RESIN signal (pin 2) and a synchronized
READY signal (pin 4) in response to an
external RDYIN signal (pin 3). The net-
work consisting of R/ and CI provides a
power-on-reset to ICI through IC3
when the module is powered up. Pro-

gram execution begins immediately at

memory location zero after power-up
(unless the RDYIN input is low, in which
case the CPU remains idle after reset
until it is brought high). The RUN status
of the CPU is indicated by LEDI.
Besides generating the control bus sig-
nals, IC2 buffers the bidirectional data
bus. The need for a separate negative
power supply is obviated by IC4, which
generates —5 V from the +5-V supply.

The microprocessor operating pro-
gram is stored in EPROM ICS5 of Fig. 6.
Pin 8 of IC10A4 is low for all addresses
between hexadecimal 0000 and 07FF,
which “turns on” ICS. This corresponds
to 2048 unique memory locations, which
is exactly the number of bytes of memory

- BY RANDY CARLSTROM

DESGNNG
WITH THE

OCESSOR

A practical system
and how to connect it
to the outside world

in IC5. The eight outputs (constituting
one byte) of IC5 are logically connected
‘to the data bus when the output enable,
OE, on pin 20 is driven low by the control
bus signal MEMR from pin 24 of IC2.
When asserted, this signal is the CPU’s
way of notifying the system that it is
ready to accept a byte of information
from memory. Inputs A0 through A10
of IC5 determine which of the 2048
internal bytes will be presented at its
outputs (when enabled).

System RAM is formed by IC7 and
IC8 (Fig. 6) and its operation is similar
to that of EPROM ICS5. The RAM does
not normally contain the CPU’s pro-
gram since, unlike an EPROM, it is
volatile in nature. That is, the RAM
powers up into a random logic state,
which is of no value to the CPU. Howev-
er, the RAM may be used as a tempora-
ry data “scratchpad” since CPU data
may be readily stored in it and retrieved
later. The Stack area for the CPU will
exist somewhere in the RAM.

Pin 11 of IC10C is low for all memory
read and write operations between ad-
dresses 0800 and OBFF (1024 unique
locations), which “turns on” the RAM,
containing 1024 bytes of memory. The
difference in operation between the
EPROM and the RAM is in the write-
enable, WE, input at pins 10 of I/C7 and

POPULAR ELECTRONICS

i
i
i

dlm

8080 microprocessor

" IC8. The state of this input determines

the mode of operation of the RAM (read
or write) when it is being accessed by

the CPU (that is, when pin 11 of IC10C

is low). When the write-enable input is
high, the I/0O lines of IC7 and IC8 are in
the output mode and operation is similar
to that of the EPROM. When low, the
1/0 lines are in the input mode and data
on the data bus is stored in the
addressed memory location. Note that
the control bus signal MEMW at pin 26 of
IC2 drives the write-enable input of IC7
and JC8. (The assertion of MEMW tells
the memory that the CPU is attempting
to write data into it, from the data bus).
Inputs ‘A0 through A9 determine which

‘of the 1024 internal memory bytes will

be read from or written into. The high-
order bits of the address bus, which con-
trol the selection of IC5, IC7, and ICS,

., are decoded by IC9 and ICIO.

Ins and Outls of the CPU Module.
Now that we have the basic CPU mod-
ule, how do we enable it to communicate
with the outside world? Suppose we
want to monitor temperatures from sen-
sors installed in various rooms of a
house. How would we go about connect-
ing the temperature sensors to the
CPU? Or, suppose we want an alarm to
sound if a forced entry is detected in the

PARTS LIST

C1,62,C3—10-4F, 10-V tantalum capaci-
tor :

C4,C5—2.2-4F, 15-V tantalum capacitor

D1—Germanium diode (1N270 or similar)

IC1—8080A microprocessor

1C2—8228 system controller

IC3—8224 clock generator and driver

IC4—ICL7660 voltage inverter

IC5—27 16 EPROM :

IC8—74LS368 hex inverting tri-state bus
driver

IC7,IC8—2114L 1024x4 RAM

IC9—74L.S33 quad 2-input NOR buffer

IC10—74L.S00 quad 2-input NAND

IC11,1C12—74LS244 noninverting tri-state
buffer

LED1—Red light emitting diode

P1,P2,P3—16-pin DIP socket

Q1—2N2907 or 2N3206 transistor

R1—10-kQ, Y4-W 10% resistor

R2—330-Q, v4-W, 10% resistor

R3—20-kQ, v4-W, 10% resistor

R4,R5,R6,R11—3.3-Q, ¥4-W, 10% resistor

R7—1-kQ, v4-W, 10% resistor

R8,R9,R10—39-kQ, V4-W, 10% resistor

XTAL—18.000-MHz quartz crystal (Crys-
tek CY 19A or similar

Misc.—Sockets for ICs (must be provided
for IC5), perf or pc board, 0.01-uF disc
ceramic bypass capacitors distributed
near ICs, +5-V, 500-mA and 12-V, 60-
mA power supplies, wire-wrap wire or
soider, etc.

82 LNEMe = 501k, (o g

house. How is the alarm- told to sound

‘when the system detects an intruder?

These are examples of the type of prob-
lem we’ll be mvestlgatmg—how to inter-
face a digital computer to ‘an analog
world. We will approach it in a general-
ized manner so that a neophyte can

-design interfaces for his applications.

Once we learn how to interface exter-
nal devices to the CPU module and how
to program the module, applications will
be limited only by the experimenter’s
imagination. For instance, once we have
temperature sensors interfaced to the

" module it is a simple matter to program

it to detect if the temperature is rising or
falling (and how fast), to sound an
alarm (or take other appropriate action)
if a temperature limit has been ex-
ceeded, to record maximum and mini-
mum temperatures with theif corre-
sponding dates and times, etc. The CPU
module could easily handle this task and
at the same time act as watch dog over
the premises. Want to play a game with
the system or have it wake you up in the
morning while it’s finishing brewing a
fresh pot of hot coffee? It’s simply a
matter of connecting the appropriate
peripherals (coffee pot and alarm) and
their interfaces to the CPU module and
plugging an EPROM with -an appro-
priate program into the module.

To complete the hardware, let’s look
at how we would go about.designing a
parallel output interface. In the follow-
ing discussion, remember T/0 W means
that the CPU is “‘outputting” a data
byte. However, this data byte is present
on the data bus for only about one
microsecond, too short a time for hu-
mans to even notice. One could bring the
RDYIN line low during the output in-
struction’s execution, which would pro-
long the time the output data byte was
available. Since the CPU is stalled as
long as RDYIN is held low, this would
tend to make the CPU very inefficient.
A better method would be to somehow
“snatch” the byte from the data bus and
store it externally for as long as we
please, while allowing the CPU to hum
along at full speed. Figure 8 shows how
this can be implemented. ‘

Since the 8080 is capable of handling
256 output ports, the interface must
have some means of determining if it is
the one to receive the data byte. The
Output Port Select in Fig. 8 accom-
plishes this by giving a true output for
one unique address out of the 256 possi-
ble I/O port addresses. This circuit may
consist of an 8-input NAND gate, an 8-
bit comparator, or a decoder (1-of-8 or
1-of-16) chip as shown in Fig. 9. The
selection device used is connected to

(Bl allows
Mo LW"L
Lpeed

Fig. 5. Schematic of the microprocessor, clock generator (IC3) and control signal generator (IC2).

POPULAR ELECTRONICS

ADDRESS
BUS &

#

IC9=74LS33
ICI0=74LS00

Fig. 6. Meinory circuits contain the EPROM (IC5) and RAM composed of

either the high- or low-order byte of the
address bus (both of which carry the I/
O port address). We will use the high-
order byte in the examples.

In Fig. 9A, the NAND gate ap-
proach, inverters can be used to create
the desired port address. Here the port
address is E8. The 1-of-8 decoder ap-
proach is shown in Fig. 8B. This method
is particularly attractive when more
than one output port is needed. A 1-of-
16 decoder can be used when working
with more address lines. The comparator
approach, Fig. 8C, uses exclusive-NOR
gates whose output goes high only when
the same logic signal is applied to both
inputs. By using open-collector gates as
shown here, the outputs may be hard-
wired together (wire ANDed) so as to
produce a high output only when all the
gate outputs are high. Using jumpers,
port addresses are easily changed.

We now know how to determine who
the CPU is communicating with, but
now how do we actually “store” the out-
put data byte? It just so happens (by no
coincidence) that /O W goes true (low)
shortly after the output data has had
time to stabilize on the data bus, and
goes false (high) just before the data
byte disappears. This translates to a
low-going pulse on the order of half a
microsecond in length, which is suitable
for most digital IC’s. By using this pulse
CCTORER 1981

IC7 and IC8. Control logic is in IC9 and IC10.

to clock a latch (a temporary storage
register), we will have succeeded in
snatching and storing this data byte.
The AND gate in Fig. 8 tells the out-
put latch to latch the contents of the
data bus (which contains the data byte)
at the proper time only when the CPU is
making reference (outputting) to that
particular latch (output port number).
The eight outputs of the latch hold the
data byte, which may be used for driving
LED’s, a printer, or turning on the cof-

" fee pot. One of the outputs may be con-

nected to a relay or SCR to turn on the
coffee pot, another output may drive an
alarm, while yet another may turn on an
air conditioner (via a relay, or SCR of
course). It is evident from these exam-
ples that one output port can control a
variety of peripherals by selectively set-
ting and clearing the appropriate control
bits at the latch output. This is easily
done in the computer’s program, which
will be discussed in Part 3.

A parallel input interface is almost
identical to a parallel output interface.
The only difference is the direction of
flow on the data bus. During the execu-

- tion of an “input” instruction a “win-

dow” of only about half a microsecond
exists in which input data can be placed
on the data bus. This cannot be done at
any other time or conflict may occur,
resulting in a system “‘crash.”

It is therefore essential that the input
data be gated onto the data bus at the
proper time. Fartunately, this strict tim-
ing requirement can be easily satisfied
by use of the CPU generated T/OR sig-
nal. As the CPU executes an input
instruction, it generates T70 R to inform
external logic that input data can be
placed on the data bus:. This signal is
usually AND’ed with an “Input Port
Select” signal which is then connected
to the enable input of three-state buffers
as shown in Fig. 10. Note the similarity
to the parallel output interface (Fig. 8).
During the final execution phase of an
input instruction (when T/OR is active),
the input data is “latched” inside the
CPU (transferred to the accumulator);
therefore an external latch is not
required as in the output interface.

In"the I/O port decoder examples of
Fig. 9 , the address bus (A8-Al5) in
itself does not tell us whether we are ref-
erencing a memory location, an input
port, or an output port. Consequently ,
the Port Select signal will be true when-
ever the high-order byte of the address
bus contains E8 (E8 through EF in Fig.
9B), regardless of the type of reference
being made. This “ambiguity” may be
put to advantage because it then makes
it possible to use an Output Port Select
signal also as an Input Port Select sig-
nal. In other words, the Port Selects for

83

20
r) oes
l T l DB4 5 T0
[| T 1 | o83 _ Ic2
[| 1 | | | os2
1 I | | | 1 | o8l
T] 6
- [| — | | | D80 3
—— ic2,
- IN'26
mz%ué{- | 13 12 1|
P3-13 g e : W 10 18 . sv
1C2,
PIN 24 ST0R 5 .
Ay AT AgASN —
s| ef 7| 4] 3| 2| [17] 6] 15[5o
18
[| . L 1.1 la .
[| L la !
; 11 | A T N ' S .
[| L b1 las g ROy
| | Lt 1 las
T T 11w | Fla|
- e,
JEll - L las o |
)\ | 129 16V FROM ﬂ
ROM | PR e ‘
cil - 14 1 1/
oM ‘ L— |
W IC2,PIN 24 80&4‘@”(‘\ ;
@ 14>
{ /1 1C2,PIN26 &g .
Jr\ﬁ ' HU>

ey

8080 microprocessor

Fig. 7. Bus Interface for the -
CPU module shows connections

to the outside world.

Signals marked with an

asterisk are for '

interfacing the CPU module

to a Program Development-
Debugging board to be

described in Part 3.

FROM
IcCI

Fig. 8 and Fig. 10 may share the same
Port Select circuit. (The contral bus
resolves this ambiguity by specifying the
type of reference the address bus is mak-
ing.) If the input and output port num-
bers are not equal, then two separate
Port Select circuits will be required. The

Fig. 8. Parallel output
interface block diagram.

Al5 8
Al4
A3 =]
EA
’ Al2 EB
Al EC
Fig. 9. Three ways to generate Alo e
the port select signal: (A) with A9 E_E
EF

a NAND gate; (B) with a 1-of-8 A8
decoder; and (C) with a comparator.

&4

FROM
IC2<

*
1C5, PIN 1§ —2SM]

| *see text

SPIN 4
Ic
(PIN 14

02 TTL

RESIN

ROYIN

vpp¥
Ic5 21

- conrol bus signals 7R and T7OW differ-

entiate the input and output operations,
as may be observed by comparing Figs.
8 and 10. -

Figure 11A shows an output latch.
The CPU data bus is connected to an
octal latch which is clocked by the coin-

Al ———
Alo—-Do_—
AQ—DQ_
A8 |
N 74LS04

A

PORT
SELECTS

IC6=74LS368 ICII=74LS244 ICI2=74LS244

cidence of Port Select and 1/O Write
signals. The latch outputs can be used to
drive relays, LEDs, a printer, D/A con-
verter, etc. The latch is cleared when
the CPU is reset. In the typical parallel
input interface circuit shown in Fig.
11B, data is buffered via the three-state

+5V

f'a—z)

PORT
p— SELECT
(E8)

POPULAR ELECTRONICS

I/OR

{ po-pez

I/0R

FORT SELECTA

Fig. 10. Block diagram of
parallel input interface
using three-state buffers.

oBe

D85 A:) -
ose rA‘ PORT
POR
QUTPUT y INPUT
(TTL)
(1L ves A
DbB2 i l—
““—’_ﬂ_
D8O 3 |-—
B
Fig. 11. At (A) is an output latch:
cPU (B) is a parallel input interface circuit.
MEMR To
MEMW I %MEMORY
I/0R —}NOT
T70W fl—m USED

Al5

Fig. 13. Scaling circuit
for example used in text.

I/0R (MM)

Fig. 12. Circuit for implementing
memory-mapped input/output.

O<VoyTr £+2

TO
PARALLEL
INPUT PORT

_ =Rl _ =10k
VouT = Rz VIN® Sox (-10< VN £0)

SPEAKER

device to allow the data to be gated onto
the data bus at the proper time. The
Port Select signal can be derived from
any of the previously discussed Port
Select circuits. The input and output

OCTCBER 1881

Fig. 14. Use of the CPU module
as a digital audio delay line.

interfaces can share the same Port Se-
lect circuit if their port numbers are
equal.

Note the similarity between MEMR
and T/OR and also MEMW and /O W. I

fact, the only reason the CPU generates
T/0R and T/OW for input and output is to
islolate memory from the I1/O ports (by
using the 8080 input and output instruc-
tions). Since the I/O structure may be
viewed as an array of 256 single-byte
memory locations (and therefore read
and written), there is really no reason
why MEMR and MEMW cannot also be
used for I/O. An1/O of this type is called
memory-mapped I/O (as compared tq
isolated I/O where the input and output
instructions are exclusively used for in-
put and output). If the full 8080 address
space (64K bytes) is not used by memo-
ry, then memory-mapped I/O can be
implementd.

Let’s assume, for example, that we
will never use any memory locations

" above hexadecimal address 7FFF. If we

gate address bus bit A15 (which goes
high for all address locations above
7EFF) with the MEMR and MEMW sig-
nals (Fig. 12), we may address up to
32,768 (2'S) input and 32,768 output
devices! These new I/O control sig-
nals—T/0 R (MM) (mm=memory map-
ped) and T/0 W (MM)—connect in exactly
the same manner as the isolated control
signals /O R and 170 W. The address bus
now activates memory if A15 is a logic 0
and activates I/O if A15 is a logic 1. The
I/O devices are still considered ad-
dressed ports, but instead of the accu-
mulator being the only transfer medium,
any of the 8080 registers can be used.
All of the 8080 instructions that operate
on memory locations can also be used in
memory-mapped I/O. So by allocating
an area of memory address space as I/
O, we can create many new I/O “in-
structions” in the 8080 instruction set.

Some Applications. Note that data
to be input in Fig. 11B must be in digital
form. However, very few things in our
world are digital in nature; they usually
appear in analog form (voltages, cur-
rents, temperatures, sound waves, etc.).
It is therefore inevitable that more cir-
cuitry will be required to complete the
input interface. Before we discuss some
typical examples, let’s introduce the key
element to be used—the analog-to-digi-
tal (A/D) converter.

The A/D converter is a versatile
device widely used in computer applica-
tions. Its function is just what its name
implies: to convert an analog (real-
world) signal into digital form. A typical
8-bit A /D might accept an analog input
voltage between 0 and +2 volts and rep-
resent this voltage by an 8-bit number at
its output. In this case, an input voltage
of +2 V would be represented by 255
(hexadecimal FF) at the output, 0 V by
0, +1 V by 127 (hexadecimal 7F), etc.
The process of converting an analog sig-
nal to a digital number is called quanti-

85 -

UTERIIND

8080 microprocessor

Fig. 15. A speech recognition system in which
A/D conversion is used in a sampling process.

zation, and a variety of devices is avail-
able to perform this operation.

Since a typical A/D converter gener-
ally operates only over a small range of
input voltages, what if we want to quan-
tize a signal that varies from —10 V to 0
V, and the A/D can only convert volt-
ages in the range of 0 to +2 volts? Fig-
ure 13 illustrates one possible solution.
In this circuit, an input of =10 V will
produce 255 (hex FF) at the A/D con-
verter output. The process of condition-
ing an analog signal in order that it may
be presented to an A/D in its operating
range is called scaling. Note that if we
built a variety of scaling circuits (to
handle a wide range of input voltages)
we would have the makings of a digital
voltmeter. If we also converted currents
and resistances into voltages within the
range of the A/D, we might make our
CPU function as a DMM, simply by
connecting the A/D converter output to
a, parallel input port and writing a suit-
able program.

By connecting a digital-to-analog con-
verter (D/A) to a parallel output port,
we provide many more applications of
the CPU module. For example, the
module can be used as a digital audio
delay line (Fig. 14) by “shifting” the
quantized signal through the CPU’s .
RAM. By varying the amount of de-
layed signal that is recombined with the
original undelayed signal (either exter-
nally or in the CPU), and by varying the
delay time, the CPU can create the
effects of flanging, echo, phase shifting,
compression (sustain), vibrato, harmon-
izing, etc. The delay time is easily con-
trolled in the CPU’s program by varying
the rate at which the quantized music
samples are shifted through the CPU’s
RAM. All of the signal characteris-
tics—amplitude, frequency, and

Vout

TEMPERATURE
B c

* APPROXIMATED

150 — 900 Hz

phase—can be easily manipulated once
the quantized signal is in the CPU’s
memory. The real beauty of this ap-
proach is that all of the effects can be
implemented with the same piece of
hardware. Each special effect can be
represented by a program routine in the
CPU’s EPROM memory, which is indi-
vidually “called into action” via
switches from an input port (or other
means). _ :
Another application of the A/D con-
verter is in speech recognition. As shown
in Fig. 15, bandpass filters are connect-
ed between a microphone and the A/D
converter, a suitable speech-recognition
program can be written to control vari-
ous output devices (lights, locks, heat-

ers, etc.) upon receipt of specific verbal

commands. The peak detectors at the
bandpass filter outputs have a suffi-
ciently long time constant to act as
“time-averagers.” The dc voltage at the
peak detector outputs are proportional

" to the amount of energy present in the

speech waveform within the passband of
the'respective bandpass filters. By peri-
odically ‘sampling the peak detectors,
the CPU can identify (“recognize”)
words and phrases in any language by
way of comparison methods. The A/D
converts the detector voltages into digi-
tal form for the CPU via an analog mul-
tiplexer. The output port of the CPU
determines which peak detector is sam-
pled. The six unused bits can be used to
control external devices in response to
verbal commands. :

Let us look at one last way in which .

our CPU module can be put to use. Sup-
pose we desire to build a digital ther-
- mometer using an A/D and the CPU
module. How do we convert tempera-
ture to a suitable voltage? There are a
wide variety of temperature transducers

Fig. 16. A simple temperature
transducer circuit (A); an ideal
thermistor output characteristic
(B); and how an actual curve

is sampled to make a calibration
curve to be stored in the CPU.

