| Popular Electronics

WORLD'S LARGEST SELLING ELECTRONICS MAGAZINE DECEMBER 1981/$1

THE ELECTRONIC V\{ORLD
A User’s Guide to Computer Languages

Detect Car-Battery Drain Before It's Too Late

Comparmg New ngh Tech Audio Cassettes

Y50 i

Al 37 1!'13113 I,J et
JININFD

JH

SBAON ATHT pgoo 000 W32 pagnss

| its IBM's
LOUK: new Persondl Computer

Your prayers
“have been
answered.

If you own or use a micro-computer, then chances are that
from time to time, you've wished that someone could simplify
programming.

Because as useful as micro-computers are, they can only ever

be as good as the programs they run.

Well then, how does this sound?

No more program-coding. No more debugging. And no more
time wasting. >

Arguably more comprehensive and advanced than anything else
of its kind, The Last One is a computer program that writes computer
programs. Programs that work first time, every time. :

By asking you questions in plain English about what you want
your program to do, The Last One uses your answers to generate a
ready-to-use program in BASIC.

What's more, with The Last One, you can change or modify
your program as often as you wish. Without effort, fuss or any
additional cost. So as your requirements change, your programms
can too.

And if, because of the difficulties and costs of buying, writing

- and customising software, you've put off purchasing a computer
system up to now, you need delay no longer.

Available now. |

The Last One costs $600 plus local taxes where applicable and is

now available from better computer stores.
For further information, write to D.J. ‘AT’ Systems Ltd,,

Two Century Plaza, Suite 480,
e e e O R e e e s

2049 Century Park East,
POPULAR ELECTRONICS

Los Angeles,CA 90061.

Tel: (213) 203 0851.

CIRCLE NO. 13 ON FREE INFORMATION CARD

8. THE ELECTRONIC WORLD

BASIC

AR
Eorth
COBEE
Rascal
EISEN
Ada
PILM]

E
ARGEI
BISE
BIE@i
QGO
E@RMRAN

BY STANLEY S.VEIT

Turnyour Apple into the world’s
most versatile personal computer.

The SoftCard™ Solution. SoftCard
turns your Apple into two computers.
A 7-80 and a 6502. By adding a Z-80
microprocessor and CP/M to your

Apple, SoftCard turns your Apple into

a CP/M based machine. That means
you can access the single largest body
of microcomputer software in exist-
ence. Two computers in one. And, the
advantages of both.

Plug and go. The SoftCard system
starts with a Z-80 based circuit card.
Just plug it into any slot (except O) of
your Apple. No modifications required.
SoftCard supports most of your Apple
peripherals, and, in 65602-mode, your
Apple is still your Apple.

CP/M for your Apple. You get CP/M
on disk with the SoftCard package. It's
a powerful and simple-to-use operating
system. It supports more software
than any other microcomputer operat-
ing system. And that's the key to the
versatility of the SoftCard/Apple.

CIRCLE 37 ON READER SERVICE CARD

BASIC included. A powerful tool,
BASIC-80 is included in the SoftCard
package. Running under CP/M, ANSI
Standard BASIC-80 is the most
powerful microcomputer BASIC
available. It includes extensive disk 1/0
statements, error trapping, integer
variables, 16-digit precision, exten-
sive EDIT commands and string func-
tions, high and low-res Apple graphics,
PRINT USING, CHAIN and COM-
MON, plus many additional com-
mands. And, it's a BASIC you can
compile with Microsoft's BASIC
Compiler.

More languages. With SoftCard and
CP/M, you can add Microsoft's ANSI
Standard COBOL, and FORTRAN, or

Basic Compiler and Assembly Lan-

guage Development System. All, more
powerful tools for your Apple.
Seeingis believing. See the SoftCard
in operation at your Microsoft or Apple
dealer. We think you'll agree that the
SoftCard turns your Apple into the
world’s most versatile personal
computer.

Complete information? It's at your
dealer’s now. Or, we'll send it to you
and include a dealer list. Write us. Call
us. Or, circle the reader service card
number below.

SoftCard is a trademark of Microsoft. Apple Il and
Apple Il Plus are registered trademarks of Apple
Computer. Z-80 is a registered trademark of Zilog,

Inc..CP/M is a registered trademark of Digital
Research, Inc.

Microsoft Consumer Products, 400 108th Ave. N.E.,
Bellevue, WA 98004. (206) 454-1315

'THE ELECTRONIC WORLD |

IT WOULD BE nice if people and computers shared a common language. However, since human
languages are so complex, it has been necessary to invent computer languages. Most people who buy
personal or small-business computers have little choice of computer languages. Someone has. already ‘
made the decision for them so that, when they turn on the machine, an announcement such as “RADIO !
SHACK LEVEL II” or “APPLESOFT” is seen on the monitor. g g

In this article, we will discuss computer languages as thoroughly as possible to provide an uhdersfanding ‘
of what is available and to enable the computer user to choose the language most appropriate for his !‘
needs. The diagram below shows the various levels of computer languages from machine IanQUage at the
bottom to some types at the top that actually resemble human language. We will examine each step and
weigh its cost in computer resources and flexibility.

At the heart of your small computer is the microprocessor chip. It is the computer. Everything else
except the memory, supports the chip. It may be an 8080, Z80, 8085, 6502, 6800, etc. What these;
chips have in common is more important than their differences. They are all 8-bit chips with an 8-bit
bi-directional data bus and 16-bit address bus. They all use instructions of one, two, or three bytes that
perform similar operations. All of the microprocessors consist of an arithmetical logic unit, control circuits,
and various registers. The 8-bit bus means that the word size is 8 bits (one byte) and the data bus is used
to send 8 bits of data to or from external memory or input/output devices. The 16-bit address bus means
that the microprocessor can directly address 65,536 (21%) unique memory locations.

All of the computer instructions are unique to a particular microprocessor
and are implemented by an 8-bit binary code, which is the only thing the
microprocessor can understand. In other words, the computer only
knows if the potential is on or off. Potential on means a ‘‘one,” no
potential means a.“‘zero.” Any number or letter can be constructed
from a series of ones and zeros. This is the basis of binary logic,
and it is common to all computers and languages. But lan-
guages differ in other respects, as we shall see.

o e T

- NATURAL HUMAN
LANGUAGES

e T R e o et o
C.A.L LANGUAGES

B T e T e
ARTIFICIAL INTELLIGENCE
(LISF)

MACHINE LANGUAGE

DECEMBER 1981

41 |

42

CTRONIC WORLD
' Direct

in Machine
Language

THE METHOD of directly programming the micro-
computer in binary form (or its equivalent) is called
machine language. Everything else must be translated
into machine language before it can be used by the
microprocessor.

Programming in machine language consists of sup-
plying the microprocessor with machine instructions,
memory locations, and data in certain forms and
sequences. The microprocessor cannot distinguish be-
tween instructions and data except through the form of
the program. The instructions are unique to each micro-
processor and are built into the chip, with the “power’’ of
the microprocessor defined by the number and complex-
ity of the instructions it can perform.

