TOM FOX

P t 2 LAST MONTH, WE IN-
ar troduced National
Semiconductor’s INS8073 microin-
terpreter and described, in detail, its pin
connections and their functions. In this
second part of the series we will look at a
handy demo/development board as well as
introduce the language of the 8073, NSC
Tiny BASIC.

Before we get started with that, we
should mention that National Semicon-
ductor has, unfortunately, discontinued
production of the INS8073. However,
many suppliers still have stocks of that IC,
so you should be able to find it rather
easily. Even if you can’t, don’t worry.
There are many other single-IC comput-
ers available. You may even learn more if
you try to use another microinterpreter.

Even if you don’t want to pore over data
sheets and design interfacing circuits, you
can still put the power of a microin-
terpreter to work by using development
and demonstration boards. Several man-
ufacturers offer such boards. For exam-

ple, we’ll look at a demonstration board
for the INS8073 that is available from
Digi-Key Corp. (Highway 32 South, PO
Box 677, Thief River Falls, MN 56701).
That board, shown in Fig. 5, sells for
$250. A user manual is $10.

The demonstration board makes de-
signing with the 8073 so simple it seems
as if you're cheating! After you receive
the board, all you have to do to start pro-
gramming in NSC Tiny BASIC is to con-
nect up power (+5 and — 12 volts). If you
use an RS-232 terminal, you have toadd a
jumper to the board, and use a standard
male-male cable to connect the D-type
connector on the board (J1) to your termi-
nal’s RS-232 connector. Of course, you
can also use your computer along with
communications software to emulate a
smart terminal. Baud rates (110, 300,
1200 4800 baud) can be set by adding
jumpers on the board.

After you turn on the power, a prompt
(>) should appear on your terminal
screen. You are then ready to start pro-

Make your next project “intelligent.” Use a single-chip microcomputer to control it.

gramming in Tiny BASIC.

Besides being easy to hook up and get
running, the development board contains
4K of RAM, a 8255 programmable pe-
ripheral interface IC, an 8154 RAM-1/0
that provides 128 bytes of scratch-pad
memory for use in assembly-language
subroutines, and has 16 I/0 lines that can
be individually programmed.

Perhaps the nicest features of the board
is that it has an EPROM-resident utility
program as well as an EPROM program-
mer (which is controlled by the utility
program). The utility program allows you
to store and retrieve programs on cassette
tapes and download programs from a
“host”” computer. It also has a variety of
other features such as the DUMP com-
mand, which allows you to “display” part
of memory in both the hexadecimal and
converted ASCII format. However, for our
purposes (the design of smart machines),
its greatest feature is that it makes the
programming of EPROM’s easy and near-
ly foolproof. All you need is a single-

G861 AVIN

&
purg

RADIO-ELECTRONICS

8

N

supply 2716 EPROM and a + 25-volt
source. The built-in program does all the
rest. One caution: the S (setup) command
is not mentioned in the manual, but it
should be used immediately before the P
(program) command.

While the demonstration board is defi-
nitely helpful if you want to design cir
cuits using the 8073, it is not essential if
you have access to an EPROM program-
mer. However, if you don’t have an
EPROM programmer available, then the
board is recommended.

NSC Tiny BASIC

Like most tiny BASIC’s, that supplied
with the INS8073 allows only signed in-
tegers from — 32767 to +32767 and 26
single-letter variables (A to Z). However,
as you will soon see, this Tiny BASIC is
remarkable in most other respects.

The commands RUN, CONT,
CLEAR, LIST, and NEW are similar to
the commands used by many standard
BASIC languages. The command NEW-
< expr> resets the program pointer to that
of the <expr>. That command should be
given before you enter a program. For
instance, say you want to start your pro-
gram at 1100H. (The “H” indicates that
the number is in hexadecimal). You
should type: NEW#1100<return> and
then type: NEW<return>. NOTE: In
NSC Tiny BASIC “#"" is used as a prefix
to indicate to the interpreter that the
number is in hexadecimal. Numbers that
do not have that prefix will be treated by
the interpreter as if they are decimal.

The following NSC Tiny BASIC state-
ments and operators are similar to those of
other BASIC'’s and will be listed without
comment: REM, LET, PRINT,
I[F-THEN, FOR-NEXT, GOTO, GO-
SUB, RETURN, INPUT, STOP, +, —,
X, [/, >, <, =, AND, OR, NOT, and
MOD.