Vx Vb Vout

av :

available, the price of which seems to be
proportional to the precision desired.
But by taking advantage of the CPU’s
ability to manipulate data, we may em-
ploy a very inexpensive device as the
transducer. -

A very basic temperature transducer
circuit is shown in Fig. 16A. The trans-
ducing element is an inexpensive ther-
mistor that is by no means the most
accurate or linear temperature trans-
ducer. But, by taking a sufficient num-
ber of calibration points (the number
depending upon the linearity of the ther-
mistor used), a high degree of accuracy
can be obtained. Figure 16B illustrates
the ideal output voltage/temperature
transfer curve, which is a straight line.
A real physical thermistor however will
produce a curve that may be very irreg-
ular in shape, instead of a straight line.
If calibration points are taken at regular
intervals along the thermistor’s curve,
that is, if output voltages are measured
for various known temperatures, a “cali-
bration correction table” can be created
for the thermistor. Stored in the CPU’s
memory, this table can be used to meas-
ure other temperatures accurately by
methods of approximation. ..s shown in
Fig. 16C, consider point x between two
calibration points @ and 4. The unknown
temperature Tx may be approximated
by Tx = Ta + AT where AT ~ mAV,
with m being the slope of the line inter-
secting points a and b. Then Tx ~ Ta +
mAV= Ta + [(Tb — Ta)/(Vb—Va)]
AV. Assume calibration points have
been taken every 0.1 V along the hori-
zontal axis. Then Vb — Va = 0.1 V.
Thus, Tx = Ta + [10(Tb — Ta)] (Vx
— Va), where the parameters Ta, Tb,
and Va were determined during the cali-
bration process. With the above formula
and calibration parameters in the CPU’s
memory, Tx can be calculated for any
Vx from the transducer. Note that the
more calibration points taken, the more
accurate is the approximation.

We have now covered the important
aspects of interfacing and some applica-
tions. Part 3 of this series will introduce
us to programming the CPU module in
its machine language. Also included will
be the details of building and using the
Program Development board. o

POPULAR ELECTRONICS

N THE first two parts of this series

we introduced 8080 I/O interfacing,
general CPU architecture (though to a
lesser extent), and a few applications.
Until now we have limited the discus-
sions to the microprocessor’s hardware.
But there is one other equally important
realm of microprocessors that we must
take into consideration: its software. A
processor’s software may be thought of
as the collectipn of programs that have
been developed for it.

CPU Instructlons. Each instruction is
stored in memory as a sequence of one,
two, or three bytes. The first byte is
called the Instruction Code or Opera-
tion Code (or simply op code), as it
defines the general instruction or opera-
tion to be performed. For multiple-byte
instructions the memory address of the
op code is always the address of the
instruction. The second byte of a multi-
ple-byte instruction is called an operand
and contains data or an address to mod-
ify or complete the instruction. The
third byte of a three-byte instruction is a
second operand, which again contains
either data or an address to complete the
instruction. The exact instruction
format will depend upon the particular
operation to be executed, as illustrated
in Fig. 17. As an example of a three-byte

€8

TR v
it R adad o

instruction, consider one which operates
on a byte of data contained in memory.
The instruction must convey to the CPU
where this data is located by specifying
its memory address. Because memory
addresses are 16 bits in length, two bytes
will be required to specify the memory
location. When a three-byte instruction

THREE-BYTE INSTRUCTIONS
3 Ry e KR

0)CaIS

BY RANDY CARLSTROM

DESIGNNG
WITH THE

Part 3: Software

CPU instructions are
defined with details
on preparing a program

references memory directly, the low-
order bits of the memory address (which
are sent out on AO-A7 of the address bus
during execution of the instruction) are
contained in byte 2, and the high-order
bits (which are sent out on A8-Al5) in
byte 3.

The 8080 instruction set can manipu-

OP CODE

OP CODE

] OPERAND
(ADDRESS OR DATA)
H ("PORT", "DATA™)

OP CODE

] OPERAND 1

4 (LOW ADDRESS

4 OR DATA)

“DATA 16"

$1] OPERAND 2 ACDR

(HIGH ADDRESS
54§ OR DATA)

Fig. 17. 8080 instruction formats. Typical instructions
for single-byte (top) are register-to-register, retum,
push, and pop; for two-byte: immediate mode and 1/0;
for three-byte: jump, call, and direct load.

DO is least significant bit; D7, most significant.

POPULAR ELECTRONICS

8080 microprocessor.

late seven 8-bit registers (internal to the
CPU), a 16-bit Program Counter (PC),
memory, 1/O devices, and a 16-bit
Stack Pointer (SP). The seven register
names are A, B, C, D, E, H, and L,
where register A is the all-important
accumulator. Note that the SP and PC
are 16 bits in length since they must be
able to access any location in the 64K
memory space. A number of 3080 oper-
ations use pairs of registers for 16-bit

operands, and for these operations, reg-
ister B is paired with register C, D with
E, and H with L. Registers B, D, and H-
are the high-order bytes of these pairs,
respectively. A register pair is desig-
nated by the name of the most signifi-
cant byte of the pair. The SP is also con-
sidered to be a valid register pair. Figure
18 illustrates a way in which the 8080
registers may be visualized as paired
together and stacked.

Conditionals. A number of 8080 in-
structions are “conditional,” meaning
that the full operation is performed only
if a specified condition of the instruction
is met. These conditionals are based on
the state of one of the five processor
flags. The flag bits are defined as:

Zero (Z): If the result of an instruc-
tion has the value zero, this flag is set;
otherwise it is reset.

Sign (S): If the MSB of the result of

EN OUR continuing discussion of the
8080 microprocessor, it is important to
keep in mind the various input and output
signals for the chip. They are as follows
(and as shown in the diagram):

iNT. By placing a low on this input line, an
external device can interrupt the CPU oper-
ation. The interrupt system must be ena-
bled for the CPU to honor the request (see
INTE). .

HoLD. An external device may suspend
normal processor activity by putting a high
on this input line. When acknowledged by
the processor (HLDA), the address and data
busses go into their high-impedance state
so that the peripheral requesting the HoLD
may conduct memory transfers without pro-
cessor intervention (Direct Memory Ac-
cess).

ROYIN. The Ready Input signal indicates
to the CPU that valid data is available on
the data bus. It is used to synchronize the
CPU with slow memory or {/O devices. If,
after sending out an address to an 170
device or memory, the CPU does not
receive a high on this line, the CPU will idle
as long as the line is low. If desired, the
circuit can be arranged so that the CPU
can be single-stepped (execute one in-
struction and halt) using this input.

RESIN. A low on the Reset Input line will
clear the program counter, INTE and HLDA
filp-flops. After reset, the CPU will begin
program execution at memory location
zero.

ReseT. This output is used as a system
reset for clearing external devices. It goes
low when RESIN is activa.

¢2. The phase-2 clock is a TTL output
used for system timing. In a typical 8080
system, the clock frequency is approxi-
mately 2 MHz.

HLDA. This output goes high in response
to a HoLp request and indicates that the
data and address busses are going into
their high-impedance state after the next
rising edge of the phase-2 elock.

warT. This output goes high when the
CPU enters a wAIT state (in response to
ROYIN going low).

iNTE. The Interrupt Enable output indi-
cates the status of the CPU's internal inter-

rupt enable flip-flop. This flip-flop can be
set (NTE = low) using the 8080 "Enable
Interrupts” instruction and reset (NTE =
high) using the ""Disable Interrupts’ instruc-
tion. Interrupt requests on the INT line are

THE 8080 INPUTS AND OUTPUTS

/

SYSTEM
INTERRUP T =—=—Of
REQUEST

|
z
Sl

SYSTEM
DMA ——=4 HOLD
REQUEST
CPU
MODULE
WAIT
REQUEST T~ ROYIN

SYSTEM FEETh
rElE¥ —ofrESIN

he ADDRESS
Ais (16 BITS) BUB.
oBof A——

K e BT YRR
0B7

INTA JO—o

17O)

MEMORY

O—! DE VICES CONTROL
BUS

O~ 101/0
o) DEVICES

INTE jO—

.
HLODA p—s
02(TTL) s
RESET

ignored when the internal interrupt enable
flip-flop is reset (when the interrupt system
is disabled). .

70 w. The Input/Output Write line goes
low when the CPU is executing an *‘Output”
instruction, indicating that the address bus
contains an output device address and the
data bus contains the output data byte.
Either the high- or low-order byte of the
address bus (A15-A8 or A7-A0) may be
decoded since both bytes contain the
same information. 170 w may be used as a
“strobe” signal to clock output latches,
etc.

170 R. The Input/Output Read line goes
low when the CPU is executing an “‘Input”
instruction, indicating that the address bus
contains an input device address and that
the input data may be placed on the data
bus. Either the high- or low-order byte of
the address bus (A15-A8 or A7-AQ) may be
decoded since both bytes contain the
same information. 70 R may be used to
gate input data onto the data bus.

MeEmMw. The Memory Write output goes
low when the CPU is writing data to memo-
ry. The address bus contains the address
of the memory location to be written into,
while the data bus contains the data byte
to be written. MEMw is usually connected to
the read/write input of the RAM and
strobes the data into the addressed loca-
tion.

MEMR. The Memory Read output goes
low when the CPU is reading data from
memory (ROM or RAM). The address bus
contains the address of the memory loca-
tion to be read, while the data bus expects
the memory data from the addressed mem-
ory location. MEMR is usually connected to a

memory chip select or data buffer enable
input to gate the read data onto the data
bus.

INTA. The Interrupt Acknowledge output
goes low in response to an INT request (as-
suming that the interrupt system is ena-
bled). iNTA is used to gate the “Restart”
instruction from the interrupting device onto
the data bus.

DBO-DB7. The data bus is formed from
eight bi-directional lines (data may flow in
either direction). This bus provides commu-
nication between memory, 1/O devices,
and the CPU for instructions and data
transfers. The bus may go into its third
(high-impedance) state in response to a
HoLD request. DBO is the least significant
bit. The Control Bus provides the neces-
sary timing signals to gate memory and 1/0
data on and off the data bus at the proper
time.

AO-A15. The 16-line address bus pro-
vides the binary memory address during
memory accesses (read or write) and also
1/0 device (port) numbers during input/out-
put. Up to 65,636 bytes of memory (RAM,
ROM, or any mixture thereof) and up to 256
input and 256 output devices can be direct-
ly addressed. The least significant bit is
AO.

Through proper use of these CPU mod-
ule signals, it is possible to design anything
from a music synthesizer or darkroom con-
troller to a full-blown computer system. It is
not our intent here, however, to design a
“computer” as such, but rather to demon-
strate how this versatile device can be
used to implement functions that would be
impractical, or otherwise impossible, using
traditional analog and digital circuits. O

70

POPULAR ELECTRONICS

M G " M M =N A~ A A~ A e A

e e -

oo M ~ o

—
-

oo

[IS

s

the operation has the value 1, this flag is
set; otherwise it is reset.

Parity (P): If there are an even num-
ber of binary 1’s in the result of the
operation (even parity), this flag is set;
otherwise it is reset (odd parity).

Carry (CY): If the instruction re-
sulted in a carry (from addition) or a
borrow (from subtraction or a compari-
son) out of the high-order bit, this flag is
set; otherwise it is reset. In this respect,
the CY bit may be thought of as an
extension, or ninth bit, of the register
being operated on.

Auxiliary Carry (AC): If the instruc-
tion caused a carry out of bit 3 and into
bit 4 of the resulting value, this flag is
set; otherwise it is reset. This flag is
affected by single precision (8-bit) addi-
tions, subtractions, increments, decre-
ments, comparisons, and logical opera-
tions, but is principally used preceding a
DAA (Decimal Adjust Accumulator)
instruction. :

We now know enough of the 8080
architecture to understand and use its
machine language. Soon to follow is a
summary of all 78 instructions of the
8080 instruction set. Once you are able
to program the 8080, you will also be
able to program the 8085 and are half-
way to mastering the Z-80. Each ma-
chine instruction will be listed in its
assembly language form, in which each
instruction is assigned a unique mne-
monic, making it easier to read and
remember. A program written in assem-
bly language is called a source program.
A special program known as an as-
sembler can then take this source pro-
gram and generate the binary equivalent
(machine code, or object code) of each
instruction mnemonic. This binary ob-
ject code is then stored in memory for
the CPU hardware to execute. Assem-
bler programs offer many other advan-
tages; but since very few of us have
access to a computer system with an
8080 assembler, source program assem-
bly “by hand” will have to suffice. This
is fairly easy with the aid of Fig. 19.

In the following summary of the 8080
instruction set, the term ‘“addr” indi-
cates that a 16-bit address must imme-
diately follow the op code in program
memory (refer to Fig. 17). Similarly,
“datal6” indicates a 16-bit data quanti-
ty must immediately follow the op code.
In both cases, byte 2 of the instruction is
the low-order address or data byte, and
byte 3 is the high-order byte. The term
“data” indicates that an 8-bit data
quantity must immediately follow the op
code in memory. The actions taken by
each instruction on the five flag (condi-
tion) bits will be given with the descrip-
tion of each instruction. We will begin
with the group of instructions called the

HOYEMBER 1981

“Data Transfer Group,” which transfers
data to and from the registers and mem-
ory. Condition flags are not affected by
any instruction in this group.

Data Transfer Group.

Mov rl, r2 (Move register to register)
The content of register r2 is trans-

ferred (copied into) to register rI. Any

of the seven register names are legal val-

ues for r/ and r2. The content of register

r2 is not affected.

MoV M, r (Move register to memory)
The content of register r is transferred

to the memory location whose address is

ACCUMULATOR®

o8 BITS)

heatenn | dredsenc] ceasren nam
?E(g]tsarfs’j D Ly RE@';LESF; €| recistes pa ¢
RE(?SLE:) H»'i ﬁ%g];rf; Lol REGISTER PaiR

REGISTER PAIR 3P

1 PROGRAM COUNTER (PC)’
SiaTe aITs)

Fig. 18. The 8080 has seven 8-bit
general-purpose registers
and two 16-bit registers.

contained in register pair H.

MoV r, M (Move memory to register)
The content of the memory location,

whose address is contained in register

pair H, is transferred to register r.

_MVI M, data (Move data immediate to

memory)

The content of byte 2 of this instruc-
tion is transferred to the memory loca-
tion whose address is contained in regis-
ter pair H.

MVI r, data (Move data immediate to
register)

The content of byte 2 of this instruc-
tion is transferred to register r.

LX1 rp, datal 6 (Load register pair with
data immediate)

The 16-bit value of datal6 is stored in
register pair rp.

STA addr (Store accumulator in memo-
ry) ’

The ‘content of the accumulator is
stored in the memory location specified
by addr.

LDA addr (Load accumulator
memory)

The content of the memory location
specified by addr is transferred to the
accumulator.

SHLD addr (Store register pair H in
memory)

The content of register L is stored in
the memory location specified by addr.
The content of register H is stored in the

from

succeeding memory location (addr+1).
LHLD addr (Load register pair H from
memory)

The content of the memory location
specified by addr is transferred to regis-
ter L. The content of the succeeding
memory location (addr+1) is trans-
ferred to register H.

STAX rp (Store accumulator indirect)

The content of the accumulator is
stored in the memory location whose
address is obtained from register pair rp.
Only register pairs rp=B and rp=D
can be specified.

LbAX rp (Load accumulator indirect)

The content of the memory location,
whose address is obtained from register
pair rp, is transferred to the accumula-
tor. Only register pairs rp=B and
rp=2D can be specified.

XCHG (Exchange register pairs H and
D)

The content of register H is ex-
changed with the content of register D.
The content of register L is exchanged
with the content of register E.

Arithmetic Group. This group per-
forms arithmetic operations on data
contained in registers and memory. Un-
less indicated otherwise, all instructions
in this group affect the condition flags
according to the standard rules. All sub-
traction operations are performed using
two’s-complement arithmetic and set
the Carry flag to 1 to indicate a borrow,
and clear it to indicate no borrow. -

ADD r (Add register to accumulator)

The content of register 7 is added to
the content of the accumulator, with the
result placed in the accumulator.

ADD M (Add memory to accumulator)

The content of the memory location
specified by register pair H is added to
the content of the accumulator; the
result is placed in the accumulator.

ADI data (Add data-immediate to accu-
mulator)

The content of the second byte of this
instruction is added to the content of the
accumulator; the result placed in the
accumulator.

ADC r (Add register with carry to accu-
mulator)

The content of register r and the con-
tent of the CY bit are added to the con-
tent of the accumulator. The result is
placed in the accumulator.

ADC M (Add memory with carry to
accumulator)

The content of the memory location
specified by register pair H and the con-
tent of the CY bit are added to the con-
tent of the accumulator. The result is
placed in the accumulator. This instruc-
tion is used primarily in “multiple preci-
sion” additions in which a number is
actually contained in several, usually

"

8080 microprocessor

adjacent memory locations. Such an ad-
dition begins at the low-order end (byte)
of the two numbers being added using
the ADD M instruction. Successive addi-
tions on more significant bytes of the
numbers use the ADC M instruction,
which corrects for overflow (carries)
from preceding (less significant) addi-
tions.

ACI data (Add data immediate with car-
ry to accumulator)

The content of the second byte of this
instruction and the content of the CY bit
are added to the content of the accumu-
lator. The result is placed in the accu-
mulator.
suB r (Subtract register from accumula-
tor)

The content of register r is subtracted
from the content of the accumulator,
with result placed in the accumulator.
suB M (Subtract memory from accumu-
lator)

The content of the memory location
specified by register pair H is subtracted
from the content of the accumulator.
Result is placed in the accumulator.

sul data (Subtract data immediate from
accumulator)

The content of the second byte of this
instruction is subtracted from the con-
tent of the accumulator. The result is
placed in the accumulator.
sBB r (Subtract register with borrow
from accumulator)

The content of register r and the con-
tent of the CY bit are subtracted from
the content of the accumulator. The
result is placed in the accumulator.
sBB M (Subtract memory with borrow
from accumulator)

The content of the memory location
specified by register pair A and the con-
tent of the CY bit are subtracted from
the content of the accumulator. The
result is placed in the accumulator. This
is the “multiple precision” form of the
SUB M instruction (see ADC M).
sBI data (Subtract data immediate with
borrow from accumulator)

The content of the second byte of this
instruction and the content of the CY bit
are subtracted from the content of the
accumulator. The result is placed in the

accumulator.
INR 7 (Increment register)

The content of register r is incre-
mented by one. The CY flag is not
affected by this instruction.

INR M (Increment memory)

The content of the memory location
specified by register pair H is incre-
mented by one. The CY flag is not
affected by this instruction.

DCR r (Decrement register)

The content of register r is decre-
mented by one. The CY flag is not
affected by this instruction.

DCR M (Decrement memory)

The content of the memory location
specified by register pair H is decre-
mented by one. The CY flag is not
affected by this instruction.

INX rp (Increment register pair)

The content of register pair rp is
incremented by one. No condition flags
are affected.
pcx rp (Decrement register pair)

The content of register pair rp is
decremented by one. No condition flags
are affected.

