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signal was perfect, there was a deform?l—
tion of the waveform. The difference in
wave height and overshoot is actua_lly
caused by the counter-electromotive
force from the speaker, the result of
greater resistance and weaker damping of
the long cable: Fundamentally, even very
low distortion, which cannot be mea-
sured, can be detected by our sense of

hearing.”
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FIG. 2—SPEAKER-CABLE IMPEDANCE has a
significant effect on high-frequency response.
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FIG. 3—SPEAKER CABLE CAN CAUSE surpris-
ingly large distortion at the speaker inputs.

The most disturbing finding was that
the amplifier should ideally be located
much closer to the speakers—this is hard-
ly reassuring for the millions who can’t or
find it inconvenient to do so. The farther
the speaker is from the amplifier the
slower the slew rate.

Obviously, to do away with the speaker

TABLE 2—Comparison of Audio Cable and Speaker Cord

Audio cable

Speaker cord

Role
Transmitting impedance
Load conditions

Effect on performance
Effect on tonal quality
Chaﬁge with length
Extraneous induction

Effect of cord
characteristics

Voltage transmission
10 ohms ~ 1000 ohms

Changes somewhat with
frequency and is constant
without regard to signal
level; slight input
capacitance only; no
reactance.

Small
Small
Small
Easy

Since the load conditions
other than component C
are large, effect is small.

20 ohms ~ 100,000 ohms.

Power transmission
Almost zero

Indication 4~ 14 ohms.
Changes considerably with
frequency; changes with
signal level; reactance
component is large and
complex;
counterelectromotive force
produced by speaker.

Large
Large
Large
Difficult

Components L, C and R
have a large effect.

Note: In the past the quality of the system was not improved while pursuing the characteristics on
the amﬁiifier side because the dynamic characteristics with the speaker connected sutfh as these
were not considered. As shown in Fig. 7, the deterioration in distortion when the speaker is connect-

ed exceeded our imagination.

cable is impractical. Kenwood found
however that their specially developed
cable (not sold in the U. S.) could be used
up to one meter (3.25 feet) from the
speaker system, with virtually no effect
on tonal quality. On the other hand, the
audio cable between power amplifier and
control amplifier can be long since it is
merely a signal transmission line (see
Table 2). I know some people who have
suffered from RF problems, which they
claimed was only eliminated by using
specially constructed (expensive) audio
cables like Verion, who might suggest
that audio cables are important too. But
that’s another subject.

The Kenwood solution is obviously
directed at the perfectionist audiophile
(assuming you agree with their analysis
of the problem). There are alternative
solutions if you agree that the problem of
transmission losses does exist and can be
heard. If you don’t like the price of the
super cables, for less cost you can use the
heaviest zip cord you can find, if your
amplifier is not bothered by capacitance
problems. Don’t be afraid of reducing the
size of the wire at the speaker terminals
(by no more than half) so it will fit into
spring-loaded speaker or amplifier termi-
nals. But be careful, since the total resis-
tance of the length of the wire must be
considered.

If you believe that there is a problem of
self-inductance, you’ll usually find that
the super cables are sold on a money-back
basis. So if you don’t hear a difference
you can return them. Most of the special
cables are sold by specific lengths and
several have special tip ends that allow
you to make excellent uniform connec-
tions.

For example, Disc Washers’ Smog
Lifters, shown in Fig. 4, have special plas-
tic Y-finished tip ends that resist poten-

tial shorting, these cables sell for $1.40-
per-foot.

The M & K Mogami cable (sold for
$1.50-per-foot) must be debraided, and
should not be tinned if splicing is neces-

FIG. 4—DISC WASHERS' Smog Lifter cables
have special plastic tips.

FIG. 5—M & K MOGAMI cable must be de-
braided; no tinning before splicing.

sary. (See Fig. 5.) A firm connection
between the wire ends to be joined should
be made before soldering. You are also
warned to avoid speaker switches,

continued on page 93

HowTo

Design Digital
Circuits

Part 1—With digital circuitry becoming an increasingly important
factor in our everyday lives, it’s time that we learn how to design logic circuits.
Get in on the start of this series as the author discusses
digital logic design—beginning with Boolean algebra and Karnaugh maps.