The DO-UNTIL, statement is used to
program loops and has been borrowed
from PASCAL. That statement is rare in
the BASIC language, although the pro-
posed ANSI standard BASIC contains it.

The LINK statement is used to transfer
control to machine language subroutines,
which can be used where speed is impor-
tant.

The DELAY statement causes a delay
in the program execution up to a max-
imum of just over | second. The number
following the DELAY statement gives the
time in milliseconds that the program will
be delayed. DELAY 100 causes a delay of
about 100 milliseconds (1/10 of a second)
and DELAY 0 gives the maximum delay
of about 1040 milliseconds. (Note all
times are only approximate and depend on
the frequency of the clock.) The DELAY
command is used extensively in our ex-
ample project.

The function RND (random) is also
used frequently in our example project.

FIG. 5—THIS DEMO/DEVELOPMENT BOARD is
not necessary if you want to use the 8073, but its
on-board EPROM programmer and utility pro-
gram makes it easy.

The statement LET A=RND(1,10) as-
signs a pseudo-random number between |
and 10 (inclusive) to the variable A.
Let’s take a look at a short program
segment that will give us a delay in pro-
gram execution between 1 and 5 seconds:

3I0LET L=0

320 LET M=RND(1,5)
330 DELAY ¢

340 LETL=L+M

350 IF L<5 GOTO 330

The TOP function gives the address of
the top of memory. (The top of memory is
the first memory location in external
RAM that is not used by the NSC Tiny-
BASIC program.)

The following is an example of how the
TOP function is used. (Note that this ex-
ample is printed here exactly as it would
appear on your terminal.)

>NEW#1100
>NEW

>10 PRINT TOP
>RUN

4366

The number displayed on the terminal
after the program has run (4366) is the
first address of unused RAM. Note that
like all numbers displayed on the terminal
under the control of the INS8073 microin-
terpreter, 4366 is in decimal. While the
interpreter “‘understands” numbers given
to it in hexadecimal (with a *“# ™ prefix), it
only displays decimal numbers on the ter-
minal.

The STAT function allows you to
monitor and set the 8073 status register.
For details ‘on that register, refer to the
National Semiconductor Tiny BASIC
User Manual and/or the INS8070 data
sheet.

The ON statement is used for process-
ing interrupts. It has two formats; ON 1
<expr> and ON 2 <expr>. Notice there
are two interrupts, 1 and 2. Number |
interrupt occurs when there is a high-to-
low transition at pin 38. Interrupt number
2 occurs when there is a high-to-low tran-
sition at pin 39. After the 8073 senses the
interrupt, the interpreter will execute a
GOSUB beginning at the line number
given by <expr>. It is important to note

>

that the statement, STAT = “odd number”
(where the odd number is often 1), should
be used before an ON statement in order
to enable the interrupts.

The INC(X) and DEC(X) functions in-
crement and decrement, respectively, the
memory at the locations given by X.
Those functions are useful in multi-
processing. For our purposes, however,
we will ignore them.

The indirect operator

One of the most important features of
NSC Tiny BASIC, especially for those
who look to the 8073 to provide ‘‘brains”
for ‘“‘brainless” machines, is the indirect
operator “(@. " That operator is simpler to
use than the PEEK and POKE commands
found in most BASIC languages. For in-
stance, to store a 4 (decimal) at location
CO00H, simply make the following state-
ment; @#C000=4. The statement
“LET B = @#6000" sets the value of the
variable B equal to the value stored at the
hexadecimal address 6000.

Be aware that the INS8073 is an 8-bit
device and it can only store an 8-bit binary
number (0 to 255 in the decimal system)
at any memory location. Thus, if you use
the @ operator to attempt to store a two-
byte (16 bit) number or larger at any
memory location, you might experience
sleepless nights trying to debug your pro-
gram. The interpreter will only “see’ the
least-significant byte. For instance, the
statement “‘@#C000=260"" (260=
100000100) would actually store “4”
(00000100) at location COQQ.

Putting the microinterpreter to work

Now that we’ve introduced you to the
INS8073 microinterpreter and taken a
quick look at a demo/development board
and the NSC Tiny BASIC language, it's
time to design a project that is based on
the 8073. In particular, we will describe,
in detail, how to build a **burglar outwit-
ter.”