JumMP) CALL RETURN RESTART ROTATE MOVE (cont) ACCUMULATOR
C3 JMmP CD CALL C9 RET C7 RST 0 07 ALC 58 MOV E.B 80 ADD B A8 XRA B
C2 UNZ C4 CNZ Co RNZ CF RST 1 OF RRC 59 MOV EC 81 ADD C A3 XRA C
Cca JZ cc cz c8 RZ D7 RST 2 17 RAL SA MOV E.D 82 ADD D AA XRA D
D2 UNC D4 CNC D0 ANC DF RST 3 1F RAR 58 MOV EE 83 ADD E AB XRA E
DA JC Adr oc cc Adr D8 RC E7 RST 4 5C MOV EH 84 ADD H AC XRA H
€2 JPO E4 CPO E0 RPO EF RST 5 50 MOV EL 85 ADD L AD XRA L
EA JPE EC CPE F8 RPE F7 RST 6 5E MOV EM 86 ADD M AE XRA M
F2 P F& CP FO RP FF RST 7 CONTROL SF MOV EA 87 ADD. A AF XRA A
FA UM FC CM F8 RAM
’ E9 PCHL 00 NOP 60 MOV HB 88 ADC B B0 ORA B
i . 76 HLT 61 MOV HC 89 ADC C B1 ORA C
F3 DI 62 MOV H.D 8A ADC D B2 ORA D
; B EI 63 MOV HE 88 ADC E B3 ORA E
MOVE Acc LOAD 64 MOV HH 8C ADC H B4 ORA H
| IMMEDIATE IMMEDIATE IMMEDIATE STACK OPS 65 MOV H.L 8D ADC L B5 ORA L
1 66 MOV HM BE ADC M B6 ORA M
: 06 MVI B Cé6 ADI 01 Xl B, C5 PUSH B MOVE 67 MOV HA 8F ADC A B7 ORA A
B NI e e 2o Or Poen o 40 MOV BB 68 MOV LB 90 SUB B 88 CMP B
, € OMVIE DE SBI I i sP Fs PUSH psw ¢! MOV BC 69 MOV LC o1 SUB G Bs CMP C
i 26 mvi n [P g5 ami 0B 42 MOV BD 6A MOV LD 92 sus D BA CMP- D
/ 2% MV L €E XAl c1 PoP B8 43 MOV BE 68 MOV LE 93 SuB E BB CMP E
3% MV M f5 ORI 01 POP D 44 MOV BH 6C MOV LH 94 SUB H BC CMP H
e i a) s e S oRoron o moNoueL moMovL s osE L R Owh
It 46 v X VL.
g:UBDL:DAD; Fi POP PSW 47 MOV BA 6F MOV LA 97 SUB A BF CMP A
P 19 DAD D E3 XTHL 48 MOV C.B 70 MOV MB 98 SBB B
. 29 DOAD H F9 SPHL 49 MOV C.C 71 MOV MC 99 SBB C
INCREMENT DECREMENT 39 DAD SP 4A MOV C.D 72 MOV M.D 9A SBB D
[4B MOV CE 73 MOV ME 98 SBB E
Lo 04 INR B 05 DOCR B SPECIALS 4C MOV CH 74 MOV MH 9C SBB H
oC INR C 00 DCR C 4D MOV C.L 75 MOV ML 90 . SBB L
14 INR D 'S DOCR D LOAD/STORE EB XCHG 4E MOV CM eeeeemeeeee 9E SBB M
1C INR E 10 DOCR E 27 DAA AF MOV C.A 77 MOV MA 9F SBB A
: 24 INR H 25 DCR H 0A LDAX B 2F CMA
: 2C INR L 20 DCR L 1A LDAX D 37 STC 50 MOV 0.8 78 MOV AB A0 ANA B
B Ja INR M 35 OCR M 2A LHLD Adr 3F CMC 51 MOV D.C 79 MOV AC Al ANA C
| 3C INR A 30 DCR A JA LDA Adr 52 MOV 0.0 7TA MOV AD A2 ANA D
: 53 MCvV O.E 78 MOV AE A3 ANA E
t i 03 INX B 08 DCX B 02 STAX B INPUT/OUTPUT 54 MOV OH 7C MOV AMH A4 ANA H
o 13 INX 0 18 OCX O 12 STAX D 55 MOV DL 70 MOV AL A5 ANA L
s 23 INX M 28 DCX H 22 SHLD Adr D3 OuT D8 56 MOV DM 7€ MOV AM A6 ANA M
33 INX 5P 38 DCX SP 32 STA Adr DB IN D8 57 MOV D.A 7F MOV AA A7 ANA A
D8 constant. or logical anthmetic axpression thal evaluates D16 - constant, or logicaVarthmetic expression that evaluates Adr = 16 bil address
10 an 8 bit data quantity 10 a 16 bit data quantity.
Fig. 19. Machine codes for the 8080 assembly language instructions.
The hexadecimal machine code for each op code appears to the left of the instruction mnemonic.

POPULAR ELECTRONICS

e R

IS

not

not

ion
re-
not

o

Lo O

,ACMICS

DAD rp (Double precision add)

The content of register pair rp is
added to the content of register pair H.
The result is placed in register pair H.
Only the CY flag is affected. It is set if
there is a carry out of the double preci-
sion add; otherwise it is reset. Any regis-
ter pair (B, D, H, SP) can be specified.
DAA (Decimal adjust accumulator)

The 8-bit number in the accumulator
is adjusted to form two 4-bit binary-
coded decimal digits by the following
process:

1. If the value of the least significant
four bits of the accumulator is
greater than 9, or if the AC flag is
set, 6 is added to the accumula-
tor.

2. If the value of the most significant
four bits of the accumulator is now
greater than 9, or if the CY flag is
set, 6 is added to the most signifi-
cant four bits of the accumulator.

Loglecal Group. These instructions per-
form logical (Boolean) operations on
data contained in registers, memory,
and on’ condition flags. All instructions
in this group affect the condition flags
according to the standard rules, unless
indicated otherwise.

ORA r (OR register with accumulator)

The content of register r is bit-wise
logically inclusive-OR’d (Boolean addi-
tion) with the content of the accumula-
tor. The result is placed in the accumu-
lator. The CY and AC flags are cleared.
Each bit of the result is set to 1 if either
of the corresponding accumulator/regis-
ter bits is 1. For example, the value
10011101 OR’d with 01001011 will pro-
duce a result of 11011111 in the accu-
mulator.

ORA M (OR memory with accumula-
tor) ’

The content of the memory location
specified by register pair H is logically
inclusive-OR’d with the content of the
accumulator. The result is placed in the
accumulator. The CY and AC flags are
cleared.

OR! data (OR data immediate with
accumulator)

The content of byte 2 of this instruc-
tion is logically inclusive-OR’d with the
content of the accumulator. The result is
placed in the accumulator. The CY and
AC flags are cleared.

ANA 7 (AND register with accumula-
tor)

The content of register r is bit-wise
logically AND’ed (Boolean multiplica-
tion) with the content of the accumula-
tor. The result is placed in the accumu-
lator. The CY flag is cleared. Concep-
tually this operation is performed inde-
pendently on each corresponding bit po-
sition of the accumulator and register r.

NOVEMBER 19881

The corresponding bit position in the
result is set to 1 if, and only if, both of
the corresponding accumulator/register
bits are 1. The value 10011101 AND’ed
with 01001011 will produce a result of
00001001 in the accumulator.

ANA M (AND memory with accumula-
tor)

The content of the memory location
specified by register pair H is logically
AND’ed with the content of the accu-
mulator. The result is placed in the
accumulator. The CY flag is cleared.
ANI data (AND data immediate with
accumulator)

The content of byte 2 of this-instruc-
tion is logically AND’ed with the con-
tent of the accumulator. The result is

placed in the accumulator. The CY and

AC flags are cleared. This instruction is
often used to isolate or mask bits of the
accumulator after an Input instruction
for testing the status (ready/not ready)
of external devices.

XRA r (Exclusive-OR register with accu-
mulator)

The content of register r is bit-wise
logically exclusive-OR’d with the con-
tent of the accumulator. The result is
placed in the accumulator. The CY and
AC flags are cleared. Each bit of the
result is set to 1 if one, and only one, of
the corresponding accumulator/register
bits is 1. The value 10011101 exclusive-
OR’d with 01001011 will produce a
result of 11010110 in the accumulator.
The instruction XRA A4 is often used to
clear the accumulator and CY flag.
XRA M (Exclusive-OR memory with ac-
cumulator)

The content of the memory location
specified by register pair H is logically
exclusive-OR’d with the content of the
accumulator. The result is placed in the
accumulator. The CY and AC flags are
cleared.

XR1 data (Exclusive-OR data immediate
with accumulator)

The content of byte 2 of this instruc-
tion is logically exclusive-OR’d with the
content of the accumulator. The result is
placed in the accumulator. The CY and
AC flags are cleared.
cmp r (Compare accumulator with reg-
ister)

The content of register r is subtracted
from the content of the accumulator.
The accumulator remains unaltered,
and the condition flags are set as a result
of the subtraction. The Z flag is set if
the two values being compared are
equal. The CY flag is set if the value in
register r is greater than the value in the
accumulator.
cMP M (Compare accumulator with
memory)

The content of the memory location
specified by register pair H is subtracted

from the content of the accumulator.
The accumulator remains unaltered.
The condition flags are set as a result of
the subtraction (see cMmp r).

CPl data (Compare accumulator with
data immediate)

The content of byte 2 of this instruc-
tion is subttacted from the content of
the accumulator. The accumulator re-
mains unaltered. The condition flags are
set as a result of the subtraction (see
CMP r).

There are four instructions in this
group which are used to shift the con-
tents of the accumulator. Each of these
instructions shifts the accumulator bits
one place left or right depending on the
particular instruction. The only flag bit
affected by these instructions is the CY
flag. The directions “left” and “right”
in the following descriptions assume
that the more significant bits of the
accumulator lie to the left.

RRC (Rotate right)

This is a circular right shift in which
the CY bit receives the bit value shifted
from the LSB of the accumulator. This
same value shifted into the CY bit is
also shifted into the MSB of the accu-
mulator. For example, 00111001 be-
comes 10011100 after the shift and the
CY bit is set to 1. Another shift of this
value gives 01001110 and a CY value of
0.

RLC (Rotate left)

This shift is a left shift similar to RRC
except the MSB is shifted into the CY
bit and the LSB. All other accumulator
bits are shifted left one position.

RAR (Rotate right through Carry)

This instruction shifts the accumula-
tor contents one place right. The LSB is
shifted into the CY bit as in the RRC
instruction, but the old value of the CY
bit is shifted into the MSB position of
the accumulator. Shifting 00111001
with a value of 0 in the'CY bit produces
00011100 and a CY value of 1. A sec-
ond shift of this value produces
10001110 and a CY value of 0.

RAL (Rotate left through Carry)

The accumulator contents are shifted
one place left with the MSB being sent
to the CY bit and old value of the CY bit
being shifted into the LSB position of
the accumulator.
cMA (Complement accumulator)

The one’s complement of the accumu-
lator is placed in the accumulator. No
condition flags are affected.
cMC (Complement Carry)

The CY flag is complemented, and no
other flags are affected.

STC (Set Carry)

The CY flag is set to 1, and no other
flags are affected. This instruction and
the cMC instruction will affect all CY-
related condition instructions as well as

3

8080 microprocessor

the addition, subtraction, and shift in-
structions which use CY. These instruc-
tions are frequently used to re-
turn a status condition from a subrou-
tine.

Branch Group. The 8080 is equipped
with a full set of branch instructions
which have the ability to alter the nor-
mal sequential flow of a program’s exe-
cution. There are two types of branch
instructions: conditional and uncondi-
tional. The execution sequence of a pro-
gram is always altered by the uncondi-
tional type of transfer. The conditional
type of transfer, on the other hand,
examines the status of a condition flag
in the instruction to see if the proposed
branch is to be made. If the specified
condition does not meet the requirement
of the instruction, no branch is made
and the program will resume execution
at the next sequential instruction in
metnory. Condition flags are not af-
fected by any instruction in this group.
The conditions that can be specified are
as follows:

Z - zero (Z=1)

NZ - not zero (2=0)

C - carry (CY=1)

NC - no carry (CY=0)

PE - parity even (P=1)

PO - parity odd (P=0)

M - minus (S=1)

P - plus (S=0)

The AC flag cannot be used in a condi-
tional branch instruction.

JmpP addr (Unconditional jump)
Program control is unconditionally
transferred to the memory address spec-
ified by addr. The next instruction exe-
cuted will therefore be the one starting
at this address (i.e., the value of addr is
moved into the PC).

Jcondition addr (Conditional jump)

A jump is made to the specified mem-
ory address if the specified condition is
true (see JMp addr). If it is not true, pro-
gram execution continues sequentially.
There are actually eight unique instruc-
tions included here, since there are eight
unique conditions that can be specified
in the instruction op code (Jz, INZ, JC,
etc.).
pcHL (Jump H and L indirect)

This instruction performs the same
operation as the JMP addr instruction
except the transfer address is obtained
from register pair H. This is most often
used to branch to a routine in memory
whose address has been computed or
located in a table.

A transfer to a subroutine is made
with one of the Call instructions to be
described. When a call is made, two
addresses become important. The
“transfer address,” the address of the
subroutine being called, is contained in
bytes 2 and 3 of the instruction (as in the

74

Jump instructions). As the call is being
made, however, a “return address” is
stored (pushed) on the next available
position (the top) of the Stack. The
return address is obtained from the con-
tents of the PC. The PC contains the
address of the next sequential instruc-
tion. When the subroutine is finished, it
can execute one of the Return instruc-
tions which will retrieve (pop) this ad-
dress from the top of the Stack and per-
form a jump to this address. This return
address represents the location of the
instruction immediately following the
Call instruction which gave control to
the subroutine. .

CALL addr (Unconditional call)

The most significant eight bits of the
PC are stored in the memory location
whose address is one less than the con-
tent of the SP (SP-1). The least signifi-
cant eight bits of the PC are stored in
the memory location whose address is
two less than the content of the SP (SP-
2). The content of the SP is decre-
mented by two. A jump is then made to
the memory location specified by addr
(the branch address).
ccondition addr (Conditional call)

The subroutine beginning at the spec-
ified memory address is called if the
specified condition is true (see CALL
addr). If it is not true, program execu-
tion continues sequentially. There are
actually eight unique instructions in-
cluded here, since eight unique condi-
tions can be specified in the instruction
op code (Cz, CNZ, CC, etc.).

RET (Unconditional return)

The content of the memory location
specified by the SP is moved into the
low-order byte of the PC. The content of
the memory location whose address is
one more than the content of the SP
(SP+1) is moved into the high-order
byte of the PC. The content of the SP is
incremented by two. Care must be exer-
cised when using this. instruction to
ensure that the Stack has been properly
maintained in the subroutine, or a
return may be made to an erroneous
address.

Rcondition (Conditional return)

A return is made if the condition spec-
ified in the instruction is true (see RET).
If it is not true, program execution con-
tinues sequentially. There are actually
eight unique instructions included here,
since eight unique conditions can be
specified in the instruction op code (Rz,
RNZ, RC, etc.).

RST n (Restart)

A Call is made to the memory loca-
tion whose address is eight times the val-
ue of n, where n must be an integer value
between 0 and 7. This is a single-byte
instruction which is used primarily dur-
ing program interrupt I/O, when a slow
or sporadic peripheral has requested an

interrupt from the CPU. It is similar to
the subroutine Call instruction, except
an external device will usually initiate
this type of Call rather than the pro-
gram itself. It is the responsibility of the
peripheral that requested the interrupt
to jam the Restart instruction’s machine
code onto the CPU’s data bus for the
CPU to execute during the Interrupt
Acknowledge period (INTA low). If only
one peripheral in the system is capable
of requesting an interrupt, a RST 7
instruction may be automatically gated
onto the data bus at the proper time by
connecting a 1-k§ resistor between the
INTA output (P3-9) and +12 V. When

STACK BOTTOM
(FIXED)

27| sTACK TOP

POP, RETURN (VARIABLE)
INSTRUCTIONS

RST INSTRUCTIONS

Fig. 20. The 8080 Stack is fixed at the
bottom by the LXI SP, data 16 instruction
and grows downward from there. The
Stack Pointer keeps track of the top.

an interrupt is acknowledged, the inter-
rupt .system is immediately disabled
(INTE high), keeping other interrupting
peripherals from confusing things while
the first interrupt is being handled.
(Other methods exist which allow multi-
ple interrupts to take place, that is, a
second interrupt may interrupt the first
interrupt, a third interrupt the second,
etc. One such method is ““interrupt vec-
toring,” where each interrupting device
is assigned a priority level and is ser-
viced accordingly.) A routine to service
the interrupting device must begin at
the address specified by the Restart
instruction. The possible Restart ad-
dresses are: 0000, 0008, 0010, 0018,
0020, 0028, 0030, and 0038 hexadeci-
mal. When the interrupt-servicing rou-
tine is completed, control may be re-
turned to the main program where the
interrupt took place by executing one of
the Return instructions (since RST nis a
form of Call instruction).

Stack, 1/0, and Machine Control
Group. Unless indicated otherwise, the
condition flags will not be affected by
these instructions, which give the pro-
grammer direct control of the Stack and
its pointer. The Stack can be a very ver-

POPULAR ELECTRONICS

e el A

i i

«

TRV RS

S

satile data storage area for particular
applications, but the programmer must
be careful that the data stored in the
Stack area is not confused with the
return addresses stored there from sub-
routine Calls. Note that as data is stored
(pushed) on the Stack, the Stack “grows
downward” in memory. When data is
retrieved (popped) from the Stack the
reverse is true—the Stack “shrinks up-
ward” in memory (Fig. 20).

PUSH 7p (Push register pair)

The content of register pair rp is
placed on the Stack in the following
manner: The content of the high-order
register of register pair rp is stored in
the memory location whose address is
one less than the content of the SP (SP-
1). The content of the low-order register
is stored in the memory location whose
address is two less than the content of
the SP (SP-2). The SP is decremented
by two. Register pair rp==SP can not be
specified. .
pop rp (Pop register pair)

This instruction performs the inverse
operation of the PUSH rp instruction.
The content of the memory location
specified by the SP is moved into the
low-order register of register pair rp.
The content of the succeeding memory
location (SP+ 1) is moved into the high-
order register of register pair rp. The
content of the SP is incremented by two.
Register pair rp=SP may not be speci-
fied.

PUSH PSW (Push processor
word)

The content of the accumulator is
stored in the memory location whose
address is one less than the content of
the SP (SP-1). The processor flags are
assembled into what is called the “pro-
cessor status word,” which is then stored
in the memory location whose address is
two less than the content of the SP (SP-
2). The SP is decremented by two. The
processor status word is assembled as

status

follows:

D7 D6 D5 D4 D3 D2 D1 DO
S Z 0 AC O P 1 CY

pop PSW (Pop processor status word)
This instruction performs the inverse
operation of the PuSH PSW instruction.
The content of the memory location
specified by the SP is disassembled and
moved into the processor flag bits. The
content of the succeeding memory loca-
tion (SP+1) is moved into the accumu-
lator. The content of the SP is incre-
mented by two.
spHL (Move register pair H into SP)
The content of register pair H is
moved into the Stack Pointer, destroying
its previous contents. This provides a
convenient way of changing the SP dur-

MOVEMBER 1981

ing a program, thereby allowing two or
more Stacks to exist at once (one for
subroutine control, one for data, etc.).
XTHL (Exchange top of Stack with regis-
ter pair H)

The content of register L is exchanged
with the content of the memory location
whose address is specified by the SP.
The content of register H is exchanged
with the content of the succeeding mem-
ory location (SP+1).

IN port (Input)

This instruction reads the specified
port and stores the data byte which it
read (via the data bus) in the accumula-
tor. During execution of this instruction,
the specified port number is sent out on
the high- and low-order bytes of the
address bus for Port-Select decoding by
the interface. The port number must be
an integer value between 00 and FF .

FFFF

system disabled will be ignored by the
CPU and its related hardware. The
interrupt system is automatically dis-
abled when an interrupt is acknowledged
or when the CPU is reset.

HLT (Halt)

The CPU is completely stopped by
this instruction and can be reactivated in
only two wdys. One is to reset the CPU
by forcing the RESIN input (P3-11) low,
which will also reset the Program Coun-
ter. The other is to interrupt the CPU.
Should the interrupt system be disabled
at the time this instruction executes, the
CPU must be reset to exit the Halt
state.

Nop (No op)

No operation is performed. This in-
struction can be used in programs under
development to reserve space in memory
where changes are expected to be made.

61K SPACE

— 8 BITS

FUTURE MEMORY
EXPANSION AND
MEMORY-MAPPED 1/0

RPN
A

OBFF

(Y
Al

O7FF |

0000 K

8 5 SCRATCHPAD, STACK
s AREA

PROGRAM, DATA TABLES,
ETC. (NON-VOLATILE)

Fig. 21. Configuration of the CPU module memory.
Permanent data are stored in ROM. Stack and scratchpad
area is from 0800 to OBFF. Top part is for memory expansion.

Attempting to read a nonexistent port
with this instruction will place FF, in
the accumulator.

ouT port (Output)

This instruction writes the content of
the accumulator to the specified port via
the data bus. During execution of this
instruction, the specified port number is
sent out on the high and low-order bytes
of the address bus for port-select decod-
ing by the interface. The port number
must be an integer value between 00 and
FF . The content of the accumulator is
unaltered. (See Part II for interfacing
techniques).

El (Enable interrupts)

The interrupt system is enabled (INTE
low) following the execution of the next
instruction. The CPU will then honor
the next interrupt requested by an exter-
nal device.
pl (Disable interrupts)

The interrupt system is disabled (INTE
high) immediately following execution
of this instruction. Devices attempting to
interrupt the CPU with the interrupt

It may also be used to ‘“delete” un-
wanted instructions in a program.

Writing Software for the CPU Mod-
ule. It is easy to write programs for the
CPU module. There are basically three
steps to writing programs, and Fig. 21
will aid in the following summary of
these steps.

1. Determine the maximum size (in
bytes) that the Stack will be. This is
most easily done by estimating the max-
imum number of nested subroutines and
Push instructions that will be active in
your program at any given time. This
number should then be multiplied by
two since each Call and Push instruction
will use two bytes of Stack storage area.
It is usually a good idea to increase this
estimated value by a factor of 10% or
20% to ensure enough RAM will be
reserved for the Stack area, just in case
you underestimated the maximum Stack
depth.

Now add the value just determined to
the starting address of the RAM area

15

i 4PDT PRINTED

HL2-P-DC12VDC .AQq
compact size i"’

10 amp contacts
$3.00 each 7 Y

KE‘! SWITCH
CIRCUIT 12VDC sper
14 pin style v
3 amp contacts RATED 4 AMPS
i BRAND NEW 125 VOLTS
I Lgld 2o wosn $3.50 EA.
DPDT RELAY| MINI SIZE
AROMAT [2VYDC BUZZERS

1% to 3 volts .

