BUIEPEREIS

P t 2 LAST MONTH, WE
a r looked at the basic
approach we’ll follow to store the contents
of Atari 2600 game cartridges on audio
cassette tape. We also looked at the hard-
ware that’s required, and briefly studied
how cassette /O is handled. This time,

discussing cassette I/O. Figure 5 showed a
flowchart that described the cassette-read
algorithm. Let’s look at the software in
more detail to see how it’s used to detect
the data and sync pulses. (Remember that
sync pulses are sent out every 2 millise-
conds. Data pulses are sent between the

might wonder why we write 2000 zero
bits and look for only 50. There’s a very
practical reason: It allows the automatic
gain control (AGC) of most recorders
enough time to settle down.

After the recorder finds 50 consecutive
zero bits, it keeps on looking until it finds

ARl Game Recorder

GUY VACHON and DAVID A. CHAN

You can record the contents of your Atari 208 videogame cartridges on audio cassette tape!
This month, we'll take a look at the software that's needed.

we’ll look at the software in more depth.
Then we’ll see how we can build the game
recorder and put it to use.

Game-recorder software

The complete software listing for the
game recorder’s operating system appears
in Table 1. Note that it is written in Z80
mnemonics. Although we won’t be dis-
cussing the software line by line, you
might want to study Table | to get the
details.

When we left off last time, we were

sync pulses—a pulse represents a 1 bit,
while the lack of a pulse represents a zero
bit.)

When the contents of a game cartridge
is written to a cassette tape, a header of
2000 zero bits preceeds the actual begin-
ning of the program bits. After the header,
the game recorder also writes a (user-se-
lected) label before each game. When the
game recorder reads the contents of a cas-
sette tape, its software looks for fifty con-
secutive zeros to decide that it has found
the beginning of a game program. You

a | bit. It then checks the name tag, which
is output to the LAST GAME FOUND display.
It the name tag matches the name of the
game you selected, it keeps on reading
bytes and storing them in the RAM. If the
tag doesn’t match, the game recorder
keeps looking for another start-of-game
header. (We’ll give more details on that—
and other operation aspects of the com-
puter—a little later on in this article.)
You may recall that a parity bit is added
to each instruction so that the game re-
corder will recognize when something