TODAY'S ELECTRONICS HOBBYIST HAS
available to him a previously undreamed-
of assortment of hardware for his pro-
jects. Whereas 15 or 20 years ago elec-
tronics magazines ran construction arti-
cles on simple two- or three-tube circuits,
using point-to-point wiring, the projects
of today consist of computer CPU boards
and computer terminals on complicated
double-sided PC boards. Digital circuits
are now appearing in almost everything
electronic, including “linear” applica-
tions such as tuners, TV sets and synthe-
sizers.

To enjoy fully the electronic technolo-
gy of today, a hobbyist needs to know not
only how to bias transistors and match
impedances, but also how to analyze and
design digital circuits. Although most
experimenters can do this using brute-
force methods, there are some fairly
simple methods for reducing the number
of gates in, and hence the complexity of,
a digital circuit.

Digital electronics is the realization of
Boolean algebra, and some knowledge of
it is required to design a digital circuit.
Since the subject of Boolean algebra has
been covered in magazine articles as well
as in many textbooks, it is assumed the
reader has a fair knowledge of it, and is
able to write his desired function in both
equation and truth-table form. In this
article, we will see how to apply the
fundamentals of Boolean algebra to con-
struct both parallel and series circuits
from a truth table, and then reduce the
gates to the minimum needed. Through-
out this article, the AND function will be
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implied between two variables if no oper-
ator is given between them, i.e., x » y will
be written simply as xy.

Combinational switching circuits

A combinational switching circuit is a
digital circuit whose output at any time is
dependent only on its input at that time,
regardless of any previous input or out-
put. Thus, no “memory” circuits are
included. (A flip-flop is considered a
memory circuit.) The first part of this
article is concerned only with these cir-
cuits.

A Boolean equation, no matter what
form, can always be reduced or expanded
to give an equation in either a sum-of-
products (S-P) or product-of-sums (P-S)
form. In the S-P form, the equation is an
OR (sum) of several AND (product)
groups. In the P-S form, the equation is
an AND of several OR groups. As an exam-
ple, take the following equation:

a=x(y+z)ty 1)
This can be expanded by multiplying
through the x to get
a=xy+xz+y (S5P) 2)
which is in S-P form, or may also be writ-
ten in P-S form as
a=x+y+tz)xt+ty+tz(xt+tytz
(P-S) 3)

A primitive implementation of equa-
tion 1 is shown in Fig. 1, using the S-P
form of the equation. So we pick up the
IC data book and notice one peculiar
thing: almost all the gates available are
NAND, with several AND, but few ORr and
NOR types. Why should this be so when
most functions are written as strictly AND

and orR? To understand why, we can
apply DeMorgan’s theorem to equation 2.
This theorem states that if we invert the
individual members of one side of an
equation, then change the signs between
members from AND to OR and vice-versa,
then invert the entire side of the equation,
the equation is still true. To illustrate,
let’s apply this theorem to equation 2.
First, we invert the individual members
to obtain
a=xy+zxz+y

Now we change the signs between mem-
bers and get

4= 2XyeXZe+y
Finally inverting the entire string, we
get

a:f)_(-ﬁ-y

This says that to obtain the result a, we
NAND x and y, NAND X and z, INVERT Yy,
and NAND the three results. Figure 2
shows the logic circuit. Thus, the NAND
gates can perform the AND and OR func-
tions. When a group of NAND gates feed
another NAND gate, the first gates per-
form an AND function, and the gate they
feed performs the OR function on each
AND'ed group. We thus only need to keep
a supply of NAND gates to realize any
equation in S-P form. In this case, an
extra inverter is needed, but inverted
variables are often already available from
another output, and even if not, this could
be performed by a NAND, keeping the
three input gates on one package.

It should be noted that the P-S form
can be implemented in circuit form by
using NOR gates, the first input gates
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perform the or function, and the second
set of gates perform the AND function.
However, P-S forms can always be ex-
panded to S-P forms, so the remainder of
the article will deal only with S-P forms.

X ;
y & 3 :

a
7 e

a=xytxity

FIG. 1—LOGIC CIRCUIT that performs the Boo-
lean algebra expression shown.

X
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a=xy+xz+y

FIG. 2—NAND GATES can be used to perform
the same function as shown in Fig. 1.
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asxy+xzty=xzty

FIG. 3—SIMPLIFIED LOGIC CIRCUIT is equival-
ent to circuit shown in Fig. 2.