WITH WIRE LEADS
75¢ each l]]m
1

1510 3 wlts OO

LR S0 N T

PC. mount
4PDT RELAY
i «14pinstyle
3 amp contacts
+24voltdc or
120 volt a.c.conl
« Used but tully tested

WITH PIN TERMINALS
75¢each —
3 to 7 volts
WITH PIN TERMINALS
75¢ each

primaries

6 YOLTS at150 mA $1.25
12 V.CT.at 500mA $2.50
16.5 V. at 3 AMPS $6.50
18 VOLTS at 1 AMP $4.50
25.2 VCT at 2.8 AMP $5.50

$1.70 EACH
I‘lfz';'!f:ﬂ'lﬂ'r'&“és AVAILABLE COMPUTER GRADE
SOCKETS FOR RELAY 50¢ each CAPACITORS NEW
1,700mid
TRANSFORMERS| 170001, , comy
120 voit

60VDC 52,50
13/8%01a X4 1ja" -
11,500mfd 18 VDCs1.50
13/8"01a X 3 1/8% wion
20,000 mfd 25 voLTS
2 " DIA. X 2%" HIGH $2,00

21/2"01a X 4 378" |
8,400mfd

440/220 TO 110 VOLT
TRANSFORMER

N SOLA # HTIBZIOO

P 440 or 220 voits
to 110 volts

Rated 100 VA

CONNECTOR
KINGS UG526 8/U

FITS RGSS5, RGSS,
RG223

RG141, RGILZ,
SOLDER TYPE

$1.75 EACH
10 for $16.00

22,000mfd 15 vDC 52, 50
2" o1a X 2 1/2%wicn
22,000 mfd 40 voLTS
2" DIA. X 6" HIGH $3.00
52,000mfd 15 vDC $3.00
2%1a X 4 112" 1o

CLAMPS TO FIT CAPACITORS 50¢ ea

L.E.D.s
STANDARD JUMBO
DIFFUSED
RED 10 FOR $1.50
GREEN 10 FOR $2.00
YELLOW 10 FOR $2.00

FLASHER LED /}
5 VOLT OPERATION

*SPECIAL !! *
10 MEG POTS
4 for $1.00

y 1l
100 for $15.00 """

JUMBO SIZE

2 FOR $1.70
4Bl POLAR LED

2 FOR $1.70
SUB MINI LED

,079"x 098"

10 for $2.00

SUPER SMALL
PHOTO-FLASH
170 MFD 330 VOLT

20mA at 1.75v

10 FOR $1.00

200 FOR $18.00
QUANTITY PRICES AVAILABELE

== 1V'x7g"

CANNON XLR

for line to line

& line to ground
noise suppression
4’ CORCOM # I0K3
Rated: 10 amp
115/250v 50-400 hz
$ 3.75 ea. 10 for $35.00

t 2lrstso | CONNECTOR
@ 10 for $7.00 3 PRUNG
CHASSITS MOUNT
720 MFD 330V AUDIO CONMNECTCR
PHOTO FLASH $2.00 EACH
2" HIGH X 10 for $19.00
0 RECHARGABLE
' D
10 FOR S;;.::ui LEAD-AC|D
LINE FILTER | CATTERIES

@VOLTS 3AMP/HR
25/8x 1% x5S IN. $7.50

22/44 EDQE CONNECTOR
TIN SOLDERTAIL .156"x .200"
\

LARGE QUANTITIES AVAILABLE
$1.35 each 1(! for $12.. 50

6 VOLTS 6 AMP/HR

3k X 2 x 4% IN. $10.00
6 VOLTS 712 AMP/HR
gxzxug IN. $12.50

TERMS °

= Quantities Limited
*Min Order $10 00

*Add $2.50
Shipping USA
«Calit Res Add6°c

8080 microprocessor

(800,¢). This will be the address of the
bottom of the Stack. Any RAM remain-
ing above this address is free for any oth-
er use you may have (scratchpad, pa-
rameter storage, etc.)

2. Write your source program. A LXI
SP, datal6 instruction initializing the SP
to the value computed in step 1 thould be

23,, and the six sensor outputs are con-
nected to bits 0-5 of the port (bits 6 and
7 are grounded). Also assume that, when
a forced-entry is detected, the triggered
sensor’s output goes high (+5 V). Try to
write this subroutine yourself before
reading any further. If you cannot, see
the sample in the box:

SAMPLE PROGRAM
Mem. Address Machine Code Mnemonic Explanation

0100 DB 23 IN 23H Input status of sensors

0102 B7 ORA A Update flags

0103 Cc8 RZ Return with CY=0 if all sensors
are 0 (Z flag=1 from last
instruction)

0104 37 STC Otherwise set CY=1

0105 C9 RET and retun to main program

included in the beginning of your pro-
gram before any Stack-related instruc-
tions (Calls, Pushes, etc.) appear. For
most programs, the SP may be initial-
ized to BFF |, the end of RAM, which
eliminates the need of performing step 1.
This should be done only if you can
make certain the Stack will not be inter-
fered with by other data the program
may store in RAM. If any uncertainty
exists, it is safer to perform step 1 first.

3. “Assemble” your source program
into the object program with the aid of
Fig. 19. The object program must origi-
nate at memory location O since the
CPU automatically begins execution at
this location at power-up. If your pro-
gram must begin at a memory location
other than O for one reason or another, a
JMP addr instruction may be stored at
location 0 which will transfer control to
the beginning of your program (in this
case addr=starting address of your pro-
gram).

Sample Program. Let’s try to write a
short-machine-language program using
the 8080 instruction set to demonstrate
how easy it really can be.

You have just installed six sensors in
various areas of your house for a new
security system. Each sensor output is
two-state (+ 5 or 0 volts) and is connect-
ed to an existing input port of your CPU
module. In an attempt to devise the most
complex security system in the neighbor-
hood you are now confronted with the
task of writing the software. Write a
machine-language subroutine beginning
at memory location 100,,, which will
return to the calling program with the
CY flag set if any one of the sensors has
detected an intrusion. The subroutine
should otherwise return with the CY
flag reset if the house has been deter-
mined to be ‘“‘secure.” Assume that the
input interface Port-Select circuitry has
been wired to decode I/O port address

This is how a typical assembly listing
would appear after an assembler pro-
gram assembled the source program.
This is also a good method to follow
when writing your own programs with-
out an assembler program.

The above subroutine is, of course,
only one of a number of ways in which
the algorithm can be written. You may
have come up with something entirely
different, but which, in fact, performs
the same function. The fewer instruc-
tions used, however, the better (to save
memory space and execution time).

The instruction following the one
which called the above subroutine could
be a conditional branch instruction
which will branch-on-carry to another
routine that determines which area of
the house has the uninvited guest. This
could be done by repeated use of the
rotate instructions and testing the CY
flag after each rotate. Another routine
could take appropriate action—turn on
the lights, sound an alarm, call the
police—whatever you desire. And don’t
forget that heat, smoke, and moisture
detectors can also be interfaced to the
CPU.

If turning on lights is a response to an
intrusion, the hardware already exists to
automatically cycle the lights on and off
systematically or randomly during vaca-
tion periods (which would give the house
the appearance of being occupied). All
that need be done is to write an appro-
priate program, which may even be
stored in the same ROM with the secu-
rity program. By interfacing a clock chip
to the CPU (such as the National
MM58167 or MM58174), it is a simple
matter to write a short program which
will turn on the lights and coffee pot
before you get up in the morning.

To gain experience in writing longer
programs, next month we will show how
to write a program to receive Morse code
off the air. ¢

POPULAR ELECTRONICS

Popular Electromcs

WORLD'S LARGEST SELLING ELECTRONICS MAGAZINE DECEMBER 1981/%1
THE ELECTRONIC V\{ORLD _ |
A User's Guide to Computer Languages

Detect Car-Battery Drain Before It's Too Late

Comparmg New HighTech Audio Cassettes

- P95T0 Ul T
ag AY IDNFNETn)
'H-:]HH"'I 200 HEIILn i

’ ZRAON ﬂTrT PEODLO00 WID pagns

omerook e dirsons

UIK: ew Personal Computer

4278

REVIOUS parts of the article have

described how a typical micropro-
cessor works and gave design details for
a practical module. Last month, we cov-
ered the details of designing software for
the system. Here is an example.

Morse Receiving Program. What
would Samuel F.B. Morse have thought
if he had heard his code being sent at
100 words per minute at the same time it
was being printed out on a printer or
television screen? Actually, the process
involved in such a scheme is fairly simple
and straight forward (if you happen to
have a microprocessor). The procedurle
involves converting Mr. Morse’s combi-
nations of dots and dashes (which may
come from a shortwave receiver) into a
more modern and usable code called
ASCII (American Standard Code for
Information Interchange). ASCII is a
widely-used code in which 96 display-
able characters (letters, number, etc.)
and 32 non-displayable control charac-
ters are each assigned a unique 7-b_it
code. For instance, the character “A” is
represented in the ASCII code as 41
the character “3” is assigned the code
33, (see Fig. 22). Many of today’s com-
puters communicate with each other us-
ing the ASCII code, and ASCII has

74

even found its way into radio.

The 8080 readily handles the ASCII
code since each register and memory
location is capable of holding one ASCII
character code. Occasionally the unused
eighth bit (MSB) is utilized as a parity
bit, which serves to minimize data errors
when large amounts of information are
being transferred. (This is the principal
use of the Parity flag-related instruc-

BY RANDY CARLSTROM

DESIGNING

WITH THE

80 MICROPROCESSOR

Part 4. A Typical Program

tions in the 8080 instruction set.) The
parity bit will not concern us in our ldi§-
cussions, however; we will assume it is
always 0.

The Morse code is comprised of two
types of marks—the dot and dash—and
three types of spaces—the mark space,
character space, and word space. Theo-
retically, the length of a dash is three
times the length of a dot. Likewise, a

ﬂharactar ASCIl Code Morse Code

Character ASCIl Code Morse Code \

(hex)

A (r:laIX) & w— 0 30 — e e e e
B 42 -—e 0 @ 1 31 ¢ oom e emm o=
C 43 - == @ 2 32 0 ¢ e omm e—
D 44 - e 3 33 00 s = omm
E 45 . 4 34 o 060 mm
F 46 60 e=m o 5 35 ®ooesn
G 47 — 6 36 == es s e
H 48 ® e @ o 7 37 - em e o o
| 49 ° o 8 38 - =
J 4A 9 s=m == o= 9 39 -_— e o e ¢

B PR —
llf :G @ eum o 0 2E o omo o mme o o=
M 4D - . ; 2C - s 0 @ m= =
N 4E - e 4 ? 3F D e o
(0] 4F S g— . aB 0 e p mmm e
P 50 | " y 3A -— emem s e e
Q 51 -——) - (28 e L T L R
R 52 ¢ oy / 2F - & p == o
S 53 ® o @ - 2D - 0 o o ==
il: 54 - End of mes- — ¢ == o ==
U 55 o o= sage
v 56 9 o == Wait — ® e .
w 57 S o — End of work — 0 s =m s =
X 58) e— Invitation to e il e
X 59 —_— e e lransmit
Z SA - eam & & Error —_ e 24 % 8 o 0 9 @

Fig. 22. The ASCIl code for the Morse symbols. /

POPULAR ELECTRONICS

8080 microprocessor

mark space is equal in length to a dot, a
character space equal to a dash, and a
word space equal to seven dots,

Ideally, a Morse recognition algo-
rithm would test mark and space lengths
at the points half-way between mark and
space types, e.g., ¥3 of a dash would be
the “critical point” for deciding if a
received mark was a dot or a dash, etc.
However, after much experimentation
with these critical points, a slightly mod-
ified algorithm was obtained. For in-
stance, it was observed that many users
of the code (hams in particular) tend to
cut character spaces too short, which
would confuse the ideal algorithm. For
this reason, the character space critical
point was changed from the ideal %3 dash
to 2 dash (a 17% reduction), which
enhanced character-recognition proba-
bility. A similar change was made for
dot recognition for the same reason.
Attempting to change or experiment
with these critical points in a random-
logic implementation of the code con-
verter would be a large chore in itself.

The program has incorporated into it
a subroutine for checking some types of
noise often encountered while receiving
Morse code on a radio receiver. This
routine has proven to be quite effective
in discriminating between some types of
random noise and Morse code. In this
respect, the routine can be thought of as
a “software noise blanker.” The “band-
width” can be adjusted simply by chang-
ing the value of a parameter byte at
memory location 010C of the program
(the beauty of using a microprocessor).
The bandwidth, and therefore the maxi-
mum code speed that may be accurately
received, is inversely proportional to the
numeric value stored in this memory
location.

The Morse program assembly listing
is shown here. The source program,
which appears in the third column, was
assembled beginning at memory location
0. The memory locations in the first col-
umn are followed by the object code con-
tained, or assembled, into them. The sec-
ond column lists the line numbers of the
source program which are of no particu-
lar significance to the program itself,

Throughout the source program are
“labels” to the immediate left of some of
the instruction mnemonics. These labels
represent relative addresses which are
later assigned memory addresses during
the assembly process. Labels allow the
source program to reference other parts
of the program (such as subroutines)
without the need of knowing their mem-
ory addresses. For example, to Call the
subroutine which checks for noise (la-
beled “VLDMK"), the corresponding
source program instruction would be
written as CALL VLDMK. VLDMK
symbolizes the beginning address in pro-

DECEMBER 1981

gram memory of the noise-checking sub-
routine. A list of all labels used in the
Morse program, followed by their com-
puted values and source program line
numbers that use them, appears at the
end of the assembly listing.

When assembling a source program
by hand, the numeric values of any
labels used must be determined before
the corresponding machine language in-
structions can be completely assembled
(labels will usually complete an instruc-
tion’s operand, such as an address). In
the case of the VLDMK label, its
address was determined to be 0104,
after counting the number of bytes that
preceded it in memory. So, in this case,
“CALL VLDMK” and “CALL
0104H™ are equivalent instructions and
may be used interchangeably in the

source program. It is more convenient,
however, to use the symbolic label repre-
sentation since the memory address may
not even be known until the source pro-
gram is completed. For this reason, and
the fact that program changes are
almost inevitable in the course of writing
new programs (which will most likely
change all the memory addresses of the
instructions following the program
changes), it is recommended that calcu-
lating memory addresses be one of the
last steps performed when writing new
programs. Using labels freely through-
out the source program will help avoid
some of the tedious work when program
changes have to be made.

The next part of this article will cover
the hardware implementation of the
CPU module. ¢

MORSE-TO-ASCIl CONVERSION PROGRAM

0000 0100 ORG 0000

0000 0105 *

0000 0110 LEN EQU 64

0000 0115 CW EQU OFCH
0000 0120 MASK EQU 01
0000 0125 PSTN EQU OBFFH
0000 0130 *

0000 0135 * # % % % # * *
0000 0140

0000 0145

0000 0150

0000 0155 * *

0000 0160

0000 0165 * * % «

0000 0170

0000 0175 k kK k Kk k& * &
0000 0180

0000 0185

0000 0190

0000 0195

0000 0200

0000 0205

0000 0210

0000 0215

0000 0220

0000 0230

0000 0235

0000 0240 * LENGTH OF THE
0000 0245 * BEEN RECEIVED
0000 0250

0000 0255 * THE CHARACTER
0000 0260

0000 0265

0000 0270 * LENGTH OF THE
0000 0275

0000 0280

0000 0285 * * * % % % *
0000 0290

0000 0295 * B = DASH REG.
0000 0300 * E = LAST MARK
0000 0305 * H =

0000 0310

0000 0315 * * % % % * + «
0000 0320

0000 F3 0325 b1

0001 31 FD 0B . 0330

0004 CD AC 00 0335 CALL CRLF
0007 21 40 00 0340 LXI H,0040H
000A 11 00 20 0345 LXI D,2000H
000D 01 00 00 0350 LXI B,0000
0010 0355 *

0010 0350&**"*"‘\'
0010 0365 *

uolo 0370"**‘#.)\
0010 0375 *

0010 CD 04 01 0380 WAIT CALL VLDMK
0013 DA 10 00 0385 JC WAIT
0016 CD 4B 00 0390 NEWMK CALL MKTYP
0019 26 00 0395 MVI H,00
001B CD 04.01 0400 SPTYP CALL VLDMK
001E D2 16 00 0405 JNC NEWMK
0021 B7 0410 ORA A
0022 7¢C 0415 HOV A, B
0023 17 0420 RAL

0024 Bn 0425 CHP L
0025 Dx 1B 00 0430 JC SPTYP
0028 CD 7A 00 0435 CALL CONVT

LB MORSE-TO-ASCII CONVERSION PROGRAM s

* o MORSE RECOGNITION ALGORITHM Liges:

*

*

*

*

*

*

*

*

*

*

*

*

* IF THE NEW MARK LENGTH IS GREATER THAN OR

% BQUAL TO TWICE THE LENGTH OF THE LAST MARK, THE

¥ NEW MARK IS STORED AS A DASH. IF THE NEW MARK

* LENGTH IS LESS THAN ONE-HALF THE LENGTH OF THE

* LAST MARK, THE NEW MARK 1S STORED AS A DOT. IF

* THE NEW MARK DOES NOT FALL INTO EITHER ONE OF
0000 0225 * THESE CATEGORIES, THE NEW MARK IS STORED AS THE

* SAME TYPE AS THE LAST MARK.

g IF A SPACE LENGTH REACHES ONE-HALF THE

*

*®

*

*

*

*

*

*

*

*

*

*

*

*

*

*

CONVERTED TO THE CORRESPONDING ASCII CHARACTER.

PERIPHERAL AND SPACE MEASUREMENT CONTINUES.
IF THE SPACE LENGTH REACHES THREE-HALVES THE

RECEIVED AND THE SPACE IS PRINTED.

MARK/SPACE COUNTER L = LAST DASH LEMGTH

TERMINAL WIDTH

MORSE INPUT PORT

DATA INPUT BIT 0 HAS MORSE

LOCATE PSTN BYTE AT END OF RAM AREA

****i***iiitti*iti

WRITTEN BY *

RANDY CARLSTROM, 9/78 L

*ttt*ii*ﬂl‘*ti**itt

LAST DASH, A CHARACTER SPACE HAS
AND THE ELEMENTS ARE ASSEMBLED AND

IS THEN PRINTED AT THE OUTPUT
LAST DASH, A WORD SPACE HAS BEEN

REGISTER ALLOCATION ol L
C = DOT REG. D = LAST MARK LENGTH

TYPE: 00 = DOT, 01 = DASH

* INITIALIZATION LA A S B

FR A R R AR RN R ok L I e

DISABLE INTERRUPTS

LXI SP,0BFDH INITIALIZE STACK POINTER IN RAM

START A NEW OUTPUT LINE
LAST DASH LENGTH = 64; COUNTER = 0

CLEAR DOT AND DASH REGISTERS

*
iﬁﬁil*‘i.ﬁi.tti

*
ok ok ok Xk ok A Rk

" MAIN PROGRAM

IS THERE A VALID MARK YET?

NO: WAIT

YES: FIND MARK TYPE AND STORE IT
CLEAR MARK/SPACE COUNTER

IS THERE A VALID MARK YET?