G861 AHVNN

(3]
-

RADIO-ELECTRONICS

[4)])
o

TABLE 1—GAME-RECORDER SOFTWARE

CURRENT__GAME_ OUT EQU 8000H LOOPD: DEC A
GAME_ SEL_ OUT EQU OGAQOOH JP NZLOOPD
INPUT : EQU 0CO00H LD A(INPUT)
RAM__FIRST__BYTE_ADD EQU 4000H AND Q4H
ROM_FIRST_BYTE_ADD EQU 2000H JP NZLAB3
LAST_PLUS 1_BYTE_RAM_HIGH EQU 5@H EXX :START OF DOWNLOAD
LAST_BYTE_ADD_RAM EQU 4FFFH : PROGRAM
:START OF INTTIALIZATION LD AC “TURN ON DECIMAL
280 : POINT
LD AQOH ‘CLEAR LEDS EXX
EXX OR 80H
LD BA LD (GAME_SEL_OUT)A
LD (CURRENT GAME_OUT)A BLOCIN: LD DE,01F4H
LD ASJFH LOOPE: LD HLXX2 FIND 500 ZEROS
13 LR JP BITIN
LD (GAME_SEL_OUT)A XX2: JP CBLOCIN
EXX DEC DE
:START OF MAIN PROGRAM : LD AE
LOOP1: ~ LD A(INPUT) 'SEE IF INC GAME ADD AD
: PUSHED JP NZLOOPE
AND O1H JP C,LOOPE
JP NZ LAB1 LOOPF: LD LHXX3 {FIND 1ST BIT OF 1ST
LD AQFFH :WAIT AND CHECK . BYTE
; INPUT AGAIN JP BITIN
LOOPA: DEC A XX3; HP NC,LOOPF
JP NZLOOPA LD AQIH :GET 1ST BYTE
LD A,(INPUT) LD BO7H
JP NZLAB1 LD IX.XX4
EXX :START OF INC GAME JP BYTEIN
: PROGRAM XX4; AND OFH :CONVERT TO 7 SEG
LD AB : AND DISPLAY
INC A LD IY,XX5
AND OFH JP CONVERT
LD BA XX5: LD (CURRENT_GAME_OUT)A
EXX LD DA 'SEE IF CORRECT
LD IY.XX1 ; GAME
JP CONVERT EXX
XX1: EXX LD AC
LD CA EXX
EXX CP D
LD (GAME_SEL_OUT)A, JP NZBLOCIN
LD DEZ7FFFH ‘WAIT HALF A SECOND JD DE,RAM_FIRST_BYTE_ ADD
LOOPB: DEC A :GET REST OF BLOCK
LD AE LOOPG: LD A0OH
ADD AD LD B,g8H
JP NZLOOPB LD IX.XX6
JP CLOOPB JP BYTEIN
XX6: LD (DE)A
;CONTINUATION OF MAIN PROGRAM INC DE
LAB1: LD A(INPUT) \SEE IF COPY PUSHED LD AD
AND @2H CP LAST_PLUS_1_BYTE_RAM_HIGH
JP NZLAB2 JP NZLOOPG
LD AGQFFH ‘WAIT AND CHECK LD DE,OFFFFH \WAIT ONE SECOND
: INPUT AGAIN LOOPH: DEC DE
LOOPC: DEC A LD AE
JP NZLOOPC ADD AD
LD A(INPUT) JP NZLOOPH
AND 02H JP C,LOOPH
JP NZLAB2 EXX “TURN OFF DECIMAL
LD DE,RAM_FIRST BYTE_ADD ; POINT
'START OF COPY LD AC
: PROGRAM EXX
LD HLROM_FIRST_BYTE_ADD LD (GAME_SEL_OUT)A
LD BC.1000H
LDIR
;CONTINUATION OF MAIN PROGRAM
:CONTINUATION OF MAIN PROGRAM LABS: LD A(INPUT) :SEE IF RECORD
LAB2: LD A(INPUT) ‘SEE IF DOWNLOAD ; PUSHED
: PUSHED AND 08H
AND 04H JP NZLAB4
JP NZLAB3 LD AQFFH ‘WAIT AND CHECK
LD A@FFH WAIT AND CHECK . AGAIN
: INPUT AGAIN LOOPI; DEC A

JP NZLOOP). :

LD A(|NPUT)
AND !@8H : ’
JPNZ, LAB4 , ;
EXX : ¢ :START OF RECORD
_ : : : PROGRAM :
. LD AC ! TUHN ON DEC!MAL
: ; * " ; POINT
EXX \ “
OR -80H
. LD . (GAME SEL OUT),
'\ LD DE,07D0H
LOOPJ: * AND ‘QFFH OUTPUT 2000 ZEROS
" LD CHLXX7
- JP BITOUT -
T * DEC DE
LD AE
ADD AD
JP “NZLOOPJ
JP . C,LOOPJ:
EXX ; ' :OUTPUT BLOCK
: : ADDRESS
LD AB -
EXX
OR QF@H
LD IXXX8
JP BYTEOUT
XX8: LD DE,RAM_FIRST BYTE ADD
:OUTPUT BLOCK
LOOPK: LD A,DE)
LD IX,XX9
JP BYTEOUT
XX9: INC DE

CP LAST_PLUS_1
JP NZLOOPK
© LD DEGQFFFFH
LOOPL: *~ DEC DE

__BYTE__RAM__HIGH
‘WAIT ONE SECOND

LD AE
ADD "AD
JP YNZLOOPL
» JP CLOOPL:
i OEXX ' : -1 ;TURN OFF DECIMAL
- ; POINT
LD AC ’
TOEXX Y
LD {GAME_SEL_ OUT)A
LAB4: JP LOOPT] j :
-;START OF susnounNes F

‘BYTEIN SUBROUTINE - GETS ONE BYTE FROM TAPE
4X = RETURN ADDRESS . °

:GIVEN: A IS (EMPTY) BYTE - . AN
g BIS # BITS LEFT :
;RESULT: A IS BYTE

JUSES: B
:CALLS: BITIN
;CANNOT AFFECT: DE
BYTEIN: LD "HLXX10 :START OF BYTEIN
‘ ~ . ;PROGRAM
JP BITIN :GET ENTIRE BYTE
XX10: RLA ‘
DEC B
JP NZBYTEIN
AND @FFH ;COMPUTE PARITY
EX AFAF
LD HLXX11 \GET PARITY BIT
JP BITIN
XX11: JP CLABS :SEE IF ERROR BY
: CHECKING ‘CARRY’
- THEN
EX AFAF
JP PE,PERROR
P (IX)