The first step in the design of any proj-
ect should be to decide exactly what you
want the project to do. As the name of this

. project suggests, we would like to fool or

outwit a burglar into thinking that some-
one is in the house, even when it is empty.
The circuit we’ll describe is fairly sim-
ple—it’s meant simply to be a demonstra-
tion of what you can do with the INS8073.
If you decide to build such a device, you’ll
learn a lot more if you customize the cir-
cuit and/or program to better meet your
needs. We'll give you some hints on how
to do that.

The burglar outwitter

We want our demonstration circuit to
control three lights: The living-room light
(called light A), the hallway light (light B)
and the bathroom light (light C). When it
gets dark, we want light A to go on for
random length of time between 10 and 60

»

minutes. We want light B to go on about a
second after light A goes out. Light B will
stay on for | to 3 seconds. About a second
after light B goes out, we would like light
C to light for a random length of time that
is no greater than 20 minutes but no less
than 5 minutes. About a second after this
light goes out light B should go on and
stay lit for | to 5 seconds. After a second
pause let’s have light A go on again, but
only if it is still dark.

That completes the first cycle. After 5
such cycles, we would like the controller
to go into a “sleep” phase for the rest of
the night. During that “‘sleep” phase,
light C (the bathroom light) will go on
every 1¥2 10 5 hours for between 1 and 10
minutes. That should continue until sun-
rise, when the controller will be reset and
prepared for the next night.

If possible, we would like to use a 2716
EPROM to store the software. And we
would like to design the system so that it is
easy to expand. After all, we’ll probably
want to add another light—or maybe a
dozen appliances.

Now that we know what we want our
controller to do, we have to design an
actual circuit to do the job. First, however.
let’s look at some input and output details.
Let’s pick address COOOH for both our
output and input port address. Note that
COOOH is equal to 1100 0000 0000 0000 in
binary notation. To decode that address,
address lines AlS and Al4 (the two most
significant bits) must be high while Al3
and A12 are low. (We don’t care about the
other address lines here since there is no
memory at those locations.)

The NSC Tiny BASIC statement LET
B =@#C000, assigns the value at ad-
dress CO00 to the variable B. (Remember
the prefix “# " stands for ‘hexadecimal ™
in NSC Tiny BASIC.) We have todesign a
circuit that places information on dark/
light at input-port location C000. When
its dark, let’s make D@ *‘one” (high) and
when its light, let’s have D0 “zero™ (low).

For the output port, we will use the
same address, C000. We can do that be-
cause the 8073 has READ and WRITE
control lines that tell external circuits
(such as address decoders) whether the
8073 is inputting information (reading) or
outputting information (writing). TTL
latches will be used to temporarily store
output information. We’ll use one latch
for each light controlled.

The output circuit will be designed so
that the statement @#C000=1 will set
latch 1. Also the statement @#C000=2
will set latch 2 and @#C000=4 will set
latch 3. All latches will be reset by the
statement @#C000=0. (Note that those
statements work because a decimal | =
00000001 (binary), 2 = 00000010 (binary)
and 4 =00000100 (binary).

A buffer/driver/relay circuit will be
connected to the latches™ output to actu-
ally control the lights. But were getting a

-

¥

l INITIALIZE l
MAKE SURE ALL

LIGHTS ARE OFF

| INCREMENTA |

IS
A
GREATER

START OF
“LIGHT B”
SUBROUTINE

KEEP LIGHT B
OFF FOR 1 SECOND

B!

TURN ON LIGHT B
FOR 1T0 5 SECONDS

:

TURN OFF
ALL LIGHTS

!

| RETURN
TO MAIN PROGRAM

THAN
5?

YES

¥

KEEP LIGHT A
QFF FOR 1 SECOND

i

TURN ON LIGHT A
FOR 10-60 MINUTES

¥

BAYLIGHT

out? /£ YES

TURN OFF
ALL LIGHTS 4

KEEP ALL LIGHTS
OFF FOR 1-1/4
T0 5 HOURS

¥

GO TO SUBROUTINE
“LIGHT B”

!

KEEP LIGHT C
OFF FOR 1 SECOND

TURN ON LIGHT
C FOR 170 10 MINS

4

TURN ON LIGHT C

FOR5TO0 20 MINUTES

TURN OFF
ALL LIGHTS

!