YES: PROCESS NEW MARK

NO: CLEAR CY FLAG AND

CHECK SPACE LENGTH

REG. A = 2 * CURRENT SPACE LENGTH
SPACE >= 1/2 LAST DASH? (CHAR, -SPACE)
NO: CONTINUE MEASURING SPACE LENGTH
YES: CONVERT MORSE TO ASCII

75

LAST MARK LENGTH = 32; LAST MARK = DOT

|
| : 8080 IHjGFOpf OCESSor., Limited time, introductory offer :
8080 microprocessor ,
| F REI Ei Assembled ‘ ‘
[X X |
§ il
| 002B CD BB 00 0440 CALL OUT AND PRINT IT, THEN
: 002E CD DR 00 A4S Sl UPDATE PRINTER POSITION gggn 0965 * A MARK MEASUREMENT, OR THE MORSE ALGORITHN WILL FAIL. $249.95
i o 0031 FE 3E 0450 CPI LEN-2 DO A CR/LF IF AT END OF LINE D 0970 * INCREASING THE VALUE OF REGISTER PAIR B INCREASES THE e
| 0033 b8 2% bo s Che BELE 009D 0975 * LENGTH OF THE TIME DELAY, THEREBY DECREASING THE FINAL KIT f
0036 CD 04 01 0460 GENSP CALL VLDMK IS THERE A VALID HNARK YET? 009D 0980 * COUNT OF REG, H FOR'A GIVEN MARK OR SPACE LENGTH. |
‘ @ 0039 D2 16 00 0465 JHC MEWMK YES: PROCESS NE MARK 009D 0985 * 240,95 | .
? 003C B7 0470 ORA A NO: CLEAR CY FLAG AND 009D C5 0990 DLY1 PUSH B
{ grea gl 003D 70 0475 HOV A, L CHECK SPACH LEMGTH gg:g gg Eg 0933 MVI B,03 PRESET VALUE FOR REG, B $219.95 It
i 003E 1F 0480 RAR 10 MVI C,40H PRESET VALUE FOR REG. C ‘
| % s e il g REG. A = 3/2 LAST DASH gg:g gg e 1005 LOOP1 DCR C KILL SOME TIME... PACCOM |
0040 3D 0490 DCR A 1010 JNZ LOOP1 |
4 ldeas 0041 pC : 0495 chp H SPACC >= 3/2 LAST DASH? (IORD SPACE) 00A6 05 1015 DCR B
1 1,
0042 D2 36 00 0500 JNC GEHSP NO: CONTINUE MEASURING SPACE LENGTH 00A7 C2 A2 00 1020 JNZ LOOP1 |
0045 €D E3 00 0505 CALL SPOUT YES: PRINT A SPACE OR CR/LF 00AA C1 1025 POP B MICROPROCESSOR |
50
| i - 0048 C3 10 00 0510 JIP HAIT DONE; WAIT FOR A NEY CHAR., TO BEGIY guaa c9 1030 RET |
; 0048 0515 * L 1039, 2 I RAINING UNI l |
1 (. 004B 0520 * ey UL 00AC 1040 * |
004B 0525 * * % % % % * & % k k * * K K K K K & 00AC 1045 * CRLF OUTPUTS A CARRIAGE-RETURN LINE-FEED WHEN CALLED. i |
0048 0530 * * * * SUBROUTINES * ok ok K 00AC 1050 * A Rated Best Value by instructors! 11
0045 0535 * k * * ok ok *k & i. * k& & * ok * k ok k &k & k& & & * * * Kk OOAC 3E OD 1055 CRLF NVI A'ODH OUTPUT A CR |
L 0sid # 00AE CD BB 00 1060 CALL OUT LEARN COMPUTING
| 004B 0545 * MKTYP CONPARES THE NEW MARK WITH THE PREVIQUS HARK TO 00B1 3E 0A 1065 MVI A,OAH OUTPUT A LF [
004B 0550 * SEE IF THE NEW MARK IS A DOT OR A DASH. IF THE NEY 00B3 CD BE 00 1070 CALL OUT FROM THE GHOUND UP! |
! 004B 0555 * MARK IS < 1/2 THE_PREVIOUS ONE, IT IS A DOT. IF THE 00B6 AF 1075 XRA A SET PRINT POSITION COUNTER TO 0 i . |
004B 0560 * NEW MARK IS >= 2 * THE PREVIOUS ONE, IT IS A DASH, 00B7 32 FF 0B 1080 STA PSTN e Design and code microprocessor software
\ 004B 0565 * OTHERWISE THE NEW MARK IS THE SAME AS THE PREVIOUS MARK. 00BA CO 1085 RET ® USG 'GgiC and bn manipulaﬁon techniques |
! 4 %) | ooaB 0570 * 00BB 1090 * ‘
i 004B 7A 0575 MKTYP MOV A,D 00BB 1095 * © Enter and execute programs on your i
i a0ac 17 0580 RAL REG. A'= 2 * LAST MARK LENGTH 00BB 1100 * OUT SENDS THE CHAR. TO BE PRINTED TO THE OUTPUT own computer
004D 3D 0585 DCR A 00BB 1105 * DEVICE (CRT, PRINTER, ETC.). THERE IS RESERVED ® Understand microprocessor architecture arid i
C 0590 cHP H MARK >= 2 * LAST MARK LENGTH? (DASH) ' 4 i] P an il
L e ‘ 333;‘3 %2 5F 00 0595 JNC DOT NO: GO SEE IF A DOT gggg iﬁg * STORAGE SPACE HERE FOR THE USER'S OWN OUTPUT ROUTINE. support chips. 1
= . TH REGISTER i
0052 54 0600 DASH MOV D,H YES: UPDATE LAST MARK LENG 00BB C5 1120 OUT PUSH B MY OUTP @ Control programmable input/output port
5= - 0053 6C 0605 MOV LyH AND LAST DASH LENGTH “ggéfgggn 00BC 47 1125 MOV B,A IN ggﬁ-ug e e e lmpieme[;n £geal-time inter?upt haﬂdlir?g a?1d
< = 0054 1E 01 0610 MVI E,01 UPDATE LAST MARK TYPE b 00BD €D 19 CO 1130° CALL 0CO19H CALL MY MONITOR'S OUTPUT DRIVER data transfer ‘
0056 78 0615 MOV A,B SHIFT A "1" INTO DASH Rl 00CO C1 1135 POP B RESTORE REG. B A Irans 1'(H
| : ' ggg; g-é B gggg Si? i ggg% c9 1i:o RET AND WE'RE DONE! ® Design your own micro-computer '
Hi P 3 1145 DS 4 HERE'S MORE STORAGE AREA FOR THOSE]
i : : gggg f’; gggg ﬂg“; 2o ealilng saadanenhi n ad v gggg Hgg DS 2 ;ONGER OUTPUT ROUTINES... Comes to you complete: i
. AT N) : v DS HE CHAR. TO BE PRINTED IS IN REG. A "
| -~ o 005C 07 0640 RLC 00CE 1160 DS 4' AND THE ROUTINE MUST END WITH A "RET, " :géeep;att}gr:tﬁ?arilrlﬁllruct!on manual .
1] | oosp 4F 0645 MOV C,A 00D2 1165 DS 4 ALL REGISTERS MUST BE UNALTERED UPON |
! | v 3 =ik 005E C9 0650 RET A DASH WAS RECETVED AND STORED; RETURN 00D6 1170 DS 5 RETURN, WITH THE EXCEPTEON OF REG. A. e B085A sub-routine manual 1
|) — 005F 7C 0655 DOT MOV A,H 00DB 1175 * = 352 page 8085A Cookbook : ‘
i : : = | o060 17 0660 RAL REG. A = 2 * CURRENT MARK LENGTH 00DB 1180 * ° 334 page 8080/8085A Software Design book- over i
| : 2 Gl e 0061 30 gsss bk i b e Tash HARE DR ok 00g 1185 & IPSTN INCREMENTS THE PRINT POSITION COUNTER ONCE A ;gﬁ'y”e')‘(’g;'g:me for other applications |
T, | i : DB 1190 * EACH TIME IT IS CALLED.
{ . ’ : 0063 D2 72 00 0675 JHC SAME NO: VAS THE sigg ﬂiainﬂmgﬁﬁxm 00D T19E. LLED o Deluxe operating system I
i i i MOV D,H YES: UPDATE L 2
[! You'll find the right gift for all the Doke o4 .. fgnd pame Mt K ND. \LAST. HARE ‘TSPE REGTSTER 90us a8 rE. 08 1200 1psTn LA poTH BUMP PRINT POSITION ONE COUNT Hardware:
[i i "1™ INTO DOT REGISTER
1 electronics buffs on your Christ- 0069 79 06 90 HOV A, C SHIFT A "17 IN 00DF 32 FF 0B 1210 STA PSTN o Fully assembled, tested BOBSA unit
| ; : 006A 07 0695 RLC 00E2 C9 1215 RET ® GPU circuitry with 44 pin connector
mas list— from clocks and radios 006B F6 01 0700 ORI 01 00E3 1220 * o User dstermined BUS ystem |
to gas-saving car accessories to Sl s el SHIFT A "0" INTO DASH REGISTER s e " o o Wire wrap area for buffers, gales, s, J
= i (e]0] R E
i to-build, || 99¢F o7 ek are 0083 1235 * ON IF WE ARE GERTING CLOSE 10 THE swo of a'yenoLNG LI e b 1
computers — all in easy-to-build, 0070 47 020 HoY. (Byn e e S e 00E3 1240 * IN THIS WAY WORDS ARE NOT BROKEN BETWEEN LINES CHECK YOUR CHOICE OF THESE
money-saving kits. gg;é gg 3;53 SAME Sg'\rr AE GET LAST MARK TYPE Y gggg i:‘;g % OF OUTPUT. GREAT VALUES - ORDER TODAY
i d 0073 1F 0735 RAR WIAS IT A DASH? 8 r—-_—-‘_“—‘_ |
Prices start atunder e e UL 00E3 3A FF 0B 1255 SPOUT LDA PSTN GET PRINT POSITION TRAINING UNITS SAVE NOW i
0074 DA 52 00 0740 : 00E6 FE 36 1260 CPI LEN-10 ARE WE NEAR END OF LINE? ;
20 0077 C3 66 00 0745 JHP DOTT N0: G0, 70, DO, ROUTINE 808SAKT Training Unit Kit $219.95
$20. S S ggEg DA EF 00 1265 JC PRSP NO: CONTINUE ON SAME LINE 808SAAT Tr. Unit Assembl'd §249.95
EB CD AC 00 127 : l : 2
This year, shop the || 0072 0755 * 00EE Co 1275 BBy T SREARE & RERGLS SEPARATE UNITS J
IS year, P 007A 0760 * CONVT ASSEMBLES THE DOT AND DASH REGISTERS IN SUCH .
inth 007A 0765 * A WAY THAT IT FORMS A NEW UNIQUEC 8-BIT CODE. THEN 00EF 3E 20 1280 PRSP MVI A,' ! PRINT A SPACE B0B5AKG CPU Board Kit $129.95 ’]
fast, e b L 007A 0770 * A TABLE OF THESE UNIQUE CODES IS SEARCHED FOR A MATCI, 00F1 CD BB 00 1285 CALL 0UT ' 8085AAC CPU Assembled 149.95 A
: Heathkit Catalog 007A 0775 * AND THE CORRESPONDING ASCII CHARACTER IS RETURMNED IN 00F4 CD DB 00 1290 CALL IPSTN UPDATE PRINT POSITIOM 8085AKD Display Board Kit 89.95 ’ |
' é 007A 0780 * THE ACCUMULATOR. IF NO MATCH WAS FOUND, AN ERROR CHAR, 00F7 C9 1295 RET ' 8085AAD Display Board Assmbld 99.95
| _ Eoch e 1 AR _00F8 1300 * GPU Printed Circuit Board 26.00 f
| 007 A 0700 * o0rs 1305 * Jj Display Printed Circuit Bd 26.00 ’
| a 40 007A 79 0795 CONVT MOV A,C SRR HOT RECLEPER unga 1310 y MKLEN MEASURES THL LENGTH OF A MARK. THE LENGTH MANUALS |
| 0078 07 0800 RLC MULTIPLY IT BY 2 SO 1315 + IS RETURNED IN REG. H, AND SHOULD NEVER BE l 8085A Cookbook $13.95 ’
| 007¢C 80 0805 ADD B AND ADD DASH REGISTER oF 1320 * ALLOWED TO BE GREATER THAN 7FH (SEE DLY1). 8085/8085 Software Book 1 10,05 .
l 007D 01 00 0O 0810 LXI B, 0000 READY DOT AMD DASH REG. FOR MEXT CHAR. DOFe 1325 * REG. H IS INCRENENTED BY ONE IF A MARK IS NOT ' 8080/8085 Software Book 2 10'95 ’ i
‘| 0080 E5 0815 PUSH H REG. A NOW HAS UNIQUE CODE ggf;g Egg : PRESENT (SPACE) WHEN THIS ROUTINE IS CALLED. 8255 PP| Interiace 8.5 |
| is missing, write XTI H,TABLE POINT TO TABLE STARTING ADDRESS ' s ’ i
! [Leatipon Bisabg Tl Mios e e CHARACTER? 00F8 24 1340 NKLEN THR § BUNP MARK LENGTH COUNT TEA Co-resident/Assembler 1 -
i Heath Co., Dept. 010-842 0084 BE » 0328 WERT OIE M, sl e 00F9 CD 9D 00 1345 CALL DLY1 Instruction Manual 3.00 ’
C 0 s it b 3 |
Benton Harbor, MI 49022 S050 E? Lo 0035 PUSH BSt HO: SAVE UNIQUE CODC AND 00FC DB FC 1350 dsalo l ”p‘*’atgrg'“a?-”a’ Manual g'ﬂg |
I S — == =2 | o089 7& 0840 MOV AN CHECK FOR END OF TABLE 00FE E6 01 1355 ANT INASK END OF MARK? 8085A Sub-routines Manua a0 ' :
008A RB7 0845 ORA A END OF TABLE? gioo €2 F& 00 1360 JNg MKLEN NO: BUMP COUNT AGAIN l For orders under $25.00, add _$2.00 |
| ERROR YES: NO MATCH WAS FQUND 03 co 1365 RET YES: RETURN WITH NARK LENGTIH
' Send to: Heath Co., Dept.010-842 it R 0835 Pop PG NO: GET UNINUE CODE BACK AND 0104 1370 * l Add 6% postage & handling. TOTAL$‘,’
! Benton Harbor, Mi 49022. 008F 23 0860 X H BUIP REG. PAIR H TO NEXT 0104 1375 * Washington residents add
0090 23 0865 INX H CHARACTER ADDRESS g%gz 1380 * VLDMK, CHECKS THE VALIDITY OF A MARK. ANY MARK LENGTI ' 5.4% sales tax. @ ’
i HEXT AND TRY AGAIN 1385 * LESS»THAN 6 IS CONSIDERED MOISE, THE NOISE LENGTI
Send my free Heathkit Catalog now. 333} g; e gg;g ASCIT igi 0 POINT TO ASCIT CHAR, IN TADLE 0104 1390 * BEING ADDED TO THE PRESENT SPACE LENGTH BREFORE RETURH. ' -rRO"' 14803 NE 40th, PE12 '
| | am not currently receiving your catalog. boos e 0880 MOV A M AND PUT IT IN REG. A gigg 1395 * OTHERWISE THE VALID MARK LEMGTH IS RETURNED IN REG. 0. Redmond, WA 98052
1400 * THE CY FLAG IS CLEARED UPON RETURN IF A VALID MARK ' '
POP H
gggg E; gggg RET RETURN WITH IT gigﬁ 1405 * wAS RECEIVED; OTHERWISE IT IS SET. ' FOR IMMEDIATE DELIVERY CALL
0895 ERROR POP PSU ELSE RETURN WITH A "*" 1410 * g ; y . ’
| Name. gggg gi 0900 POP N IF HO MATCH WAS FOUND 0104 ES 1415 VLDMK PUSH H SAVE SPACE LENGTH TEMPORARILY ' TOLL FREE 1 800 426 1044
1 009A 3E 2A 0905 MVI A, th? 0105 26 00 1420 VI H,00 SET UP TEMPORARY MARK COUNTER AL NGl OB
i 009C C9 0910 RET 0107 CD F8 00 1425 CALL LKLEN HMEASURE MARK IENGTH ' T $
{ Address oA diiel : 010a 7€ 1430 MOV A, H [VISA [J MSTCRD _ BANK NO.
i 005D 8650 & 0108 FE 06 1435 CPI 06 VALID NARK? (BANDIIIDTH IS SET [ERE) ' ACCT NO. EXP ' ‘
| * S A TINE DELAY USED UHEM [EASURING THE LENGTH 010D DA 13 01 1440 JC SPACE MO: ADD MARK LENGTH TO SPACE LENGTH
009D 0925 * DLY1 IS A TIN L S
| no9p 0930 * OF A MARK OR SPACE. THE VALUE OF REG. B ACTS AS A 0110 33 1445 INX SP YES: NEWU MARK; DON'T (ANT OLD ' '
‘ : 009D 0935 * "COURSE-ADJUST," WHILE THE VALUE OF REG. C ACTS HMORE 0111 33 1450 INX SP SPACE LENGTH ON STACK ADDRESS
! City State 009D 0940 * LIKE A "FINE-ADJUST." THE PRESET VALUES FOR REGISTERS 0112 c9 1455 RET RETURN WITH NEW MARK LENGTH AND CY = 0 clry PHONE '
i 009D 0945 * B AND C MAY BE CHANGED FOR DIFFERENT CODE SPEEDS OR 0113 7C 1460 SPACE OV A,H ADD INVALID IMARK LENGTH TO STATE o
] i 009D 0950 * CPU'S, BUT THESE VALUES ARE OPTIMUM FOR ON-THE-AIR USE 0114 El 1465 POP 1 SPACE LENGTH '
! CL-745 Zp—— 009D 0955 * USING AN 8080, BO85, OR Z-80 CPU RUNNING AT 2 IMHZ. 0115 84 1470 ADD I 0) SEND FREE INTRO PLUS PARTS LIST |
i 009D 0960 * REG. H SHOULD MOT BE ALLOWED TO COUNT ABOVE 7FIi DURING 0116 67 1475 HOV H,A REG. H HAS ADJUSTED SPACE LENGTH T T R, O T R, R, O W T R |
: 3 CIRCLE NO. 18 ON FREE INFORMATION CARD POPULAR ELECTRONICS DECEMBER 1981 : CIRCLE NO. 16 ON FREE INFORMATION CARD [

SIMPLE SIMON KITS

VHF-UHF WIDEBAND
ANTENNA AMPLIFIER

MODEL ALL-1
50 MHz — 900 MHz

12 dB GAIN + 0.5d8B

SIMPLE SIMON ELECTRONICS
INTRODUCES

A REVOLUTIONARY NEW ONE STAGE

HYBRID IC BROADBAND AMPLIFIER
This unit is not available anywhere else in the world. One unit
serves many purposes and is available in Kit or Assembled
form. Ideal for outdoororindoor use. Input-output impedance
is 76 ohms. Amplifier includes separate co-ax feed power
supply. Easily assembled in 26 minutes. No coils, capacitors
etc. to tune or adjust.
ALL-1 Complete Kit plus Power Supply$24,95
ALL-1 Assembled/ Tested plus Power Supply $34.95

1 + 11 PARTS KITS

MITSUMI
 VARACTOR
UHF TUNER

Model UES-AS6F

$34.95

Freq. Range UHF470 - 888MHz
Antenna Input 75 chms
Channels 14-83 Output Channel 3

KT PART
NO ND DESCRIPTION PAICE
1 VTI-SW Varaclor UHF Tuper, Model UES-ABBF $34.95
2 GB1-SW Printed Circuit Board, Pre-Orilled 18.95
3 TP7-SW P.C.B. Potentiometers, 1-20K, 1-1K, and

. 6-10K ahms; T-PIBCES . . .o oveeae v v s s 5.95

-

FR35-8W Resistor Kit, % Watt, 5% Carhon Film, 32-pieces. . . .95
PT1-SW Power Transfarmer, PRI-117VAC, SEC-24VAC,

o

SNt o S P s e A O 6.95
6 PP2-SW Panel Maunt Polentiometers and Knobs, 1-1KBT

and [-5KAT w/Switch. ooouinius it .95
7 S514-SW IC's 7-pes, Diodes 4-pes, Regulators 2-pes

Heal Sink 1-piececovvrivenrenns 29.95
B CES-SW Electralytic Capacitor Kit, 9-pieces. 5.95

@

CC33-SW Ceramic Disk Capacitor Kit, 50 W.V., 33-pieces 7.85
10 CT-SW Varble Ceramic Trimmer Capacitor Kit,
5-65pfd, B-places. . .o cia e 5.85
L4-SW Coil Kit, 18mhs 2-pieces, .22uchs 1-piece (prewound
inductors) and 1 T37-12 Ferite Torroid

Core with 3 ft. of #26 wire. 5.00
12 ICS-SW |.C. Sockets, Tin inlay, 8-pin 5-pieces

and 14-pin 2-pACES . . . oivces s 1.95
13 SR-SW Speaker, 4x6' Oval and Prepunched

W00 EQCIBEUE v 4 v oysimiars o b e abos o b wonswiinis 14.95

14 MISC-SW Misc. Parts Kit Includes Hardware, (6/32, 8/32

Nuts, & Bolts), Hookup Wire, Ant. Terms, DPDT

Ant. Switch, Fuse, Fuseholder, etc.9.95
When Ordering All Items, (1 thru 14), Totel Price 139.95

ANTENNAS & ACCESSORIES

STVA-1STV Yagi Antenna, 13.5 dB, 75 ohm, Chan. 42-54 .. $9.95
STVA-2-STV Yagi Antenna, 13.5 dB, 76 ohm, Chan. 20-28 ... 9.95
CX-75 Coaxial 75 ohm Low Loss Ant. Cable

.8 .12 P/FT.