Using the theorems of Boolean algebra,
it can be seen that equation 2 can be
reduced to:

a=3xz ty
This means that the circuit shown in Fig.
3 is equivalent to the one shown in Fig. 2.
Obviously, this is much simpler, and can
be done on only one IC.

Reduction of mathematical expressions
by Boolean algebra theorems is tedious
and often hit-and-miss. To alleviate the
problem, we turn to a tool that eliminates
much of the work.

The Karnaugh map

The Karnaugh map is simply a re-
arranged truth table that can readily give
valuable information for circuit design
and reduction. There are 2" boxes in the
map, where n is the number of inputs to
the circuit. Bach row and column is

o 0o a1

numbered in binary, and the value in each
box is the output of the circuit when the
coordinates of the box are the input. The
numbering of the columns starts at the
left at zero, and is arranged such that the
number of the next column to the right
differs in only one bit position. Thus, 00
is followed by 01, which is followed by
11, which is followed by 10. The rows are
numbered similarly. Figure 4 illustrates
the numbering and the corresponding
decimal coordinates of the boxes for func-
tions with two, three and four inputs.
Beyond four inputs, the Karnaugh map
becomes too cumbersome, so other meth-
ods have been designed for these situa-
tions.

As an example, suppose a three-input

circuit with inputs x, y and z were to -

produce a logic-1 output when x = 0 and
y = z = 1. Then we would enter a 1 into
the box numbered 3 in Fig. 4-b (xyz =
011 = 3,,). If a zero were to be produced
when x = y = 1 and z = 0, the box
numbered 6 would contain a zero. In
certain cases, such as BCD circuits, some
input combinations are meaningless
(1010 is not a BCD number). In these
instances, we enter a “d” in the appropri-
ate box to indicate a “don’t-care” condi-
tion. This tells us the output may be
either 0 or 1 with the given input, since
that input would never occur. This may
be used to further aid in circuit reduc-
tion.

Figure 5-a shows the truth table for
equation 1, and Fig. 5-b shows the Kar-
naugh map derived from it.

Now we come to the interesting prop-
erty of the map. By definition of the
structure of the map, any two adjacent
boxes (horizontally or vertically, but not
diagonally) differ in coordinates, ie., in
input conditions, by only one bit. For
example, the boxes where (x = 0,y = 2
= 1) and (x = z = 0,y = 1) are adja-
cent, and differ in coordinates in only the
z-input. This property also holds when
“wrapped-around,” i.e., the top right-
hand box (x = z = 0, y = 1) is adjacent
to the top left-hand box (x =y =z = 0),
since they differ only in the y-bit of the
coordinate. The same holds true for verti-
cal wrap-around. Two of these adjacent
boxes are said to form a l-cube, since
there are 2! boxes in the cube.

Now refer to Fig. 5-b. If we take two
adjacent boxes that contain a 1, for exam-
pe(x=2z=1,y=0and(x=y=2

=
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FIG. —KARNAUGH MAPS are used to simplify logic circuits. A Karnaugh map for a 2-input circuit is
shown in a, 3-input circuit is shown in b and a 4-input circuit is shown in ¢

= 1), we find that the output of the
circuit must be a 1 whenever x = z = 1,
independent of the value of y. That is,
whenever xz is true, the equation is true.
Similarly, box (x = 0,y = z = 1) and
box (x =z =0,y = 1) are adjacent and
contain ones, so we see that the output is
true whenever x = 0 and y = 1, indepen-
dent of z. Thus, Xy being true will cause
the equation to be true, or a 1 to be
output. Taking all combinations of two
adjacent boxes, both of which containa 1,
the following equation is derived
a=zxz+xy+xy+yz+yz
which is equivalent to equation 1, but is
obviously not reduced. The reason for
this is that several conditions for an
output have been duplicated by more
than one term of the equation. For exam-
ple, if x = y = z = 1 is entered, the three
terms xy, xz and yz will all be true, caus-
ing the output to be true, but it is only
necessary to have one term true to cause
the output to be true. Thus, we have
redundant members in the equation. 1f
we take only three adjacent sets of boxes
to cover all the 1-outputs, we can obtain
the equation
a=zxz+xy+xy

Now all the boxes containing a 1 have
been covered by at least one of the terms
of the equation, which means that the
equation is a true representation of the
truth table. But the equation is still not
completely simplified. If we look at the
1-cube (two adjacent boxes) consisting of
(x=0,y=z=1and(x=z=0,y =

CODRDINATE

Xy z VALUE a=xy+xzty
000 0

001 1 0
010 2 1
Datii=l 3 1
100 4 0
{1 | 5 1
110 6 1
A=A 1 1

FIG. 5—TRUTH TABLE for equation a = xy + xz
+ y is shown in a and resuiting Karnaugh map
derived from the truth table is shown in b.