G0 70 SUBROUTINE
“LIGHTB"”

Sigea

FIG. 6—THE FLOW CHART FOR the burglar outwitter. The actual program could have been written
more compactly, but then it wouldn't have been as valuable a learning tool.

little ahead of ourselves. We’ll go into
specific detail on how to wire real-life
parts. But first, let’s look at a program that
will accomplish our objectives.

The control program

The first step in writing any non-trivial
program should be the sketching out of a
flow chart. Figure 6 shows a simplified
flow chart for our BASIC program. Al-
though this project has a definite practical
application, it also provides us with the
opportunity to explain the basics of de-
signing with the INS8073. You may find
that the program (and circuit itself) was
not designed to be especially compact.
The primary objective is to have some-
thing that’s easy to understand. You might
like to write a shorter and more elegant

program that accomplishes the same task.

The wordy program shown in Table | is
allowable here since there is plenty of
memory space in the 2716 EPROM. Lon-
ger, more complicated programs may not
fit in a single 2716.

While we could go through the program
line-by-line to explain its operation, it is
probably less confusing to study the
flowchart. There are some lines that we
should describe, however.

The program statement in line 20 turns
off all lights, while the statement in line
30 places information on dark/light into
variable B. In line 40, all data bits are
masked except the least-significant bit of
data (D@). The variable “C” has the value
of | when it’s dark and 0 when light.

When it’s dark, the statement on line 60

G861 AVIA

[-]
w

b |

TABLE 1
BURGLAR OUTWITTER PROGRAM

1 REM GHOSTLY BURGLAR OUTWITTER PROGRAM 355 REM TURN OFF LIGHT B
5 REM SET ALL VARIABLES TO ZERO AND INITIALIZE 360 @#C000=0

10 CLEAR . 370 RETURN

20 @#C000=0 gt

25 REM TEST FOR DARKNESS 400 LET N=0: DELAY 0

30 LET B=(@#C000
40LETC=1 ANDB

405 REM TURN ON LIGHT C
410 @#C000 =4

RADIO-ELECTRONICS

(-]
&

. — —

50 IF G =0 GOTO 20
55 REM ITS DARK SO INCREMENT A
60 LET A= A+1
70 IF A>5 GOTO 500
80 GOSUB 200
90 GOSUB 300
100 GOSUB 400
110 GOSUB 300
120 GOTO 20

200LET J=0. DELAY O

205 REM TURN ON LIGHT A
210 @#C000 =1

220 LET K=RND(1,6)

225 REM KEEP LIGHT A.ON FOR 10 TO 60 MINUTES

230 DELAY O

240 LET J=J+K

250 IF J<3600 GOTO 230
255 REM TURN OFF LIGHT A
260 @#C000=0

270 RETURN

300 LET L=0:DELAY O

305 REM TURN ON LIGHT B
310 @#C000=2

320 LET M=RND(1,5).

325 REM KEEP LIGHT B ON-FOR 1 TO 5 SECONDS

330 DELAY 0
340 LETL=L4M

350 IF L<6 GOTO 330

increments the *‘sleep-phase variable,”
A. After that has been incremented past 5,
statement 70 instructs the program to go
to the “sleep phase” program segment,
which starts at line 500.

If there have been less than 5 passes,
the program jumps to the subroutine at
line 200, which coatrols light A. First, the
subroutine clears the variable J and delays
the program for about a second (DELAY
0). Next, the subroutine turns on light A
(@#C000 = 1). The statement on line 220
sets K equal to a pseudo-random number
between | and 6. The statement “DELAY
0" delays further program execution for
about a second and is the first part of the
loop, which consists of the statements in
lines 230, 240, and 250. The statement in
line 240 increases the value of the variable
J by the amount of K. (Remember “K” is
between 1 and 6.) Line 250 causes a
branch to line 230 if J is less than 3600.
Note that if K= 1, this program loop will
cause a delay of about 3600 seconds (60
min.). When K=6 the delay is about
36004 = 600 seconds (10 min). Notice that
with this program shorter delay times are
more likely than longer ones. That fact
has nothing to do with an inherent defect