F-58 Coaxial Connectors ea $.39

MT-1 Special UHF 75-300 OHM Matching

Transformer 88, $1.45

ALL-1 Indoor/Outdoor HYBRID IC Wideband VHF-UHF-FM

75 OHM Antenna Amplifier Kit. s a8, 85

Assembled. $34.45

Mail Order Only — Send Check or Money Order To:
— VISA and Mastercard Acceplable —

SIMPLE SIMON ELECTRONIC KITS

Calif. Orders:
3871 S. Valley View, Suite 12, Las Vegas, Nevada 89103
Tel: (702) 322-5273
All Other Orders:
11850 S. Hawthomne Blvd., Hawthorne, Calif. 30250
Tel: (213) 675-3347
Minimum Order: $19.95 Add 10% Shipping and Handling.
For Orders over $40.00, Add 5%. Catalog $1.00.

78

8080 microprocessor

0117

0118
0119
0119
0119
011A
011B
g11¢
011p
011E
011F
0120
0121
0122
0123
0124
0125
0126

0127
olz28
0129
012A
012B
nl2c
012n
012E
012F
0130
0131
0132
0133
0134
0135
0136
0137
nl3e
0139
013A
013B
013c
013D
013E
013F
0140
0141

ni42
0143
0144
0145
0146
0147
0l48
0149
0l4an
0148
014cC
014D
014E
014F
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
015A
015B
015C
015D
015E
015F
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
016A
016B
016C
016D
016E
016F
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
017A
017B

1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
L7156
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1540
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990

STC
RET

DB

DB
DB
DB
DB
nn
DB
DR
DB
Do
DR
Dn
DB
Db
DR
Do
Db
DR

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
D3
DB
DB
DD
DB
DB
DB
DR
b
DB
DB
DB
DB
DB
DB
DB
DR
DB
ne
DR
DB
DE
DR
DB
De
nn
na
DB

DB
DB
DE
DE

DB

05H
Al
16H
gt
144
(el
0AH
gt
ozn
gt
icn
1Rt
0BH
el
1ER
iy
0611
III
171
g
09n
g
1AH
Lt
03H
oyt
04H
o
07H
o
18n
IPI
11H
o
0CH
IRI
OEH
gt
01H
rp
opn
gt
1DH
Ty
ann
et
151
Tyt
13n
Ty
12R
g
1FH
O
AFH

371

OFFH
BN
34H
1en
28H
g
36H
gt
79H
1y
oo

SET INVALID MARK FLAG (CY = 1)
AND PETURN WITH NEW SPACE LENGTH

ASCII 0094 0830

CONVT 007A 0435

CRLF 00AC 0335 0455 1270

cw 00FC 1350

DASH 0052 0740

DLY1 009D 1345

DOT 005F 0585

DOTT 0066 0745

ERROR 0098 0850

GENSP 0036 0500

IPSTN 00DB 0445 1290

LEN 0040 0450 1260

LOOP1 00Aa2 1010 1020

MASK 0001 1355

MKLEN 00F8 1360 1425

METYP 004B 0390

NEWME 0016 0405 0465

NEXT 0084 0870

ooT 00BB 0440 1060 1070 1285

PRSP~ DOEF 1265

PSTN OBFF 1080 1200 1210 1255

SAME 0072 0675

SPACE 0113 1440

SPOUT 00E3 0505

SPTYP 001B 0430

TABLE 0119 0820

VLDMK 0104 0380 0400 0460

WAIT 0010 0385 0510
ERROR

END OF NESSAGE
EXCLUSTVE INVITATION TO TRANSMIT
WAIT
END OF W/ORK .
END-OF=~TABLE FLAG
POPULAR ELECTRONICS

BY FRED BLECHMAN
AND DAVID McDONALD

An electronic replacement

for the old mechanical
music timer

he mechanical metronome, re-
putedly invented by Maezel in
the 19th century, has been a familiar
sight around musicians and music stu-
dents for many years. It uses a wind-
up clock mechanism to swing a
weighted arm, generating a series of
clicks as the escapement gears make
contact. The clicking rate is conven-
tionally adjustable from 40 to 210
beats per minute by positioning the
weight on the calibrated oscillating
arm to change the moment of inertia
and the rate of the swing.
Redoubtable though it may be,
Maezel's brainchild suffers from de-
fects common to all mechanical de-
vices: wear, drift of calibration, and
the need for fairly frequent mainte-
nance. In addition, it must be wound
often. A battery-operated, solid-state

A LED
PENDULUM

METRONOME

electronic design, such as the LED
Pendulum Metronome described
here, circumvents or alleviates the
problems of the mechanical metro-
nome. It is stable in calibration and
reliable.

Partly for nostalgic reasons, the
pendulum movement of the mechani-
cal metronome is simulated in the
project as a flashing sequence of
LEDs arranged in an arc. (A click
from a loudspeaker occurs as the LED
at either end of the string fires.) How-
ever, the LEDs offer the user the
option of “reading” the metronome
signal visually in circumstances where
a click might be inaudible or objec-
tionable to the user.

Circuit Operation. The “beats” are
generated by /'CI, which is used as an

oscillator (Fig. 1). Resistors RI, R3,
and capacitor C/ limit the frequency
of operation that can be set by means
of potentiometer R2. Capacitor C2
decouples the ICI modulation input.
Each cycle of operation of ICI results
in a positive-going pulse at pin 3,
which is fed to the clock input of up-
down counter /C4. This counter can
be set to count from 0 to 9 (10 counts)
or 0 to 15 (16 counts), depending on
the status of pin 9. With pin 9 positive
(as shown), IC4 counts from 0 to 15.
Counting up or down is controlled by
pin 10; positive for up-counting,
ground for down-counting. The A, B,
C, and D outputs of /C4 (pins 6, 11,
14, and 2) go positive in a 4-bit binary
sequence with the D output (pin 2)
low during counts 0 to 7 and high dur-
ing counts 8 to 15.

Both /C2 and IC3 are identical 1-
of-8 switches. Depending on the 3-bit
binary input, one of eight outputs is
connected to pin 3 through a low
resistance (typically 120 ohms). This
is called the *““on” condition for this
pin. The A, B, and C inputs to IC2
and IC3 (pins 11, 10, and 9) are
addressed by the output pins (6, 11
and 14, respectively) of /C4. Howev-
er, /C2 or IC3 must be enabled by a
low on pin 6. For counts 0 to 7, pin 2
of IC4 is low, enabling 7C2. Notice,
however, that pin 6 of IC3 is high
because of IC54, one section of a
quad 2-input NAND gate, wired as
an inverter. This disables /C3 while
IC2 is enabled.

As IC4 counts from 0 to 7, the out-
puts of IC2 are turned “on” in
sequence. In this case, on is not
ground, but is an internal low resist-
ance to pin 3, which is grounded. This
low resistance to ground allows the
LED connected to an on pin to glow.

Only five LEDs are connected to
the eight outputs, with LED/ connect-
ed to three outputs, LED2 to two out-
puts, and LED3, LED4, and LEDS to
one output each. This is done to simu-
late the swinging motion of a pendu-

DECEMBER 1981

BY RANDY CARLSTROM

DESGNNG
WITH THE

Part 5: Morse Code
Hardware Interface

TABLE [I—SUBSTITUTE SUBROUTINE
0000 Q100 % # & & & ® & & & # & & & % # & Kk & K & kK 4 K &k *
i f h 0060 < 'CH MAY BE USED IN PLACE OF
i 0000 0110 * THIS IS A SUBROUTINE WH I S
HE ‘nterfacc reqUI.I-Ed Y e t Z 0000 0115 * THE ORIGINAL "OUT" SUBROUTINE IN THE MORSE Pﬁgﬁg\“.
oooo 0120 * IT WAS WRITTEN PRIMARILY FOR USE WITH THE SI .
Morsc program descrlbed bl Part 0000 0125 * CHARACTER DISPI&QYDEEségg{(BERIE’:CE%%E:JHE’SEDI};STI(I)IE%P%%T%‘IN:ILE‘
i i i * THE FIRST LETT
Of thls serics COHSIStS Of one parallel gggg g};? * Sg:E;EgASE, WHEREAS THE REMAINING LETTERS OF THE WORD
input port and one paraliel quibyL port, betg B L e e
as shown in Fig. 23. The Morse program 9000 0150 * DISPLAY.
W Origlnally writtcn for 2 SYStem gggg gigg 3 ORG OUT BEGIN ASSEMBLY AT ORIGINAL "OQUT" ADDR
which incorporated a printer or CRT as 0088 0170
2 = 00BB C5 0175 ouT PUSH B WANT TO RETURN WITH REG. B UNALTERED
the output medium. If a printer or CRT 00BC FE 41 0180 CPI 'A' HODIFY ONLY ALPHABETIC CHARACTERS
& £ 3 O0BE DA D1 00 0185 JC DSPLY
is not available, the output display gl 14 95T ravid
H 1 1 NC DSPLY
shown in Fig. 24 may be used in con- doce bt 2 o400 S0 ok SAVE ACCUMULATOR TEMPORARILY
3 1 H 00C7 3A FF 0B 0205 LDA PSTN BDT WORD FLAG INTO ACCUMULATOR
_]un(:tlon Wlth the nccessary program 0oca 1F 0210 RAR ROTATE FLAG BIT INTO CARRY BIT FOR
hanges given in Table I e 72 S weND, HEUGM s
c . 0 JC DSPLY SEND L -)
g i d IC3 itute th gggg 52 gﬁ w 3525 ORI 20H ELSE CONVERT TO LOWER-CASE
In Flg‘ 23’ IC2 and I constitute 2 00Dl F6 80 0230 DSPLY ORI BOH SET DISPLAY ENABLE BIT
Port-Select logic, which decodes I/O Sng.ns e ons QU Cf SEND CHARACTER TO LATCH
port FC. Pin 1 of IC3B responds to an IN oops 21 o550 oo BTN ESToRE REG. B TO THE WAY IT WAS PRIOR
FCH instruction by going high; pin 4 of 00DA C9 0255 RET . TO ENTERING THIS SUBROUTINE AND RETURN
00DB 0260 *
IC3A4 goes high in response to an oUT oooa gggg:-un--n----*-—n-“*-u-
i i 0275 * IF THE ABOVE ROUTINE IS USED IN PLACE OF THE ORIGINAL
FCH mstn:uctlon. IC1 latc.hes the. output o0on 0275 + I¢ THS ASOVE ROUTINE IS USED I FLACE OF THE oRIG
data durlng an OUT FCH instruction, the 00DB gggg * CHANGES MUST ALSO BE MADE:
. Q0DB
output of which may be connected to a oope D96, & it
: 00DB 0300
i - er i
Erln:er’ ERT, 'orF:thezzlnIgée"Chal;‘zc:rls gggg c9 g;gg :SRLF RET SUPRESS ALL CAR. RET.'S AWD LINE FEEDS
isplay shown in Fig. 24. perfor o e
1 H 3 0A 0320 *
the function of buffering and gating the han 0321 i
; v
input data byte OntO thc CPU Data Bus ggg: c9 gggg IPSTN RET DON'T UPDATE PRINTER POSITION COUNTER
during an IN FCH instruction. Only bit 0 dobe 0101 a0
1 1 0350 ORG
in 2 of IC4) is used by the Morse pro- 00DC f
(p) ini i L bi b gg:g 3E 01 3333 SPOUT MVI A,01 SET WORD FLAG RATHER THAN SENDING
gram; the remalnlng lnput lts may c 00E5 32 FF 0B 0365 STA PSTR A SPACE, THEN RETURN
used in other applications if desired. IC3 ooEs b e ;
functions as a form of A/D converter. It 00E9 0380 ¢ 4 s 4t d b kbbbt R aaran
i i CRLF O00AC 0300
has_ one analog input which accep_ts cmr ooac o300 o
audio voltages (such as from a radio Ipsmu oooa 0325
receiver’s speaker) and one TTL-com- SPOOT O0E3 0350

62

POPULAR ELECTRONICS

8080 microprocessor

patible output (pin 5). The output goes
low whenever audio of sufficient ampli-
tude (from a received dot or dash) is
present at the input, and is high in the
absence of audio (spaces).

Turning our attention now to Fig. 24,
we find that /C7 converts the ASCII
code latched in ICI (which was output
by the Morse program) into a multi-
plexed 5-bit code necessary for driving
the alphanumeric display DISI1. IC6,

IC10, IC11, and buffers IC8 and IC9
complete the interface to DIS1. Bit 7 of
the output latch (the unused parity bit)
is used to turn the display on or off; set-
ting this 'bit to 1 enables the display.
Installation and adjustment of the in-
terface is straightforward. Connect JI,
J2, and J3 of the interface to PI, P2,
and P3 of the CPU module using three
16-conductor ribbon cables, and the au-
dio input of the interface to your receiv-

er’s speaker. Install the ROM contain-
ing the Morse program machine code in
the IC5 socket of the CPU module.
Apply power and adjust the receiver
volume to a comfortable listening level.
Then tune the receiver to a spot where
no signals are present and adjust sensi-
tivity control R1 until LEDI lights. Now
back off RI just past the point where
LED! extinguishes. This is the point of
maximum sensitivity of the detector,

D8O
|5BY oz
2
oB2
pE=7 8 TS se:
i oF Gl e PORT 4
2 GND 2 L OUTPUT 1 bBa)92
DB5
1 i :
— DBS
13 68D = L .
T oB7
5 k] 14 18
s3-5E22EL 55
Ja-10=L2¥ 7 12 16 #
5 i 3 2
r—PORT-SELECT ClHCUET—| s
0 et | 7415244
[‘ 13 8 r
L Ala 2
e 3
L Al2 4 L UNusED PORT INPUTS —
i g Al 5
L AID 6| +5v
A3 |_q L Yicie So—4 | cichod —m0m v o
‘ S e 1c6
. 13D LEDI 336n =
8 12 ¥ T DETECTOR
| - ,(/ 100K 0
Ja_g I7OR
IC3:74L502

IC6=74Cl14,CD40106

Fig. 23. The interface required

for the Morse program consists

of one parallel input port and
one parallel output port.

IK +5V 5K

TABLE ll—MORSE INTERFACE TEST PROGRAM

0000 - 31;FF OB
'\“3‘”

0008 CD 00 01

0006 C3 03 00

0100 3E 41
0102 F6 80
0104 D3FC
0106 DB FC
0108 C9

LXI SP, OBFFH

LOOP CALL TEST
JMP LOOP

TEST MVI A 41H

ASCIll (character code for

uAH)

(Set display-enable bit)
33;8:3_' (Sent data byte to the port)
IN FCH (Read the port too)
RET (and return to main program)

(Initialize Stack Pointer to
end of RAM area)

(Call the test subroutine)
(Do it again)

(Load accumulator with the

JANUARY 1982

63

Dl
IN4|148

Q1-Q5 = 242907
RI2-RI6 =3.3K
RI7-R2l = Izﬂg'.f'l
R22-R26 =
ICE =74Cl4,CD40106

Dz
4728A +12V

+9V J2-14

ZRI8

+
I 68uF

Fig. 24. The output of the interface can be connected to a single-character display as shown here.

PARTS LIST

C1—10-uF, 10-V tantalum capacitor

C2 through C8—0.01-uF or 0.1-uF capaci-
tor distributed near ICs

CO— 1-pF, 10-V tantalum capacitor

C10—0.1-uF disc ceramic capacitor

C11—47-pF disc ceramic capacitor

C12—68-uF, 15-V tantalum capacitor

©13—0.001-uF disc ceramic capacitor

D1—1N4148 switching diode

D2— 1N4728A 3.3-V Zener diode

DIS1—TIL-305 5X7 alphanumeric LED
display

IC1—74L5273 octal D-flip-flop

1C2—74L.S30 8-input NAND gate

IG3—74LS02 quad 2-input NOR gates

|IC4—74L.S244 octal noninverting tristate
buffers/receivers

IC5—LME56C dual timer

IC6—74C14 or CD40106 hex Schmitt-trig-
ger inverters

IC7—MCMB6674 5X7 character generator
(Motorola)

IC8, ICO—DS75492 MOS-to-LED hex digit
drivers ;

IC10—CD4028 BCD-to-Decimal decoder

IC11—74C 161 or CD40161 binary coun-
ter

J1, J2, J3—16-pin DIP socket

LED1—Red LED

Q1 through Q5—2N2907 or PN2807 tran-
sistor

Unless otherwise specified, the following
are Vs-watt, 10%-tolerance, fixed car-
bon-composition resistors:

R1—5-kf2, PC-mount potentiometer

R2—5.1 kQ2

R3—4.7 k2

R4—1 kQ

R5—51 k2

R6, R17 through R21—2.2 kQ
R7—330 Q

R8— 100 kQ

R9—470 k2

R10—47 kQ

R11—22 kf}

R12 through R16—3.3 k{

R22 through R26— 100 §, 2-W

Misc.—IC sockets, Vector board or
printed-circuit board, wire-wrap wire or
solder, etc.

which is usually a one-time adjustment
since various signal strengths and noise
conditions may be compensated for by
adjustment of the receiver volume level.
The interface can be tested by using the
program shown in Table .II.

The Morse program is now opera-
tional. In crowded band conditions, it is
especially important that the receiver
have adequate selectivity, or the Morse
program will not know which signal to
lock on to. Code speed variations are
automatically tracked and compensated
for by the program.

The Morse program may also be used
in conjunction with a code-practice os-
cillator for code practice or trouble-
shooting of the interface. It has also
proven to be a very effective aid in learn-
ing the Morse code since each Morse
character may be seen immediately af-
ter it is heard, making it easier to asso-
ciate the Morse “sounds” with the char-
acters they represent.

Next month we will discuss program-
ming the CPU ROM. Q

POPULAR ELECTRONICS

»r

!

AIVPLE

BY JEFF HIRSCHL

OU can hear dozens of powerful
English-language broadcasts of-
fering news, music, and drama from
all parts of the globe night and day—
but only if you have a shortwave
receiver. If you've never been involved
with shortwave and want to see if
you'd like to pursue this hobby seri-
ously, without a significant invest-
ment, here’s a little converter which
can be built for about $13. It lets you
use an ordinary AM radio to receive
broadcasts in the 60-meter tropical
band (4750 to 5060 kHz) and the 49-
meter band (5950 to 6200 kHz), two
of the 11 SW bands available.
Although performance does not
stand up to that of a good shortwave
receiver, this converter is more than
adequate for an introduction to short-
wave listening and at a great deal less
money. With the recommended 10-
foot antenna, signals from Radio

Nederland, the BBC, Radio Canada
International, and the Voice of Amer-
ica can be easily received on the 49-
meter band. On the tropical 60-meter
band, so called because of the location
of the stations that use it, signals can
be received from as far away as
Colombia and Venezuela.

About the Circuit. As shown in the
schematic, a CMOS NAND gate,
ICIA, and a TV color-burst crystal,
X1, form a local oscillator operating
at 3579 kHz. The fundamental fre-
quency of this oscillator is used for 60-
meter band reception, while the sec-
ond harmonic is used for the 49-meter
band. The oscillator signal is fed to
the source of mixer transistor, QI.
Meanwhile, the incoming signal from
the antenna is tuned by plug-in capac-
itors, CI to C5, and is fed to the gate
of Q1. The two signals “mix” in QI to

FOR ANYAMIRADIO

Inexpensive device enables AM radios
to receive shortwave broadcasts

provide an output in the standard
broadcast band, which appears at the
drain of Q1. This output is coupled by
C6 to amplifier transistor, 2, which
boosts it to a level and impedance
suitable to drive the broadcast radio’s
loop antenna. The signal for the
broadcast radio is provided by a loop,
L2, wound around the radio and driv-
en by the emitter of Q2.

Construction. The circuit may be
built on any circuit board which can
accept 14-pin DIP sockets for ICI and
the input tuning capacitors CI to C57
Use point-to-point wiring and try to
keep lead lengths as short as possible.
Use care in soldering to avoid cold
solder joints and wiring errors.