Early minicomputers and microcomputers used a set
of front-panel switches to represent the binary digits. If a
switch was set in one direction it was a "‘one." In the
other direction, it was a “'zero." When the row of
switches was set to represent the desired binary humber

MODERN computers permit direct access to the
microprocessor through an operating program called a
Monitor. The program is usually stored in Read Only
Memory (ROM) and starts to run as soon as the comput-
er power is turned on. Since it is more difficult to work
with strings of binary numbers, it has become common
practice to shorten the machine codes by using octal
notation (base 8) or hexadecimal notation (base 16).
Figure 1 shows a short program in binary, octal, and
hexadecimal notations.

The Monitor program, written in machine language
and burned into the ROM has commands that allow the
user to do many things. In minimal computers using cas-
sette-tape data storage, the monitor may act as the

. memory location.

Programming

for the starting rmemory location, another switch was
operated to cause the computer to go to the specified

The data switches were then set to represent the first
instruction. To enter the instruction into the computer, a
switch marked enTER had to be operated. After each
enTER, the system automatically stepped to the next
memory location. The data switches were set to the next
binary number and so forth, until the program was
entered one binary number at a time. There was usually
a set of LEDs associated with the switches to indicate
that the program had been entered correctly. When the
correct binary number was stored in each successive
memory location, another switch was pressed and the
computer ran the program. It was a good thing there was
not much memory available at the time since the process
of manual entry forced the programmer to keep the pro-
grams very short. Even today, however, simple single-
board computers can be programmed this way.

operating system. Some of the programming functions in
the Monitor permit a user to examine the contents of any
memory location, step through the memoty showing the
contents of one location at a time, and load the memory
location with instructions or data in the form of two hex
digits (or three octal digits). Each of the hex digits rep-
resents four bits (one nybble) of the eight-bit code (one
byte) contained in the memory location. The user can
also go to any memory location, display its contents, and
change it if desired. The Monitor program can also move
blocks of code from one memory location to another.
Moreover, it can usually operate the cassette machine to
store programs.

It is thus possible to enter a machine-language pro-
gram from the keyboard. To do this, starting at the mem-
ory location desired as the program origin, a user enters
the hex equivalent of the binary instructions and data
comprising the pfogram. As each two hex numbers are
entered, the Monitor steps to the next memory location
in sequence. If there are any 'jump” instructions, the
programmer must figure them out and tell the Monitor
what memoty location to go to and return. After entering
the program and checking it, by going to the starting
location and again stepping through the program while
observing the indicator lights or CRT screen, it can be
run by returning to the starting memory location and giv-
ing the GO command. If the program runs correctly, it
may be saved on a cassette tape so that the next time it
may be loaded from tape instead of from the keyboard.
This procedure is an improvement over the front panel
switches, but not a big one. ;

POPULAR ELECTRONICS

THE ELECTRONIC WORLD

28
Heslesl

Fig. 1. A short program in three
numbering systems: binary,
octal and hexadscimal.

THE DEVELOPMENT of a machine-language pro-
gram requires the programmer to write the source listing
so that he can figure out the memory locations, how
many of them are required for each instruction, and how
many memory locations are required for the data. To do

Fig. 2. Program source for Fig. 1 written on an editor.

DECEMBER 1981

S_ome computers do not come with Monitor programs
so it may be necessary to purchase them either as a
tape or in the form of a plug-in ROM.

In cases where only BASIC is provided (the TRS-80
MOD |, for example), you might want to enter a
machine-language program to do something that you
can't do in BASIC. The peek statement is provided to
examine the contents of any memory location and the
Poke statement is provided to change its contents,
should you wish to. To enter the machine language pro-
gram you have to Poke each memory location with the
correct instruction, or data byte. When the program is
loaded, it can be run by using the usr statement in
BASIC; or your version of BASIC may permit a caLL to a
machine language program which may be in a separate
library of machine language routines.

It should be noted that in Microsoft BASIC (ihcluding
Radio Shack and Applesoft), the contents of memory for
PEEK and POKE statements are expressed in decimal rath-
er than in hex or octal. It is therefore necessary to con-
vert the code in the machine-language program into
decimal format before using Peex and Foke. It is also nec-

-essary to be familiar with the memory map of the com-
puter you are using so that pokes are not made into
reserved memory areas.

esenibly
Language
and Assemblers

_this using binary numbers makes the program almost
impossible to read, so symbols were invented to stand
_for the instructions. These symbols are called mnemon-
ics (memory aids), .and each microprocessor has a
unique set of them. Usually several manufacturers will

Fig. 3. Same program as in Fig. 1 in assembly language.

43

THE ELECTRONIC WORLD |

44

Fig. 4. The sample program is written f:ere in BASIC.

make the same chip, but all of them use the mnemonics
of the originator. These instruction sets are published b_‘v
the semiconductor manufacturers and are made avail-
able to users.

Four identical programs are shown in Figs. 2 through
5. They represent the program source as written on an
editor, as well as the assembled, BASIC, and Pascal ver-
sions. /

The process of using mnemonics and a particular syn-
tax to write a program is called Assembly Language. The
form of an Assembly Language line for one instruction is
shown below.

LABEL: OPERAND ARGUMENTS ; COMMENTS

SEARCH:

i LXI B,0 ANITIALIZE
COUNT TO
ZERO

In the example, taken from Fig. 1, the Operand is from
the Intel 8080 instruction set, where Lx1 means Load
Immediate. The arguments B,0 indicate that the register
pair BC are to be loaded with zero. Sometimes, when the
value of an argument is not known, a symbolic expres-
sion is used to represent it. The label field is optional and
represents the location of the memory address‘ of 1h§
instruction (which may be unknown). and which will
change from application to application. In addition, each
Assembler will have a set of pseudo-ops which do not
produce machine code. The pseudo-op replaces the
instruction mnemonic in the operand field. For example,
the pseudo-op ora (origin) tells the assembler that the
program starts at a given location, e.g., ORG 100H
(where H stands for hexadecimal). ‘

The pseudo-op EnD ends the program, while Eau
equates the symbolic name in the program to the argu-
ment given (i.e.. Equ kBD 1 equates the name Ksp to_the
value 1). At assembly time, the name k8D is pl;ce_d ina
Symbol Table and the value 1 is associated with it.

The program that translates the assembly language
source code into the machine language object code is
called the Assembler. Sometimes a simple Assémbler'is
provided as part of a Monitor program, but most often
the Assembler is a stand-alone program sold for your
computer, or provided with the Operating System. CP/M
and UCSD Pascal Operating Systems include Assem-
blers, and they also take care of the input/output con-
nection and disk storage management required by the
assembled programs. .

A typical Assembler is a two-pass program. The first
pass figures the length of the instruction and updates the

location pointer in the microprocessor. It will also con-
struct a Symbol Table, putting each symbolic name in
alphabetic order. By the end of the first pass, aII.1h_e
symbols should have been given a value; if not, it is
called an unresolved reference, and an error message
will be printed.