1), and the 1-cube consisting of (x =y =
z=1)and (x =y = 1,z = 0), we see
that the output of the function is always 1
whenever y = 1, regardless of the value
of x or z. Thus, we have formed a 2-cube
(22 boxes), and have found that y = 1
satisfies the conditions for generating a
logic-1 output for each of the four boxes.
Note that, in looking at the coordinates of
each of these boxes, y is the only coordi-
nate that does not change, and is always 1.
We need now to cover only one more box
where a logic-1 output is to be generated,
box (x = z = 1, y = 0). To do this, we

| &

could simply say we need xyz to be true
for the output to be a logic 1, but we have
another adjacent 1-labeled box (x = y =
z = 1) and if we use this to form a 1-
cube, that term of the equation reduces to
xz, since a 1-output is independent of y if
x and z are 1. Thus, we obtain
a=y+ xz

as our final equation, and implement it as
shown in Fig. 3.

When “d” (don’t-care) outputs are
specified, these are included as 1-outputs
if it enables us to make larger cubes with
other l-outputs, hence simplifying the
equation, or as O-outputs if they are not
used in making larger cubes.

Even larger cubes may be found in
four-input functions. A l-cube is two
adjacent boxes containing either a 1 or
“d”; a 2-cube is two adjacent I-cubes
(i.e.,a 2 X 2 box or 4 X 1 horizontal or
vertical row); and a 3-cube is two adja-
cent 2-cubes (i.e., a 4 X 2 horizontal or
vertical box). If a map consists only of 1-
and d-labeled boxes, the function is al-
ways true, or a constant 1.

The step-by-step procedure for circuit
reduction, then, is as follows:

1) Draw the truth table, and fill in the

boxes of the Karnaugh map with a
1, 0 or d, using the inputs as coordi-
nates and the outputs as box entries.
For example, see Figs. 6-a and 6-b.
2) Examine the map for any 3-cubes,
i.e, a 4 X 2 box containing no
zeroes. Don’t forget to check for
possible wrap-around. In Fig. 6, a
3-cube is formed by decimal coordi-

nate boxes 0, 1, 2, 3,4, 5, 6 and 7 _

(see Fig. 4-c). The coordinates abed
of these boxes are examined, and it
is found that b, ¢ and d take on all
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FIG. 6—TO SIMPLIFY a logic circuit, first draw a
truth table that represents the circuit function
as shown in a. Next, a Karnaugh map is derived
from the truth table as shown in b.

values (0 and 1) while a is always 0.
Thus, when a = 0, the output is
always 1 independent of b, ¢ and d,
so one term of the final equation is
simply a. Place a check in each of
the boxes of this 3-cube to indicate
that they have been covered. When
the coordinates of any of these box-
es are input, the output will be 1
simply because a is 1. The map now
appears as in Fig. 7-a.

cd

00 01 11 10
ah

o 1\/ 1\/ 1\/ d\/

01| d 1 d 1

11 0 d 1 0

1O% | 0 0 1

cd
ab 00 01 11 10

00| 1 Al 1 d

01| d 1

iR =80 d 1 0

10 1 0 0 1

b

FIG. 7—KARNAUGH MAPS are reduced by first
looking for a 3-cube (a 4 X 2 box containing no
zeroes). When a 3-cube is found, check the
individual boxes as shown in a. Next, look for
2-cubes and check these boxes as shown in b.

3) BExamine the map for any 2-cubes,
that is, any 2 X 2 or 4 X 1 box
containing no zeroes, and at least
one 1-labeled box not yet checked.
In our example, decimal boxes 5, 7,
13 and 15 form such a cube. Exam-
ining the binary coordinates of
these boxes, we find that band d are
always 1, while a and ¢ may take on
any value. Thus, our second term of
the equation is bd, giving f = a +

?
g

ey

|
.

bd so far. Check off the boxes
covered by the second term. Check
for more 2-cubes. In the example,
we have another 2-cube that is not
so obvious, due to wrap-around.
This is the cube containing decimal
boxes 0, 2, 8 and 10. From the bina-
ry coordinates, we find b and d are
always 0, while a and ¢ can take on
any value. Thus our next term for
an output of 1is bd = 1, and our
function is now f = a + bd + bd.
Check off the boxes covered. The
map now looks like Fig. 7-b.