To reduce the risk of static damage,
use a socket at /CI and leave the IC
out during assembly. Be careful to
wire this socket correctly, avoiding

65

Popular Electronics

WORLDS LARGEST SELLING ELECTRONICS MAGAZINE FEBRUARY 1982/%1 -

~ New Single-IC Video Modulator

~ FOR CRISPER TV COLOR FBI]M COMPUTERS & GAMES o
Evaluating the Xerox 820 Personal Computer
Elapsed-Time Device Logs TV Use Aufomatically

Buyers Guide toTelephone Controllers
G @ STORED MEMORY @ AUTOMATIC REDIALING @ CALL TIMING '

0 —-—Thls Iqmmﬁ:ﬁr@znf ; h
‘| H &0 aamﬂuai‘;‘g gaﬁgﬁwim .[3 ColorTV
39 vI80SK Umem' MOdU'GS

ZaA0N QTvT #EB,‘".&.DQH W

SIMPLE SIMON ELECTRONIC KITS, Inc.
7 + 11 SWD PARTS KITS

MITSUMI
VARACTOR
UHF TUNER

Model UES-AG6F

$34.95

Freq. Range UHF470 - 8BSMHz
Antenna. Input 75 ohms
Channels 14-83 Output Channel 3

Wr o paAr

HO HO DESCRIPTION

1 VT1-SW Varactor UHF Tuner, Model UES-ASBF

2 CB1-SW Printed Circuit Board, Pre-Drilled

3 TP7-SW P.C.B. Potentiometers, 1-20K, 1-1K, and
5-10K ohms, 7-pieces.

4 FR35-8W Resistor Kit, Y4 Watt, 5% Carbon Film, 32-pieces. . . 4.
5 PT1-8W Power Translormer, PRI-117VAC, SEC-24VAC,

ZBOEGE. ., - N S 6.95
6 PP2-SW Panel Mount Polentiomelers and Knobs, 1-1KBT

and T-5KAT w/Switch.ooovvenwvn e 5.95
7 SS814-8W IC's 7-pes, Diodes 4-pes, Regulators 2-ps

i R U o e e 8 S 29.95
8 CE9-SW Electrolytic Capacitor Kil, 9-pieces. 5.95

9 CC33-SW Ceramic Disk Capacitor Kit, 50 W.V., 33-pieces. . . . 7.95
10 CT-SW Vaiible Ceramic Trimmer Capacitor Kit,
boGhpld, G- pidcesie it Baes to e 5.95
11 14-SW Coil Kit, 18mhs 2-pieces, 22jths 1-piece (prewound
inductors) and 1 T37-12 Fenite Torroid

Core with 3 It of #28 wire. 5.00
12 ICS-SW |.C. Sockets, Tin inlay, B-pin b-pieces
and 14-pin 2-pieces P 1.95

13 SR-SW Speaker, 4x6'' Oval and Prepunched

Wood Enclosure . .- ., ..., 1485
14 MISC-SW Misc. Pars Kit Includes Hardware, (6/32, B/32

Nuts, & Balts), Hookup Wire, Apt. Tarms, DPOT

Ant. Switch, Fuse, Fuseholder, ete. 8.85
When Ordering All Items, (1 thru 14), Total Price 139.95

UHF ANTENNAS and ACCESSORIES

Z 2IYZ7X
VHF-UKF WIDEBAND

ANTENNA AMPLIFIER

MODEL ALL-1
50 MHz — 900 MHz

(W12 4B GAIN + 0.5d8

A Revolutionary New
One Stage HYBRID
IC Broadband Amplifier

This unitis not available anywhere else in the world. One unit
serves many purposes and is available in Kit or Assembled
form. |deal for outdoor or indooruse, Input-output impedance
is 75 ohms. Amplifier includes separate co-ax feed power
supply. Easily assembled in 25 minutes. No coils, capacitors
etc. to tune or adjust,

ALL-1 Complete Kit plus Power Supply $24.95
ALL-1 Assembled/ Tested plus Power Supply $34.95

INTRODUCING OUR NEW
14 ELEMENT — 14.5 dB GAIN

YAGI ANTENNA ___.

ANTERNA
AMPUFIER

STVA-3 YagiAntenna, 14.5 dB, 75 ohm, Chan. 60-68 . . . $19.95
STVA-4 YagiAntenna, 14.5 dB, 75 ohm, Chan. 44-52 . . . $19.95

STVA-1 YagiAntenna, 11.6d8, 75 ohm, Chan. 42-64 $9.95
STVA-2 YagiAntenng, 11.5d8, 75ohm, Chan. 20-28 . , , , $9.95

RG-59/U 75 ohm Low Loss Coax Cable. $.12p/tt
F-58 Coaxial Connectors, Ba.uvuuvnanneiornnnns 39
MT-1 Special UHF 75-300 ohm Matching Transformer, ea. 1.45

ALL-1 HYBRID IC Wideband VHF-UHF-FM Antenna Amplifier IGt . . . 24.95
ALL-1 HYBRID IC Wideband VHF-UHF-FM Ant. Amp. Assembled . . 34.85

Mail Order Only — Send Check or Money Order Tao:

SIMPLE SIMON ELECTRONIC KITS

Calif. Orders:

3871 S. Valley View, Suite 12, Las Vegas, Nevada 89103

Tel: (702) 322-5273

All Other Orders:

11850 S. Hawthorne Blvd., Hawthorne, Calif. 90250

Tel: (213) 675-3347
Minimum Order: $19.95. Add 10% Shipping and Handling.

For Orders over $40.00, Add 5%. Catalog $1.00.
— VISA and Mastercard Acceptable —

68

time-on recorder

Photo of the internal arrangement of the author's prototype.

on and verify that the recorder starts
timing. To find the cumulative time-
on for a period longer than a day, note
the recorder’s display daily and then
reset the recorder. At the end of the
time period, add the results for each
day. (The maximum display is 24
hours before the clock resets itself to
Zero.)

Please note that the recorder’s max-
imum load is 720 watts (i.e., a load
requiring no more than 6 amperes).

MT2 R
- 70 R2,
TI, 8 F2
MTI L
r~C

Fig. 5. An RC shunt on the triac improves
operation with inductive loads.

TO Fl
AND
PLUG

Al

Some loads, such as a dehumidifier
may be rated at 5 A but when first
turned on will draw in excess of 6 A.
This will cause fuse F/ to blow. In this
case, the time-on recorder cannot be
used. Also, if the ac line has noise
spikes on it (from appliances such as a
dehumidifier) the recorder may be
accidentally reset and lose its count.
To remedy this add capacitors C5 and
C6 as shown in the schematic. These
components may also be needed if the
load is a fan. These capacitors short

TO Fl |

AND
SNt | IN5814 (2)

TO R2,

6AMP, 400V) 11" g ¢y

Fig. 6. Two diodes can be used to
replace the triac if desired.

the noise spikes on the ac line to
ground. Note also that there is a min-
imum load requirement to start the
recorder timing. A load as small as 10
watts will activate the recorder, while
a load of 712 watts will not.
Although the recorder can be used
to tell you how much television the
family is watching or the like, it can
also tell you how much the television
is costing you to use. To find the cost,
take the total time in hours, multiply
it by the power rating of the load in
kilowatts and then multiply by the
cost of a kilowatt-hour in your area.

Going Further. The circuit shown in
Fig. 1 uses a triac to produce the sig-
nal that enables the clock chip. The
triac was selected because of its easy
availability. It does, however, restrict
the types of loads that can be timed.
That is, the triac will prevent large
inductive loads such as fans and other
motors from starting.

If you want to avoid this, the circuit
can be changed. Shunting the triac
with a series RC circuit as in Fig. 5
would eliminate the problem men-
tioned with inductive loads. This solu-
tion, however, requires two additional
components and creates the problem
of finding the values of the two com-
ponents. Therefore, the circuit shown
in Fig. 6 is preferable. If the diodes
are available, use the circuit to re-
place the part of the original circuit
which uses the triac. No other change
in the circuit is necessary.

If one of the diodes in Fig. 6 fails,
fuse F2 will blow to protect T'/. In this
case, the bad diode and F2 will have
to be replaced before the circuit will
operate. This type of circuit failure
should be kept in mind if F2 blows but
there are no wiring errors present. ¢

POPULAR ELECTRONICS

AVING designed and built the
interface for receiving Morse
code, into the CPU, it is now necessary
to program the CPU program memory.
There are several types of read-only
memory (ROM), each of which has its
unique way of being programmed. One
type is the mask programmable ROM
in which the desired binary state of each
memory cell (bit) is programmed by
selectively including or excluding a
small conducting jumper in the cell dur-
ing manufacture. This type of ROM
programming is permanent and the bit
pattern cannot be altered once pro-
grammed. A change of even one bit
requires that a new custom mask be
made, which is a relatively expensive
process (about $1,000). This type of
ROM'is generally used only in high-vol-
ume production applications Avhere the
desired bit pattern has already been
proven and the probability of pattern
changes or updates is very unlikely.

A second type of ROM is the Pro-
grammable Read-Only Memory
(PROM). This device is similar to the
mask programmable ROM, but has the
advantage of being field program-
mable—that is, the customer can pro-
gram it himself. This is done by selec-
tively “blowing™ fusible links (made of
polycrystalline silicon or nichrome) in

FEBRUARY 1982

each memory cell with a relatively high-
current pulse to obtain the desired bit
pattern. Needless to say, the PROM
must be discarded and a new one pro-
grammed if any bit changes are to be
made which would otherwise require the
repair of a blown fuse link. The PROM
shares the same disadvantage of the
mask programmable ROM—it is not
reprogrammable,

The last type of ROM we will exam-
ine is the Erasable and Programmable
Read-Only Memory (EPROM). As its
name suggests, the EPROM can be pro-
grammed by the user. However, rather
than “blowing” fusible links as in the
PROM, a small electric charge is selec-

tively deposited in each memory cell.
The EPROM has the property that
when its chip surface it exposed to ultra-
violet light, any charges deposited in the
memory cells are removed, which com-
pletely ‘“‘erases” the memory. This
unique property of the EPROM gives it
the added feature of being reprogram-
mable. The EPROM chip is covered by
a transparent quartz lid (rather than the
conventional opaque metal or plastic
cover) which allows it to be exposed to
ultraviolet light. The erasing process
(exposure to UV light) normally takes
from 20 to 30 minutes, and will set all of
the EPROM’s memory cells to a logic 1.

BY RANDY CARLSTROM

DEIGNING
WITH THE

8080 MICROPROCESSOR

Part 6: Conclusion—Programming
the CPU Module’s ROM

Programming a cell to a logic 0 is done
electrically by depositing a small elec-
tric charge in that cell. However, the
only way a programmed cell can be
changed from the 0 state to the 1 state is
by erasing the entire device.

The EPROM is generally used in pro-
totype systems, where bit pattern
changes are likely to be made. Because
of the distinct advantages the EPROM
offers, it is this type which is used for the
CPU module’s program memory.

Program Development Board De-
sign. In a 2K EPROM, there are over
16,000 memory bits to be programmed
(depending on the length of the user’s
program), and there are strict timing
requirements that must be adhered to
when programming. To solve these
problems the Program Development
Board (PDB) was designed. Its objec-
tives are:

(1) To provide a “program-develop-
ment memory area” where 8080 pro-
grams can be conveniently stored and
edited. This memory area should exist in
the same address space as the CPU’s
EPROM, and the CPU must be able to
execute any program stored in this area.
In this way a new program can be
loaded, tested, and debugged before it is
copied (“burned”) into an EPROM.

69

1

8080 microprocessor

DB7 DB& DBS DB4 DB3 DB2 DBI DBO

AD

Al =

Az

a3

A4

A5

As

AT

Ag

Power Connections

+5v
IC8, I1C23, 1C24 14
IC30 thru IC33 18

Fig. 25. The ROM emulator is comprised
of the same type of RAM used in the
CPU module, but begins at address 0.

(2) To monitor the status of the
Address, Data, and Control busses at all
times. .

(3) To single-step the CPU one in-
struction at a time, thereby enabling the
programmer to observe the results of
each program instruction as it is exe-
cuted. This provides an instructional
tool as well as an aid in debugging new
programs.

(4) To single-step and monitor the
execution of a program already con-
tained in the CPUU’s EPROM.

(5) To provide a fast and efficient

GND.
7
9

means of burning a newly developed
program into an EPROM.

To satisfy design objective 1, a 2K-
byte ROM emulator and a 20-key key-
pad were incorporated into the PDB
design. The ROM emulator (Fig. 25) is
comprised of the same type of RAM
used in the CPU module, but begins at
memory address 0. Although the CPU
cannot write data into this memory area,
it can read program instructions and
data previously stored there. This pro-
vides built-in protection to prevent a bad
program from completely wiping itself

¢ B 6
o
o] 8| 7| el is[=

osc i
- IG26 oE
_ 7acae3
KEM :
zapr||xa x3 e i vl vavavays]
s laufzp 1213 |4 |5
= ofa[s]c]ap
D |ss
1151910188 pp
ARREE
3|7 |8 |F|ex
v /
X

Fig. 26. Program instructions and data
are loaded into the program development
memory via the keypad interface.

70

out. It is only possible to begin program
execution at memory location 0, just as
the CPU module does when first pow-
ered-up. In these ways, the program
development memory simulates the
CPU’s EPROM from which the CPU
normally obtains its instructions, even if
a programmed EPROM is installed in
the CPU module. This ¢nsures that pro-
grams which rup successfully in this
memory area will also run properly
when they are transferred to the CPU’s
EPROM. Program instructions and
data are loaded into the program devel-

Power Connections

+5V GND.
IC7, IC10, IC12, IC28 14 T
ICg, IC28, IC27 16 8
IC28, IC29 20 10

POPULAR ELECTRONICS

A3 A2 Al AD A7 A6 A5 A4
3 7 (] 14
5 9 Icz is 12
17 13 MODE 2 3
15 I 4 8

All Al0O A9 A8 Al5 Al4 AI3 A2

JET' D % 0O Gy
-|= L
Zfocea RpT
l_e 51 al3| 107] B

CLK

&

p

Fig. 27. The contents of any memory location
in the program development or scratchpad
memory can be examined using the address generator.

L =
c
g L] [
13 T~ 470
cl K
+5v 100pF

Power Connections

BURN

+5V GND.
IC1, IC2 20 10
IC3, IC4, ICs, IC8 18 8
IC7, IC8 14 7

C1— 100-pF disc ceramic capacitor

C2,C9,C11—0.22-uF disc ceramic capaci-
tor

C3,C8,C10—0.01-yF disc ceramic capaci-
tor

C4—0.47-uF Mylar capacitor

C5,C13—0.001-uF disc ceramic capaci-
tor

C6—47-pF disc ceramic capacitor

C7—0.33-uyF, 50-V capacitor

C12—2.2-uF, 10-V tantalum capacitor

DIS1 through DIS6—Common-cathode, 7-
segment LED display (H.P. 5082-7740,
T.l. TIL313, or equivalent)

LED1 through LED7—Red light-emitting
diode

IC1,IC2,IC29—MM74C244 octal noninvert-
ing tri-state buffer

IC3,IC4,IC5—CD40161BC or MM74C1861
binary counter

IC6—CD4528BC dual monostable multivi-
brator

IC7—CD407 1BC quad 2-input OR gate

IC8—74L.S00 quad 2-input NAND gate

IC9—MM74C221 dual monostable multivi-
brator

IC10—CD40108BC or
Schmitt trigger inverter

IC11—CD4013BC dual D flip-flop

IC12—CD4011BC quad 2:fjput NAND
gate

IC13—CD4081BC quad 2-input AND gate

IC14—LM340LA-12 positive 12-volt regu-
lator

IC15,IC16,IC17,I1C18,IC19,1IC20—
MC14495 BCD-to-seven-segment de-
coder/ driver

IC21—74LS74A dual D flip-flop

IC22—7417 or 7407 hex buffer with open-
collecter outputs

IC23—74L.S32 quad 2-input OR gate

MM74C14 hex

PARTS LIST

\

1C24—741.S08 quad 2-input NOR gate

IC25—CD4027BC dual J-K flip-flop

IC26—MM74C923 20-key encoder

IC27 —CD4028BC BCD-to-decimal decod-
ar

1C28—CD4075BC triple 3-input OR gate

IC30 through IC33—2114L 1024x4 RAM

J1,J2,J83—16-pin DIP plug

P1,P2,P3— 16-pin DIP plug

Q1,Q2,Q7—2N3804 or equivalent transis-
tor

Q3—2N2907, PN2907, or equivalent tran-
sistor

Q4,Q5,Q6—2N2222, PN2222, or equiva-
lent transistor

The following, unless otherwise specified,
are Vs-watt, 10% fixed carbon-composi-
tion resistors:

R1,R3,R20—470 kQ

R2,R8,R28,R33—4.7 k}

R4—330 kQ

R5—50-k{} pc-mount potentiometer

R6—82 k2

R7,R34— 100 kQ2

R9—10 k@2 ;

R10,R13,R20,R27,R31,R32,R35,R36—
47 kQ

R11—22 kQ
Ri12—1 k2

R14—1.2 kQ2
R15—560 ©

R16—1-kQ2 pc-mount potentiometer

R17,R18,R19,R21 through R26—330

R30—1 MQ

S1 through S4—DIP switch

Misc.—0.01-uF or 0.1-uF disc ceramic by-
pass capacitors distributed near ICs;
4x5 X-Y matrix keypad or 20 spst NO
momentary-contact pushbutton
switches; IC sockets; perf or printed-cir-

cuit board; wire or solder, etc. /

FEBRUARY 1982

opment memory via the keypad (Fig.
26). It is also possible to examine the
contents of any memory location in the
program development or scratchpad
memory via the keypad (Fig. 27).

A four-digit hexadecimal display
monitoring the CPU’s Address Bus, a
two-digit hexadecimal display monitor-
ing the Data Bus, and four LED’s mon-
itoring four of the five Control Bus lines
satisfy design objective 2 (Fig. 28).

Through the use of a special key of the
keypad it is possible to single-step the
CPU in one of two selectable modes
(Fig. 29). The first of these modes
causes the CPU to execute one instruc-
tion with each depression of this key.
The second mode causes one 8080 ma-
chine cycle to be executed with each
depression of the key. The states of the
CPU busses are always displayed in
these modes to aid in monitoring an exe-
cuting program’s progress.

To satisfy design objective 4, the PDB
allows the programmer to select the
“memory bank” the CPU will use to
obtain its program instructions from;
the program development memory or
an installed CPU EPROM. The CPU
scratchpad RAM area beginning at
memory location 800, is always acces-
sible to a running program, regardless of
the memory bank selected.

When the programmer is satisfied
with the operation of his new program,
the depression of a single key of the key-
pad will burn the entire contents of the
program development memory into an
erased EPROM installed in the CPU
module in less than two minutes (Fig.
30). After a successful burn, the pro-
grammer can separate the CPU module
and interface(s) from the PDB (Fig. 31)
and connect the CPU module directly to
the interface(s). The programming of
the CPU module in this particular appli-
cation is now complete, and so are the
design objectives of the PDB.

Functions. There are two primary
modes of operation of the PDB—edit
and execute. The edit mode allows pro-
gram instructions and data to be loaded,
examined, and altered in the program
development memory. The PDB enters
the execute mode whenever the CPU is
single-stepped or run. Here are the PDB
functions:

0 through F (numeric): Used to enter
hexadecimal memory addresses and
load program instructions and data into
the program development memory area.
The destinations of the numbers entered
with these keys are governed by the A/D
key.