On the second pass, the Assembler again reads the
source statements and translates them into object code
in machine language, filling in the memory reference
addresses with values from the operand field of the
source, or with symbolic values from the Symbol Table. If
there is an error, an error message is printed. If not, the
object code version is printed (See Fig. 3) and the result
is saved on the disk. _

The object code presents the machine code in a form
that can be read by a Loader program and run on the
computer. _

Some Assembler programs have the capability of
creating and using a collection of routines called
macros, and are therefore called Macro Assemblers.
These are defined as one or more valid statements that
may be called up by using a single symbol within the
assembly-language program.

The macro has to have been previously defined by the
user, within the body of the program. The macro call is
the statement that names the macro as the statement
operator and gives it the necessary arguments. Such a
call within a program causes a macro to be included at
the point of the call. It will cause one or more machine
instructions to be assembled and the binary code to be
generated.

Not every Assembler program is a Macro Assembler
and they are not usually included within an operating sys-
tem. For example, in CP/M the Assembler is not a
Macro Assembler (MAC is the Macro Assembler sold by
Digital Research, the authors of CP/M). i

If you want to use one, you have to buy it as an option.
However, once a programmer becomes an accom-
plished assembly-language user, the exira expense of a
Macro Assembler is worthwhile.

A Macro Assembler allows the use of a subroutine
(macro) many times in a Linker program by simply calling

"it by an assigned name. However, most programmers
have collections of subroutines that they would like to
use over again within many programs.

This program permits the user to have a library of
macros stored on a disk. The Linker ties them into a
program at assembly time. Of course, the Linker you use
must be compatible with the Assembler program in your
machine. .

One thing that keeps programmers from using assem-

Fig. 5. Same program as before is shorter in Pascal.

POPULAR ELECTRONICS

bly language to a greater extent is that finding and cor-
recting errors—debugging—is like trying to map a can
of worms. Don't worry. There are Debugging programs
that make life easy. Using these, you can trace the
execution of a program, and see the instructions exe-
cuted. A program can be traced one step, or more, at a
time, and can be modified to correct errors. Breakpoints

THE ELECTRONIC WORLD

can be set to stop on an error, and the contents of reg-
isters and memory can be displayed. The CP/M debug-
ger is called DDT (Dynamic Debugging Technique), and
it's a good one, but it is not the only one in use. There
are others with equal capacity and features. Some are
sold separately and others are part of operating-system

DECEMBER 1981

DISK—OPERATING systems are a topic that must be
included in any discussion of computer languages
because they are really the control language that makes
everything else work.

Before the use of floppy disks for microcomputers,
the Monitor program could handle the simple 1/0 and
language support, but with the use of disks everything
changed,

The operating system controls the allocation of the
system resources. It operates the disk system, keeping
track of the storage and retrieval of programs and data.
It also creates, opens and closes files. The DOS con-
tains all of the system utilities used to format diskettes,
to copy files and entire disks, and to make a back-up
copy of the disk system. In addition it provides the
input/output connection for all of the languages running
on the computer.

A DOS is indeed a complete language, full of com-
mands that must be used in correct syntax to direct the
operation of the system. Many of the commands require
a complete set of extensions and modifiers. Since the
DOS is not one program, but a software system, learning
it requires study and experience before a user or pro-
grammer can become skilled in its use. CP/M, for exam-
ple, comes with six manuals to explain its operation. The
same can be said of UNIX and almost any complete
disk-operating system.

When you buy a computer with floppy disks, it must
include a disk-operating system. To get the most out of
the operating system you must make a commitment to it
that will cost a ot ofimoney, and take a lot of time. The
choice of an ope;étiﬁg’f system, more than anything else,
may determine the success or failure of your computing
program. :

The language and the application programs that you
choose all depend upon the operating system that runs
on the computer. Since the disk-operating system also
controls the input/output methods, it indirectly deter-
mines the type of peripherals you can use.

Often we read about some great new language we
would like to use, or an application program that is just
what we need. Upon reading a little more, we find that it
runs on a different operating system, uses a different
disk format, or needs more memory than the system
allows. Sorry, but you are just not going to run that soft-

packages. Check the package before buying.

ware. With some computers, it is possible to change
your operating system. Of course, you may lose your
investment in languages and application software, but it
could still be worth it. If you have an 8080, Z80, 8085, or
8088 system running in an S-100 bus, you have several
choices. You can use CP/M, or one of its offspring such
as CDOs, SDOS, IMDOS, 0S, MPP/M, and TP/M. The

same chip family can also use OASIS, MV FAMOS,

UCSD-P 8ystem, CIS COBOL, and many others.

The TRS-80 Mod |, II, and Il have TRSDOS in several
versions, to say nothing of NEWDOS, VDOS and LDOS.
And they can also use CP/M. Zenith/Heath has its own
system called HDOS, and you can also choose CP/M or
UCSD P-system. If you use a 6800 or 6809 on the SS8-50
bus there is FLEX, UNIFLEX, 0S-9. UCSD P-system, and
a few others. The 6502-based APPLE |l offers a choice
of APPLE DOS and the UCSD P-system, but you can also
plug in a Z80 and run CP/M. APPLE Il uses a new sys-
tem called SOS. The OSI computers have several ver-
sions of OS-65 and the UCSD P-system. Challenger Il
models, which have several microprocessors, can also
run CP/M on the Z80. Commodore PET/CEM machines
can use only the version of PET DOS they were made to
use, and nothing else.

If you begin to get the idea that CP/M is almost a de
facto standard for microcomputers, you are correct.
That is why IBM and Xerox made sure their new micros
could use it. CP/M offers the widest choice of languages
and application software; and it will remain that way for
some time because software authors write for the mar-
ket where there are the most customers. The UCSD Pas-
cal system (now called the UCSD P-system) is available
as an alternate operating system on most computer sys-
tems—underscoring Pascal's rising popularity.

With the advent of 16-bit chips and muiti-user sys-
tems, new DOS's are being introduced. We do not know
what will be the "CP/M” of the future, but there are
already indications that today’s CP/M software will be
able to run under the new improvements.

The UNIX operating system from Bell Labs has many
advantages—among them, excellent language and ap-
plication support. (Cromemco's CROMIX is based onit.)
Itis predicted that UNIX will become the major operating
system for minicomputers and microcomputers. Howev-
er itruns only on 16-bit machines with memory in excess
of 64K, and is intended primarily for multi-user systems.
There are some "UNIX lookalikes'" that may run on 8-hit
machines, but they have not become widely used. In the

future, UNIX-based systems may replace CP/M, al-
though MP/M Il and CPM-86 are also contenders for
future dominance, and they would not make all the pres-
ent software obsolete.

THE ELECTRONIC WORLD

46

BASIC
All-

lic

BASIC is the most popular of all computer languages.
It is also the most versatile. Not really one language,
BASIC is a tribe of languages having a common root.
They range from Tiny BASIC, which fits into a single-chip
computer, to a multi-dimensional disk BASIC for a large
main-frame computer.