420 LET P=RND(1,4)
425 REM KEEP LIGHT CON FOR 5 TO 20 MINUTES

430 DELAY 0

440 LETN=N+P
450 IF N<1200 GOTO 430
455 REM TURN OFF LIGHT C

460 @#C000=0
470 RETURN

500 LET A=0: LET D=0: LET F=0
510 LET E = RND(1,4)
515 REM TEST.FOR DAYLIGHT
520 LET H=@#C000
530 LET I=1AND H

535 REM IF ITS NOW LIGHT OUT BRANCH TO START

540 IF =0 GOTO 10
545 REM IF STILL DARK WAIT FOR 114 TO 5 HOURS

550 DELAY O

560 LETD=D+E
570 IF D<18000 GOTO 520
575 REM. TURN ON LIGHT C

580 @#C000=4

590 LET G=RND(1,10)
595 REM KEEP LIGHT C ON FOR 1 TO 10 MINUTES

600 DELAY 0

610 LET F=F+G

in the RND command. Rather, it is built-
into the design of the program. For in-
stance, when K=2, the delay time is
about 30 minutes, with K = 3 the delay is
about 20 minutes. There is no delay time
between 60 and 30 minutes. Can you fig-
ure out the approximate delay times for
K=4 and K=5?

The other light-control subroutines
work the same way, but take the time to
read through them to make sure you un-
derstand.

The statement at line 120 causes a
branch back to line 20. After making sure
all lights are off, the program checks to
see if it’s still dark out and if it is, variable
“A" is incremented. When A reaches 6,
the program branches to line 500. The
program segment from lines 500 to 640 is
the sleep phase. Lines 520, 530 and 540
check to make sure it’s still dark. If it is
light, the program branches back to the
beginning. If it’s still dark the program
proceeds. Lines 550, 560 and 570 causes
a delay of between 4,500 seconds (1%
hours) and 18,000 seconds (5 hours).

When that “rest” time is over, the next
statement, @#C000=4, turns on light
C. The delay loop formed by the state-

620 IF F<600 GOTO 600

625 REM TURN OFF LIGHT C
630 @#C000=0

640 GOTO 500

ments in lines 600, 610 and 620 keeps
light C on for a period of time between
about 1 and 10 minutes. The statement
“@#C000=0" turns off all lights and
the program branches back to line 500.

The controller circuit

The schematic of the complete burglar
outwitter is shown in Fig. 7. The first
thing we’ll look at is photodarlington
transistor Q1, which monitors the light
level. When hit by light, the pho-
todarlington conducts current. That pro-
duces a voltage drop across R4. That
voltage also appears at pin 3 of IC5-a, the
op-amp’s non-inverting input. When the
voltage at that input exceeds that at the
inverting input (pin 2), the op-amp output
of jumps to almost 5 volts. That triggers
IC6-a (a Schmitt trigger NAND gate),
whose output jumps low.

The output of IC6-a is fed to the input of
the three-state buffer, IC7-a. This buffer is
enabled only when a READ operation is
taking place on location C000. (When a
three-state buffer is not enabled, it is
basically disconnected from the circuit.)
The decoding for that buffer is provided
by IC6-b, 1C9-a and IC10-a.

‘puncib pue pes| Jamod oy} UsaMIaq Ji YIES JE PaY[BISUI 3q PINoYs (4T | Jnoge) sio) B

-1oedes ssedAq ‘onewayas ay) uy umoys jou ybnouyye 1eys 3joN ‘Y3 L1IMLINO HY1DHNE IHI—Z O