4) Examine the map for any 1-cubes,
i.e., two adjacent boxes each con-
taining a 1 or a d that also contains
one 1-labeled box mnot checked.
Write down the nonvarying coordi-
nates as a term of the function, and
check for more l-cubes. No I-
cubes remain in the example.

5) If any l-labeled boxes remain un-
checked, write down their coordi-
nates as a term of the function. For
example, if the box with coordi-
nates (a = 0, b = c =d = 1)
contained a 1 but was not yet
checked off, we would write the
coordinates as abcd and insert itasa
term in the equation. At the com-
pletion of this step, all boxes with a
1 in them should be checked off.

6) By inspection, make sure no cube is
completely covered by other cubes.
Each cube, no matter what size,
must contain at least one 1-labeled
box not contained in any other
cube. If it does not, discard its
corresponding term from the equa-
tion.

7) OR all the terms derived above to
get the final reduced function. In
our example we get:

f=a+ bd+bd

8) Feed each term into a NAND gate,
and feed the outputs of the NAND
gates to another NAND gate. The
circuit is complete. See Fig. 8-a.

In searching for cubes to cover an
unchecked 1-labeled box, the largest pos-
sible cube should be chosen, even if it
covers other boxes already checked, so
that the number of inputs to each gate is
minimized,

Note that Fig. 8-a has a as an input that
simply gets inverted before going to the
output gate. Instead of this, it would be
simpler to feed a directly to the output
gate, as in Fig. 8-b. Also note that the

BB

o o=

e

FIG. 8—LOGIC CIRCUIT is derived from reduced Karnaugh map and is shown in a. Inverter can be
eliminated as shown in b.
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output of the gate fed by bd cannot be
used as input b d to the gate below it since
bd = bd,

As was noted earlier, the Karnaugh
map method is too difficult beyond four
inputs. The designer has to start consider-
ing mirror-images, and mistakes are easi-
ly made. It also does not reduce the
circuit fully if multiple outputs are de-
sired, as in a BCD to seven-segment
decoder. Fortunately, there is another
fairly simple method to use in these
cases.

Quine-McCluskey method

The Quine-McCluskey method works
on the same principle as the Karnaugh
map, but is performed in tabular form. As
an example of this method, we will con-
struct a circuit to produce a 1-output,
called f, whenever a 2-bit number A,
whose bits are designated as a, and a,, is
larger than a 2-bit number B, whose bits
are b, and b,. The truth table for this
function is given in Fig. 9.

1-bits in A and B is two, so a 9 (a,a,b,b,
= 1001) is placed in the 2-bits group.
Within each group, the decimal inputs
are listed in ascending order. It can now
be seen that two inputs producing a 1-
output are adjacent, in the same sense as
in the Karnaugh map, if three conditions
are met:

1) The number of 1-bits of each input
differs by exactly one.

2) The decimal input with the smaller
number of 1-bits must be smaller
than the input with the larger num-
ber of 1-bits.

3) The difference of the two decimal
inputs must be a power of two.

According to condition 1, inputs listed

in the 3-bit group can only be adjacent to
inputs in the 2-bit or 4-bit groups; inputs
in the 1-bit group can only be adjacent to
inputs in the 0-bit or 2-bit groups, etc.
This is consistent with the definition of
adjacency being a difference in only one
bit of the input.

According to condition 2, the decimal

input 4 may be adjacent to decimal input

TE ) - i i
a, a, b, b, f 12, since 4, having fewer 1-bits than 12, is
smaller than 12. If, for example, the deci-
0 0 0 0 (0] ; :
0 0 0 1 0 mal input 3 produced a 1-output, it would
0 0 1 0 0 be placed in the 2-bits group, but could
0 0 1 1 0 not be adjacent to 4, since it has more
0 1 0 0 1 1-bits but is less than 4. This would cause
0 1 0 1 0 more than one bit in the input to be
0 1 1 0 0 different.
0 1 1 1 ? Co_ndition 3 is obvious, since only one
] 0 9 g input bit may differ for adjacency. If the
1 0 0 1 1 > :
1 0 1 0 0 difference of the two numbers is not a
1 0 1 1 0 power of two, more than one bit differs.
1 : g ? :: NO. OF 1-BITS INPUT | 1-CUBES
1 1 1 0 1 1 4 4,12 (8)
1 1 1 1 0 8 - 8,9 (1)
2 8,12 (4)
FIG. 9—QUINE-McCLUSKEY METHOD is used 2 9 v
when a circuit with four or more inputs must be 12 v 9,13 (4)
designed. First a truth table describing the 12,13 (1)
circuit function is generated as shown. 3 13 v~ 12,14 (2)
14 v i