BASIC was invented in 1963 at Dartmouth College by
Professors Kemeny and Kurtz to enable noncomputer
science students to use the school computer, which was
one of the first interactive time-sharing systems.

BASIC was based on an earlier language, FORTRAN
(discussed next), and it can do many of the same things.
It has been so effective that it was extended by Digital
Equipment Corp. (among others) and soon became a
standard language for minicomputers.

The first microcomputers had only enough memory
for small machine-language programs. With the intro-
duction of the Altair microcomputer and the $-100 bus
by MITS, more memory was added and Altair BASIC
from Microsoft became the micro standard. Today, most
of the microcomputers on the market use some form of
Microsoft BASIC. It has been configured for 8080, Z80,
8502, and 6800, as well as for some of the 16-bit chips
of tomorrow. Versions exist in ROM, and there are some
on cassettes, floppy disks, and hard disks. Other nota-
ble versions are DEC BASIC-Plus, Commercial BASIC
(Basic Four), E-BASIC and CBASIC-2 (both intermediate
code types). There are also North Star BASIC, Benton
Harbor BASIC, Alpha BASIC, TSC BASIC, TI BASIC, and
many more.

There are both interpretive and compiled versions of
BASIC and some that use a combination of both meth-
ods. An interpretive language translates the program
source from the high-level language syntax into ma-
chine-readable code, on a line-by-line basis, When the
RUN command is given, the interpreter translates the first
line into machine code and the computer executes it.
Then the second line is translated and executed, then
the rest of the program, one line at a time. If an error is
found, the process stops and an error message is
printed. If the BREAK key (or ‘‘control C" is pressed) the
program stops and the line number where the halt
occurred is reported.

The interpretive process must be repeated each time
the program is run. However, if changes or corrections
are needed, only a few words or lines need be modified.
The interpreter is quite large and it must always be pres-
ent in the memory.

A compiled language has several parts associated

with the writing and running of a program. First, there is
the original document consisting of statements written in

(Beginners
1

Instruction Code)

the language format. This is called the "‘source™ and it is
composed using an editor program. After it is checked
and stored on a disk, the source is compiled (or trans-
lated) into a machine-code version called the "object”
code. The object code is also stored on the disk. When
the program is to be run, the object code is loaded from
the disk into the computer memory. Then the RUN com-
mand is given. This is-much faster than the interpreted
method because only the object code has to be loaded
into the computer. However, if any change is needed, it
is made on the source code and the program must be
recompiled. The old object code is destroyed.

There is a third method of franslation called Interme-
diate that is a combination of compiler and interpreter.
Both E-BASIC and CBASIC2 (among the most popular
BASIC dialects) use this method. In intermediate code
languages, the source is written and complied as if it
were a compiled language. However, the compiler pro-
duces an intermediate-code version rather than a
machine-language version. Both the source and the
intermediate code are saved on the disk. When the pro-
gram is run, another program is also loaded at the same
time as the intermediate code. This is called a Run-time
Package and it is an interpreter that translates the inter-
mediate code into machine code on a line-by-line basis
and executes it. You may ask “‘why go to all that trou-
ble?" The answer is that it makes it very easy to trans-
port the language from one computer to another.

When we examine the reasons for the universal pop-
ularity of BASIC we find that it is mainly because BASIC is
so friendly. Other computer languages are complicated.
They use unfamiliar words, symbols and syntax, but
BASIC speaks English. It is a very simple English, using
only a few hundred words instead of the thousands of
words in human language, but you can understand it
from the start.

BASIC does have some defects caused by its inherent
lack of structure. It is often said that, in BASIC, program-
mers have too much freedom to jump around. If a com-
plex BASIC program is not well documented with com-
ments, after a while it is even hard for the author to
understand what has been done. To overcome this,
Structured BASIC was developed. However, purists
claim that the best cure for the defects of BASIC is not to
use it

As in FORTRAN, the common mathematical rules are
generally followed, except that multiplication uses ''*"
as a sign instead of ''x.”” Trigonometry, arrays, matrices
and other advanced operations can be done in many
versions. With the extensions added over the years,

BASIC has become an almost universal language.

POPULAR ELECTRONICS

.

THE ELECTRONIC WORLD

The letters of the alphabet are used in equations. If
you run out of A through Z, some versions let Yyou use
two letters, or a letter and a number,

Although BASIC is simple, it must be "'spoken'’ with
precision. It will not tolerate sloppiness. There are a few
ground rules that must be followed.

A BASIC program (Fig. 4) consists of statements on
numbered lines which are executed one at a time. The
program can be made to jump around successive state-
ments, or to other sections of the program, and then
return to execute the next line in the program. Control of
tlhe program operation is executed via a few easily
Iealrned commands, such as PRINT, RUN, GOTO, GOSUB,
RETURN, READ, and INPUT. A beginner' who has never oper-
ated a computer can be writing programs after one or
two hours of instruction.

One of the most useful features is BASIC's ability to
access machine-language routines through call instruc-

tions and PEEK and POKE commands. Some versions have
the ability to ‘chain Basic programs together into a com-
plete software system.

The original operating mode of BASIC was as an inter-
active interpreter. In the interactive mode of operation,
the user types a line and then presses the ReTuRN key or
its equivalent. This returns control to the computer which
acts upon what the user has typed. The BASIC then
returns control to the user, who types the next line.

Many of the more complex versions of BASIC have
been written as compilers. Previously, many commercial
publishers of business software were afraid to publish
application programs in interpretive BASIC because the
source had to be supplied to run the program. The intro-
duction of compiled BASIC and intermediate versions
removed this condition and has been an important factor

in the growth of microcomputer software development
for the entire field. Y

' FORTRAN

(FORmula
TRAN:Slator)

THIS was one of the first high-level languages to
achieve standardization and wide acceptance. It was
mainly designed for scientific and mathematical use with
large computers, and is always a cbmpiled language.
Many business calculations are performed in the FOR-
TRAN language.

FORTRAN is a statement-oriented language, using
a!phgnumeric, mathematical symbols, and logical ex-

'COBOL

pressions. Only lines with labels that are referenced
elsewhere in the program are numbered in ascending
order. FORTRAN executes statements in order and is
much more rigid in format than BASIC. The sequence of
the program statements is: 1. Specification, 2. Statement
Function Definition, 3. Executable Statements. In addi-
tion, it is possible to call machine-language subroutines,
or FORTRAN subroutines from a previously compiled
library.

Early microcomputers did not have the memoaory
capacity to run FORTRAN programs and, therefore,
made do with BASIC. With the development of larger
memories and the ability to run compiled languages, it
became possible to run FORTRAN on smaller comput-
ers. There are now many FORTRAN compilers used with
micropomputers. But because of the wide availability of
compiled BASIC and its ability to do anything that FOR-
TRAN can do, weaknesses aside, the latter has not
replaced BASIC in popularity.