8
\&/ EISTRL 21

gAY o,
= B
a-1191 > AG+
3 LHII ">~_+ A e
£0S 6E = =
' ied Ts la le o ls |s le fz i 6(8lealslvleleh
i IV LV OV £V bV GV 9V IV 1V OV £V b SV OV
T vilz i1z
N = =
NNNN__.W H 4077 = - 3 =
Ll iy =7 & €020 10 00 6V 8V LV & 1090 50 0 BY 8Y LV
IVALLL = T8 (TS AN EN N D :«E o1 [v0 [2r (et |ve 51 [at :«E
v z NG+ AS+
AI&” P‘.Fd’d -
7% g 00t =
AL+ .l|m SZNY . ClH LLY SOMN I|h .
SLII {0} zifii ot e Lh _w _m ___ _m _N 1
4 ZHNY . s 201000 OV LV Y EV ¥V GV 9V LV
IA 1IVIX € SQuN oLk
v 1H9I1 = Al =
108 : e [All >
INZLE _ : - A £0 b0 50 90 (0 0vs e v
o=y mmm_m v_ww f SLvi]G1 (9t [ZL [BL]e! E@z FAGALE
i AL : AG+ || AG+
wzINg ozl Jos [usJou st Joufer [z fo foufs o | Js s v [2 1S rr o
[4y >>»>2 2> > > > 2 » = = g S
N et < s = Wicamio = s e S m W “
IVALLL = BF e SN
: |_.. £L08SNI 131 SOMN
[AAA
5 7 ¥ £V ZV LV 0V £0 90 $0 %0 £0 20 LG 0a ol = g 2
1 9z |L £ L€ [8€ [6E |ob : I EIST0LZ/L
— %) -EEEEE r|¢|' o s e-11]
AG+
AZlr =—— sanp NEE 7 g
3 €131 1 rmbq.bwa 4 ELY AG+ 1z # A+
.Gw_.hm AEE GiY
ZAH - iy
J"EE > %691
13 ¥ v
81491 A
20s S0tz ¥ ot
> TEY
1 L
s ,m._xm__\ ”
L 1353y g\~ B by
[T L 51y
5 : AG#+ 1
IVALLL A
glslvle e
20 10 00
SLSTHL
AZL+ 2191
O I N ET
LTS < — = :
>

8l S

RADIO-ELECTRONICS

@
o

The output of IC7-a is fed to data-line
DO. Pulling the previous discussion to-
gether, we can see that when a READ
operation is taking place on address
€000, IC7-a’s output will be low (D@ will
be 0) when it is light out. Of course, when
it’s dark, the output of IC7-a will be high
(D@ will be 1.

The 2716 EPROM, IC2, contains our
Tiny BASIC program. As far as the mi-
crointerpreter is concerned, it is located at
addresses 8000 to 87FFH. The address
decoder for IC2 consists of IC9-b, IC10-a
and ICll-a. Since the EPROM’s outpuT
ENABLE pin (20) is connected to ICI’s
NRDS (READ DATA STROBE) output, 1C2 is
ENABLED only during a READ operation.
Note that with the 8073, the first ASCII
character of the program in EPROM must
be located at hex address 8000 if the cir-
cuit is to be self-starting at power up or
reset.

Two IK X 4 static RAM’s, IC3 and IC4,
provide the scratch-pad memory required
by the Tiny BASIC interpreter. The de-
coding required is provided by IC9-b,
IC10-b, and IC11-b. That RAM memory
starts at hex address 1000.

The 4-MHZ crystal and associated
lowpass filter network (R11, R12, and C2)
form the frequency-control network for
the on-chip oscillator.

Start-up (initialization) of the 8073 is
achieved with the R-C network consisting
of R15 and Cl. The rResEeT pin of ICI (pin
37) goes low for about a second after
power-up and then gradually rises to +35
volts. That slow rise in voltage is allowa-
ble as input since the RESET pin is buffered
with a TTL-compatible Schmitt trigger.
(The first instruction to be fetched, after
pin 37 goes high, is at location 0001.
Unlike microprocessors, which only un-
derstand machine language, the designer
who uses an 8073 need not know this
specific information since the on-chip in-
terpreter takes care of these details. That
is just one example of the savings in time
microinterpreters provide to the designer.)

The output circuit that controls lights
and appliances consists of the quad-latch
IC12, optocouplers IC13-IC15, and asso-
ciated circuitry. The address-decoding
network for IC12 is made up of IC8-a,
[C9-c, and IC10-a.

The quad latch is enabled when ICI
attempts to write to location COOOH,
Once a latch is enabled it can store data.
Thus the statement @#C000 = 1 enables
IC12. Since D@ is connected to the “D”
input of latch one (pin 2), it also causes
latch one to store a 1. The result is that pin
16, the **Q” output of latch one, goes high
and stays that way at least until IC1 writes
to location CO00 again.

When pin 16 goes high, the LED inside
optocoupler IC13 is energized causing the
internal phototransistor to conduct. That
turns on transistor Q2, which causes relay
RY1 to close and thus turn light A on.