INPUT
(DECIMAL
EQUIVALENT OF
a;a; by by)

1 4
8

2 9
12

3 13
14

FIG. 10—ADJACENT BOXES and cubes are
determined in a table generated from the truth
table shown in Fig. 9.

NO. OF
1-BITS

The Karnaugh map obviated adjacent
boxes and cubes. In the Q-M method, we
write down a table to help show adjacency
(see Fig. 10). The decimal value of each
set of inputs that will generate either a
1- or don’t-care output is listed in ascend-
ing order in groups according to the
number of 1-bits in the input. For exam-
ple, A = aja, = 10 and B = b,b, = 01
produces a 1-output, and the number of

FIG. 11—SIMPLIFICATION starts by listing the
1-cubes.

We now use these rules to make a third
column, consisting of a list of adjacent
boxes, or 1-cubes. We take the first input
number in the table, 4, and check it for
adjacency with the entries in the next bit
group. Box 4 is not adjacent to 9, since
the difference, 5, is not a power of two,
Box 4 is, however, adjacent to 12, since
the difference is 8, and 4 is less than 12.
Thus, we enter into the third column the
numbers 4 and 12 together, with their

difference in parentheses (see Fig. 11).
Since the inputs 4 and 12 have been
covered by a higher cube, we place a
check next to them in the column labeled
input.

The input 4 cannot be adjacent to any
other bit group, so we look at input 8. Box
8 is adjacent to 9, since the difference is a
power of two, so we enter the numbers
and difference as a l-cube and place a
check next to the 8 and 9 inputs to indi-
cate they have been covered by a higher
cube. Box 8 is also adjacent to box 12, so
we repeat the process for them. Since we
are through checking the 1-bit group, we
place a line under 8,12(4) in the 1-cube
column and start checking the 2-bit
group. Box 9 is adjacent to box 13 but not
to box 14. Box 12 is also adjacent to box
13, as well as 14, and we are finished
creating 1-cubes. The 1-cube column now
contains a list of all the possible 1-cubes
that could be extracted from the Kar-
naugh map. Since all the inputs in the
input column have been checked off, they
are all contained in higher cubes.

We now have two groups of 1-cubes,
and use these to form 2-cubes. The same
conditions hold for forming adjacent
cubes, except now the numbers in paren-
theses must also match. Looking at the
first 1-cube entry, 4,12(8), we see that it
is not adjacent to any l-cube in the
second group, since none have an 8 in
parentheses. Going to 8,9(1), we find an
entry, 12,13(1) in the second group that
has the same number in parentheses.
Since the difference of 8 and 12 (or 9 and
13) is also a power of two, and 8 is less
than 9 and in a lower group, we enter this
in the next column as a 2-cube, and indi-
cate both the first and second differences
in parentheses. The two entries that
formed this cube are checked, since they
are covered by the higher cube (see Fig.
12).

Another entry, 8,12(4), is adjacent to
the entry 9,13(4), so it is entered as a
2-cube and the separate 1-cubes are
checked. However, this is identical to the
previous 2-cube and is thus stricken. No
further adjacency is found, and there are
no more groups to check for adjacency, so
the checking of the I-cube column is
complete.

We now go to the next column and
continue until no adjacencies are found.
The same rules are followed in each
column, checking each entry against each

continued on page 92

NO. OF 1-BITS INPUT 1-CUBES 2-CUBES
9 4v 4,12 (8) 8,9,12,13 (1,4)
81 8,9 (1)~
o
7 e 8,12 (4)
12 9,13 (4)~
(7
3 1312 e
14 - ’

FIG. 12—ALL 2-CUBES are listed. Second 2-cube is crossed off since it is covered by first entry.