¥ (COmmon Business
Oriented Language)

DES?GNED to be used in a business environment,
within a short time after COBOL’s introduction it seemed
tt_lat every computer installation had evolved its own ver-
sion. To straighten out the copfusion and under the lead-

DECEMBER 1981

ership of the U.S. Navy, a new standard language of
business was created, known as ANS (American Nation-
al Standard) COBOL. Today, many versions of COBOL
have extensions beyond the standard, but this is clearly
indicated in the instruction manuals.

47

THE ELECTRONIC WORLD

COBOL is a statement-oriented, compiled language,
very rigid in format, designed to match the flow of data in
normal business transactions. This data is collected,
punched into cards, and processed under COBOL pro-
grams in a batch mode on mainframe computers.

Interactive COBOL was only recently developed,

-matching the development of key-to-disk data input (re-

placing punch cards). This type of COBOL can run on
minicomputers.

COBOL has only been available on micros for a short
time and it has been used for many business applica-
tions from large computer sources. Little original pro-
gramming has yet been done with microcomputer
COBOL, so it is early to say if it will prove to be as pop-
ular on micros as it is on larger machines. Where soft-
ware packages written in COBOL have been sold, often
only the object code has been supplied, while the lan-
guage has been transparent to the user.

COBOL programs are separated into divisions. The
first is the Identification Division which always includes
the author's name, and the date when the program was
compiled. In addition, this division lists the Installation,

APL was created at IBM by Kenneth Iverson. It
remained an internal language until it was released in the
1960s as an interactive, time-sharing language running
on large mainframe computers. APL was originally a
scientific language noted for its ability to create and
manipulate multidimensional matrices.

A number of the IBM people who had been involved in
the development of APL left the company and started
time-sharing services devoted to the language. These
services extended APL, added file structures, and made
it into a business-oriented language. APL is especially
valued by insurance companies and airlines for their
complex routing and scheduling problems.

APL has been implemented on mainframes and large
minis, but only on two microcomputers. Recently, howev-
er, two versions were released to run under CP/M.
There are several problems with APL as a popular lan-
guage. First, it has a character set _which is different from
any other. Some of the characters require two key-
strokes with a backspace in the middle and this is not
compatible with most terminals. It does not use the ASCII
code (the industry standard) but instead uses Z-code,

Date Written, Security level and Remarks, if desired.

The second is the Environmental Division which spec-
ifies the hardware needed by the program, and how it
relates to the files. The Configuration Section and Spe-
cial Names are also part of this division. The Input/Out-
put Section is heeded if files are used. For each file there
is a SELECT entry and an ASSIGN clause.

The Data Division includes the File Section and the
Working Storage section. Finally, the Procedure Divisiqn
completes the program. All of this must be donfa within
rigid specifications. This creates a self-documenting pro-
gram that only requires an additional explanation of why
certain procedures were selected for a problem.

The trouble with using COBOL for interactive micro-
computer programs is that all these requirements were
originally developed for a punch-card operation |q a
batch mode, where the programming and operat!ng
functions are separated. In an interactive operating
mode, these requirements take up space and use a lot
of the computer memory. This is one of the reasons

there has been no rush to adopt the COBOL now_avail-

able for microcomputers.

which is completely different. Second, all operations in
APL are evaluated from right to left. In our culture we are
used to evaluating things from left to right and this can
be confusing. Third, APL uses very complex operators
that permit programmers to express complicated ideas
on a single line. This has lead to a very compact code
that is hard to read unless it has frequent comments.
APL is always an interpretive language, using a lot of
memory space and running slower than compiled lan-
guages. |t gives each user a large block of memory
called the Workspace as soon as he signs-on the sys-
tem. In addition, it does not save individual programs
(called functions), but instead saves the entire Work-
space. This also uses up memory space. _
APL has been restricted to large computers until
recently. Thus, it does not have the wide application of
COBOL, FORTRAN, or BASIC. In addition, with the
development of Pascal, G, and Ada, which can also use
multidimensional arrays, one. of the main advantages of
APL has been usurped. It should be mentioned that the
new IBM small computers no longer support APL and
that cassette software in APL for the Model 5100 is also

no longer supported.

BASIC’s Successoy?

ABOUT the same time that FORTRAN was being
developed in the United States, another language was
designed to implement solutions to complex algorithms.
It was called ALGOL (Algorithmic Language) and it
became popular in Europe. It is an excellent language,
but somewhat difficult to learn. In 1971, Niklaus Wirth of
Zurich, Switzerland, invented Pascal as a tool for teach-
ing ALGOL and to demonstrate the principals of struc-
tured language. In 1975, the standard Pascal was
defined in Pascal User Manual and Report by Kathleen
Jensen and Niklaus Wirth. Pascal is an easy language to
learn and it is suitable for defining the data structures
needed for problem solutions. The language was named
for Blaise Pascal, the French mathematician who
invented one of the first mechanical computing devices.
So the name is not an acronym and, therefore, all letters
are not capitalized.

Pascal compilers were written for mainframe comput-

ers and the language gained popularity in the computer
community. At the University of California, San Diego, Dr.
Kenneth L. Bowles started to implement Pascal on mini
‘and microcomputers. The result has been the UCSD
Pascal System. This is not only an implementation of
Pascal, but an entire operating system that includes sev-
eral Editors, a File Handling System, an Assembler, a
Compiler, and a Debugger. UCSD Pascal now runs on
Apple, North Star, Texas Instrument, Radio Shack TRS-
80 Mod Il, OSI, DEC, Western Digital Microengine, and
many other personal computers. Other versions of Pas-
cal are used on minicomputers, large mainframes, and
microcomputers. Almost every manufacturer of comput-
ers supports some kind of Pascal in addition to whatever
other language he uses.

Like BASIC, Pascal "'speaks’ English, and uses the
conventional mathematical symbols. It can do trigonom-
etry and advanced mathematical operations, and deal
with character data and strings. Pascal operates on
standard data types such as integer, real, and Boolean,
but gives the programmer the freedom to define new
data types. The programmer can also define new func-
tions and procedures. .

Pascal is a compiled language, but it does not usually
compile into machine code. Instead, it compiles into an
intermediate pseudo-code called p-code. The p-code is
then saved on the disk file system. At run-time, the
p-code file is interpreted into the machine code of the
computer.

As with all other intermediate-code languages, this
method makes the language portable. To move Pascal
to a new computer, all you have to do is write a new
interpreter from p-code to the machine language, a far
simpler task than adapting a complete language. In one
computer, the Western Digital Microengine, p-code is the
machine language of the microprocessor, allowing it to
run without the interpretive step.

There are other versions of Pascal that do compile
into machine code, called '‘native-code compilers.”
They run very fast, but are not transportable from
machine to machine. Pascal-Z, produced by Ithaca Inter-
systems Inc. for the Z-80, is of this type.

Pascal is fast becoming the most popular language
for application software, a fact that is not always appar-

ent because only the object code and a run-time pack- -

age are delivered with the application system. (This pro-
vides a measure of protection for the software publish-
er). Figure 5 shows the same problem used in preceding
references, done in Pascal.