PARTS LIST

All resistors 1 watt, 5% unless other-
wise specified

R1, R2, R12—1000 ohms

R3—10,000 ohms potentiometer

R4, R13, R14—3300 ohms

R5, R7, R9, R10, R22—10,000 ohms

R6—220 ohms

R11, R15—100,000 ohms

R16, R17, R18—270 ohms

R19, R20, R21—39 ohms

Capacitors

C1-—-33 pF, 10 volts, electrolytic

C2—27 pF ceramic disc

C3-C13—0.1 pF bypass capacitors (not
shown on schematic)

Semiconductors

IC1—INSB073 microinterpreter

1C2—2716 EPROM (properly pro-
grammed, see TABLE 1 and the text)

IC3, IC4—2114 1K x 4 RAM

IC5—LM324 quad op-amp

1C6,IC11—74L513 dual NAND Schmitt
trigger

IC7—74L5125 quad buffer

ICB—74LS21 4 input AND gate

1C9—74L.S04 hex inverter

1C10—74L502 quad NOR gate

1C12—74LS75 4-bit bistable latch

IC13, IC14, IC15—4N25 or equivalent op-
tocoupler

Q1—2N5777

Q2,Q03,Q4—2N2222

Other components
RY1,RY2,RY3—6-volt DC relay with 50
ohm coil, (Calectro D1-973 or equiv-
alent)
S$1—8PST momentary type switch
XTAL1—4 MHZ crystal
Miscellaneous: PC or prototyping
board, two-conductor cable (for Q1),
14-gauge U.L. approved wire (for wir-
ing the light circuits to the relays),
hook up wire, solder, etc.

The INS8073 demo/development
board (Part No. DB10-ND), is available
from Digi-Key Corporation, Highway
32 South, P.O. Box 677, Thief River
Falls, MN 56701-9988 (1-800-346-5144)
for $250.00.

Similarly, the statement @#C000=2
causes D1 to go high, which turns on light
B. The statement @#C000 =4 will cause
D2 to go high and light C will go on.
Notice that by connecting D3 to pin 7 and
adding another optocoupler/transistor/re-
lay circuit, another light/appliance can
be controlled by the statement
@#C000=8.

Burning the EPROM

As we mentioned previously, the demo/
development board from Digi-Key con-
tains an on-board burner for 2716
EPROM’s. A brief review of how to use it
follows.

After you obtain the prompt (>) on

BV M

your terminal, type: NEW#1100<re-
turn>. Then type: NEW <return>. You
are now ready to enter the program in
Table | (or your own program). To save
time (and memory space for longer pro-
grams), you might want to leave out the
REM statements.

After entering your program, connect a
+25 volt source to pin 3 of “P1” on the
board and insert an .erased 2716 in the
empty socket. Now type:
NEW #8800<return> and then type:
S<return>. Switch S2 to p and then type:
P<return>. If everything goes well,
“DONE,CMD?” should show on the dis-

play.

Building the outwitter

Since this project is fairly simple (for a
computer-based project, that is) it can be
put together on a solderless breadboard. If
you use such a system, make sure you
keep all the wires that are connected to
IC1 and IC2 as short as possible. While
such a breadboarding technique isn’t suit-
able for permanent installations, it is ideal
for design work since the circuits can be
quickly constructed and easily modified.
This is also an economic method of test-
ing your design, since the parts from the
breadboard can be used in a different proj-
ect or can be used in the final circuit. If
you do make a permanent version on a PC
board or wire-wrap board, be sure that
you use IC sockets—at least for the
EPROM.

The photodarlington transistor, Ql,
should be mounted so that it is facing out a
window, Make sure that you don’t locate it
near an indoor light. When it starts to get
sufficiently dark out, carefully adjust R3
so that light A goes on. The relays listed in
the parts list are Calectro D1-973 and can
control 200 watt (120-volt) light bulbs. By
connecting the contacts of those relays in
series with the coil circuit of a power relay,
much larger currents can be controlled.

The beauty of using microinterpreters is
that the program contained in the EPROM
can be quickly and easily changed—short
programs can be modified in less than an
hour. As a real-life example, let’s look at
our circuit. It is possible to modify the
program so that the circuit can tell
whether it is summer or winter. One way
that could be done is by writing a program
so that the “outwitter”” measures the
length of day. The circuit can then modify
its behavior according to the season.
~ The output circuit itself can be easily
modified to control more lights/ap-

- pliances. The addition of light D has al-

ready been touched upon previously. By
adding an additional 74LS75 quad-latch,
4 more lights/appliances can be easily
controlled. With the use of a suitable de-
coder to the output of these 8 latches (and
amodification of the program) 256 lights/
appliances can be controlled. That should
be nearly enough for everyone! R-E

=