IN THE APRIL AND MAY 1977 AND MAY 1978
issues, we showed how to construct add-
on telephone accessories that let you turn
on and turn off various household appli-
ances by remote control, build a hands-
off telephone amplifier and assemble an
autodialer and cassette interface that di-
aled authorities or neighbors in case of a
fire or intruders in your home.

If you were interested in these items,
you’ll flip over the Remote Ear that lets
you dial your home phone and then listen
for. the sound of running water or a radio
that was inadvertently left on. Or maybe
you just want to check your house and see
that everything is quiet and no one has
broken into it.

The Remote Ear is an adaptation of the
Teleswitch circuit (April 1977). It auto-
matically connects a microphone and am-
plifier to the telephone so that you can
monitor a remote location. As you will
quickly see from the schematic, the Re-
mote Ear uses the same type of signal
detectors as the Teleswitch. However,
instead of having controlled outlets to
turn devices on and off, the Remote Ear
has a small three-transistor amplifier con-
nected to it.

This amplifier is identical to the one
described in the Speakerphone circuit
(May 1977). Its signal is very clear and
audible. The output of the amplifier,
which is located in the area that you want
to monitor, is fed to a small speaker that
is acoustically coupled to the telephone
mouthpiece.

Since it is unlikely that remote listen-
ing will be done for long periods of time,
the Remote Ear has a built-in timer that
allows you to listen for about three min-
utes. Longer or shorter listening times
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can be set by adjusting the timing resistor
in the emitter circuit of unijunction tran-
sistor Q2.

About the circuit

Sound switch | and the unijunction
timer that is associated with it (Q1) are
the same as were used in the Teleswitch.
Sound switch 2, however, is slightly mod-
ified. Instead of having one relay connect-
ed to the 2N3904 collector, there are two
relays, RY2 and RY4.

The operation of  the Remote FEar
involves several steps. When the tele-
phone rings the first time, sound switch 1
triggers and causes RY1 to close. This
applies power to sound switch 2 and to
the two timing circuits consisting of uni-
junction transistors Q1 and Q2.

If the phone rings more than once,
within 20 seconds sound switch 2 triggers
and RY 2 closes. Contact RY?2-1 discon-
nects the power from the first unijunction
transistor timing circuit and from sound
switch 1. This prevents the Remote Ear
from being activated and makes it neces-
sary to wait three minutes before the next
attempt.

If, however, the phone rings only once,
there is enough time for a charge to build
up on C1 and for Q1 to trigger, activating
RY3. When RY3 is activated it switches
the RY2 coil out of the control circuit of
sound switch 2 and replaces it with the
RY4 coil.

The first time the telephone rings only.
once it arms the circuit. The next time
the telephone rings it turns on the listen-
ing circuitry. This is done by sound
switch 2 activating RY4, which, in turn,
controls the amplifier and the answering
solenoid.

o

REMOTE
TELEPHONE EAR-

Listen via Long Distance

This device—the fourth in a series of phone gadgets—
lets you monitor sounds in your home or office
when you call your telephone from a remote location.

Relay RY4 latches closed and is held in
that position until a reset pulse from
unijunction timer Q2 turns off the
2N3904 controlling RY2 and RY4 and
unlatches SCR2.

The telephone is actually answered by
a solenoid that pulls up when RY4 closes.
This releases the cradle switch and an-
swers the phone. The handset of the tele-
phone is placed on the table alongside the
telephone. The loudspeaker connected to
the output of the amplifier is held next to
the mouthpiece (rubber bands can be
used). Thus, the sound picked up by the
crystal microphone is amplified and
acoustically coupled to the telephone,

After three minutes, or whatever time
period you selected has elapsed, a reset
pulse is generated and the bases of the
control 2N3904’s are brought to ground
potential, turning these transistors off
and unlatching the SCR’s. The unit is
now ready for its next monitoring pe-
riod.

Construction

This project is constructed from four
modular circuits. The first two circuits
are sound switches identical to those built
in the Teleswitch (April 1977). After the
sound switches are built, they should be
mounted in a metal chassis that is large
enough to be placed under the telephone.
A 5 X 9 X 2-inch aluminum chassis was
used for the prototype. A Ys-inch hole
should be drilled where each of the crys-
tal microphones is mounted so that sound
will reach them more easily.

After the sound switch modules are
mounted, assemble the control module
using the circuit shown in the schematic.
The circuit can be fabricated by wiring
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