A/D (Enter Address/Load Data);
Places the PDB in the edit mode and
also determines where subsequent nu-

71

Interested in computers or robotics? Looking for info on ; |

y —— A el Th
8080 microprocessor — - hardware, software, theory,and applications? —— i gf\osll‘% ook
E Niicrocomputer &0 OX DUHH
1 T 1 1 1 1S The (sompuizr Book Gl offers you an incredible I (e
os | aponess [0 bis os | joama | oo range of computer books and a huge variety of tapes & DA ;

and disks ... ALL at low, low member prices!
1055 { |

S Select 6 fact-filled books =
D7 DB6 DBS DBS I;aa DBz DBI DBO for Only $2 95 (total value up to $108.70) List $16.95 Lis[légé_gl\:t it

| Haw 10 OESIGH, BUILD § PROGRAN ——

YOUR 00 AQVIREED
KING COMPUTER
fWIJR SYSTEM

All A0 A9

Als Al4 AIZ AlZ

1187 1345 1195
1299 . 101 MICROPROCESSOR: MRS LR List $18.95 List $12.95
List $16.95 :

ERI7
23300

p——BURN

OBOT
INTELLIGENCE
with experiments

R20
47K

. OFTWARE &
: HARDWARE PROIECTS

* . | '. i i Programs in

Jasten awnsoooe \ &8 | BCooh | [0) %ﬂ?!-.‘;ﬂ:?;";:‘ >

N i - edutalion. games —

i m[:nuﬂp,l’i,ggi conlint & 4 O pemean : o

: W f B o (il - 2 \j

5 I nﬂ ({.‘2‘ W : 3 EI]iTIprE.‘I" THE GUANT BOIOH OF
MC oF ki Ji

!
Ready-To-Aun '

* =B COMPUTER
i Progra EOTRRRE |

:g\:

Rz inBASIC

741

S

ZAAINNS

MEMR MEMW I/0R

Powar Connectlons i List $16.95
FBV__ GND. i
IC15 thru IC20 e 8 J1276 EEEENERREE
Ic21, 1G22 14 7 & |G T DESIY, o List $15.95 | o, e
Fig. 28. The display logic drives a four-digit address display, BUILD 4 fﬁé{;ﬁ" ¢ 1241 { B o ¥ s St Witoan
meric entries will be sent. Each key two-digit data display, and four of the five LEDs on the control lines. Eg{rargu%i EveTE List $12.95 | __ET;HE_HEI List §16.95 Iis:;sig i
: : i AL — 4 1000 b . : ;
dcpreslsmn al.ternately lights dg dc::uﬁ?l Power Connections \ % : S '"'“}.'ﬂﬁ'lns- FHUEIII_WBSA&;M“- List $10.95 Hiet K05 1095 List $21.95 ‘
point in the display corresponding to the +5V__ GND. ; : * H OWN SELE-PROG T = ek 1160 158 e List $12.95 1053
destination of subsequent numeric en- IC8, IC10, IC11, IC13, 14 7 QBD 3 . List $12.95 - List $12.95
: - s IC21, IC22, IC24,1C26 18 : g g D 2" 4 228 1205 3 E Tosted
tries (address or data). Actuating this I List $15.95 i MORE Tested,
key while a program is running will e % i3 ;) _ . i Ready-To-Run
momentarily reset the CPU, restarting BURN—— izl T2 +5Y ! Game Proglr:ams |
the running program. o s |) =0 4 L . e n ! in BAS| |
ss (Single-Step): Places the PDB in r N EPESVS'HJE%HI!H | I
the execute mode and allows the CPU to - . = — g ey - - :
= . - = TEﬂ, i B: 2 7 I S | . -
execute one instruction or one machine l ‘aiglg\e—m-ﬁuw GAME I mcmc?ﬂ'”“” | Programmer's V11T [/l3 Challenging et ‘
AT B e ey 3 p R L T clidease | WERCTO, (om0 T i
s E i . : o ; wpEr |
zz:u‘:ited. A program can be rcstartgd in — el i !; .ASTE. - B g llﬂl!l? 4 il I PERSONAL COMPUTER | SEER TR mf r_e /PE | |
the single-step mode at memory location m a4k 957%3‘ 3 lc ? ! P i > S |
: | o { A %
0 by depressing the A/D key followed by % l o‘ i 7. B o |
| the ss key. 0 Kso,_,,,_ : ¢ |
p (Program): Depressing this key will ._;.g,;,j § - Uoand \ P |
burn the contents of the program devel- MabE T, e ! L Y gy a0 nASSLEENEE .‘“'W i o i
opment memory into an erased EPROM 1199 _ 1085 1305 : itidn a2 i e
installed in the CPU module. The key- Lisr 310,08 His #1100 Ltdiomn List $11.95 List $16.95 List $14.95 List $15.95 w ‘
pad is disabled until the burn cycle has : VS T T T 5 T Y \
ended. =8 7 very good reasons to try

(]| THE COMPUTER BOOK CLUB

eX (Examine): Operates only when ,
the PDB is in the edit mode. It allows The Computer Book Club === Blue Ridge Summit, PA 17214 |
the contents of the next sequential mem- BUSEN _ Blue Ridge Summit, PA 17214 Ple_— ; I = ‘

' displayed on the Ad- - Reduced Member Prices. S to 759 ase accept my membership in the Computer Book Clu
S:ZS;OJ;UE;)(?S b;s\?i:v{:d afiithe Data 53 oo know-l::)ws ave up to 75% on books sure to and send the 6 volume_s circled below, l‘undersland the cost
displ ; of 22) ROYIN * Satisfaction Guaranteed. All books returnable within 10 of the books selected is $2.95 (plus shipping/handling). If

isplay. days without obligation not satisfied, | may return the books within ten days without

obligation and have my membership cancelled. I agree to
purchase 4 or more books at reduced Club prices during the
next 12 months, and may resign any time thereafter.

BANK: Determines which memory bank
the CPU will use to obtain its instructions
and data when single-stepped
or run. Closing the switch will select the

¢ Club News Bulletins, Al] about current selections—mains,
RUN alternates, extras—plus bonug dffers. Comes 10 times a year
with dozens of up-to-the-minute titles you can pick from

* “Automatic Order”. Do nothing, and the Main selection 1000 1045 1053 1055 1062 1085 1111
will be shipped automatically! But . . . if you want an 1160 1187 1191 1195 1199 1200 1205

+5V

ciiﬁ-?v?:c T}f;ag%igl’g ::,g?:r:lj (;23211:,1;: Alterqate—or no books at all—we’ll follow the instructions . 1228 1241 1251 1271 1275 1276 1295
: 3 5 : you give on the replay form provided with every News . 1299 1305 1330 1332 1333 1345 1369

ment memory is selected. I »-O—RESIN Builetin Name Plione
INSTRUCTION CYCLE: Operates in con- * Continuing Benefits. Get a Dividend Certificate with every i

junction with the ss key. Closing the book purchased after fulfilling membership obligation, and [| Address

switch ‘canses the 85 key to operate in qualify for discounts on many other volumes City

the instruction-cycle mode; otherwise it Fig. 29. The CPU can be single-stepped in t Eth'ﬂlnﬂllﬂEB?-l'SE}ke advantage of added-value promo- =

operates in the machine-cycle mode. one of the two selectable modes. .l%r:(s‘::.ell)] tlllg ;ﬁegﬁaliﬁcﬁlﬁtﬁ g(f) ﬁffat;'\éaﬁﬂis tg_in'tl:s, arl;g I}rllor,e Sta.te. Zip
sLow: Also operates in conjunction - edilions Allediicith e tost hacaintil >t ale publishers B (valid fornew members only. Foreign and Canada add 209, Orders outside U1.S.

with the ss key. Closing this switch

|
or Canada must be prepaid with international money orders in U.S. dollars.)
L-------------------
POPULAR ELECTRONICS ;

72 CIRCLE NO. 53 ON FREE INFORMATION CARD

New LM-4.

T - ‘

allows execution of instruction or ma- Power Supplies and Adjustments. From CPU To he 40. Chann I : - |

chine cycles at a rate of approximately = The PDB can be powered from the CPU Module Interface g Ic ' onl or ‘

two cycles per second for the duration of ~ module’s supplies (J2), but an unregu- Pin. No. Function Pin No. [- PraTiE) .

the ss key’s depression. lated +30-volt supply is also required J1 P: ou hOId In our n | |
RUN: Places the PDB in the execute for programming an EPROM. The lat- ; ig 5 % . (]

mode and allows the CPU to exit the ter supply must be between +28 and A10 3 N I . g e i |

Wait state, so that the program con- 440 volts for the on-board 25-volt regu- A1 4 . Now, there's a unique new way to speed and . I ;

tained in the selected memory bank is lator to operate properly. Three (pre- Al2 5 Slmp_llfy your work with complex digitai circuits. i

executed at full speed (approximately ferrably four) fresh 9-volt transistor ra- A13 6 By simultaneously monitoring up to 40 points

500,000 machine cycles per second). All dio batteries connected in series will give Al4 7 in a iogic system with a compact, easy-to-use

keypad functions except A/D are dis- satisfactory operation if you don’t want £;5 g instrument that's faster than a scope and safer

abled.

ADDRESS DISPLAY: A dual-function
display of either the contents of the
CPU Address Bus (execute mode) or
the address of the addressed location of

to build a separate ac-powered supply.
Two adjustments must be made on the
PDB to ensure proper programming of
EPROMs. First remove any EPROM
that may be installed in the CPU mod-

AB
A5
A4
A3
A2

than a voltmeter. It's our new multi-family LM-4.

At our factory introductory price of $199.00*

one of the best buys in logic today!
Simply slip its 40-pin IC test clip over your

B

i e CMOS or TTL ROM, RAM, microprocessor or
o e MSI/LSI chip and instantly see the logic state

P2 of each pin on a big, easy-to-read liquid
crystal display.

But that's only the beginning. You can wire
the LM-4 into a computer bus; fit it with two 16-
pin test clips or sockets for comparing known
good and questionable ICs; use it as a clip-on
display for micros, minis and other computers
during design, setup, testing, troubleshooting
...there’s no limit to the ways LM-4 can save
you time and money!

ule and attach the CPU meodule to the
PDB. Apply power to the CPU module
and depress the Program key on the
PDB. (The unregulated 30-volt supply
must be connected to the PDB for this
 adjustment.) Adjust R/6 on the PDB
for +25 volts at pin 13 of J3 (V).

3

4

5

6

7

8

9

10

11

12

13

14

the program development and scratch- 15

16

J2
1 1
2 2
3 3
4 4
5 e 5 5
(This voltage must lie in the range of 8 DBS &
7 7
8 8
9 9
10 10

11

12

13

14

15

16

J3

1

2

8

4

5

6

i

8

9

pad memory areas (edit mode).

DATA DISPLAY: A dual-function dis-
play of either the contents of the CPU
Data Bus (execute mode) or that of the
addressed location of the program devel-
opment and scratchpad memory areas
(edit mode).

M1: Indicates the CPU is in machine-
cycle one of an instruction cycle.

pGM: Indicates the PDB is in the pro-
cess of burning an EPROM.

iNTE: Indicates the CPU signal INTE is

+24 to +26 volts or damage to the
EPROM could result.)

The second adjustment can be per-
formed with the 30-volt supply discon-
nected. Depress the Program key while

active. monitoring pin 11 of J2 (PGM) with an G:D :g ~Measuring just 5.9 X 3.2 X 1.2/ the pocket-
The following LED’s display the sta- oscilloscope. A low-frequency rectangu- ?_12 b sized LM-4 comes with a 24" 40-conductor ‘
tus of thc_control bus signlals: : lar waveform sl‘»}}ould appear. Ad.Just R5 +5 15 ribbqn cable. termmat_ed in a 40-pin IC test clip, GLOBAL SPECIALTIES CORPORATION
MR: Indicates the CPU signal MEMR is so that the positive portions 9f this wave- +5 16 p!us |_nstruct|ons/app||cat|ons manual and
active. _ form are 50 ms *5 ms in duration. P3 high-impact carrying case. (An optional Univer- "
Mw: Indicates the CPU signal MEMW These are the programming pulses to INT 1 sal Cable Kit is also available f i |
AT e moch SEs e for special
is active. the EPROM which, in conjunction with ROMS 2 interfacing require-
10r: Indicates the CPU signal i/oR is the 25-volt programming supply, burns INTE 3 e g dq " 1 L ¢ |
active. each memory location of the EPROM. S1318 : $75.0 ,Tprlce . . |
10w: Indicates the CPU signal ;/owis There are 2048 program pulses during a RESET 5 .007) o |
active. complete burn cycle (corresponding to 3";&? ? , SQ whatever the 6 |
e : JOb—.Ir'I design, pro- : |
N : duction or service— g |
10 ¢2TTL 10 simplify your testing !
11 RESIN 11 with the power of ‘
12 s DX ie 40-channel monitor- I
o e - ing: Order your |
e UNREGULATED 15 SPARE 15 LM-4 today : '
St 5 Call toll-ree 1-800-243-6 |
all toll-free 1-800-243-6077 |
- 4 8:30AM—5PM EST, Mon—Fi i
Fig. 31. Connections between CPU module

and interface from the PDB.

GLOBAL
- SPECIALTIES

i CORPORATION

CT o c8
.asnr:l: s DIuF:l':

A0-CHANNEL LOGIC N?CJN&TC)F! ;] |
|

|
&g j Power Connectlons |
K) 15V GND. [
25V ADJ IC8, IC9 18 8
—L Ic7, Ic10, IC11, IC12, 70 Fulton Terr., New Haven, CT 06509 é203) 624-3103, TWX 710-465-1227.
= IG1a 14 7 QTHER OFFICES: San Francisco (415) 648-0611, TWX 910-372-7992,
| Eurape: Phone Saffron-Walden 0799-21682, TLX 817477,
Canada: Len Finkler Ltd., Downsview, Ontario,
Fig. 30. Schematic of the EPROM programmer.
1U.S. Resale only; énrice, specifications subject to change without notice.
© Copyright 1981 Global Specialties Corporation.
74 POPULAR ELECTRONICS

CIRCLE NO. 24 ONFREE INFORMATION CARD

|
|

the 2048 memory locations of the
EPROM). The adjustment of R5 can be
made with an EPROM installed if the
unregulated 30-volt supply is left discon-
nected. The EPROM will not be pro-
grammed without this supply. (If an
oscilloscope is not available, R5 may be
adjusted by setting it to the point such
that the time interval between the initial
actuation of the Program key and the
PGM LED extinguishes is 108 sec-
onds).

Using the PDB. Operation of the PDB
is fairly simple once its functions are
understood. As an illustration of its use
we will load and run the program shown
in Table II of last month’s installment of
this series. This program tests the Morse
interface.

Before the program is loaded, the
CPU module and Morse interface
should be connected to the PDB (PI, P2,
P3 of the CPU module connect to JI,
J2, J3 of the PDB; PI, P2, P3 of the
PDB connect to JI, J2, J3 of the inter-
face). Set the PDB Run, Instruction
Cycle, and Bank switches to off and
apply power to the CPU module. The
RUN LED of the CPU module should be
off, indicating that the CPU is in a Wait
state. The PDB should display address
0000 and the contents of this location,
which is indeterminant now. The M1 and
MR LEDs should be lit, indicating that
the CPU is in an “‘instruction fetch”
cycle.

To begin loading the program at the
first memory address, depress the A/D
key twice (the decimal point in the Data
display should then light), which places
the PDB in the Load Data mode. Subse-
quent numeric entries will now be depos-
ited in the addressed memory location as
an instruction (or data) and displayed in
the Data display. Load the first part of
the program by entering each instruc-
tion machine code with the numeric
keys of the keypad. After each byte is
deposited in its memory location, de-
press the Examine key to increment the
address to the next sequential memory
location (i.e., 3-1-EX, F-F-EX, and so
on). After the byte at memory location
0008 has been loaded, it will be neces-
sary to alter the normal sequential load-
ing sequence by entering the subrou-
tine’s starting address (A/D, 0-1-0-0)
and then continue by loading the sub-
routine instructions (A /D, 3-E-EX, 4-1-
EX, and so on). After the subroutine’s
RET instruction has been loaded, the pro-
gram will be ready to be executed.

Begin single-stepping the program by
pressing the ss key. The first time this
key is depressed the CPU will be reset
and the PDB will go into the Execute
mode (neither decimal point lit). Fur-

76

%

i
[
|

TESTING THE MORSE INTERFACE AND MACHINE CYCLE ILLUSTRATIONS

5SS Key Depresalon
Number

Address
Display

0000

0001

0002

0003

0004
0005

OBFE

OBFD

0100

0101

0102

0103

0104

0105

FCFC

0106
o107

FCFC

0108

OBFD

OBFE

0006

0007
0008

0003

Data

Display

31

FF

0B

cb

oo
01

ili]

06

3E

41

F6

80

D3

FC

(o}

DB
FC

FF/FE

c9

06

oo

cl

03

oo

ch

TABLE Il

(LEDs ON)

HM1,HR

MR

M1, MR

M1, MR

M1,HR

MR

M1, MR

MR

10w

ML MR

MR

M1,MR

MR

MR

M1 ,MR

ML MR

Activity or Action

The first instruction's op code
(31) is being ferched (read) from
memory. This is the first machine
cycle of the instruction.

The first instruction's first
operand is being read from memory.

The second operand of the first
instruction is being read.

The three bytes of the first in-
struction were 'put together" in-
side the CPU and executed. The
first machine cycle of the Call
instruction is entered (fetches
the op code).

First operand is read from memory.
Second operand is read from memory.

The CPU is writing the high-order
byte of the PC (00) into memory
location SP-1 (DBFE).

The CPU is writing the low-order
byte of the PC (06) in memory
locatien SP-2 (OBFD). The stack
now holds the return address.

The second-half of the previﬂu!
instruction was executed (jump to
memory address 0100). The CPU is
now in machine cycle one of the
first instruction of the subroutine.

The MVI A, 41H instruction's
operand is read from memory.

The previous instruction was
executed; fetching op code of ORI
80H instruction of subroutine.

Read operand from memory.

ORI BOH instruction was executed
(accumulator contains Clyg);
enter machine cycle one of output
instruction is entered.

Read operand (port address) from
memary .

The CPU is writing the contents
of the accumulator to port FC
(Morse interface). A dc voltmeter
would read approximately & volts
at pin 4 of IC3 of the interface
at this time, which latches the
contents of the Data Bus in ICl
{Fig. 23). The letter "A" should
appear at the output device

if connected.

Fetch op code of Input instruction.
Read port address from memory.

The CPU is reading port FC. A dc
voltmeter would read near 0 volt
at pin 10 of IC] of the interface,
which enables the tri-state buffers
(rc4). Adjust Rl of the interface,
observing the LSB of the Data Bus.

- It should follow the detector,

LEDIL.

The CPU stored the data placed on
the Data Bus from the input
interface in the accumulator.

The last instruction of the
subroutine is now being fetched.

The CPU is reading the data
stored at the memory location
specified by the SP (OBFD). This
byte will soon be moved into the
low-order byte of the PC.

The CPU is reading the data stored
at memory location 5P+1. This
byte will go into the high-order
byte of the PC. The CPU now

holds the return address.

The second-half of the previous
instruction was executed (jump to
memory address 0006). The CPU

is fetching the Jump instruction's
op code.

Read low-order bits of Jump address
Read hi-order bits of Jump address

And we're back to start again!

ther actuations of the ss key will allow
the CPU to execute one machine cycle
each time the key is depressed. (Ma-
chine cycles are small units of process-
ing activity which comprise each in-
struction cycle. Every instruction cycle
consists of one to five machine cycles,
depending on the type of instruction
involved. A machine cycle is required
each time an instruction requires the
CPU to access memory or an 1/O port).
Table III follows the program’s execu-
tion one machine cycle at a time using
the PDB displays to monitor the CPU’s
activities (refer to the program listing
and the individual instruction descrip-
tions as necessary). Remember that the
Address and Data displays are monitor-
ing the CPU'’s Address and Data busses,
respectively.

After single-stepping through the pro-
gram once, examine memory locations
OBFD and OBFE, noting their contents.
This is where the CALL instruction
stored its return address. One may load
different codes at memory location 0101
to view the different characters that can
be displayed on the Morse interface dis-
play (Fig. 24). Note also how the PDB
single-step mode can be used to trouble-
shoot an interface.

To burn this program into an
EPROM for permanent storage, an
erased EPROM must be installed at IC5
in the CPU module and the unregulated
30-volt supply connected to the PDB.
Pressing the Program key will then com-
pletely program the EPROM in a little
less than two minutes.

After programming an EPROM it is
wise to verify its contents by selecting it
for a “test run” by the CPU (Bank and
Run switches closed). The content of the
program development memory is left
intact after a burn cycle, making it pos-
sible to repeat the burn if necessary. If
an EPROM won’t verify properly after
it is programmed (the program con-
tained in it will not run properly), it is
possible that it was not fully erased to
start with. Re-erase and try again, or try
another EPROM.

Once it has been determined that an
EPROM contains valid information, a
small piece of electrical tape or other
opaque material should be placed over
its transparent window to kéép out am-
bient light. Sunlight and some types of
artificial light can cause the EPROM’s
data to slowly decay and eventually
become erased,

This series of articles has laid a foun-
dation for one to design an interface and
write his own machine-language pro-
grams for the popular 8080 family of
microprocessors. What is built on this
foundation is solely up to one’s imagina-
tion and ingenuity. <&

FEBRUARY 1982

e With Crown

MULTI-MODE

Youre ready forreal.

“MULTI-MODE ™" describes an im-
proved Crown output circuit that is
audibly superior. It instantaneously
changes its mode of operation as
the signal level ehanges, for totally
clear, undistorted sound.

The MULTI-MODE circuit makes
at-home listening more real. From
Bach to Bee Gees, you'll hear more
of the music with MULTI-MODE.

At low signal levels, the MULTI-
MODE circuit operates in a Class
A mode, free from switching or
notch distortion. As signal current
increases, the circuit smoothly
configures itself as an A + B amp,
again with clear, clean output. At
high signal levels, MULTI-MODE
operates in an AB + B mode, pro-

BRSNS S e S e e e e e e e e e B AT e e e e e e e e e e e s B

crown.

..WHEN YOU'RE READY FOR REAL!

The Crown Information Package is also available
free from your dealer. If you need a list of Crown
dealers, use the Reader Service Card number,
or call 219/294-5571.

CIRCLE NO. 13 ON FREE INFORMATION CARD

viding all of the undistorted power
needed.

Three new Crown POWERLINE
amps bring you the sonic accuracy
of MULTI-MODE and other circuit
improvements. New ideas in front-
panel displays and rear-panel con-
venience will enhance your enjoy-
ment.

MULTI-MODE theory and oper-
ation, and the POWERLINE amps
are described in the Crown Informa-
tion Package. It also contains data
on all Crown products for the home,
a factory “tour,” reprints of reviews,
technical discussions of audio
problems, prices and dealer lists.
Send us the coupon and $5 for your
complete copy. Get ready for real.

CROWN INTERNATIONAL, Dept. MM
1718 W. Mishawaka Road, Elkhart, Indiana 46517

Here's my $5 (outside U.S. and Canada, $8). Send my
Crown Information Package, with money-back guarantee.

Name

Address

City State Zip

Phone /|

PE2