The C Language

STRUCTURED LANGUAGES

Structured language Is based on a
hierarchy of operations starting with
the general and proceeding to the spe-
cific. There has been a movement in
computer sclence toward languages
that fully utilize data structures and
require a user to declare all the speci
fications for a program change. Pas-
cal, PL/1, C, and Ada are languages of

this type; and they are replacing the
older languages for both business and
sclentific computing. Structured lan-

guages, especially Pascal, are becom- -

ing the major instructional languages
in computer science departments. Ac-
cordingly, they are expected to en-
croach on FORTRAN, COBOL, and pos-
sibly even BASIC In time as the most

important languages. Pascal is already
supported on all major minicomputers,
microcomputers, and a great many
mainframes. PL/1, which was original-
ly a language for very large computers,
has been adapted for smaller ma-
chines. And the U.S. Defense Dept. will
make Ada mandatory for all its offices
and contractors by 1885. Bag

POPULAR ELECTRONICS

DECEMBER 1981

THE language called C is a computer language
designed at Bell Laboratories to operate upon the pow-
erful OS called UNIX. It is a structured language with
some resemblance to Pascal. However, Pascal uses

both functions and procedures, while the C language

achieves modularity only through the use of functions. It
builds the entire program structure through the use of
functions even to the point of having no Print or Read
statements. It does input and output through use of func-
tions. It does have “if-then-else,” “‘while loops," global
and local variables and data types, pointers and arrays.
Like Pascal, it can replace single statements with com-
pound statements to promote program flow. C is a com-
piled language in which programs are composed using
an Editor and then are compiled into machine code ver-
sions to be run on the computer. It has no I/0 structure

49

THE ELECTRONIC WORLD _

of its own; instead, it uses the 1/0 of whatever operating
system it is implemented on.

A C program is a set of functions. The ability of 1h_e
programmer to create his own functions according to his
needs make C an unusually flexible language. There are
no line numbers in C. The program starts with the name
of the function, then a square bracket to start function
definition. This consists of compound statements be-
tween two square brackets. Statements are nested to
any depth required and are treated just like simple state-
ments. There are libraries of standard functions and
those functions previously defined by the user. All of
these can be called for use in the program. There can be
both Global and Local variables and there can be argu-
ments for the functions. There are also Expressions
which are used to calculate and store data. C can call

THE COBOL language became a standard business
language because it was required by government agen-

has decided that a new language is needed to coordi-

cies in the 1960's. Now, the U.S. Department of Defense

nate the application needs of the Army, Navy, and Air
Force. The process of development for this language
was started in 1975 when suggestions were solicited
from the three military services, industry, and academia.
At the same time, an intensive study of existing lan-
guages was made to determine if any of them met the
requirements for a universal language, and if not, to
develop specifications for one. It was recommended that
either Pascal, ALGOL 68, or PL/ 1 be used as the start-
ing point for the new design. Pascal was the one put
forward, and the new language was developed from it.
Called the "Green' language, it was renamed Ada in
honor of the first computer programmer, Lady Ada

Language

THIS is another language .created by one man,
Charles H. More, and it was first used to control the tele-
scope at Kitts Peak Observatory. It has since developed

machine-language routines when needed as well as any
of the personal or standard function libraries.

While C originated on the UNIX OS, it has been trans-
ported to run on other operating systems such as CP/M
and Unix-like systems. Many application software pack-
ages for micros have now been written in the C language
and sold only in object code form. As the UNIX OS and
its look alikes become more popular, the C language will
become more widely used. With Pascal, the original idea
of a language that was transportable between machines
seems to be lost as more and more incompatable ver-
sions come into use. With C this has not happened. Thp
entire language was written by one person and there is
one book specifying it: The C Programming Language
by Brian W. Kernighan and Dennis M. Ritche (Prentice-
Hall, 1978).

Augusta Byron, Countess Lovelace, daughter of the
poet Lord Byron. Since then, Ada has been undergoing
extensive tests and compilers have been written for sev-
eral mainframe computers.

Dr. Kenneth Bowles, the leader of the project that
developed UCSD Pascal, has left the University of Cali-
fornia and is working on implementing Ada on some of
the advanced microcomputers using Western Digital
microprocessors and the Motorola 68000 chip. Other
versions will follow. This kind of support, and the fact
that Ada will be mandatory for the Defense Dept. and all
its contractors by 1985, portends a very important role
for the new language.

Ada looks like Pascal. It has a declarative part and a
statement part. It is a strongly typed language because
all identifiers must be declared and their attributes spec-
ified. The two most important control structures are the
conditional statements (which select alternative actions)
and loop statements (which specify repetition of an
action). Ada uses many types of functions and subpro-
grams called Procedures. In addition, Ada also has two
kinds of modules called Packages and Tasks.

Packages are used to define logically related collec-
tions of resources for use in computation. Tasks are
separate jobs that are done at the same time in either a
time-sharing environment, or a distributed processing
system. The collective term for this is ‘Multitasking® and
ADA has been designed to set up and run such jobs as
part of a program. Similar things can be done by Pascal,
C, or PL/ 1, but Ada is the first language created to nian-
age the complex computing activities that.-use multiple
processors with almost unlimited memory resources.

B Eknendont

a following of programmers who have carried its banner
at all computer meetings and shows, more like a cult
than a computer language user group.

Forth is not an easy language to learn as it is quite
dissimilar from anything we are used to. In addition, it
does its calculations in Reverse Polish Notation (RPN). It
is sometimes called the unfinished language because
the programmer has almost unlimited freedom to create
new Words. Everything in Forth is a Word (which is

POPULAR ELECTRONICS

»

THE ELECTRONIC WORLD

another term for a function). It is not much good as a
number cruncher, but it can link to subroutines in other
languages for the heavy math. It greatly reduces the cost
and work of subroutines. The programmer keeps on
defining new words by using old ones, and before you
notice, the job is done. You do not have to do much
original work to write a new program because when the
system comes up, so does all the work you have ever
done before, just as if it had always been part of the
language! Now you see why programmers take the trou-
ble to learn this strange language.

When you look at a Forth program, it is confusing
because everything seems to run together, but after a
while it begins to make sense. j

In Forth, most operations communicate by using the

* Stack (that section of memory where you store numbers
in last-in-first-out order). While all languages use the
stack, its operation is usually incorporated into the lan-
guage itself. Not so in Forth, where the programmer con-
trols the stack directly.

There are some normal things about Forth. It is a

structured language with no cotos or labels for state-
ments. It is an interpretive language that is later compiled
into machine-readable code, and therefore needs very
little space in the computer memory. A full Forth can fit
into a 16K machine and have room for 8K of programs.
In addition, it is low cost. The Forth Interest Group has
made versions available for almost every microproces-
sor. Even the commercial versions are cheap and offer a
lot of features for the money.