TABLE 1 (continued)

LABS: EX AFAF 'RECALL BYTE &
: FLAGS AND CHECK
: PARITY
JP POPERROR
P X)
A94H ‘ERROR, DISPLAY

PERROR: LD
' : MESSAGE

LD (CURRENT_GAME_ OUT)A

LD DELAST BYTE_ADD_RAM

= SRR

;éITIN SUBROUTINE - GETS dNE BIT FROM TAPE
;HL = RETURN ADDRESS

;RESULT: BIT IS CARRY

;USES: D'\E’H'
;CANNOT AFFECT: DE,B,A

BITIN: EXX ;START OF BITIN
; PROGRAM
LD DA ;EXCHANGE
; REGISTERS AND
; STORE A
LOOPM: LD A(INPUT) ;FIND HIGH
AND 10H
JP ZLOOPM
LD ES8FH ;WAIT 1MSEC

LOOPN: DEC E
JP NZLOOPN

LD EQGCH ;SEE IF 1 OR @ FOR
; 0.256MSEC
LOOPO: LD A, (INPUT)
AND 10H
CCF
JP NZLABS6
DEC E
JP NZLOOPO
CCF
LABG: LD E,5DH \WAIT 2.65MSEC
LOOPP: DEC E
JP NZLOOPP
b AD ;RECALL A,
; EXCHANGE REGS &
; RETURN
EXX
JP (HL)

;BYTEOUT SUBROUTINE - WRITES A BYTE ONTO TAPE
X = RETURN ADDRESS

;GIVEN: A ISBYTE

;USES: B,

;CALLS: BITOUT

;CANNOT. AFFECT:DE

BYTEQUT: LD BgsH START OF BYTEQUT
' : PROGRAM
LOOPQ: RLCA :OUTPUT BYTE
; ik HLOITE :
JP BITOUT
XX12: DEC B
JP NZLOOPQ
AND @FFH :COMPUTE AND
: OUTPUT PARITY
JP POLAB?
CCF
LAB7: LD HLXX13
JP BITOUT
XX13: P (X)

:BITOUT SUBROUTINE - WRITES A BIT ONTO TAPE
;HL = RETURN ADDRESS

;GIVEN: CARRY IS BIT

;JUSES: C

;CALLS: PULSE

:CANNOT AFFECT:DE,B,A

5861 AHVNNVI

a
-~

-

RADIO-ELECTRONICS

[3)]
(-]

has been misrecorded. If incorrect parity
is detected when the computer is reading
from the tape, it will stop rcading, and the
LAST GAME FOUND display will show a
message of three horizontal bars to indi-
cate an error.

Before we go any further, we should
talk a little about the memory mapping
used in the game recorder. The system
ROM resides from 0000H to 1FFFH.
(Note that a capital “*H” indicates that a
number is written in hexadecimal.) The
game cartridge occupies the second 8K
block—2000H to 3FFFH. The game re-

corder’s RAM is located from 4000 to
SFEFH. Cassette /O and the displays are
also memory mapped: The block from 800
@H to 9FFFH is used for the LAST GAME
rounDp display and the cassette data out-
put, while the block from A@GOH to
BFFFH is used for the GAME SELECTED
display and for the remote cassette con-
trol. The cassette data input and the
switches are memory mapped from C00
{H to DFFFH. Note that two 8K blocks (6
00OH-7FFFH and EGOOH-FFFFH) are
not used.

The easiest job that our computer has to

do is to read the program ROM. As it
operates now, the computer can copy all
2K x 8 ROM’s and 4K x 8 ROM’s. As
you might expect, it is possible to modify
the recorder to copy 8K X 8 ROM’s.
Note. for example, that although an 8K
block was left available for program-stor-
age RAM, the hardware as presented has
provision for only 4K.

We'll talk more about how to expand
the unit to record larger programs, and
show you how to build and use it. when
we continue our look at the Atari game
recorder next time. R-E