One other characteristic of Forth is that it is a
Threaded Language. This means that programs are
constructed from a few subroutines which are connect-
ed together by a series of subroutine calls to perform a
larger task. This entity is then called by a larger routine
and connected to others to form a still larger entity.
Threadedness is not restricted to Forth, but while other
languages can use it, all Forth versions do use it.

When you go to a computer show and you see the
cult members who have found the One True Language
and wear the funny buttons, don't laugh. Perhaps they
have found it and the rest of us are just lazy.

THE language of artificial intelligence research, LISP
was based upon John McCarthy’s work on nonnumeric
computer languages published in 1960. The language
LISP was implemented at MIT and is described in the
LISP 1.5 Programmers Manual. It has since been config-
ured on many mainframe computers, minicomputers and
microcomputers,

LISP is a nonmathematical language composed of
words, like any language. In LISP there are two kinds of
words: atoms and lists, Atoms are the basic entities of
LISP. Basically, any combination of the characters of the
alphabet, AB,C. . . X,Y,Z with any of the ten digits
0,1. . . 9is an atom, as long as it starts with a letter. A
list is the second type of word in LISP, and it is built up
from atoms and other lists. A list consists of a left par-

enthesis followed by any number of atoms and lists, ter-
minated with a right parenthesis. The language has func-
tions, variables, and arithmetic operators, but it looks
strange to BASIC programmers becausé all the arithme-
tic operations are in Reverse Polish Notation (RPN). A
LISP sentence looks like a list, but it carries meaning and
it is actually an elementary program. All LISP functions
have a single value and a program consisting of func-
tions applied to arguments. The LISP language has many
built-in functions, and the programmer can create func-
tions at will.

The printout of a LISP program looks unusual, but if
the LISP includes a "'Prettyprint program,’” which formats
a program by indenting subsections, the listing will look
much more conventional.

MODEL I

Off List

*611° DISCOUNT

64K 1 DRIVE $3288.00

No Taxes on Out of State Shipments

BUY DIRECT

DEPT. NO. 1 2

115 C SECOND AVE. 5.W.

Immediate Shipment On Most ltems

CAIRO, GEORGIA 31728

TRS-80°DISCOUNT

; ?IjJ We carry the full line of TRS-80 Computers. All
other software, furniture, and accessories at dis-
count from catalog price. We stock most items
to assure you fast delivery and save you money.

WRITE FOR A FREE CATALOG
1-800-841-0860 voll Free Order Entry

MICRO MANAGEMENT SYSTEMS, INC.

- DOWNTOWN PLAZA SHOPPING CENTER

GA. & EXPORT PHONE NO, (912) 377-7120

MODEL 1

26-1061 4K I.........5609.00
26-1062 16K Il ,...... BCQ.UU‘
26-1066 48K 11

2 Drives, R§232....... 2069.00

Largest Inventory in 5.E. U.S.A,

DECEMBER 1981

CIRCLE NO. 31 ON FREE INFORMATION CARD

51

THE ELECTRONIC WORLD

PILOT

PILOT was the first computer language dedicated to
computer-aided instruction, and was developed at the
University of California, San Francisco. it has been imple-
mented on many computers ranging from very large
mainframes to the simplest micros. This interactive lan-
guage enables a person without prior computer experi-
ence to develop and test dialogue programs for teach-
ing, since its structure and syntax are easy to explain to
a student.

Using PILOT, the teacher can present the student with
a reading passage, give him time to study it and then ask
him multiple-choice questions based upon the passage.
The program can include computer responses keyed to
the answer the student has given. It can also scan his
response and give him advice or comment based upon
that response. It can introduce a mathematical problem
and offer the solution on a step-by-step basis or give the
student an opportunity to discover as many of the steps
as he can, with hints from the computer.

PILOT instructions are divided into six categories:

1. Core Instructions. These basic functions are sin-
gle-letter instructions and are standard for all of the ver-

THE LOGO language represents a completely differ-
ent path to learning than does PILOT. Its inventor, Sey-
mour Papert, believes that CAl techniques, like PILOT,
only transfer the old methods of teaching to the comput-
er without using the unigue capabilities of this new tool to
combine text, form, color, and sound into a new learning
system. For the last ten years at MIT, he and his col-
leagues have been working to perfect the techniques
used in LOGO. The result is a language in which a five-
year-old can quickly learn to write a program. Yet it is
sophisticated enough for higher instruction.

In the child’s version, LOGO uses basic modes called
sprites and turtles. The sprites are forms that the child

(Programmed Inquiry,
Learning Or Teaching)

sions of PILOT. Thus the programs are portable from
machine to machine. The instructions are:

T: TYPE (includes Y: and N:)
A: ACCEPT

M: MATCH

J: JUMP

L CUSE

E: END

C:COMPUTE

R: REMARK

There are also multiword instructions called ‘‘keywords"'
that have been added to PILOT for special applications
and are not included in all versions.

2. Cursor and video instructions to determine where
the text will appear on the screen.

3. Instructions that set various kinds of parameters
related to the computer such as output ports, display
speed, or memory locations.

4. File system instructions relating to storing and
retrieving programs ahd data.

creates that move around the screen at any speed the
child selects. The turtle is a figure that the child can inter-
act with, moving it over the screen, coloring it, and mak-
ing it draw or erase lines.

The teacher can also program more complex func-
tions (programs) that children can interact with through
simple keyboard responses. Children learn color, direc-
tion, letters, words, and sounds through this medium and
usually find it fun. It also teaches them planning, and the
use of the computer which will be one of their major edu-
cational tools throughout their school years.

At this time, LOGO is available for the T.I. 980/4 com-
puter, and there is a version for the more popular Apple Ii
that MIT has not yet released.

(Continued on page 56)

The most comprehensive and useful
computer reference inthe world.

Take the

ENCYCLOPEDIA
OF COMPUTER
SCIENCE

—a $60.00 value—
yours for only

when you join The Library of Computer
and Information Sciences. You simply

agree to buy 3 more books—at handsome
discounts—within the next 12 months.

£ Find the answers to virtually all your data processing
§ questions in the ENCYCLOPEDIA OF COMPUTER
' SCIENCE. |
{ @ Thousands of photos, diagrams, graphs and charts
completely illuminate the ENCYCLOPEDIA's clear and
thorough coverage of every area of the computer sci-
ences—software, hardware, languages, programs, sys-
| tems, mathematics, networks, applications, theory, history
and terminology. -
Appendices provide abbreviations, acronyms, special
notations and many numerical tables. An additional high-
light is a complete cross-reference system that assists the
reader seeking in-depth information.

| What is The Library of Computer and Information
Sciences?

It’s the oldest and largest book club for the computer
professional. In the incredibly fast-moving world of data
processing, where up-to-date knowledge is essential,
we make it easy for you to keep totally informed on all
areas of the information sciences. In addition, books
are offered at discounts up to 30% off publishers’ prices.

Begin enjoying the club's benefits by accepting the
ENCYCLOPEDIA OF COMPUTER SCIENCE. It's the
perfect reference for computer professionals...andit's a
great bargain, too.

The Library of Computer
and Information Sciences
Riverside, N.J. 08075

T

|

|

|

Please accept my all_pglication for trial membershig and send me the |

ENCYCLOPEDIA OF COMPUTER SCIENCE (44900-3), billing me only |
$2.95. | agree to purchase at least three additional Selections or

-Alternates over the next 12 months. Savings ran%;; up to 30% and I

occasionally even more. MK membership is cancelable any time after | |

buy these three books. A shipping and handling charge is added to all |

shipments. I

|

|

|

I

I

|

|

|

|

|

1

e A mammoth volume covering everything
from Access Methods to Working Set, in
1,523 pages, 470 articles and over 1,000
illustrations, tables and charts.

e Authoritatively compiled by over 200
internationally respected authorities.

7-AX6

: 4 Good Reasons to Join

1. The Finest Books. Of the hundred's;&pd hundreds of books submitted to us
each year, only the very finest are'séfécted and offered. Moreover, our books
are always of equal quality to publishers' editions, never economy editions.
2. Big Savings. In addition to getting the ENCYCLOPEDIA OF COMPUTER
SCIENCE FOR $2.95 when youJoin, you keep saving substantially—up to 30%
and occasionally even more. (For example, your total savings as a trial
member—including this introductory offer—can easily be over 50%. That's like
getting every other book freel)

3. Bonus Books. Also, you will immediately become eligible to participate in
our Bonus Book Plan, with savings up to 70% off the publishers’ prices.

4. Convenient Service. At 3-4 week intervals (16 times per year) you will
receive the Book Club News, describing the Main Selection and Alternate
Selections, together with a dated reply card. If you want the Main Selection,
do nothing and it will be sent to you automatically. If you prefer another
selection, or no book at all, simply indicate your choice on the card, and return
it by the date specified. You will have at least 10 days to decide. If, because of
late mail delivery of the News, you should receive a book you do not want, we
guarantee return postage. |

DECEMBER 1981

No-Risk Guarantee: If you are not satisfied—for any reason—you rhay
return the Encyclopedia of Computer Science within 10 days and your
membership will be cancelled and you will owe nothing.

Name

Address
City.
State Zip

(Offer good in Continental U.S. and Canada only. Prices slightly higher
in Canada.)

THE ELECTRONIC WORLD

PL/ 1. This language was one fo the first structured
languages and was designed by IBM to run its mainframe
computers. The language suffered from its great scope
and complexity. Later subsets of PL/ 1, such as PL/M,
were designed to run on minicomputers, and they were
often used as cross-compilers to develop microcomput-
er software on larger machines. Until very recently, no
micro had enough memory and capacity to run PL/1.
However, with the development of the 16-bit and 32-hit
microprocessors, this language has a future for use on
the large micros. Digital Research, the developer of CP/
M, has a version called PL/ 1-80 to run under advanced
versions of CP/M and MP/M.

CAl. (Computer Aided Instruction) Lan-
guages. This term designates a family of languages
used with computers as a teaching tool. In the next
decade, CAl will become more important as we learn to
use the computer to enhance our educational system.
Some of the languages designed to aid in education
have already been discussed. X

Report Generation Languages. RPG Il is one of
the most widely used languages for mainframes and
large minicomputers. It is used to create report formats
for the output of all kinds of application software. In the
future, with multiuser and multitasking computers being
designed around 16-bit and 32-bit microprocessors,
RPG languages may be used by all computers.

Data Description Languages. These languages
are used to create, input, select, sort, and format infor-
mation stored in a general application data base. They
are generally not called “languages'’ by the software
publishers, who only refer to the complete system by
name. However, the CODASYL (Conference on Data
Description Languages) which was formed to set stan-
dards for data base systems uses this term to refer to
the entire Data Base Management System (DBMS).

Some of the commercial DBMS systems using very
complex data description languages are TOTAL, RAMIS,
ADBS, and IMS. All of these run on large mainframe com-
puters. With the development of large floppy-disk and
hard-disk storage systems, data-base systems became
possible using mini and microcomputers. Some of the
larger DBMS were scaled down to run on minis, but most
of the micro systems were written for microcomputers
specifically. They all use operators and functions that
are complex enough to be a complete language.

Program Generation Languages. This is a new
family of software systems that constitute a set of lan-
guages. Their object is to automatically write programs
in another language. They are a kind of "paint-by-num-

bers'' software. They present the user with a set of fill-in-
the-blank screens to enable the user to specify just what
he wants to do. The answers to these questions consti-
tute a psuedo program from which the system “‘writes'' a
program in BASIC, or whatever language the system is
designed to use. In reality, the “system'' is an English-
to-BASIC translator language. PEARL and "The Last
One'' are typical of this type of system, but are by no
means the only ones or the last ones.

Conclusion. Once you have read about computer
languages and begun to understand their differences,
you may find that you still can't decide which one is the
best for you. There are just too many choices. For exam-
ple, you may need to control a robot that has a single-
board computer and only 4K of memory. You could use
machine language or assembly language, or you could
write in Forth and compile to machine code. However,
you could also use Control BASIC or Tiny Pascal. The
choice is yours, and there is no single answer.

If you are interested in business applications, home
controls, or scientific research, the options are still
wider. Perhaps this is why Charles More invented Forth
to control his telescope; machine and assembly lan-
guage took too long to use while other languages were
too rigid and did not allow him adequate flexibility.
Today, you do not have to invent a language to tailor a
program to your needs.

For most people, the choice has been made for them.
Usually, a computer comes with a language, most often
a simple version of BASIC in ROM. Once you learn this
BASIC, you will probably find that you can do all kinds of
wonderful things with it. You will likely want to do more by
adding memory and a floppy disk or two. This, in turn,
opens up the world of disk software for word process-
ing, business applications, etc. This is also when you find
out that you have to buy the exact package to run with
your BASIC and your DOS because there were many dif-
ferent types.)

Do you want to try different languages on your com-
puter? Well, it's simple. All you have to do is buy a ver-
sion of a language that runs under your DOS and does
not require more memory than you have. Then read the
manual that comes with the package, put the diskette in
your drive, and you are running PASCAL, FORTRAN, or
COBOL. You also will need a good textbook—one
designed for microcomputer versions of the language.
The manual you get with the language package teaches
you how to run the language and what special things are
in that version. It does not teach you the language. Study
your text, use what you learn on your computer, and it
will bring back the fun you had when you first bought the
machine as well as giving you opportunities to use more
efficient languages for particular purposes.

For those who haven't yet bought a computer, but are
thinking of it, everything we have said applies to you
also. If you want to have a choice of languages later, be
sure you choose a machine that has a variety of lan-
guages available.

Most often, language packages are available from the
computer manufacturer. However, they are also sold by
software companies that specialize in one or more lan-
guages. Another good source is the computer clubs
since they may serve as a distribution channel for lan-
guages developed by universities and the government.
Language user groups also distribute languages at low
cost. The FIG (Forth Interest Group), for example, sells
its software and books—and at reasonable prices. <

POPULAR ELECTRONICS -

